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stresses represent the main causes of crop failures world-
wide, reducing crop productivity and the average yields 
of economically important crops by amounts that may 
be life-threatening (Bray et al. 2000; Huang et al. 2008). 
Severe stress can lead to the death of a plant by restrict-
ing flowering and seed formation and promoting senes-
cence (Verma et al. 2013). Thus, environmental stresses 
have been one of the most fascinating areas of research 
for plant scientists over the past 20 years.

Understanding how plants deal with these stresses and 
how they sense, transduce, and react to environmental 
stimuli has been given significant attention in the last two 
decades (Swain et al. 2023). Signal transduction provides 
strong support for different stress responses in plants 
on multiple levels (Markham and Greenham 2021). For 
instance, salinity and drought stresses induce osmotic 
stress, which promotes the accumulation of secondary 
metabolites to control ion toxicity, plasma membrane 
disruption, reactive oxygen species (ROS) accumula-
tion, and cell wall disorder (Praveen et al. 2023). Plants 
respond to abiotic stresses most commonly through sig-
nal transduction, which in turn reacts to DNA methyla-
tion (Yu et al. 2024). Following that, RNA transcription 
occurs, which further leads to protein translation (Alberts 
et al. 2022). Next, it produces fresh and new proteins that 
promote an adaptative response to abiotic stress (Fig. 1).

Introduction

Being sessile by nature, plants face several challenges 
that alter their growth and development (Zhu 2016). 
These challenges are known as stresses and trigger sev-
eral changes such as gene expression, growth retarda-
tion, and cellular metabolism, which can reduce overall 
yields. Very few plant species show tolerance to a given 
stress in a time-dependent manner after being exposed 
to it (Oh et al. 2014; Verma et al. 2013). Environmental 
stresses are categorized into two classes: biotic and abi-
otic. Biotic stress occurs when plants are exposed to bio-
logical factors that affect their growth and development, 
such as pathogen and insect attacks. In contrast, abiotic 
stresses are imposed on plants by chemical or physical 
factors in the environment, such as drought, salinity, and 
temperature (Verma et al. 2013; Chen et al. 2021). Such 
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Abstract
Environmental stresses have major impacts on the morphological, physiological, and biochemical processes of plants. 
Among these stresses, drought is the major one which greatly restricts crop productivity globally. When challenged by 
drought, plants promote the expression of ABA biosynthesis genes which results in ABA accumulation. Increase in ABA 
level promotes stomatal closure to increase plant’s adaptative response to drought stress. To handle and restrain the nega-
tive impact of drought stress, it is important to understand how plants respond to drought and the involvement of ABA 
in plant adaptation to drought stress at a molecular level. Under drought stress, ABA biosynthesis is the most significant 
event to protect plants from the dehydration stress. ABA biosynthesis is a complicated process that is mainly regulated by 
ABA biosynthetic enzymes. This review highlights the recent advancements in ABA biosynthesis and its involvement in 
plant adaptation to drought stress to improve their growth and development under water-deficient conditions.
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A typical signal transduction pathway begins with sig-
nal perception, followed by the generation of secondary 
messengers such as calcium, inositol phosphates, and 
ROS. Finally, it modulates the intracellular calcium level 
in the cytosol, which is sensed by calcium-binding pro-
teins called Ca2+ sensors. These sensors tend to be free of 
any enzymatic activity and exhibit structural modifica-
tions that are Ca2+-dependent (Ryder et al. 2023). These 
sensors interact with their potential partners to initiate a 
phosphorylation cascade and regulate transcription fac-
tors or stress-responsive transcription mediators, which 
regulate the expression of target genes (Guan et al. 2013; 
Chen et al. 2021; Wu et al. 2022). The end products of 
these stress-responsive genes promote plant adaptation to 
the initiating stress (Mahajan and Tuteja 2005) (Fig. 1). 
This highlights the fact that the adaptation of a plant to 
stress is a completely mechanistic package that includes 
several metabolic processes, signaling cascades, and 
gene expression (Dong et al. 2015; Chen et al. 2021).

Plant Response to Drought Stress

Drought stress is a major environmental stimulus and has 
a significant impact on global crop security (Chieb and 
Gachomo 2023). Water constitutes 80–95% of the body 

of a plant as fresh biomass, which plays important roles in 
several physiological processes (Abbasi and Abbasi 2010; 
Brodersen et al. 2019). Consequently, scientists firmly 
believe that drought is the single biggest threat to future 
worldwide agricultural production, especially for crops cul-
tivated in vulnerable areas (O’Connell 2017; Diatta et al. 
2020). Irregularity in the rainfall distribution, evapotrans-
piration, and water-holding ability of the rhizosphere are 
the major factors that contribute to the unpredictable nature 
of drought. There are also times when plants are unable to 
obtain water from the soil despite a sufficient amount of 
moisture in the root zone, a phenomenon called physiologi-
cal drought (Daryanto et al. 2017).

