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Abstract Grain kernels are finite and discrete materials.

Although flowing grain can behave like a continuum fluid

at times, the discontinuous behavior exhibited by grain

kernels cannot be simulated solely with conventional

continuum-based computer modeling such as finite-ele-

ment or finite-difference methods. The discrete element

method (DEM) is a proven numerical method that can

model discrete particles like grain kernels by tracking the

motion of individual particles. DEM has been used

extensively in the field of rock mechanics. Its application is

gaining popularity in grain postharvest operations, but it

has not been applied widely. This paper reviews existing

applications of DEM in grain postharvest operations.

Published literature that uses DEM to simulate postharvest

processing is reviewed, as are applications in handling and

processing of grain such as soybean, corn, wheat, rice,

rapeseed, and the grain coproduct distillers dried grains

with solubles (DDGS). Simulations of grain drying that

involve particles in both free-flowing and confined-flow

conditions are also included. Review of the existing liter-

ature indicates that DEM is a promising approach in the

study of the behavior of deformable soft particulates such

as grain and coproducts, and it could benefit from the

development of improved particle models for these com-

plex-shaped particles.

Keywords Discrete element method � Grain handling �
Grain processing � Free-flowing grain � Confined grain

Introduction

Grain kernels are considered finite and discrete materials.

At times, flowing grain can behave like a continuum fluid

or a collection of individual interacting particles depend-

ing, in large part, on the energy imparted to the grain

kernels [21]. Granular materials such as cereal grains that

exhibit discontinuous behavior cannot be simulated solely

using conventional continuum-based modeling techniques

such as finite-element or finite-difference methods.

Examples of processes dominated by discontinuum

behavior include flow of bulk solids in hoppers, feeders,

chutes, screens, crushers, ball mills, mixers, and conveyor

systems. Micromechanical behavior of particular media,

stability of underground mine openings, stability of rock

slopes, and mineral processing are other solids handling or

processing examples in which continuum theory may be

inapplicable [24].

Williams et al. [100] described the discrete element

method (DEM) to numerically solve problems involving

discrete elements like grain kernels. The DEM belongs to a

family of numerical modeling techniques designed to solve

problems in engineering and applied science that display

gross discontinuous behavior [24, 41, 42]. DEM can ana-

lyze multiple, interacting, deformable, discontinuous, or

fractured bodies undergoing rotations and large displace-

ments. The basic assumption in DEM is that every discrete

element has distinct boundaries that physically separate it
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from every other element in the analysis. Basic equations

of elasticity are written under an inertial frame and then

transferred to a non-inertial frame, which is translating and

rotating. This is performed so that to an observer in the

non-inertial frame, i.e., the new frame, the object exhibits

no mean translation or rotation. The deformation can then

be decoupled from the mean motion and written as the sum

of the bodies’ normal modes, which in turn gives a newly

derived set of decoupled modal equations. These equations

are applied on an element-by-element basis, and the ele-

ments communicate through boundary forces. The decou-

pled equations are then solved by an explicit central

difference scheme, and the final solution is obtained by

means of modal superposition [100].

Cundall and Strack [20], who were the first to publish

this technique, defined DEM as a numerical model capable

of describing the mechanical behavior of assemblies of

discs and spheres. The model is based on an explicitly

numerical scheme in which the particle interaction is

monitored at each contact and the particle motion is

modeled particle by particle. Figure 1 illustrates a sche-

matic overview of the sequence of calculations involved in

DEM simulation using the central difference, distinct ele-

ment method proposed by Cundall and Strack [20]. In

DEM modeling, particle interaction is treated as a dynamic

process, which assumes that equilibrium states develop

whenever internal forces in the system balance [84].

Contact forces and displacements of a stressed particle

assembly are obtained by tracking the motion of individual

particles. Motion results from disturbances that propagate

through the assembly. The mechanical behavior of the

system is described by the motion of each particle and the

force and moment acting at each contact. Zhu et al. [103]

also mentioned that DEM simulations can provide dynamic

information, such as trajectories of, and transient forces

acting on, individual particles, which is extremely difficult

or impossible to obtain by physical experimentation at this

stage of development. Thus, DEM has been used increas-

ingly to study the particle mechanics in solids handling and

processing applications. A complete description of the

DEM can be found in Cundall [18], Cundall and Hart [19],

Hart et al. [36], and Williams et al. [100].

Discrete element method (DEM) application is gaining

popularity in postharvest processing of grain and food

products because of its close characterization of actual

conditions in predicting various processes. Unlike the field

of mining and the chemical industry, however, DEM is not

being widely applied because of various particle property

issues arising from the biological origins of grain and food

products. The objective of this paper was to review existing

published research that used DEM as the numerical mod-

eling technique in postharvest grain handling and pro-

cessing. The scope of this paper is limited to DEM

applications on grain and its coproducts.

Theoretical Background of DEM

Approaches in DEM Modeling

Two types of DEM techniques are most common: hard-

sphere and soft-sphere approaches. These approaches are

differentiated by how the deformation during collision or

contact is represented. The hard-sphere approach does not

allow deformation or interpenetration during impact [40],

whereas the soft-sphere approach does [71, 72, 103]. The

hard-sphere approach is at the basis of the collisional or

event-driven (ED) models. The ED models are also cate-

gorized as non-smooth DEM, which models the shocks

between particles by means of shock laws with restitution

coefficient [30]. The strategy with ED models is to start

with equations governing momentum exchange, which

contrasts with the soft-sphere approach that solve the
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Fig. 1 Overall calculation procedure involved in DEM simulation

(adapted from O’Sullivan 2011)
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equations governing the linear and angular motion of the

colliding or contacting particles [72]. With the hard-sphere

approach, the time step interval for the numerical solution

varies with the time between each collision. In contrast, the

soft-sphere approach uses a constant time step interval in

the solutions.

The ED method is limited to circular or spherical par-

ticles, takes into account collisions or shocks between two

colliding particles only, and does not consider multiple

contacts [30]. A sequence of instantaneous collisions is

processed, one collision at a time, and the forces between

particles often are not explicitly considered [103]; there-

fore, the hard-sphere approach or the ED method is typi-

cally most useful in rapid granular flow simulations, where

the granular material is not dense because it has been

partially or completely fluidized [72]. The hard-sphere

approach is computationally cheap and, therefore, may be

preferred for non-dense flow. However, Delaney et al. [22]

argued that this approach, although computationally faster,

falls short in describing the details of the dense material’s

response involving multiple simultaneous contacts.

Fortin et al. [30] developed an improved non-smooth

DEM based on non-smooth contact dynamics (NSCD). The

NSCD method models the contact between particles with

the Coulomb unilateral contact law with dry friction and

takes into account multiple contacts and shocks between

particles [50]. Fortin et al. [30] improved the NSCD by

overcoming the difficulties that arise in using the dry

friction modeled by Coulomb’s law, which is typically

non-associated (i.e., during the contact, the sliding vector is

not normal to the friction cone). They used bi-potential

theory, which leads to a fast predictor–corrector scheme

involving just an orthogonal projection onto the friction

cone and allows using a convergence criterion based on an

error estimator in the constitutive law. According to

O’Sullivan [72], the contact dynamics method is not

strictly under the hard- or soft-sphere approaches; they are

sometimes referred to as rigid body dynamics.

Cundall and Strack [20] originally developed the soft-

sphere method, which was the first discrete numerical

modeling technique published in the literature. Particles in

the soft-sphere approach are also rigid but they are per-

mitted to overlap at the contact points as a representation of

the deformation that occurs at the contacts [71, 72, 103].

These deformations are used to calculate elastic, plastic,

and frictional forces between particles; the motion of par-

ticles is described by Newton’s laws of motion. The major

advantage of soft-sphere models is that they are capable of

handling multiple particle contacts, which is important

when modeling quasi-static systems [103].

Advantages of the soft-sphere approach in modeling

dense-phase bulk granular materials were also highlighted

by Campbell [7]. He emphasized that dense granular

materials (as opposed to those fluidized or in dilute phase)

in bulk are soft because their sound speed is approximately

50 times slower than those of their constituent solid

materials, and the bulk has an apparent elastic modulus

more than three orders of magnitude smaller than its con-

stituent solid. He added that dense systems interact by

force chains (which are quasi-liner structures that support

the bulk of the internal stress within the material) and

transmit force along the chain by elastically deforming the

interparticle contacts. Modeling such systems as rigid

spheres and any other model would miss essential physics

[7]. He also mentioned that particle surface friction is

essential to modeling dense systems because removing it

can cause transition between an elastic and inertial flow

regime. Surface friction is important to the strength of the

force chains, and force chains are vital to the elastic flow

regimes; thus, friction is also essential physics required in

the simulation to avoid erroneous behavior.

The soft-sphere approach, with the advantages listed

above for describing the bulk material physics, is most

commonly used in the grain and food processing industries.

Thus, soft-sphere DEM modeling is the focus of this review.

Governing Equations of Motion

In soft-sphere DEM, contact forces and displacements of

the particle assembly are computed by tracking the motion

of each individual particle using an explicit numerical

scheme and a very small time step [20]. The process uses

Newton’s laws of motion that gives the relationship

between the particle motion and forces acting on each

particle. Translational and rotational motions of a particle

are defined as [78]:

mi

dvi

dt
¼
X

j

Fnij
þ Ftij

� �
þ mig ð1Þ

Ii

dxi

dt
¼
X

j

Ri � Ftij

� �
þ sij ð2Þ

where mi, Ri, vi, xi, and Ii are the mass, radius, linear

velocity, angular velocity, and moment of inertia of particle

i, respectively; Fnij
, Ftij , and sij are the normal force, tan-

gential force, and torque acting on particles i and j at

contact points, respectively; g is the acceleration due to

gravity; and t is the time.

