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Abstract
The rising demand for sustainable agriculture necessitates alternative methods to using chemical pesticides for controlling 
plant pathogens. Biocontrol involves the use of natural antagonists, such as bacteria, as an alternative to synthetic chemi-
cal pesticides, which can be harmful to human health and the environment. This review discusses the potential of Bacillus, 
Streptomyces, Pseudomonas and Serratia as biocontrol agents (BCAs) against various plant pathogens. These bacteria 
suppress pathogen growth via various mechanisms, such as antibiosis, nutrient and space competition and systemic resist-
ance, and significantly contribute to plant growth. We provide an overview of the secondary metabolites, plant interactions 
and microbiota interactions of these bacteria. BCAs offer a promising and sustainable solution to plant pathogens and help 
maintain the one-health principle.

Keywords  Plant–microbe interaction · Biocontrol · Sustainable agriculture · Bacillus · Streptomyces · Pseudomonas · 
Serratia

Background

The use of natural antagonists, such as bacteria, as biocon-
trol agents (BCAs) has gained considerable attention in 
recent years as a sustainable approach to managing pests, 
pathogens and diseases in agriculture. Bacillus, Streptomy-
cetes, Pseudomonas and Serratia species are key players in 
biocontrol. Given the rising demand for sustainable agricul-
ture, this review discusses the potential of these bacteria as 
BCAs against various plant pathogens.

Bacillus

Bacillus are gram-positive rod-shaped bacteria which can 
either be aerobes or anaerobes (Turnbull 1996). As BCAs, 
specifically plant growth-promoting rhizobacteria, Bacil-
lus protect plants through antibiosis, signal interference, 
induced systemic resistance and niche competition (Todor-
ova and Kozhuharova 2010; Blake et al. 2021). Furthermore, 
Bacillus improve nutrient availability, alter plant growth 
hormone homeostasis and reduce abiotic stress to promote 
growth, offering an advantage for commercial use (Blake 
et al. 2021).

Interactions with Plants

Biocontrol Mechanisms

Bacillus are one of the most widely researched rhizobacte-
ria and highly promising option for agricultural uses. They 
possess various direct and indirect mechanisms against phy-
topathogens. The main biocontrol secondary metabolites 
produced by Bacillus and their corresponding functions are 
outlined in Fig. 1 and Table 1.
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Induced Systemic Resistance

Aside from direct inhibition of pathogens, Bacillus enhances 

plant defences through induced systemic resistance (ISR). 
When beneficial bacteria are inoculated in the roots, the 
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defence capacity of the entire plant against various patho-
gens is enhanced (Kloepper et al. 2004).

B. subtilis generates many compounds which can elicit 
ISR. Tomato and bean leaves with high levels of surfactin- 
and fengycin-producing B. subtilis in their roots are more 
resistant to diseases caused by Botrytis cinerea than those 
without B. subtilis (Ongena et al. 2007). For instance, BA 
strain S13-3 triggers plant defence in strawberry leaves by 
generating iturin A and surfactins (Yamamoto et al. 2015a). 
The absence of B. subtilis in the leaves shows that disease 
reduction is via ISR (Yamamoto et al. 2015b). Furthermore, 
BA strains can trigger ISR by producing VOCs such as 
2,3-butadial and 3-hydroxy-2butanone(acetoin) and stimu-
lating defence enzymes (Farag et al. 2013).

Plant Growth Promotion

Bacillus promotes plant growth via diverse mechanisms, 
such as providing important plant trace elements and nutri-
ents. Nitrogen, which is an inaccessible form in the natural 
environment, must be mobilised into an accessible form like 
nitrate or ammonium ions before being used (Hayat et al. 
2010). B. subtilis can fix unavailable atmospheric nitrogen 
to a usable form for plants. It also helps nodulation by other 
bacteria, leading to the colonisation of native symbiotic 
rhizobacteria (Elkoca et al. 2007).