There are several factors that significantly affect the 
response of a plant to drought stress, including the growth 
stage, species, drought severity, and timing (Gray and Brady 
2016). Therefore, the ability to withstand the effects of stress 
and adapt their growth capabilities varies among plant species 
(Osakabe et al. 2014; Bielach et al. 2017). At the molecular 
level, the responses of plants to drought stress are improved 
by several mechanisms, including those involved in signal 
transduction (Kaur and Asthir 2017; Zandalinas et al. 2020). 
To tolerate a water-deficit condition, plants promote ion trans-
portation and modulate the activity of transcription factors, as 
well as ABA biosynthesis and stomatal movement (Prakash 
et al. 2019). Under drought stress, the transpiration rate from 

Fig. 1 Plant adaptive responses to abiotic stresses. A representative diagram highlighting the responses of plants to abiotic stress at the molecular 
level starting from signal transduction
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the leaves reduces the water-uptake efficiency of the roots 
(Goche et al. 2020). The adaptation of a plant to drought 
mainly involves closing its stomatal aperture to reduce water 
loss and expanding its roots to absorb more water from the 
soil (Martínez-Vilalta and Garcia‐Forner 2017).

Drought stress affects plants in various physiological, 
biochemical, morphological, and ecological ways (Ortiz et 
al. 2015). The physiological aspects include the promotion 
of stomatal closure, a reduced photosynthesis efficiency, 
enhanced oxidative stress, changes in the cell-wall integrity, 
a reduced transpiration rate, an increase in its internal body 
temperature, a reduced CO2 level, and proline accumulation 
(Hu et al. 2022). The biochemical aspects include decreases 
in the Rubisco and photochemical efficiencies, the promo-
tion of ROS production, changes in the cell-wall integrity, 
decreases in its growth ability and water transpiration, an 
increase in its body temperature, reduced CO2, the cessation 
of assimilation, and the accumulation of proline contents. 
The morphological aspects include drought escape (DE), 
dwarfness, reduced leaf size, the promotion of leaf rolling, 
changes in the stomata position and leaf color, reduced leaf 
longevity, permanent leaf wilting, and changes in the leaf 
angle (Riboni et al. 2013, 2016; Corso et al. 2020; Fig. 2). 
To mitigate the effects of drought, plants depend on the pre-
vious occurrence of drought, drought intensity, and exis-
tence of other stresses (Thomason and Battaglia 2020).

Drought Stress and Accumulation of ABA

Phytohormones play crucial roles in plant growth and 
development and stress responses (Sah et al. 2016; Ali 
et al. 2024). Drought stress is a well-known cause of the 

accumulation of several phytohormones that promote adap-
tive responses in plants (Ismail et al. 2018). These accu-
mulated phytohormones enhance several physiological 
and developmental processes, such as the osmotic balance, 
negative phototropism in roots, and stomatal closing (Lim et 
al. 2015). Among the phytohormones, ABA plays a central 
role in drought stress responses (De Ollas et al. 2013). The 
drought-induced accumulation of ABA improves the resil-
ience of a plant to drought stress (Ng et al. 2014). In addition 
to drought tolerance, ABA is important for the growth and 
development of plants under non-stress conditions (Lee et 
al. 2006). ABA also promotes and maintains seed dormancy 
(Rodríguez-Gacio et al. 2009). Furthermore, ABA alters the 
root structure and architecture, which changes the growth 
pattern in plants (Puértolas et al. 2015). ABA also induces 
leaf senescence, as evidenced by the late-senescence pheno-
types of several ABA-deficient mutants (Yang et al. 2003; 
Passioura 2006). Under non-stress conditions, ABA and 
elevated CO2 levels enhance partial or complete stomatal 
closure (Kim et al. 2010). When elevated by drought, ABA 
promotes stomatal closure, which reduces the water loss 
from leaves (Hasan et al. 2021). The ABA accumulated as a 
result of drought regulates the expression of several genes, 
particularly drought-responsive genes, which play key roles 
in the drought tolerance of a plant (Fujita et al. 2011). Sev-
eral transcriptomic studies have shown that 50% of ABA-
regulated genes are governed by drought stress. Among 
these, 245 genes have already been identified in Arabidopsis 
(Seki et al. 2002). Like Arabidopsis, 43 out of 73 stress-
responsive genes in rice have been reported to be regulated 
by ABA and drought stress (Rabbani et al. 2003). Together, 
these reports suggest that drought-induced ABA accumu-
lation plays an important role in the response of plants to 