Modeling of Contact Forces

Force–displacement laws at contact points can be repre-

sented by different contact models. The wide range of

contact models and their corresponding equations is not

discussed in detail in this review. Zhu et al. [103] sum-

marize various contact force models as well as non-contact
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force models used in discrete particle simulations. O’Sul-

livan [72] also gives detailed discussions of contact models

in her book.

The simplest contact model commonly used is the linear

spring-dashpot model [20], in which the spring stiffness is

assumed to be constant [69]. An improvement to the linear

contact model employs the Hertz theory to obtain the force

deformation relation for the contact (e.g., nonlinear spring-

dashpot model). Unlike the linear contact model, the Hertzian

contact law considers that normal stiffness varies with the

amount of overlap. This approach has been extended to cases

in which colliding bodies tend to deform (constrained plastic

deformation). Numerical models of interaction at the contact

involve the force–deformation equation, which is augmented

with a damping term to reflect dissipation in the contact area.

One model to represent the force–displacement laws at

the contacts is the Hertz-Mindlin contact model [25, 26, 67,

68, 87]. This nonlinear model features both the accuracy

and simplicity derived from combining the Hertz theory in

the normal direction and the Mindlin model in the tan-

gential direction [78, 87]. Forces on the particles at contact

points include contact force and viscous contact damping

force [102]. These forces were calculated by assuming the

presence of elastic springs and dashpots in the normal

(n) and tangential (t) directions (Fig. 2).

The normal force, Fn, is given as follows [78, 87]:

Fn ¼ �Kn d3=2
n � gn

_dnd
1=4
n ð3Þ

where Kn is the normal stiffness coefficient; dn is the nor-

mal overlap or displacement; _dn is the normal velocity; and

gn is the normal damping coefficient.

The tangential force, Ft, is governed by the following

equation [78, 87]:

Ft ¼ �Ktdt � gt
_dtd

1=4
n ð4Þ

where Kt is the tangential stiffness coefficient; dt is the

tangential overlap; _dt is the tangential velocity; and gt is the

tangential damping coefficient. The tangential overlap is

calculated by [78]:

dt ¼
Z

vt
reldt ð5Þ

where vrel
t is the relative tangential velocity of colliding

particles and is defined by [78]:

vt
rel ¼ vi � vj

� �
� sþ xiRi þ xjRj ð6Þ

where s is the tangential decomposition of the unit vector

connecting the center of the particle.

In addition, a tangential force is limited by Coulomb

friction (lsFn), where ls is the coefficient of static friction.

When necessary, rolling friction can be accounted for by

applying a torque to contacting surfaces. The rolling fric-

tion torque, si, is given by [78, 83]:

si ¼ �lrFnR0x0 ð7Þ

where lr is the coefficient of rolling friction, R0 is the

distance of the contact point from the center of the mass,

and x0 is the unit angular velocity vector of the object at

the contact point [25, 57, 78, 83, 87].

Stiffness and Damping Coefficient

After modeling the contact forces, the next step is to

determine the values of stiffness, K, damping coefficient, g,

and friction coefficient, l. The friction coefficient is mea-

surable and considered a parameter obtained empirically.

The damping coefficient can be computed from stiffness.

Thus, the stiffness is the parameter that must be determined

first and can be computed by Hertzian contact theory when

the physical properties such as Young’s modulus and

Poisson ration are known [87].

Following the Hertz-Mindlin contact model above, the

normal stiffness and normal damping coefficients are [78, 87]

Kn ¼
4

3
E�

ffiffiffiffiffi
R�
p

ð8Þ

gn ¼
ln effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln2 e þ p2
p

ffiffiffiffiffiffiffiffiffiffiffi
m�Kn

p
ð9Þ

where E* is the equivalent Young’s modulus, R* is the

equivalent radius, m* is the equivalent mass, and e is the

coefficient of restitution. Equivalent properties (R*, m*, and

E*) during collision of particles with different materials

such as particles i and j are defined as [25, 83]

Particle i

Particle j

Normal
Spring (Kn)

Tangential
Spring (K

t
)

Normal
Dashpot (η

n
)

Tangential
Dashpot (η

t
)

Slider (µ)

Fig. 2 Elastic contact model with viscous damping and frictional

slider in the tangential direction
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R� ¼ 1

Ri

þ 1

Rj

� ��1

ð10Þ

E� ¼ 1� m2
i

Ei

þ
1� m2

j

Ej

 !�1

ð11Þ

m� ¼ 1

mi

þ 1

mj

� ��1

ð12Þ

where m is the Poisson’s ratio [25, 83]. Similarly, for a

collision of a sphere i with a wall j, the same relations

apply for Young’s modulus E*, whereas R* = Ri and

m* = mi.

Tangential stiffness and tangential damping coefficients

are defined as follows [78, 83, 87]:

Kt ¼ 8G�
ffiffiffiffiffiffiffiffiffiffi
R�dn

p
ð13Þ

gt ¼
ln effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln2 e þ p2
p

ffiffiffiffiffiffiffiffiffiffi
m�Kt

p
ð14Þ

where G* is the equivalent shear modulus defined by [57]

G� ¼ 2� mi

Gi

þ 2� mj

Gj

� ��1

ð15Þ

Gi and Gj are shear moduli of particles i and j, respectively.

Critical Time Step

For dynamic processes, important factors to consider are

the propagation of elastic waves across the particles, the

time for load transfer from one particle to adjacent

contacting particles, and the energy transmission across a

system that should not be faster than in nature [57]. In

the nonlinear contact model (e.g., Hertzian), the critical

time increment or critical time step cannot be calculated

beforehand, unlike the linear contact model in which the

critical time step is related to the ratio of contact stiffness

to particle density. Miller and Pursey [66], however,

showed that Rayleigh waves or surface waves account for

67 % of the radiated energy, whereas dilational or pres-

sure waves and distortional or shear waves are 7 % and

26 %, respectively, of the radiated energy. Thus, it is

assumed that all of the energy is transferred by the

Rayleigh waves because the speed difference between the

Rayleigh wave and the distortional wave is small, and the

energy transferred by the dilational wave is negligible

[57]. Moreover, the average time of arrival of the Ray-

leigh wave at any contact remains the same irrespective

of the contact point location. For simplicity, the critical

time step is based on the average particle size, and a

fraction of this is used in the simulations [57, 83].

The critical time step is given by the following equation

[57, 83]

tc ¼
p �R

b

ffiffiffiffiffi
qp

G

r
ð16Þ

where �R is the average particle radius, qp is the particle

density, G is the particle shear modulus, and b can be

approximated by [57]

b ¼ 0:8766 þ 0:163 m ð17Þ

A major concern in using the DEM is the computational

time because of the calculation of particle interactions and

spatial movement at very small time steps. Boukouvala

et al. [6] developed the discrete element-reduced-order

modeling (DE-ROM) approach to reduce computational

time. The authors used principal component analysis

(PCA) based on the data decomposition approach for dis-

crete simulation and validated the new approach by

studying a mixing process. Although this approach is

encouraging, it requires data preprocessing to identify the

optimal discretization based on the geometry and the state

variable variability. This recently published work has not

been adapted in grain postharvest operation modeling.

Particle Models: Grain and its Coproducts

The choice of shape representation for modeling particles

is critical to the accuracy of real particle behavior during

simulation, contact detection, and computation for contact

forces determination [28, 39]. The earliest particle models

were two-dimensional (2D) and of circular [20] or polyg-

onal shapes [92]. Later developments extended represen-

tations to three-dimensional (3D) shapes, using spheres

[17], polyhedra [18, 38], ellipses [86], ellipsoids [59], su-

perquadric functions [39, 99], multi-element axisymmetri-

cal non-spherical particles [28], and bonded particles

[65, 74]. Although contact detection and computation time

are very important, the critical objective in DEM modeling

is accurate simulation of the behavior of an assembly of

real particles [28]. Favier et al. [28] also mentioned that the

influence of particle shape on predicted behavior is less

documented than the relationship between shape and the

efficiency of contact detection, with the exception of par-

ticle models that used polyhedral shapes [31, 36]. In the

following sections, the particle models developed and used

for predicting handling and processing behavior of cereal

grains, oilseeds, and their coproducts are explored and

summarized in Table 1.

Soybeans

Soybean is one of the major oilseeds produced around the

world. Like any other agricultural grain, the

132 Food Eng Rev (2014) 6:128–149
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physicochemical properties of soybeans and their products

depend on the place of origin and processing methods.

Soybean-handling systems and processing operations have

been simulated for the past 20 years in an effort to optimize

processes. LoCurto et al. [60] used a particle model for

soybeans consisting of a cluster of four spheres of equal

radius, with centers lying on a plane. This was similar to

Favier et al.’s [28] representation of non-spherical particles

comprising overlapping spheres with centers fixed in a

position relative to each other along the major axis of the

particle’s symmetry. The 3D four-sphere particle model

was used to simulate the behavior of a single soybean

kernel bouncing in aluminum, glass, and acrylic surfaces to

measure the coefficient of restitution. The simulations

predicted the coefficient of restitution with reasonable

accuracy. Vu-Quoc et al. [91] created a soybean particle

model based on the multi-sphere method developed by

Favier et al. [28] to predict the dry granular flow of soy-

bean in a chute.