Bacillus not only improves nutrient availability but also 
alters plant growth hormone homeostasis to promote plant 
growth. It can promote plant growth and cell division by 
producing growth hormones themselves or by inducing plant 

production via secreted compounds (Arkhipova et al. 2005). 
Acetoin (3-hydroxy-2-butanone) and 2,3-butanediol are 
VOCs produced by B. subtilis that can affect cytokinin and 
ethylene homeostasis. The leaf size of Arabidopsis thaliana 
significantly increases when inoculated with B. subtilis and 
pure 2,3-butanediol but not when inoculated with mutants 
of the cytokinin and ethylene pathways (Ryu et al. 2003). 
Furthermore, BA contains the genes patB, dhaS, yclB, yclC, 
yhcX and ysnE, which are implicated in indole-3-acetic acid 
(IAA) production. IAA can control several plant growth 
processes, including elongation, cell division, fruit develop-
ment and root hair production stimulation (Baard et al. 2023; 
Schulten and Schnitzer 1997; Chen et al. 2017). IAA can 
also boost the quantity and length of main and lateral roots, 
increasing plant water and nutrient absorption (Beyeler et al. 
1999; Zhang et al. 2014; Wang et al. 2023a).

Bacillus can also indirectly promote plant growth by 
reducing abiotic stresses. Two major restrictions for mod-
ern agriculture, water and salt stresses can be reduced by 
Bacillus (Li et al. 2009; Woo et al. 2020). Inoculating B. 
subtilis GOT9 in A. thaliana and Brassica campestris 
enhances tolerance to drought and salt stresses. It regulates 
the expression of plant genes such as phosphoethanolamine 
N-methyltransferase (PEAMT), especially those associated 
with abscisic acid, which is a key hormone for regulating 
stress in plants (Zhang et al. 2010). The main metabolites 
produced by Bacillus, which promote plant growth, and their 
corresponding functions are outlined in Fig. 1 and Table 2.

Interactions with the Microbiota

Antibiosis

Bacillus produce different anti-microbial compounds, 
including lipopeptides, exoenzymes and volatile organic 
compounds (VOCs) (Wang et al. 2015).

Lipopeptides, such as surfactin, protect plants against 
pathogens (Sansinenea and Ortiz 2011). Given its amphiphi-
licity, surfactin disrupts the cell membranes of other organ-
isms by integrating into the lipid layers and, thus, reducing 
surface tension (Ongena and Jacques 2008). The survival 
rate of Arabidopsis thaliana remarkably increases when 
infected with Pseudomonas syringae and inoculated with 
surfactin-producing Bacillus subtilis but not when inocu-
lated with a surfactin mutant strain (Putri et al. 2023). Fan 
et al. (2017) found that B. subtilis 9407, a surfactin pro-
ducer, exerts strong anti-bacterial activity against Acidovo-
rax citrulli and efficient biocontrol on melon seedlings in 
controlled greenhouse tests.

Bacillus produce exoenzymes, such as proteases and chi-
tinases, which can decompose the fungal cell wall (Blake 
et al. 2021). Chitinase is one of the main anti-fungal compo-
nents produced by Bacillus. Greenhouse and field test results 