Fig. 2 Representative chart for drought stress effect on plants. This representative chart illustrates the drought stress impacts on plants, including 
physiological, biochemical, and morphological events
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Generally, drought stress enhances the expression of 
genes coding for ABA biosynthetic enzymes to accumu-
late endogenous ABA such as ZEAXANTHIN EPOXI-
DASE (ZEP/LOS6 [LOW EXPRESSION OF OSMOTIC 
STRESS-RESPONSIVE 6]/ABA1), the ALDEHYDE OXI-
DASE (AAO3), a 9-CIS-EPOXYCAROTENOID DIOXY-
GENASE (NCED3), and MOLYBDENUM COFACTOR 
SULFURASE genes (MCSU; also known as LOS5/ABA3) 
(Dar et al. 2017). However, some transcription factor fami-
lies such as bZIP, MYB, MYC, NAC, ERF, and DREB/CBF 
also controlled their expression (Verma et al. 2016). In 
the ABA biosynthesis pathway, ZEP was the first identi-
fied gene, whose expression has been studied in all parts 
of the diverse plant species (Audran et al. 1998; Xiong et 
al. 2002). It was thought that ZEP does not limit ABA bio-
synthesis in photosynthetic tissues. Because the amount of 
9-cis-epoxycarotenoid (precursor that occurs downstream 
of the ZEP-catalyzed reaction) is several times higher 
in photosynthetic tissues on a molar basis than ABA pro-
duced during stress. The transcript level of ZEP gene in 
the leaves of tobacco and tomato remains unchanged in 
drought, however, unexpectedly, it increases during the 
daytime (Audran et al. 1998; Thompson et al. 2000), which 
reflects circadian rhythm regulation. Unlike tobacco and 
tomato, the Arabidopsis ZEP gene shows basal transcript 
levels in non-stress condition, however, its expression level 
clearly increases in drought stress both in shoots and roots 
(Xiong et al. 2002). The transcriptomic studies with other 
ABA biosynthesis enzymes (such as ABAs, SDR, MCSU, 
AAO3, etc.) are less controversial. However, the cleavage 
step, particularly rate-limiting enzymes got huge attention 
in the last two decades. Drought stress rapidly increased 
the expression levels of NCEDs genes in tobacco (Tan et 
al. 1997), tomato (Burbidge et al. 1999), bean (Phaseolus 
vulgaris; (Qin and Zeevaart 1999), Arabidopsis (Iuchi et al. 
2001), cowpea (Vigna unguiculata; (Iuchi et al. 2000), and 
avocado (Persea americana; (Chernys and Zeevaart 2000). 
The oversight of ABA biosynthesis is crucial for regulating 
ABA levels, adjusting plant stress responses, and develop-
mental programs. Stress-inducible ABA biosynthesis genes 
may therefore be controlled by DRE/CRT class of stress-
responsive genes (Xiong et al. 2002), because they contain 
both the DRE- and ABRE-like cis-elements in their promot-
ers (Xiong et al. 2001; Bray, 2000). To better understand, 
research requires at molecular level of transcription factors 
with the cis-elements that activate the ABA biosynthesis 
genes. Indeed, several loci were found in over six differ-
ent screening techniques, however, did not find a direct 
regulator of ABA biosynthesis. The correlative studies on 
sugar, ethylene, and ABA biosynthesis in growth and physi-
ological processes (Ghassemian et al. 2000; Hansen and 
Grossmann 2000; González-Guzmán et al. 2002), indicates 

drought stress, specifically by promoting stomatal closure 
to prevent water loss from leaves.

Role of ABA Biosynthesis Enzymes in 
Drought Stress

Drought-induced ABA synthesis is a critical process that 
supports the adaptive responses of plants during drought 
stress. Previous studies have shown that the phytohor-
mones accumulated as a result of drought promote adapta-
tion responses via several signal transduction mechanisms 
(Bharath et al. 2021). A drought stress-activated ABA bio-
synthesis pathway was proposed by Xiong and Zhu (2003). 
This process involves redox signals, Ca+ 2 signaling, phos-
phoprotein cascades, and transcription factors that activate 
the expression of ABA biosynthetic genes (Xiong and Zhu 
2003). ABA biosynthesis is a ubiquitous C15 isoprenoid 
process during drought stress, which is well character-
ized through forward genetic screening and several other 
enzymatic steps that have been identified in different plant 
species (Marin et al. 1996; Tan et al. 1997; Burbidge et al. 
1999; Agrawal et al. 2001; Xiong and Zhu 2003; Dong et al. 
2015; Liu et al. 2020).