Soybean kernels resemble a sphere with high average

sphericity values of above 0.8 [48]; thus, to reduce com-

putation times, single spheres were used by most

researchers to simulate bulk soybean characteristics. Li

et al. [55] simulated the separation of soybeans and mus-

tard seeds in a sieve using 2D DEM and modeling soy-

beans as circular discs. They used a linear spring model

and modified their codes by conducting trial runs to select

the appropriate time step for the simulations. Both kernels

(soybeans and mustard seeds) were assumed to have uni-

form particle size. The screen wire was also modeled in

DEM using a group of circular particles that had the

properties of the screen wires, and these particles were

vibrated to simulate the movement of a mechanically agi-

tated screen. The authors found that the two spherical

particle models representing soybeans and mustard seeds in

a screening process were adequate and that the DEM

simulation can provide the critical feeding rate for the most

effective screening operation. Boac et al. [4] used a single-

sphere particle model to simulate bulk soybean property

testing using EDEM (DEM Solutions, Ltd., Edinburgh,

UK), a commercial DEM code. The researchers used a no-

slip Hertz-Mindlin contact to simulate and model the bulk

density and angle of repose measurement tests. They

conducted this simulation to develop a particle model with

appropriate parameter combinations of coefficients of res-

titution, static friction, rolling friction, particle size distri-

bution, and particle shear modulus that best matched the

property values available in the literature. The developed

soybean particle model was then used to simulate the

commingling of two soybean lots, with different intrinsic

properties, in a bucket-type grain elevator boot system [5].

Corn

Corn is a cereal grain that is grown widely throughout the

world and is a major food grain in Africa and Latin America,

with the United States as its largest producer. In the United

States, almost 85 % of corn produced is used as livestock

feed and as a raw material for industrial products [27]. The

design and development of processing and handling equip-

ment for corn is a mature area, but because of the volume of

grain handled and the new varieties that are being developed

and to mitigate dust issues, particle modeling is being used to

improve the design of equipment. Chung and Ooi [8–10]

modeled corn kernels using overlapping spheres to match the

measured average major, intermediate, and minor dimen-

sions. They used particle flow code (PFC) 3D (Itasca Con-

sulting Group, Inc., Minneapolis, MN), a commercial DEM

Table 1 Summary of particle models used for grains and coproducts

Grain

type

Particle model References

Soybeans 2D single circular disc model Li et al. [55]

3D four-sphere model LoCurto et al. [60],

Vu-Quoc et al.

[91]

3D single-sphere model Boac et al. [4, 5]

Corn 2D two-disc clump model Coetzee and Els

[13–15]

3D four-sphere model Chung and Ooi

[8–10]

3D six-sphere model González-

Montellano et al.

[32–34]

Wheat 2D single circular disc model Iroba et al. [46, 47],

Mellman et al.

[64]

2D five-disc ellipsoidal clump

model

Weigler et al. [94]

3D three-sphere model Keppler et al. [53]

Comparisons: 3D single-sphere

model, 3D four-sphere model,

and 3D eight-sphere model

Sarnavi et al. [82]

Rice 2D single circular disc model Sakaguchi et al. [81]

3D eleven-sphere ellipsoidal

model

Markauskas and

Kačianauskas [62]

3D seven-sphere ellipsoidal model Jiang and Qiu [51]

3D spheroid model Li et al. [58]

Rapeseed 2D single circular disc model Molenda et al. [70]

3D single-sphere model Raji and Favier

[76, 77]

3D single-sphere model Wojtkowski et al.

[101]

3D single-sphere model Wiącek and

Molenda [97]

3D single-sphere model Parafiniuk et al. [73]

DDGS 3D single-sphere model Clementson [12]
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code, to simulate a confined compression and rod penetration

in a dense granular medium [8, 9] and silo discharging [10].

The authors used a four-sphere particle representation for

corn because increasing the number of spheres in a single

particle leads to additional computational cost [8]. Measured

material properties [11] were used for simulation purposes.

Modeling corn particles using overlapping discs called

clumps in PFC 2D also has been employed in the devel-

opment of particle models of Coetzee and Els [13–15]. A

clump is a single entity composed of two or more over-

lapping spheres (in 3D) and discs (in 2D) to form one rigid

particle. Internal contact forces between the overlapping

spheres or discs are ignored in calculations [61]. Clumps do

not break during simulations regardless of the forces acting

upon them [29, 49]. Coetzee and Els [13–15] used this 2D

clump corn particle model to calibrate material parameters

such as the particle internal friction angle using laboratory

shear tests and particle stiffness using compression tests.

They validated the calibration process by modeling silo

discharge and bucket filling. Coetzee et al. [16] extended

these studies to DEM modeling of dragline bucket filling

using particle models comprising 2–4 overlapping spheres

that represent crushed rocks.

The highest number of spheres used to develop a corn

particle model was simulated by González-Montellano

et al. [32–34]. They modeled corn kernels consisting of six

spheres using the multi-spheres method [28] and experi-

mentally derived material property values [35]. The authors

indicated that using more than six spheres to construct one

corn particle would have slowed their simulation signifi-

cantly, thus increasing computation time. The friction

coefficients of this corn particle model were used to predict

the flow patterns of the discharging particles from a silo

González-Montellano et al. [32]. Then, they applied this

modified corn particle model to study the pressure distri-

butions, bulk density distributions, and flow properties

during filling and emptying of silos [33, 34].

Wheat

Wheat is a highly irregularly shaped kernel whose shape

representation for simulation purposes is challenging; the

presence of a crease makes it difficult to develop a particle

with identical spheres. Studies have reported using wheat

kernels in 2D to investigate the flow of wheat in a mixed-

flow grain dryer [46, 47, 64, 94]. Monosized spherical

particles were used to model the grain dryer in 2D using

PFC 2D software. Iroba et al. [46] indicated that using

multiple spheres would make the simulation time longer,

whereas using non-spherical particles would be more dif-

ficult to model and would require more advanced algo-

rithms. Because of the disc shape of the 2D particles in the

simulation, however, bridging between particles occurred

at the bottom discharge device of the grain dryer, which did

not happen during experiments. Iroba et al. [46, 47]

explained that because the long and ellipsoidal shape of

wheat kernels can orient in different directions during

discharge, flow can be enhanced and bridging did not occur

in the experiment. Spherical particles (discs) tend to form

bridges even though orientation is the same in all direc-

tions. To overcome bridging of particles during simulation,

the fixed part of the discharge device was vibrated. In the

subsequent simulations, the authors used non-spherical

particles represented by a 2D ellipsoidal clump consisting

of five circular elements [94]. The clumps were assumed to

have the same material properties as wheat, which were

adapted from Markauskas et al. [63]. The DEM model

indicated that using non-spherical particles (2D ellipsoidal

clumps) can predict the real flow pattern, but disc-shaped

particles did not produce the expected dynamic angle of

repose that typically formed under the air ducts.

Keppler et al. [53] predicted the velocity distribution of

wheat kernels in a mixed-flow dryer with 3D wheat kernels

using EDEM software. The wheat particle was represented

by a clump of three spheres. Although the particles used in

EDEM were slightly bigger than actual particles, the velocity

prediction was nearly accurate. To compare the performance

of different particle models, Sarnavi et al. [82] simulated 3D

wheat kernels using three types of particle models: (1)

spherical, (2) 4 spheres, and (3) 8 spheres using the PFC 3D

software. They compared the performance of the particle

models with two contact models (linear vs. nonlinear) in

predicting the angle of internal friction and cohesion of

wheat. They found that the single spherical particle model,

using both linear and nonlinear contact models, performed

better in the simulations than the multi-sphere models.

Although different particle models have been used to simu-

late wheat kernels, the studies clearly demonstrate that 3D

particle models have higher accuracy in predicting the bulk

behavior of wheat than a 2D approach. The results do not,

however, confirm the best number of spheres to use to rep-

resent a single wheat kernel. This could be because of the

complicated shape of wheat kernels; the number of spheres

should be approximated by trials depending on the compu-

tation time and prediction accuracy required.

Rice

Rice’s ellipsoidal shape is similar to wheat, but the absence

of a crease in rice makes it easier to approximate the rice

particle shape. A 2D circular disc approach was used by

Sakaguchi et al. [81] to model rice kernels in the shaking

separation process using their own DEM codes [80]. The

authors obtained good agreement between the simulation

and experiment with respect to the wave-like behavior of

the grain assembly and the macroscopic separation
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behavior of rice. Markauskas and Kačianauskas [62]

modeled rice kernels by creating an ellipsoid using 11

spheres. They compared two rice particle models, with

rolling friction coefficients of zero and 0.3, using their own

DEM code [52]. These particle models were used to sim-

ulate the filling and discharge flow and piling of the ker-

nels. The particle model with rolling friction produced a

pile shape that better corresponded to the actual pile. On

the other hand, the particle model without rolling friction

showed higher particle mobility, resulting in a spread of

particles rather than a pile. A 7-sphere particle model was

used by Jiang and Qiu [51] to simulate the impact behavior

of rice kernels. The rice particle modeled was an ellipsoid

with a 3.5-mm half-major axis and a 1.8-mm half-minor

axis. The authors implemented this rice model in EDEM

software and studied the impact of rice particles on the

impact board of an inclined elevator head. Simulations

predicted the experimental results with high accuracy up to

a certain mass of rice that impacts the board. A 3D rice

model was also used by Li et al. [58] to simulate the

material motion in an air-and-screen cleaning device. The

authors separated rice kernels and straws using a coupled

DEM and computational fluid dynamics (CFD) model. The

rice grain was represented in EDEM by a spheroid that is

6 mm long with a 1.6 mm radius of rotation. The short

straw was represented by a cylinder 30 mm long by 4 mm

diameter. These models were used to study the effect of

inlet airflow velocity in terms of the longitudinal velocity,

vertical height, and cleaning loss of rice kernels and short

straws. The coupled CFD–DEM model predicted the air-

and-screen cleaning process by describing the movement

of particles on the screen surface. Coupling CFD with

DEM is a recent advancement in particle modeling that

will be useful in the grain processing industry for the

prediction of various handling and processing operations.