Fig. 1   Multifaceted roles of biocontrol agents and their metabolites 
in enhancing plant immunity and growth. BCAs secrete metabolites 
that directly or indirectly boost plant immunity. Metabolites such as 
chitinase and HCN can directly attack plant pathogens. Many VOCs 
can inhibit pathogen growth or enhance plant immunity. Some metab-
olites, such as acetoin, can enhance plant growth. A Bacillus can 
inhibit plant pathogens, such as Ralstonia, Penicillium and Erwinia. 
Bacillus amyloliquefaciens (BA) secretes volatile organic compounds 
(VOCs) to inhibit Penicillium digitatum and Ralstonia solanacearum. 
B. subtilis BS-1 produces AiiA, which can decrease the symptoms 
of disease caused by Erwinia carotovora. B Streptomycetes can 
inhibit plant pathogens, such as Fusarium, Rhizoctani, Gaeumanno-
myces, and Magnaporthe. Streptomyces lydicus WYEC108 produces 
chitinase to lyse the cell wall of fungi, such as Pythium. C Pseu-
domonas can inhibit plant pathogens, such as Pantoea, Thielaviopsis, 
Clavibacter and Hyaloperonospora. Pseudomonas protegens Pf-5 
secretes pyoluteorin, which can reduce the growth of Pantoea anana-
tis DZ-12. Brassicacearum LBUM300 uses HCN against Clavibac-
ter michiganensis and Thielaviopsis basicola. D Serratia can inhibit 
plant pathogens, including Staphylococcus, Didymella, Agrobacte-
rium and Rhizoctani. Prodigiosin, produced by Serratia, has antago-
nistic effects on methicillin-resistant Staphylococcus aureus (MRSA), 
Staphylococcus epidermidis, Staphylococcus saprophyticus, Strepto-
coccus pyogenes, Enterobacter faecalis, Bacillus cereus, Acinetobac-
ter anitratus, Agrobacterium tumefaciens and  Bacillus licheniform 
(ORSA). Serratia marcescens produces Serrawettin W2, which has 
anti-bacterial activity against Staphylococcus aureus 

◂
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showed that inoculating plants with chitinase-producing B. 
subtilis strain significantly reduces the incidence of diseases 
by 20–35% (Yan et al. 2011).

Bacillus also produce volatiles which can inhibit the 
spore germination and hyphal growth of phytopathogens 
in a contact-independent manner on agar plates (Grahovac 

et al. 2023). Bacillus amyloliquefaciens (BA) strains pro-
duce anti-microbial VOCs (Luo et al. 2022). For example, 
BA strains JBC36, SQR-9 and T-5 produce VOCs such as 
pentadecane, ethyl benzene and benzothiazole, which can 
inhibit Penicillium digitatum and Ralstonia solanacearum 
growth (Yu et al. 2012; Raza et al. 2016).

Signal Interference

Bacillus can also reduce disease intensity by reducing patho-
gen virulence (Pan et al. 2008). Interfering with quorum 
sensing (QS) signals could be an effective strategy to prevent 
diseases (Helman and Chernin 2015). B. subtilis produces 
AiiA, an enzyme which inactivates QS autoinducers (Pan 
et al. 2008; Dong et al. 2000; Lyng and Kovács 2023). B. 
subtilis BS-1, which produces AiiA, can decrease symptoms 
of potato soft rot caused by Erwinia carotovora, a pathogen 
dependent on autoinducers for virulence (Pan et al. 2008).

Table 1   Secondary metabolites produced by biocontrol agents with biocontrol activity

Exoenzyme: AiiA: AHL lactonase, VOCs: volatile organic compounds, polyketide-type natural product: DAPG: 2,4-diacetylphloroglucinol, 
ETC: HCN: hydrogen cyanide, ISR: induced systemic resistance

Category Metabolites Function Bacteria species

Lipopeptide Surfactin Antibiosis, ISR Bacillus
Bacillomycin D Antibiosis Bacillus
Fengycin ISR Bacillus
Iturin A ISR Bacillus
Sessilin Antibiosis Pseudomonas

Exoenzyme Protease Antibiosis Bacillus
Chitinase Antibiosis Bacillus, Streptomyces
AiiA Signal Interference Bacillus
Phenylalanine ammonia-lyase ISR Bacillus
Peroxidase ISR Bacillus

VOCs Dimethyl Disulfide Antibiosis Serratia
Macrocyclic Lactone Avermectin Antibiosis Streptomyces
Tripyrrole pigments Prodigiosin Antibiosis Serratia
Beta-lactam antibiotics carbapenem group(1-carbapen-2-em-

3-carboxylic acid)
Antibiosis Serratia

Biosurfactants serrawettins Antibiosis Serratia
Thiopeptide antibiotics Althiomycin Antibiosis Serratia
Polyketide-type natural product Oocydin A Antibiosis Serratia