The ABA biosynthesis process begins in plastids with 
the precursor carotenoid zeaxanthin. This is first repeat-
edly epoxidized into violaxanthin by zeaxanthin epoxidase 
(ZEP), which is also known as ABA deficient1 (ABA1) 
(Koornneef et al. 1982; Bouvier et al. 1996). Violaxanthin 
is then converted into neoxanthin by ABA4 (North et al. 
2007). An unidentified isomerase then isomerizes both vio-
laxanthin and neoxanthin at the C9–C10 (C9′–C10′) double 
bond, resulting in the production of 9-cis-violaxanthin and 
9′-cis-neoxanthin (Dong et al. 2015). The 9-CIS-epoxy-
carotenoid dioxygenases (NCEDs) enzymes cleave these 
9(′)-cis-epoxycarotenoids at the C11–C12 (C11′–C12′) 
double bond, producing a C25 apocarotenoid and the ABA 
precursor xanthoxin (C15) (Schwartz et al. 1997; Qin and 
Zeevaart 1999; Tan et al. 2003; Dong et al. 2015). This 
cleavage reaction is known as the rate-limiting step in the 
ABA biosynthesis pathway. Then, ABA2/3 and ABSCISIC 
aldehyde oxidase 3 (AAO3) enzymes convert xanthoxin into 
ABA after being translocated from plastids to the cytoplasm 
(Seo et al. 2000; González-Guzmán et al. 2002; Dong et 
al. 2015; Fig. 3). ABA2 is a cytosolic short-chain reductase 
that converts xanthoxin into abscisic aldehyde (González-
Guzmán et al. 2002), and AAO3 is an aldehyde oxidase that 
mediates the oxidation of abscisic aldehyde into ABA (Seo 
et al. 2000; Dong et al. 2015), while ABA3 is a molybde-
num cofactor sulfurase that provides enzymatic activity to 
AAO3 (Xiong et al. 2001).

1 3

178



Journal of Plant Biology (2024) 67:175–184

changed reporter gene expressions in response to abiotic 
stresses. These tests could reveal new ABA biosynthesis 
regulating mechanisms (Xiong and Zhu 2003). With the full 
genome of Arabidopsis available and a wealth of expression 
data, reverse genetics techniques ought to make it easier to 
find novel regulatory elements in the signaling pathway that 
leads to the synthesis of ABA. Molecular biology, biochem-
istry, genetics, and genomics will all need to be combined to 
fully comprehend how ABA production is regulated.

Epigenetic Regulation of ABA Biosynthesis 
Genes in Drought Stress

The genetic manipulation of ABA biosynthesis is a very 
established process, however, in the recent past, several 
reports stated that epigenetic modification is also an integral 
part of the endogenous ABA regulation during drought stress 
(Chinnusamy et al. 2008; Baek et al. 2020; Khan et al. 2020; 
Gu et al. 2021). Several plant species have been reported 
to regulate drought stress epigenetically including histone 
acetylation and deacetylation (Li et al. 2021; Praveen et al. 

the possibility of some signaling components in other hor-
mone response pathways. Like era3 (enhanced response 
to ABA 3) and ein2 (ethylene insensitive 2) could be two 
examples of this coregulation. The ZEP transcript level was 
higher in ein2, suggesting that enhanced ABA biosynthesis 
is likely the reason why era3/ein2 plants had a basal ABA 
level twice that of the wild type (Ghassemian et al. 2000). 
The clear effect of ein2 mutation on ABA biosynthesis may 
result from the intricate interaction between several hor-
monal pathways.

Alternative tests such as gas exchange (sensitivity to 
CO2) and guard cell regulation (Mustilli et al. 2002), may 
identify new loci that control ABA biosynthesis or signal-
ing. Molecular genetic techniques, like the one employed 
in the screen for stress signal transduction mutants (Ishi-
tani et al. 1997), may be more effective in identifying sig-
nal transduction components since gene expression is more 
responsive to stress regulation than some of the apparent 
phenotypes. This method involves transcriptionally fusing 
the promoters of stress-inducible ABA biosynthesis genes 
such as AtNCED3, AtMCSU, and AtAAO3 to a reporter 
gene. This allows for the isolation of mutants exhibiting 

Fig. 3 Schematic representation of ABA biosynthesis pathway. Illus-
tration of ABA biosynthesis pathway with different events. The first 
step occurs in the plastid, and the last step occurs in the cytosol. In the 

plastid, ZEP and NCED genes play essential roles in the synthesis into 
cytosol, whereas SDR and AAO are very important to the synthesis of 
ABA in the cytosol
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et al. 2020), suggesting the importance of epigenetic regula-
tions of ABA catabolic genes under drought stress.