Rapeseed

Rapeseed is the second leading source of vegetable oil and

protein meal in the world next to soybean [88]; thus, its

processing and handling optimization is important to the

industry. Bulk compressive loading of rapeseeds was

modeled by Raji and Favier [76] using a single-sphere

particle model. They found a slight difference in the initial

particle positions between the experiment and simulation,

although strain intervals were calculated at the same

porosity values. This was an early attempt to model rape-

seeds, and the authors extended the use of this single-

sphere particle model to simulate rapeseed, soybean, and

palm-kernel for bulk compression [77]. Later, other

researchers also modeled rapeseed using a single-sphere

particle model to simulate the free fall and impact of ra-

peseeds against a flat surface [101]. The authors used two

different contact models, an elastoplastic contact model for

dry seeds by Thornton and Ning [85] and a viscoelastic

contact model for wet seeds by Kuwabara and Kono [54].

Parafiniuk et al. [73] simulated rapeseeds as single spheres

to predict flow through a horizontal orifice. The experi-

mental mean radii and standard deviation values were used

to develop the single-sphere model. The authors used

EDEM software and applied the contact models used by

Wojtkowski et al. [101] for dry and wet rapeseeds. Paraf-

iniuk et al. [73] concluded that the contact models repro-

duced experimental results for slow particle flow but

needed the improvement of including dissipation for higher

particle flow rates. Wiącek and Molenda [97] studied the

influence of the moisture content of rapeseeds on the

physical properties of grain bedding during uniaxial com-

pression testing using single-sphere particle models.

Results indicated that the mechanical response of a gran-

ular assembly subjected to uniaxial compression is signif-

icantly affected by the moisture content of kernels. Both

the simulations and experiments revealed differences in the

elasticity and the stress transmission within rapeseed

assemblies at various grain moisture contents.

The behavior of rapeseed during a direct shear test was

modeled by Molenda et al. [70] using 2D circular discs. They

used circular elements with size uniformly distributed

between 1.8 and 2.2 mm. Numerical simulations were per-

formed using a non-commercial DEM code [93] to determine

the influence of three different levels of standard deviations in

the coefficient of interparticle friction to the bulk behavior in a

direct shear test. Particle interaction in the normal direction

was simulated using a linear viscoelastic model, whereas the

tangential direction was expanded to include a frictional

element. Variability in the interparticle friction was found to

influence markedly the stress–strain characteristic during the

initiation of motion, whereas the strength of the assembly (or

steady-state value of stress) remained constant.

Grain Coproducts

Grain undergoes different processing methods during

conversion into products and coproducts. The particle

characteristics of products derived from grain are generally

controlled, but particle characteristics are not uniform

because the bulk contains particles with different sizes,

shapes, and chemical compositions. The challenge in

modeling coproduct is in shape representation using

spheres. For example, distillers dried grains with solubles

(DDGS), a coproduct from corn-to-ethanol processing,

which contains a mixture of fiber, starch, and protein

components that vary in size and shape. Clementson [12]

modeled the flow and segregation of DDGS using single-

sphere particle model in EDEM with the Hertz-Mindlin

(no-slip) contact model. The geometric mean diameter of
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actual DDGS ranged from 0.87 to 1.01 mm, but the

researchers used bigger particles because small particles

required longer simulation time in DEM; the log-normal

bimodal distribution of these particles was kept similar to

the actual particle size distribution. The author found that

the magnitude of changes in discharge rates in the exper-

iments was not the same as in the simulation, and the

numerical simulation predicted the same flow patterns as

observed during funnel flow but not mass flow experi-

ments. DEM has not been widely used to predict the bulk

behavior of coproducts from the grain-based food and feed

industry, partially because of the computational load from

the higher number of spheres required to obtain accurate

shape representation.

Modeling Grain Handling Operations

Bulk behavior of cereal grains, oilseeds, and their products

varies based on the quantity, environmental factors,

method of processing, and handling equipment used. The

grain handling and processing operations that have been

modeled using DEM were subdivided into processes

dealing with free-flowing grain, such as filling and emp-

tying of silos, and confined grain, such as storage and

compression.

Gran Postharvest Operations Modeled or Studied Using

DEM

• Free-flowing grain

• Filling and discharge of silo

• Bulk behavior during grain conveying

• Grain cleaning and separation

• Impacting grain kernels

• Confined grain

• Silo probing

• Compression

• Shear testing

• Grain drying

Table 2 summarizes the model and references associated

with these postharvest processing

Modeling Free-Flowing Grain

Filling and Discharge of Silo

Due to the complexity of physical and chemical parame-

ters, hopper flow of grain and grain products usually

encounters challenges such as ratholing, arching, and

caking. Use of discharge aids in grain-based food and feed

industries is a common practice to achieve uniform flow of

material from hoppers and silos. DEM is increasingly

applied to simulate bulk flow characteristics of grain and

products for better bin design and process optimization.

Different grain filling approaches have been used to

simulate grain storage systems. Progressive filling is the

more common method used in DEM simulation where

particles are generated continuously, whereas in en masse

filling, all particles are generated simultaneously, thus

reducing computation time. In en masse filling, particles

Table 2 Summary of major studies in modeling grain handling

processes

Process Specific model References

Free-flowing grain Filling and

discharge of silo

González-

Montellano et al.

[32–34]

Chung and Ooi

[9, 10]

Coetzee and Els

[13]

Clementson [12]

Markauskas and

Kačianauskas

[62]

Parafiniuk et al.

[73]

Bulk behavior

during grain

conveying

Coetzee and Els

[13, 15]

Boac et al. [4, 5]

Grain cleaning and

separation

Sakaguchi et al.

[81]

Li et al. [55, 58]

Impacting grain

kernels

Wojtkowski et al.

[101]

Jiang and Qiu [51]

Confined grain Silo probing Chung and Ooi [8]

Compression Raji and Favier

[76, 77]

Chung and Ooi

[8–10]

Wiącek and

Molenda [97]

Coetzee and Els

[13, 14]

Shear testing Molenda et al. [70]

Sarnavi et al. [82]

Combined models

(free-flowing and

confined)

Grain drying Iroba et al. [46, 47]

Mellman et al. [64]

Keppler et al. [53]

Weigler et al. [94]
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Table 3 Summary of findings and limitations of published research, research and development needs, and knowledge gaps

Previous research Research findings and limitations Research and development needs and

knowledge gaps

References

Particle models

Corn in

compression, silo

probing, silo

filling, and

discharge

Used 3D 4-sphere and 6-sphere particle

models for corn with the assumption that

increasing the number of spheres would

further increase computation time

Most appropriate number of spheres for

describing a single corn particle was not

defined; different particle models have been

used—a 4-sphere particle model was used

for silo discharge, confined compression,

and silo probing, whereas a 6-sphere

particle model was used in silo filling and

discharge. There is a need to define the

most appropriate particle model

Chung and Ooi [8–10];

González-Montellano

et al. [32–34]

Wheat in mixed-

flow grain dryer

Used 2D single circular disc particle model

for wheat with the justification that a 3D

multi-sphere particle model increases

computation time and 3D non-spherical

particle model is difficult to model and an

advanced algorithm is needed

A better particle model is needed for wheat to

solve the problem of bridging of particles

(circular discs) at the bottom of the grain

dryer; vibration has been used to resolve the

bridging during simulation

Iroba et al. [46, 47]

Wheat in shear

testing

Tested 3D particle models for wheat (1-, 4-,

and 8-sphere models). The particle model

that could be used for shear testing is not

definite

A better shape representation is needed to

model the complicated shape of a wheat

kernel; the number of spheres should be

approximated by trials depending on the

computation time and prediction accuracy

required

Sarnavi et al. [82]

Soybean bulk

property tests and

soybean

commingling

Limitations found with excess computation

time related to the number of particles,

shape of particles (multiple spheres), and

with high particle shear modulus.

Computation time requires compromises,

which are acceptable in some cases, a

problem in other cases, and a unacceptable

in still other cases

Need to define complex particle shapes to

help solve the complex shape part in

relation to computation time

Boac et al. [4, 5]

DDGS flow Used larger particles to model DDGS;

predicted the same flow patterns as the

experiments but not the magnitude of

changes in discharge rates.

DEM not widely used in grain coproducts;

need to resolve the high number of spheres

required to obtain accurate shape

representation.