DAPG Antibiosis, ISR Pseudomonas
Tricyclic compounds with nitrogen Phenazine Antibiosis, ISR Pseudomonas
Etc Pyoluteorin Antibiosis Pseudomonas

HCN Antibiosis Pseudomonas
Rhizoxin Antibiosis Pseudomonas
Promysalin Antibiosis Pseudomonas
I-furanomycin Antibiosis Pseudomonas
Fit toxin Antibiosis Pseudomonas
Siderophore ISR Pseudomonas

Table 2   Secondary metabolites produced by biocontrol agents with 
plant growth promotion ability

VOCs: volatile organic compounds, phytohormone: IAA: indole ace-
tic acid, polyketide-type natural product: DAPG: 2,4-diacetylphloro-
glucinol

Category Metabolites Bacteria species

VOCs Acetoin Bacillus
2,3-butanediol Bacillus

Phytohormone IAA Bacillus
Polyketide-type natural 

product
DAPG Pseudomonas
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The rhizosphere harbours up to 1011 microbial cells per 
gram, representing more than 30,000 species (Berendsen 
et al. 2012). Most studies have been conducted in highly 
controlled conditions, which complicate replicating their 
results in natural environments. One of the crucial reasons 
for natural field variabilities is plant microbiomes. Numer-
ous variables affect the microbial communities found in 
soil and around roots; consequently, these variables may 
also affect the efficacy of biocontrol methods (Rousk et al. 
2010; Pershina et al. 2018). These elements can be broadly 
classified into two types. First, abiotic factors can affect 
microbial assemblages, including soil type (which is deter-
mined by properties such as water content, nutrient levels, 
pH and trace metals), climate and farming practices, such 
as fertilisation, tillage, irrigation and pre-cropping (Rousk 
et al. 2010; Pershina et al. 2018). Second, biotic parameters 
include host genetics, host crop species, root exude charac-
teristics, plant age at application and competing microbes 
already present in the plant microbiome (Haichar et al. 2008; 
Turner et al. 2013; Bressan et al. 2009; Micallef et al. 2009; 
Chaparro et al. 2014; Edwards et al. 2018; Bakker et al. 
2015). Interactions between microbes, whether cooperative 
or competitive, can either enhance or impede the colonisa-
tion of Bacillus on roots or even determine its success (Blake 
et al. 2021).

Bacillus to be used as BCAs should adapt to natural ecol-
ogy and preserve the original microorganisms. Indeed, add-
ing Bacillus to a natural rhizosphere has minimal impact 
on the natural rhizosphere bacterial community. A previous 
study inoculated B. subtilis PTS-394 into tomatoes; results 
showed that the bacterial community 1 day after inoculation 
is distinct from that in the control, but the bacterial commu-
nity 14 days after inoculation is similar to that in the control 
(Qiao et al. 2017). This result indicates that Bacillus do not 
spoil the natural existing plant microbiome. However, the 
effects of the natural plant microbiome on Bacillus warrant 
further investigation.

Streptomycetes

Streptomycetes, a gram-positive genus belonging to Act-
inobacteria, has drawn considerable attention owing to its 
potential as a sustainable BCA (Pacios-Michelena et al. 
2021). Streptomyces species in plant root microbiomes pro-
duce inhibiting metabolites against pests and pathogens.

Interactions with Plants

Biocontrol Mechanisms

Streptomyces are soil bacteria which serve as BCAs via sev-
eral ways. They produce anti-microbials, enzymes, VOCs 

and anthelmintic compounds. They also indirectly inhibit 
phytopathogens (Newitt et al. 2019a). The main biocontrol 
secondary metabolites produced by Streptomyces and their 
corresponding functions are outlined in Fig. 1 and Table 1.