Role of E3-ligases in ABA Biosynthesis

Previous studies have shown that a significant number of 
E3-ubiquitin ligases in plant genomes have been identified 
as regulators of phytohormone biosynthesis (Liu and Stone 
2011). The Arabidopsis XERICO is an E3-ubiquitin ligase 
with a small RING-H2 domain, which regulates the endog-
enous ABA level and expression of the NCED3 gene in the 
drought-stress response (Ko et al. 2006). The senescence-
associated E3 ubiquitin ligase 1 (SAUL1), which is also 
known as PLANT U-BOX 44 (PUB44), controls ABA pro-
duction by enhancing the activity of the AAO3 enzyme to 
prevent premature senescence (Raab et al. 2009). Previously, 
we have shown that HIGH EXPRESSION OF OSMOTI-
CALLY RESPONSIVE GENES 15 (HOS15), a WD40 
domain protein, is a multifunctional protein that regulates 
several physiological processes and stress responses in 
plants (Ali and Yun 2020). We have also shown that HOS15 
is involved in freezing stress, drought stress, floral transi-
tion, plant immunity, leaf senescence, and miRNA biogen-
esis (Park et al. 2018, 2019; Ali et al. 2019; Shen et al. 2020; 

2023), as well as the chromatin remodelers that regulate 
ABA biosynthesis genes via transcription activation and 
deactivation (Khan et al. 2020). The dynamic activity of 
histone acetyltransferases (HATs) and histone deacetylases 
(HDAs) in response to drought stress has been widely stud-
ied in drought resilience across different plant species (Baek 
et al. 2020; Khan et al. 2020; Zhang et al. 2020; Hou et al. 
2021; Li et al. 2022). In Arabidopsis, the acetylation mark 
at lysine 9 (H3K9ac) acts as a major regulator of chromatin 
modification at the promoters of several drought-responsive 
genes to control their transcript abundance (Zheng et al. 
2016). Dehydration increases the endogenous ABA level 
by promoting histone acetylation of ABA anabolism genes 
and reducing histone methylation of the ABA biosynthesis 
genes (Gu et al. 2021), indicating a correlation between epi-
genetic modification and ABA accumulation (Fig. 4). The 
HATs and HDAs dynamic activity also controls the ABA 
biosynthesis pathway, which is also the primary signaling 
pathway for drought stress in plants (Kumar et al. 2021; 
Li et al. 2021). In contrast to ABA biosynthesis, the ABA 
catabolic pathway also working in drought stress, as we pre-
viously reported that HDA9-PWR making a complex with 
ABI4 to regulate histone status of CYP707A1/2 (ABA cata-
bolic enzyme) in drought tolerance (Baek et al. 2020; Khan 

Fig. 4 Schematic representa-
tion chromatin remodeling in 
drought stress. Illustration of 
chromatin status in normal and 
drought condition. In normal 
conditions, the condensed status 
of chromatin does not promote 
the ABA level due to inactiva-
tion of ABA biosynthesis genes. 
Under drought stress, the active 
and open status of chromatin 
promotes the endogenous ABA 
level through the activation of 
ABA biosynthesis genes
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the ABA signaling cascade (Ali et al. 2019). However, it is 
unclear how HOS15 interferes with ABA biosynthesis and 
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ABA biosynthesis. Nonetheless, some indications suggest 
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way because HOS15 regulates the expression levels of ABA 
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Concluding Remarks

According to prior studies, the mechanism by which plants 
respond to drought stress is highly complicated, involv-
ing multiple single and complex components that help to 
control stress responses. The genetic disruption of several 
genes has been identified to contribute to the morphological 
phenotypes of plants as well as their stress responses. This 
review summarized the importance of ABA biosynthesis, 
which is crucial to the physiological, biochemical, and mor-
phological functions of plants and improves their adaptabil-
ity to water-deficient conditions. Drought stress primarily 
activates the ABA biosynthesis enzymes involved in ABA 
production to improve stomatal closure, which reduces the 
severe effects of drought stress on plants. Several ABA bio-
synthesis components have been reported, including AAO3, 
NCEDs, and ABA1/2/3/4. These have different molecular 
mechanisms that contribute significantly to the adaptative 
responses of plants to drought stress. The importance of the 
ABA biosynthesis pathway under drought stress is still an 
open debate among scientists and researchers, necessitating 
further investigation to acquire in-depth knowledge.
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