Clementson [12]

Modeling elements/knowledge

Corn flow behavior

during discharge

Used 2D clump particle model to predict the

flow of corn through a silo; higher

prediction accuracy through a larger silo

opening (less restricted flow)

Prediction accuracy has to be considered

when using 2D models

Coetzee and Els [13]

Rice behavior

during shaking

process

Used 2D circular disc model to predict the

separation of brown and paddy rice; the

simulation showed the same wave-like

behavior of the grain assembly as in the

experiment, but the circular particles moved

closer to the lower end of the shaker than in

the experiment, which was due to the ease

of rotation of the circular elements

The rotational issues of circular elements

during simulation when using 2D models

has to be solved for better prediction

Sakaguchi et al. [81]

Rice in hopper

filling and

discharge and

piling of grains

Tested particle models with and without

rolling friction; importance of rolling

friction in simulating the angle of repose of

a pile of grain

Need to establish the appropriate rolling

friction to employ in simulating a specific

grain type

Markauskas and

Kačianauskas [62]

Rice impact on a

surface

DEM was able to predict the effect of particle

mass and normal contact force between

particles and surface during impact

Further research on the factors that affect the

retention and the slippage of a particle after

impacting a surface has to be carried out

Jiang and Qiu [51]

Rapeseed flow

through a

horizontal orifice

Contact models reproduced experimental

results for slow particle flow but needed

improvement for higher particle flow rates

Further research that take into account the

dissipation of energy for particles with high

flow rates during flow through a horizontal

orifice

Parafiniuk et al. [73]
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are allowed to fall under gravity until a static equilibrium is

reached. González-Montellano et al. [33] used the en masse

filling approach for glass beads and corn kernels filling in a

silo. Particles were deposited rapidly on top of each other,

leading to many particles being trapped by the others

without having dissipated their initial energy. During

emptying, the movement of the material diluted these

effects, and the observed pressures were similar to the

expected pattern [33]. If the en masse method is used in

simulations, prediction errors should be taken into account

when studying pressures during filling of silos (Table 3).

González-Montellano et al. [34] improved their simu-

lations by using a modified particle model for corn [32] and

the progressive method of filling a silo [33] from their

previous work. Results highlighted a difference in the

vertical distributions of pressure between corn and glass

beads. During both filling and discharge, the peak pressure

at the silo–hopper transition was much higher for corn than

for glass beads. Pressure values also fluctuated less for

corn. For horizontal pressure distribution during filling and

at any time during the discharge of corn, maximum hori-

zontal pressure was in the central region of the silo walls

and then slowly decreased toward the corners. This result

was the same for glass beads, except that the distributions

were less stable over time. In both models, the velocity

profile at the center was greater than at the walls. For corn,

the distribution of the bulk density in the vertical section

was not as random as with glass beads. These researchers

demonstrated DEM’s usefulness in studying the behavior

of granular materials in silos and hoppers and the degree of

detailed information that could be obtained from

simulations.

Chung and Ooi [10] simulated silo discharge by emp-

tying corn through a circular orifice of a flat-bottom silo

Table 3 continued

Previous research Research findings and limitations Research and development needs and

knowledge gaps

References

Rapeseed in

compression

Moisture content significantly affected the

properties of grain bedding during

compression

Application of this model for predicting

compression behavior of other common

cereals and grains

Wiącek and Molenda [97]

Rapeseed in shear

testing

Degree of variation in interparticle friction

did not influence the final value of shear

strength at steady-state flow, but markedly

influenced the shear path (or shear–strain

characteristics) at the initiation of motion

Application of this model for predicting shear

testing of other common cereals and grains

Molenda et al. [70]

Particle flow

behavior during

silo filling

Tested three different coefficients of

interparticle and particle–wall friction; high

interparticle friction led to low bulk

densities after the silo filling, which agreed

with results in simulated bulk density tests

Need to establish the right interparticle and

particle–wall friction coefficients for other

grain types and surfaces to be used in future

simulation

González-Montellano

et al. [32];

Boac et al.’s [4]

Modeling methods

Rice and straw

separation in

air-and-screen

cleaning device

Use of coupled CFD–DEM to study the

separation process for rice and straw

Further use in modeling other postharvest

processes; another application could be on

design improvement of combine harvesters

in processes that involve predicting the

particle movement in air

Li et al. [58]

Bin pressures Major concern when using DEM to study bin

pressures is that it assumes rigid silo walls in

the simulations, resulting in overprediction

of the horizontal distribution of normal

pressure at the central positions on the walls

Need to explore the use of hybrid models

combining DEM and FEM; DEM can be

used to accurately simulate the dynamic

behavior of the grain itself, and FEM can be

used to model flexible walls of the grain dryer

González-Montellano

et al. [35]

Mixed-flow grain

dryer

DEM can adequately predict the main features

of particle flow and air flow as affected by

design elements and air duct arrangements.

Particles at the near-wall region had lower

particle velocity, whereas the central region

had high particle velocity, thus resulting in

different residence times and affecting

overall dryer capacity and drying efficiency

Grains flowing at lower velocities may be

over-dried, and those moving at high

velocities may be under-dried

Further studies needed to improve the design

of MFDs; coupled CFD–DEM may be

explored further to optimize MFD designs

Iroba et al. [46, 47];

Mellman et al. [64];

Keppler et al. [53];

Weigler et al. [94]
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unloading onto a flat surface. Although the purpose of the

study was to examine the influence of gravity on a granular

solid, the terrestrial aspects of experiments closely simu-

lated earth-bound processes using DEM. DEM simulation

showed that the mass flow rate decreases as gravity

decreases, with a corresponding increase in discharge time.

The simulation also correlated with Beverloo’s relationship

that the mass flow rate is proportional to the square root of

the gravitational force. In addition to corn discharge

parameters, DEM also predicted reasonably the angle of

repose of corn discharged from the silo [10].

Mass flow rate and size of hopper outlet opening influ-

ence discharge of granular materials. Coetzee and Els [13]

studied the discharge of corn kernels from a glass rectan-

gular silo in two dimensions using PFC 2D. Two silo

openings were used in this study. The authors found that

the corn particles modeled as clumps composed of two

discs could reasonably predict the flow patterns observed

during experiments. The results indicated that a 2D clump

particle model had higher accuracy in predicting the flow

of corn through a larger silo opening where the flow was

less restricted. Accuracy of DEM simulations depends on

the particle models and the particle parameter values used

in the simulations. In this study, the two-disc particle

model could have influenced the prediction accuracy.

Monitoring the density of material that flows from

hoppers or bins is one method used to evaluate segregation.

Clementson [12] used DEM to predict the bulk density of

DDGS particles during funnel flow and mass flow from

hoppers. The hopper half angles used were 33� for the mass

flow and 65� for funnel flow. DEM predicted a funnel flow

for DDGS that was observed during experiments. The

results reported by Clementson [12] supported the

hypothesis that the heterogeneity of DDGS does not

facilitate true mass flow, irrespective of the hopper design.

Discrete element method (DEM) can be used to predict

bulk density after filling a silo in addition to flow pattern

and discharge rate. González-Montellano et al. [32] used

corn kernels and glass beads in EDEM simulations to

model silo filling and discharge. For corn, three successive

DEM models were tested to identify the coefficients of

interparticle and particle–wall friction. High interparticle

friction led to low bulk densities after the silo filling, which

agreed with Boac et al.’s [4] results in simulated bulk

density tests. High interparticle friction also increased the

discharge time. For glass beads, the velocity profile was

qualitatively similar to corn but showed a more fluctuating

velocity profile. This result may be explained by the

development of crystalline packing configurations when

single-sphere particles were used [9, 32]. For discharge

rates, results for the glass beads showed wider fluctuation

than those for corn kernels, which was a consequence of

the relatively larger ratio between particle size and silo

opening used for glass beads (0.24) than for corn (0.17).

An axisymmetric multi-sphere approach is a recent

development that could be used to develop particle models

for irregularly shaped cereal grains. Markauskas and

Kačianauskas [62] used this approach to simulate the filling

and discharge of rice from a small-plane wedge-shaped

hopper with a rectangular orifice. The authors simulated the

angle of repose of the pile of rice after its discharge from

the hopper and modeled friction effects on the flow of rice

through an orifice. To model the friction effects, two rice

particle models, with and without rolling friction, were

used. The researchers found that rolling friction must be

taken into account to avoid artificial local rotation of par-

ticles when using axisymmetric multi-sphere particle

models to represent elongated, irregularly shaped particles.

Numerical results provided quantitative evidence of

increased rolling friction owing to geometric deviations of

the particle shape from the axisymmetric geometry. Sim-

ulations with zero rolling friction in the model resulted in a

lower angle of repose and discharge time compared with

the experimental values. The authors also investigated the

rotational energy of particles inside the hopper using both

models [62]. The rolling friction practically suppressed

local spin, whereas the perpendicular rotation occurred

because of the collective particle arrangement. The authors

showed the effects of rolling friction to rotational behavior

of the particles and that neglecting the rolling friction led to

increased capability of particles to rotate by falling on the

pile.

The effect of moisture content on the mass flow rate of

rapeseed from a silo was modeled by Parafiniuk et al. [73],

who verified the applicability of the elastoplastic model for

dry seeds and the viscoelastic model for wet seeds adapted

from Wojtkowski et al. [101] in DEM simulations. Simu-

lation results revealed that the proposed contact models

reproduced the experimental results for slower rate of

particle flow. At higher flow rates (or larger openings),

however, the dissipation of energy led to higher noise in

the force simulated on the silo bottom than indicated by the

experimental results. This discrepancy was higher in sim-

ulations where the elastoplastic contact model (for dry

seeds) was used. In DEM simulations, mass flow rates of

dry and wet seeds did not differ if the mass flow rates were

calculated as a sum of masses of particles falling into the

receiving container per time unit, but differences in the

mass flow rates of dry and wet rapeseeds were observed if

calculated using the sum of vertical forces exerted by

particles on walls and floor of receiving container. The

authors did not include cohesion parameters in particle

models, which resulted in the differences between predic-

tions and experimental results.
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The major concern when using DEM to study bin

pressures is that it assumes rigid silo walls in the simula-

tions of González-Montellano et al. [34]. This results in

overprediction of the horizontal distribution of normal

pressure at the central positions on the walls. González-

Montellano et al. [34], after continued efforts to simulate

grain bins using DEM, recommended that hybrid models

combine DEM and the finite-element method (FEM) to

compensate for DEM’s limitations. DEM allows a more

accurate simulation of the dynamic behavior of the gran-

ular material itself, and FEM will allow flexible walls to be

included, thus yielding a complete model.