Induced Systemic Resistance

Streptomyces can indirectly suppress plant pathogens through 
competitive exclusion and activation of host resistance mech-
anisms (Ebrahimi-Zarandi et al. 2022). ISR promotes vari-
ous changes, including the accumulation of defence-related 
chemicals, localised cell death and cell wall reinforcements, 
resulting in an enhanced and more efficient response to future 
pathogenic onslaught (Viaene et al. 2016; Lugtenberg and 
Kamilova 2009; Kurth et al. 2014). Inoculating oak trees with 
Streptomyces sp. AcH505 upregulates the expression of patho-
genesis-related proteins (Kurth et al. 2014).

Plant Growth Promotion

When searching for novel BCAs, Streptomyces are becoming 
a more visionary choice because of their capacity to colonise 
plant roots and ability to create strong anti-microbial second-
ary metabolites (Díaz-Díaz et al. 2023). This is especially 
true given that members of this genus promote plant growth 
under normal and stressful environmental conditions, such 
as high salinity, and protect plants from diseases (Viaene 
et al. 2016; Chater 2006; Palaniyandi et al. 2014; Tripathi 
and Singh 2018). These additional advantages may serve as 
the basis for highly desirable BCAs which can promote plant 
growth and protect against diseases (Newitt et al. 2019a).

Interactions with the Microbiota

Disease‑Suppressive Soil

Streptomyces can directly protect plant hosts against infec-
tions in the soil, rhizosphere and endosphere by producing 
anti-microbial chemicals or particular enzymes, includ-
ing cellulases, chitinases and proteases (Meij et al. 2017). 
Disease-suppressive soils are well-known examples of 
microbial-based protection against soil-borne pathogens 
(Weller et al. 2002). Streptomyces species are enriched in 
these soils and strains have been utilised to create the bio-
fungicide Mycostop®, which is effective against diverse crop 
diseases, including wheat head blight caused by Fusarium 
(Lahdenperä et al. 1991).

Antibiosis

In addition to disease-suppressive soils, Streptomyces can 
act as BCAs by producing anti-microbials, exoenzymes, 
VOCs and anthelmintic compounds (Newitt et al. 2019b).
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Streptomyces can inhibit Magnaporthe oryzae, Gaeu-
mannomyces graminis var. tritici, Fusarium species and 
Rhizoctani solani in vitro (Dean et al. 2012; Law et al. 
2017). Administration of Streptomyces BN1 (isolated from 
Fusarium-contaminated rice grains) to seeds as a spore 
preparation ameliorates the reduction in seedling length 
caused by Fusarium (Jung et al. 2013). Streptomyces are 
promising BCAs for take-all wheat disease because of its 
saprotrophic and spore-forming lifestyle, which allows 
it to persist under harsh environments (Meij et al. 2017; 
Coombs et al. 2004).

Streptomyces encode a huge number of secreted proteins 
with a wide range of extracellular functions; for instance, 
they can produce chitinases, which breakdown chitin (Wang 
et al. 2023b). Chitinases are gaining popularity as BCAs 
because of their capacity to suppress a wide range of phy-
topathogenic fungi and oomycetes (Chater et al. 2010). Puri-
fied chitinase from Streptomyces lydicus WYEC108 can lyse 
the cell walls of numerous phytopathogenic fungi, including 
Pythium, which may cause root rot in cereal crops (Mahade-
van and Crawford 1997).

Streptomyces is a prolific generator of VOCs, which are 
small molecules with low weights and high vapour pres-
sures (Mendes et al. 2013; Cordovez et al. 1081; Wheatley 
2002). Several VOCs exert anti-bacterial activities against 
phytopathogenic organisms, such as R. solani (Mendes et al. 
2013; Chapelle et al. 2016). These compounds may be uti-
lised as biofumigants to restrict the growth of pathogenic 
organisms and prevent soil-borne diseases (Newitt et al. 
2019a). Some studies suggested the use of VOCs as bio-
fumigants (Gong et al. 2022). However, further research is 
necessary to confirm whether these chemicals are synthe-
sised in vivo in the plant root system and effective under 
natural settings (Newitt et al. 2019a).

Streptomyces generate effective anthelmintic chemicals, 
such as avermectin, which may kill cereal cyst nematodes 
(Burg et al. 1979; Huang et al. 2014). Some Streptomyces 
species can regulate nematode populations (Nour et al. 2003; 
Samac and Kinkel 2001; Zhang et al. 2020).

The antagonistic behaviour of strains which prevent 
the establishment of plant pathogenic microbes in soil 
can exclude beneficial species and disturb important bio-
geochemical cycles, among other unintended consequences 
(Chaparro et al. 2014). Some Streptomycetes species pro-
duce antibiotics and prevent the formation of nodules by 
nitrogen-fixing bacterial species in the roots of legumi-
nous plants and the beginning of plant host symbioses with 
mycorrhizal fungus (Gregor et al. 2003; Samac et al. 2003; 
Schrey and Tarkka 2008). However, other Streptomyces spe-
cies can promote mycorrhizal development and nodulation 
while inhibiting pathogenic growth. Therefore, candidate 
biocontrol species must be selected and screened carefully 
(Gregor et al. 2003).

Pseudomonas

Pseudomonas is a genus of the Gammaproteobacteria 
(Battistuzzi and Hedges 2009). Some of their characteris-
tics are useful in plant growth promotion and biocontrol 
(Peix et al. 2009). Many Pseudomonas strains can directly 
stimulate plant development in no pathogen condition by 
enhancing mineral nutrient availability and uptake through 
phosphate solubilisation. Moreover, they can enhance root 
growth by synthesising phytohormones or increasing tol-
erance to abiotic stress. They are effective soil-borne dis-
ease controllers and good root colonisers. Certain Pseu-
domonas strains can also prevent leaf diseases through 
ISR in plants. Typically, Pseudomonas biocontrol strains 
do not survive well on above-ground plant parts, with the 
exception of a few strains from P. syringae.

Interactions with Plants

Biocontrol Mechanisms

Pseudomonas have several mechanisms that can suppress 
plant disease. They can secrete antibiosis, compete with 
other bacteria for nutrients or space, and trigger ISR. Par-
ticularly, secondary metabolites of Pseudomonas are key 
players in the biocontrol of plant diseases. The main bio-
control secondary metabolites produced by Pseudomonas 
and their corresponding functions are outlined in Fig. 1 
and Table 1.

Induced Systemic Resistance

Some secondary metabolites mentioned earlier can trig-
ger ISR. In many plants, phenazines cause ISR (Ma et al. 
2016). DAPG can trigger ISR in Arabidopsis by inducing 
jasmonate- and ethylene-mediated defence responses to 
the mildew pathogens Hyaloperonospora parasitica, Pseu-
domonas syringae pv. tomato and Botrytis cinerea (Iavicoli 
et al. 2003; Weller et al. 2012; Chae et al. 2020). Sidero-
phores, along with other bacterial secretions, can trigger ISR 
in plants. Specifically, Pseudomonas aeruginosa 7NSK2 
produces the siderophores pyoverdine and pyochelin. These 
compounds have demonstrated effectiveness in protecting 
plants from diseases caused by pathogens such as Pythium 
splendens and Botrytis cinerea (Aznar and Dellagi 2015). 
In addition, this bacterium secretes pyocyanin, a phenazine 
compound. Notably, it has been found that pyocyanin, in 
conjunction with pyochelin, can induce ISR, thereby protect-
ing tomatoes against diseases caused by B. cinerea through 
the promotion of ROS accumulation (Audenaert et al. 2002).



491Journal of Plant Biology (2023) 66:485–498	

1 3

Plant Growth Promotion

Pseudomonas strains can promote plant growth through sev-
eral mechanisms. DAPG interferes with the auxin-dependent 
signalling system and promotes root branching in tomatoes, 
and it can stimulate amino acid exudation from plant roots 
(Phillips et al. 2004; Brazelton et al. 2008). Biosurfactants 
are secondary metabolites involved in root growth, nutri-
ent availability, swarming movement, biofilm formation, 
environmental adaptation and nutrient cycling (D'Aes et al. 
2010; Oni et al. 2015; Raaijmakers et al. 2010). The main 
metabolites produced by Pseudomonas, which promote plant 
growth, and their corresponding functions are outlined in 
Fig. 1 and Table 2.