Bulk Behavior During Grain Conveying

Shear zone theory was applied by Coetzee and Els [13] to

simulate bucket filling using DEM. The authors used a rig

geometry that resembled a dragline bucket, which was

pulled in the drag direction by a set of ropes but with

freedom of motion in all other directions, based on the

shear zone theory developed by Rowlands [79]. DEM can

accurately predict the filling process of a bucket or scoop,

the force acting on the bucket, and the fill rate. During the

experiments, the flow regimes as predicted by the shear

zone theory [79] were also observed. DEM predicted these

different flow zones [13–15], and the authors recom-

mended that knowledge of the flow zones can be used to

optimize buckets in terms of fill rate, bucket force, and

bucket wear.

Grain commingling is an unintentional introduction of a

different grain type during typical handling operations that

directly reduces the level of purity in grain that enters an

elevator facility. Three approaches address commingling

during grain handling: (1) ignore it, (2) identity-preserve

(IP) the grain in dedicated containers, and (3) segregate or

handle the IP grain in non-dedicated facilities. Due to

limited scientific data on grain commingling in normal

handling operations, it is not possible to predict the level of

purity that could be achieved with the third, less expensive

approach [3]. Boac et al. [5] simulated grain commingling

in a pilot-scale grain elevator boot using DEM models and

evaluated the trade-offs of computational speed versus

accuracy for 3D and quasi-2D boot models. Experimental

data from the pilot-scale bucket elevator showed that the

average cumulative commingling was comparable to the

values for full-size bucket elevator legs. To avoid over-

prediction, the 3D model was refined to account for the

sudden surge of particles during entry and corrected for the

effective dynamic gap between the bucket cups and the

boot wall. Comparison of predicted average commingling

of five quasi-2D boot models with reduced control volumes

showed that the quasi-2D (5.6 times the particle diameter)

model provided the best option in terms of computation

time; it reduced computation time by 72–74 % compared

with the 3D model. Results of this study are being applied

to study the commingling of infested and sound kernels

(wheat and corn) in bucket elevator boot systems.

Grain Cleaning and Separation

The macroscopic behavior of paddy and brown rice during

shaking separation was modeled by Sakaguchi et al. [81]

on an oscillating inclined separation plate using a 2D DEM

model. The grain kernels were represented as circular

elements using the model developed by Sakaguchi et al.

[80]. In the DEM simulation, the indents on the separation

plate were modeled using virtual walls. Particle exit from

an indent was modeled as removal of a virtual wall when

the particle–wall contact exceeded a threshold value. There

was a good agreement between the results of the simulation

and the experiment in terms of the macroscopic separation

behavior of the rice. The experimental observations such as

segregation caused by upward movement of paddy rice

relative to brown rice and the shearing of the grain bed to

accumulate paddy rice near the lower end of the shaker box

were also predicted by the DEM simulation. The time

required to achieve maximum separation of brown and

paddy rice was the same in both experiment and simula-

tion. In the simulation, the circular particles moved closer

to the lower end of the shaker than in the experiment,

which was due to the ease of rotation of the circular ele-

ments. However, the simulation showed the same wave-

like behavior of the grain assembly as in the experiment.

The authors concluded that a simple DEM model using 2D

circular particles and virtual walls was effective and can be

done with reasonable computation times. The model will

allow further investigation of the separation mechanism

and exploration of the effects of different physical and

process parameters on the efficiency of grain separation in

shaking separators.

Separation mechanism of grain kernels on sieves is a

dynamic process that requires consideration of various

particle parameters such as size, shape, density, loading

rate, and other factors. Li et al. [55] used a 2D transient

model to calculate the motion of discrete soybean and

mustard seed particles on sieves using DEM. The authors

studied the influence of particle bed depth on undersize

particle segregation in an inclined vibrating screen. In the

DEM simulation, the sieving screen was modeled to be

made of vibrating circular particles (smaller than the ker-

nels) with properties of the sieving wires. The numerical

simulation indicated that at a particle bed depth of about 5

times the size of the large particles and 12 times the size of

the screen apertures, most undersize particles segregated to

the screen surface. The undersize particles also passed

through the apertures within about 40 % of the sieve length
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at the front section of the screen. For this particle bed

depth, the screen length was long enough to ensure the

highest screening efficiency, 100 % separation, which

means no undersize particle passed over and joined the

overflow of large particles at the end of the screen. The

authors concluded that for a screening system involving

granular materials, the critical feeding rate needed to

achieve the most efficient screening process can be deter-

mined using DEM simulation. Li et al. [56] extended this

study to mathematically investigate the particulate motion

of polyethylene pellets on an inclined screening chute

using DEM.

The coupled DEM–CFD approach has been used

recently to predict the solid interaction with fluids. Li et al.

[58] used a 3D coupled DEM–CFD model to study the

effects of inlet airflow velocity on the kernels and short

straw’s longitudinal velocity and vertical height and the

cleaning loss in an air-and-screen cleaning device. The rice

grain represented by a spheroid and the short straw by a

cylinder were generated in EDEM and allowed to fall on an

inclined vibrating screen. The CFD portion of the coupling

model used the Eulerian–Eulerian model in FLUENT

(ANSYS Inc., Canonsburg, PA). The authors used Hertz-

Mindlin contact model to simulate particle–particle and

particle–screen (wall) collisions. Through the coupled

DEM–CFD approach, the authors found that the length of

the screen can be shortened if impurity content is lower.

The coupled DEM–CFD modeling approach also could be

used to improve the design of combine harvesters because

the model accurately predicts the particle movement in air.

Impacting of Grain

The impact of grain as it falls on a flat surface influences

breakage characteristics, friction, and coefficient of resti-

tution. Wojtkowski et al. [101] proposed that different

models have to be used to predict the impact of grain

kernels depending on moisture content. The researchers

also indicated that to determine a correct contact model, the

ratio of the fall time to the rise time (TR) for the contact

force–time characteristics should be considered. For

TR [ 1, the authors recommended the viscoelastic model,

whereas the elastoplastic model should be applied for

TR \ 1.

Another application of DEM in investigating the impact

of grain kernel on a surface was reported by Jiang and Qiu

[51]. The authors studied the effects of particle mass and

the normal contact force between a rice particle and the

impact board of an inclined elevator during flow of rice.

Rice kernels were represented as ellipsoids composed of

seven spheres in EDEM, and celluloid was used as the

material for the impact board to study the effect of elevator

belt speeds of 0.5 to 1.0 m/s on bulk flow. The authors

found that the normal contact force between the flowing

rice particles and the impact board increased as the belt

speed increased, but belt speed had no effect on tangential

contact force. There was a good linear relationship between

the rice particle mass and the normal contact force when

the rice particle mass was from 0.18 to 0.54 kg. The

authors also concluded that the retention stage (i.e., from

the time when the normal contact force is \30 % of the

maximum normal force to when it became zero) during

impact was not beneficial to grain mass flow measurement.

Qiu et al. [75] extended this study to include the elevator

belt speed of 1.5 m/s and the effect of sliding during

impact.

Modeling Confined Grain

Silo Probing

Managing grain quality in a grain handling facility involves

sampling the grain from the incoming truck and testing it

for quality. To assess quality, incoming bulk grain in trucks

or rail cars is probed using mechanical (vacuum) probes.

Chung and Ooi [8], using DEM, simulated the penetration

of probes in a dense granular medium to evaluate the

resistance of granular bulk to the penetration of a moving

object and the dynamic force transmission to a contact

surface. The setup the authors used was comparable to a

confined compression arrangement with a probe to pene-

trate the bulk granular materials. Glass beads and corn

kernels were used in the simulations for comparison pur-

poses. The authors found that the measured and predicted

forces fluctuated during penetration into each material. The

average trend was repeatable, with corn kernels giving a

larger resistance to penetration than glass beads.

Compression

Oil expression by compression is a major processing

operation used by grain-based oil industries. Compression

of cereal grains is a complicated process to model because

it involves changes in density, inner porosity/voids due to

oil removal, size, and shape. By incorporating the actual

physical changes in the DEM model, Raji and Favier [76]

developed a numerical model to predict compression

behavior of rapeseeds. The model was based on the actual

physical changes during loading of a low-modulus visco-

elastic spherical particles and the resulting change in shape

that are often neglected during DEM model development.

The authors avoided errors in estimating the porosity by

compressing beds of rapeseeds before the seedbeds reached

the oil point so the void spaces were not filled with oil. The

oil point is the state at which the bulk density of the

seedbed approaches the seed kernel density. When the
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threshold pressure is reached, the oil emerges from a seed

kernel during mechanical seed-oil expression. DEM pre-

dicted the mechanical compression of oilseeds within a

standard error of estimate of 0.20, and the predicted stress–

strain values were not significantly different from the

experimental values. Extending the same modeling

approach to canola, soybean, and palm-kernel, Raji and

Favier [77] validated their approach of using low-modulus

viscoelastic spherical particles for DEM simulations. Raji

and Favier [76, 77] concluded that DEM is a useful tool to

study the behavior of deformable soft particulates and the

outputs from modeling could be used to design and modify

oil expression process machinery.