Interactions with the Microbiota

Pseudomonas strains are commonly found in natural envi-
ronments, particularly soil. P. chlororaphis isolates have 
been found from the soil and rhizosphere of crops, such as 
potato, tomato, radish, beet, maize, soja, alfalfa, sugarcane 
and clover (Biessy et al. 2019). Rhizopus and brown rot 
diseases on peaches can be successfully suppressed by P. 
syringae isolates MA-4 and NSA-6 from the phyllosphere of 
apples in Canada (Yang and Hong 2020). P. protegens 1B1, 
P. clororaphis 48G9 and P. brassicacearum 93G8 can reduce 
the incidence of hairy root disease caused by Agrobacterium 
rhizogens by up to 95% on Kalanchoe, soybean and tomato 
(Freitas and Taylor 2023).

In addition, Pseudomonas can form synergistic rela-
tionships with other species. In the cucumber rhizosphere, 
syntrophic cooperation between Bacillus velezensis SQR-9 
and Pseudomonas stutzeri is highly dependent on the envi-
ronment and involves pathways for the biosynthesis of 
branched-chain amino acids. The relationship, which pro-
motes plant growth and reduces salt stress, is dependent on 
Bacillus biofilm matrix components (Sun et al. 2022).

Several studies have investigated the impact of Pseu-
domonas strains on non-target organisms, particularly micro-
bial species and total microbial populations. Wild-type and 
genetically modified DAPG-overproducing Pseudomonas 
BCAs do not interfere with arbuscular mycorrhizal fungi 
symbiosis, which establish symbiotic partnerships with the 
majority of land plants (Barea et al. 1998; Edwards et al. 
1998; Vázquez et al. 2000). The effect of the native cul-
turable bacterial and fungal populations on the cucumber 
rhizosphere has been studied using the wild-type P. fluores-
cens strain CHA0-Rif and a derivative CHA0-Rif/pME3424 
which overproduces DAPG and pyoluteorin. Some research-
ers found no changes in the frequency of dominant bacte-
rial groups (Natsch et al. 1998). Others noted a discernible 
impact on the population of culturable fungi, but it was 

smaller than the results of consistently producing cucumbers 
in the same soil (Girlanda et al. 2001).

Antibiosis

Secondary metabolites from Pseudomonas can exert anti-
microbial and insecticidal activities. In most cases, a single 
type of secondary metabolite exhibits pleiotropic effects. 
One of the most conserved metabolites is phenazines. 
Pseudomonas produce phenazines, which are tricyclic com-
pounds that contain nitrogen and are redox-active (Mavrodi 
et al. 2006). Biocontrol strains mainly generate 2-hydroxy-
phenazine (1-OH-PHZ, brick-red) or 2-hydroxyphenazine-
1-carboxylic acid (PCA, citrus yellow) (2-OH-PCA, orange). 
The production of phenazines in Pseudomonas is regulated 
by QS, which involves the GacS/GacA two-component sig-
nal transduction system. Phenazines have a broad-spectrum 
action against bacterial, fungal and oomycete diseases, 
including those caused by Rhizoctonia solani, Streptomyces 
scabies and Phytophthora infestans (Thomashow and Weller 
1988; Jaaffar et al. 2017; Arseneault et al. 2015; Morrison 
et al. 2017).