The effects of materials’ different shapes during com-

pression were investigated by Chung and Ooi [8, 9], who

simulated the confined compression of spherical (glass

beads) and non-spherical (corn kernels) particles. The

confined compression test simulation was designed to

investigate the mechanical response of a granular material

under confined compression and the load transfer to the

containing walls. The applied vertical load, vertical dis-

placement, vertical force transmitted to the bottom platen,

and force transmitted to the walls were measured, and the

material properties for silo design, the lateral pressure ratio,

and the bulk wall friction were also evaluated. The findings

from these studies indicated that accurate representation of

particle shape may not be necessary for the prediction of

kernels under compression because capturing the key linear

dimensions of a particle may be adequate. DEM results

indicated that glass spheres, with their tendency to spin

more than non-spherical particles, were more sensitive to

initial packing arrangement as influenced by the particle

generation method. Irregular particles such as corn kernels

were not sensitive to particle spacing as affected by the

particle generation method. Interparticle friction affected

the loading for the containing walls for corn kernels but not

for glass beads; this result was attributed to the significant

difference in particle stiffness between two particles.

Reducing the contact friction allowed more contacts to

reach limiting friction for corn, thus resulting in a larger

lateral pressure ratio and a smaller load on the bottom

platen than for glass beads.

Moisture content is a principal factor that influences the

compression, size reduction, and handling behavior of bulk

cereal grains. Understanding the effects of moisture on

compression through modeling was initiated by Wiącek

and Molenda [97]. The authors used EDEM software with

rapeseeds represented as single spheres with 1.9 mm

diameter and used the physical properties obtained from

the literature [96]. The load responses of rapeseed were

subjected to uniaxial confined compression quantified at

moisture contents of 7.5, 9, and 12 % and were compared

with the experimental data. The authors observed that the

DEM predicted a softer response for the spherical assembly

of rapeseeds compared with the experimental observations.

Although the model responses deviated from the actual

values, this study illustrated the possibility of using DEM

to predict the mechanical behavior of granular materials of

biological origin.

Interparticle friction and particle stiffness also influ-

enced the bulk response of grain kernels in DEM simula-

tions under confined compression. Chung and Ooi [10]

found that reduction in particle stiffness by a few orders

can provide a huge computational advantage, with sec-

ondary effects on the load transmission in a quasi-static

assembly. The researchers also found that interparticle

friction has an effect on the loading of containing walls in

simulating confined compression of corn kernels but not of

glass beads. For corn kernels, reduced contact friction

allowed more contacts to reach limiting friction, resulting

in a larger lateral pressure ratio and a smaller load on the

bottom of the confined structure.

Modeling the compression of grain has been used to

calibrate material properties for DEM simulations [13, 14]

and to determine parameter values of cohesionless corn

kernels. Coetzee and Els [13] calibrated particle stiffness

using confined compression tests (also called oedometer

tests) by applying stress to corn kernels along the vertical

axis at low compression rates (±2 mm min-1). Numerical

simulation of 2D corn kernels indicated that the internal

friction angle depended on particle stiffness and the parti-

cle friction coefficient. Results of the confined compression

test showed that the simulated macro- or bulk stiffness is a

linear function of the particle stiffness; thus, particle

stiffness can be determined through the confined com-

pression test. This study showed that DEM simulation

could enable the determination of particle properties to

enhance the understanding of the bulk behavior of cereal

grains.

Shear Testing

Discrete element method (DEM) was used to examine the

influence of the friction coefficient between two sliding par-

ticles on the shear behavior of an assembly of rapeseeds in 2D

systems [70]. The authors first measured the interparticle

friction coefficients for metal plates, pea, wheat, and rape-

seeds. Then, they simulated the direct shear test using 2D

DEM models. The authors found that the degree of variation

of the coefficient of interparticle friction did not influence the

final value of shear strength at steady-state flow; however, the

level of standard deviation of the coefficient of interparticle

friction markedly influenced the shear path (or shear–strain

characteristics) at the initiation of motion.

The effects of moisture content on shear testing were

simulated by Sarnavi et al. [82]. They modeled the strength
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properties of stored wheat kernels at different moisture

contents using the Jenike method of direct shear tests [2].

The research group implemented linear and nonlinear

models. Three types of particle models were used to create

kernels by a multi-sphere approach: (1) spherical, (2) 4

spheres, and (3) 8 spheres. The simulation of bulk behavior

was strongly affected by the interparticle interactions and

particle shape representation in modeling. Linear models

are more capable of representing the variation in strength

properties with moisture content than nonlinear models. In

general, both linear and nonlinear models have an equal

chance of correctly predicting strength properties of the

wheat assembly. Spherical grain models best simulated

wheat kernels in bulk properties tests. Both the values of

internal angle of friction and apparent cohesion have about

a 70 % chance of prediction by the DEM model.

Grain Drying

Although grain is considered free-flowing during grain

drying, the dense arrangement of the particles inside the

grain dryer make them behave like confined particles. Iroba

et al. [46, 47] examined the physical phenomena that

control particle flow in mixed-flow dryers (MFDs). They

investigated the residence time distribution (RTD), particle

vertical velocity profiles, and particle trajectories using

PFC 2D. Simulation results were validated with experi-

ments using a semi-technical dryer test station with a

transparent Plexiglas front wall. Experiments were con-

ducted with moist wheat as a bed material, with an average

moisture content of 18 % wet basis (w.b.) and a bulk

density of 783 kg m-3. Colored tracer particles were

employed in the residence time analysis in the mixed-flow

dryer (MFD) to detect particle flow inhomogeneity and

design deficit. Simulation results showed that the DEM

model adequately predicted particle flow during drying.

Through DEM simulation, it was understood that two flow

regimes exist in MFDs, the near-wall region and the central

region. Particles at the near-wall region had lower particle

velocity, whereas the central region had high particle

velocity. Wall friction dominated the particle flow near-

wall region and had a large effect on the bulk particle

movement, whereas particle–particle forces were dominant

in the central region. Kernels passing through the MFD

have different vertical velocities, thus resulting in different

residence times. The presence of two different flow

regimes will affect overall dryer capacity and drying effi-

ciency. Kernels flowing at lower velocities may be over-

dried, while those moving at high velocities may be under-

dried. The authors concluded that the present design of

MFDs did not provide adequate cross-mixing, with the

effect of the half air ducts dominant on the sidewalls.

Consequently, the current design may lead to broad

moisture content distribution at the outlet (inhomogeneous

drying) with the risk of product quality deterioration during

subsequent storage. This study underlined the importance

of updated MFD design, such as the need to adjust the size

and positions of the half air ducts. Although the 2D DEM

model predicted the residence time distributions and the

flow patterns, improvements in the approach are needed to

map velocity profiles. To depict the grain drying process

accurately, numerical simulation should also account for

the shrinkage of kernels during drying because this

shrinkage alters the particle properties.

To improve the prediction of drying process using DEM,

Mellman et al. [64] modeled the effects of design elements

and air duct arrangements on MFDs. The authors articulated

the same findings as Iroba et al. [46, 47] regarding the RTD

in mixed-flow grain dryers. Simulation and experimental

results showed that the DEM can adequately predict the

main features of particle flow. The half air ducts at the

sidewalls obstructed the free flow of grain, resulting in the

long tail of the RTD. The studies indicated that the diagonal

duct arrangement showed a more even grain moisture and

temperature distribution than the horizontal duct arrange-

ment. The airflow distribution in the grain bed in the

diagonal arrangement was considered degraded, however,

because of the dead zones, which were not flushed by the

drying air, in the MFD. The authors concluded that grain

bulk and particle moisture content as well as grain tem-

perature distributions fluctuate strongly over the cross sec-

tion of the dryer, resulting in inhomogeneous drying. The

analysis displayed deficits in the present design of MFDs,

namely the arrangement and allocation of the air ducts.

Due to variations in grain properties, dryer design, and

drying parameters, optimizing dryer design and under-

standing particle movement inside the dryer is of continued

interest in researchers as well as industry. The influence of

dryer walls and air ducts on particle velocity distribution in

an MFD was investigated by Keppler et al. [53], who

modeled the effects of particle–wall friction, air duct apex

angle, and wall angle on the vertical direction of particle

velocity distribution. The effects of different construction

modifications for more even vertical grain particle velocity

distribution were analyzed using DEM. The authors found

from experiments and simulations that the sidewalls have a

strong impact on grain flow, causing segregation; these

were similar to the findings by Iroba et al. [46]. Both

studies indicated that segregation caused big differences in

the residence time of single grain portions and caused

uneven drying.

Weigler et al. [94] extended the work of Iroba et al. [46,

47] and Mellman et al. [64] by investigating the particle

and airflows in MFDs using DEM and CFD. The particle

flow behavior of wheat in the traditional MFD was simu-

lated using PFC 2D. Two different particle representations
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of wheat, spherical and ellipsoidal, were studied and

compared when simulating particle flow. A diagonal air

duct arrangement led to dead zones in airflow. Airflow

through the grain bed was simulated using CFD, applying

the commercial software ANSYS CFX (Release 14.0,

ANSYS, Inc., Canonsburg, Penn.). The airflow domain in

the dryer apparatus was discretized by generating a finite

volume grid employing the software ANSYS ICEM (AN-

SYS, Inc., Canonsburg, Penn.). The authors found that

over- and under-drying occurred in traditionally designed

mixed-flow dryers because of unfavorable air duct

arrangements; core flow of particles due to the wall friction

effect and the half air ducts fixed at the sidewalls, char-

acterized by retarded flow at the dryer walls and a fast flow

region in the center; and dead zones in airflow, resulting in

uneven airflow, grain flow, and drying conditions over the

cross section. They recommended a new dryer design with

the airflow distribution adjusted to the particle flow dis-

tribution. In regions with higher particle velocities, higher

air velocities should be provided. The sidewalls of the

dryer should be inclined, and the half air ducts should be

removed. Researchers also added that future design

development would require a tool that couples the airflow

characteristics with the particle flow characteristics,

including the heat and mass transfer, such as coupled CFD

and DEM simulation.

Weigler et al. [95] used the model they developed for

MFDs [94] to study the flow of grain in the process of

designing an efficient MFD using PFC 2D. The particle

flow was studied by tracing the differently colored kernels

through the transparent sidewall of the dryer. Based on the

observations, the authors developed a new MFD geometry

that results in uniform drying of kernels. The greatest

advantage of using DEM modeling techniques in grain

drying is the ability to study the grain velocity distribution

within the dryer as affected by constructional modifica-

tions. This will be of great interest to industry because

understanding grain behavior within the dryer allows ana-

lysis of drying without requiring an expensive prototype.

A Case Study

In this case study, the commingling of two types of grain in

a bucket-type grain elevator boot system is considered

based on Boac et al. [5]. Previous research in commercial

elevator equipment [43–45] showed large variations

between and within facilities for commingling of grain lots,

which can greatly increase the number of experiments

necessary to make widely applicable inferences. However,

DEM was used in this case study to model the commin-

gling in a grain elevator boot system and avoid the time

and expense of many more experiments.

A 3D computer-aided design (CAD) drawing (DS Sol-

idWorks Corp., Concord, Mass.) of the pilot-scale bucket

elevator leg and boot geometry (model B3, Universal

Industries, Inc., Cedar Falls, Iowa) was imported in EDEM

2.3. Grain commingling in the pilot-scale boot was simu-

lated using 3D and quasi-2D DEM models. Simulations

were performed at 20 % Rayleigh time step. The Hertz-

Mindlin no-slip model [83] was implemented as the contact

model for all simulations.

Two types of soybeans with different intrinsic properties

were colored red and yellow in the simulation to illustrate

their difference. The particle model developed by Boac

et al. [4] for soybeans was used. Red soybeans were

allowed to flow inside the grain elevator boot geometry.

The grain elevator leg (composed of bucket cups) was

allowed to run for 15 s of simulation time, until the red

soybeans stabilized as the residual grain at the bottom of

the boot. With red soybeans as the residual grain, yellow

soybeans were generated in the simulation and allowed to

accumulate in the left-hand side (LHS) hopper for 15 s

before opening the slide gate. Yellow soybeans were then

continuously run in the boot for approximately 8 min in

simulation time (Fig. 3a).

The same simulation procedure was followed for a

quasi-2D DEM model using a periodic boundary and

domain width equivalent to 5.6 times the particle diameter

(Fig. 3b). The total particle mass of red and yellow soy-

beans was determined from each bucket cup in all simu-

lations. Predicted average commingling data were

computed, plotted at each time interval, and compared

with the experimental data. Figure 4 shows that the pre-

dicted average commingling from 3D and quasi-2D DEM

models of the boot closely matched the experimental data,

especially after the flow has stabilized after 100 s. The

quasi-2D (5.6d) model reduced simulation run time by

72–74 % compared to the 3D model, with both models

being run on the same workstation (Table 4). This case

study showed that grain commingling in a bucket elevator

boot system can be simulated with both 3D and quasi-2D

DEM models, giving results that agreed with the experi-

mental data.

Application of DEM in Other Food Engineering

Operations

Postharvest operations in any food engineering applications

are complex, and modeling has proved to be effective for

prediction, process calculation, and process design pur-

poses. Ho et al. [37] suggested that parallel multiscale

modeling, with a complete understanding of the structural

aspect of food material, will be the best approach for

analyzing and designing food processing systems.
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In specific, fresh horticultural crop produce is difficult to

model due to their non-uniformity in size and shape and for

their higher vulnerability to changes in surface and textural

characteristics during handling and transport [1]. Delele

et al. [23] developed a combined DEM and computational

fluid dynamics (CFD) model to analyze the airflow during

cooling through stacks of boxes with horticultural produce.

DEM was used to generate random stacking of spheres in

the box. Cooling was simulated at different heights of the

stack with different diameter spheres. The results indicate

that DEM helped identify that random filling has less

influence on the air flow resistance than other factors such

as confinement ratio, size, porosity, and box vent hole ratio.

Through this coupled DEM–CFD approach, the flow pro-

file in individual pores could be analyzed that could not be

done through porous media approaches.

Van Zeebroeck et al. [89, 90] applied DEM to study

impact damage in apples during transport and handling.

The authors used the nonlinear Kuwbara and Kono contact

force model, and the parameters were derived experimen-

tally. The model findings were validated using a shaking

box approach of vibrating apples in an electro-hydraulic

Fig. 3 a 3D and b quasi-2D DEM models of a pilot-scale boot showing commingling of differently colored soybean particles

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 50 100 150 200 250 300 350 400 450

Time (s)

A
ve

ra
g

e 
C

o
m

m
in

g
lin

g
 (

%
)

Experiments - 95% C.I. Lower Limit

Experiments - 95% C.I. Upper Limit

3-D Model 1 (dynamic gap=14.48mm, 2/5-opened gate, LHS hopper filling 15s) [s.e. = 1.50]

Quasi-2-D (5.6d) Model 1 (effective gap = 28.95mm, LHS hopper filling 5 s) [s.e. = 1.28]

Quasi-2-D (5.6d) Model 2 (effective gap = 28.95mm, LHS hopper filling 15 s) [s.e. = 2.15]

Quasi-2-D (5.6d) Model 3 (effective gap = 28.95mm, LHS hopper filling 10 s) [s.e. = 1.85]

Fig. 4 Predicted average

commingling from 3D and

quasi-2D DEM models

Food Eng Rev (2014) 6:128–149 145

123



shaker. Though the authors predicted the bruising damage

with reasonable accuracy, multi-impact bruise surfaces and

the bruise volume could not be predicted. For vibration

damage, the Kuwabara and Kona contact model predicted

the condition of apple as influenced by fruit properties and

mechanical parameters such as vibration frequency and

stack height. Further, the model accurately predicted the

existence of damage chains within the apple stack.

Summary and Conclusions

Existing literature that used DEM to simulate postharvest

handling and processing, limited to grain and its coprod-

ucts, was reviewed. The soft-sphere approach of DEM was

commonly used to develop these grain and food processing

industry process simulations. The advantage of soft-sphere

models was their capability of handling multiple particle

contacts, which are of importance when modeling bulk

grain systems. The deformations that a grain kernel

undergoes during handling and processing were used to

calculate elastic, plastic, and frictional forces between

particles, and the motion of particles was described by

Newton’s laws of motion.

Particle models varied with the type of grain. For near-

spherical kernels such as soybean and rapeseed, single-

sphere particle models predicted particle behavior with

greater accuracy. For non-spherical kernels such as rice,

wheat, and corn, particle representation using a multi-

sphere approach reduced specific simulation errors, but

increased simulation time and computational load because

of the higher number of contact points requiring force and

deformation calculation at each contact point. To avoid this

excess computation time problem, most researchers have

used single-sphere models and had reasonable success in

predictions. Rotation of the single-sphere particles must be

properly described, however, because these particles rotate

more easily in the simulation than observed in experiments.

Thus, the rolling friction coefficient is an important com-

ponent when using spherical particle models to simulate

non-spherical kernels. Depending on the software used,

both linear and nonlinear (Hertz-Mindlin) contact models

have been used effectively to study grain handling and

processing operations.

Discrete element method (DEM) simulations have been

used in different grain processing environments, such as

those dealing with free-flowing grain and with confined

grain, for optimizing processes and to improve equipment

design. In general, DEM has adequately simulated post-

harvest processing of grain and grain coproducts. In some

processes, such as the analysis of discharge from a silo and

design of grain dryers, coupling DEM with computational

fluid dynamics is recommended for better predictions.

Although DEM has been increasingly used to study grain

kernel processes, it has not been widely applied. The huge

variation in particle characteristics such as size, shape,

surface roughness, density, friction coefficients, composi-

tion, and other factors could be hindering the use of DEM.

Computational cost also limits DEM application; specifi-

cally, most of the particles in grain-based food industries

are smaller, which leads to higher computation time.

Development of precision particle models could help spur

adoption of this numerical modeling concept and optimize

process and equipment design in the grain handling and

processing industry.
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32. González-Montellano C, Ramirez A, Gallego E, Ayuga F (2011)

Validation and experimental calibration of 3D discrete element

models for the simulation of the discharge flow in silos. Chem

Eng Sci 66(21):5116–5126
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96. Wiącek J (2008) Discrete element modeling of quasi-static

effects in grain assemblies. PhD Thesis, Institute of Agrophys-

ics, PAS, Lublin
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