Another well-conserved metabolite among Pseudomonas 
strains is 2,4-diacetylphloroglucinol (DAPG). This polyke-
tide antibiotic is predominantly synthesised by P. protegens 
and P. corrugata, along with a limited number of strains 
from other taxonomic families (Almario et al. 2017). DAPG 
is effective against bacteria, nematodes, oomycetes and 
fungi, making it crucial in the biocontrol of diseases in the 
roots and seedlings. Pseudomonas sp. LBUM300 produces 
DAPG, which exhibits antagonistic activity against Clavi-
bacter michiganensis subsp. michiganensis in vitro and in 
planta (Lanteigne et al. 2012).

Pseudomonas strains, particularly P. protegens and a 
few P. aeruginosa isolates, produce pyoluteorin (Ramette 
et al. 2011; Hu et al. 2005). In Pantoea ananatis DZ-12, 
which causes maize brown rot on leaves, P. protegens Pf-5 
exhibits biocontrol activity and extracts a crude extract that 
includes pyoluteorin. Pyoluteorin significantly prevents 
DZ-12 growth and causes cytoplasmic extravasations and 
cell hollowing (Gu et al. 2022).

Hydrogen cyanide (HCN) produced by Pseudomonas 
exhibits multifaceted effects on pathogens owing to its cel-
lular function. The respiratory toxin HCN prevents many 
species from producing cytochrome c oxidase, which is the 
final link in the respiratory chain. P. aeruginosa and different 
subsets of P. fluorescens contain recognised HCN producers. 
In Pseudomonas, HCN production is often associated with 
DAPG synthesis, particularly in the P. corrugate, P. pro-
tegens and P. chlororaphis subgroups. Tobacco black root 
rot induced by Thielaviopsis basicola is prevented by HCN 
produced by P. protegens CHA0 (Voisard et al. 1989). Addi-
tionally, Pseudomonas-produced HCN suppresses root-knot 
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nematodes, aphids, termites and other insects (Siddiqui et al. 
2006; Kang et al. 2019; Devi and Kothamasi 2009; Flury 
et al. 2017).

Few Pseudomonas bacteria can generate various strain-
specific bioactive compounds. Rhizoxins, which are gener-
ated by a few isolates of P. protegens and P. chlororaphis 
MA342, are active against oomycetes and fungi (Ligon et al. 
2000). The biocontrol species Pseudomonas sp. CMR12a 
is the only one that produces the anti-microbial cyclic lipo-
peptide sessilin (D'Aes et al. 2014). Pseudomonas putida 
RW10S1 produces the anti-bacterial promysalin, which 
attacks gram-positive and gram-negative bacteria (Li et al. 
2011; Kaduskar et al. 2017). P. fluorescens SBW25 secretes 
the non-proteinogenic amino acid l-furanomycin, which 
suppresses gram-negative plant pathogenic bacteria (Trippe 
et al. 2013).

Serratia

Serratia marcescens, the type species for the newly discov-
ered genus, was first reported in 1823 (Bizio 1823). Serra-
tia are gram-negative bacteria from the Enterobacteriaceae 
family and classified into 18 specie. This group of bacteria 
includes biologically and ecologically diverse species, rang-
ing from those which are useful to economically beneficial 
plants to pathogenic species which are harmful to humans. 
Serratia are remarkable for their secondary metabolism and 
their capacity to create a wide variety of natural bioactive 
compounds (Kai et al. 2007; Matilla et al. 2015; Domik et al. 
2016a).

Interactions with Plants

Biocontrol Mechanisms

Serratia can act as BCAs in plants by competing with other 
pathogens directly or indirectly. The main biocontrol sec-
ondary metabolites produced by Serratia and their corre-
sponding functions are outlined in Fig. 1 and Table 1.

Induced Systemic Resistance

Certain Serratia strains, such as Serratia marcescens CDP-
13, can up-regulate ISR in plants. In water agar tests, wheat 
plants inoculated with S. marcescens CDP-13 exhibited 
significantly reduced susceptibility to diseases triggered by 
Fusarium graminearum (Singh and Jha 2016). Prior studies 
support Serratia’s ability to enhance ISR, though the spe-
cific mechanism of plant disease resistance remains elusive. 
Therefore, future research should concentrate on the tissue-
specific induction of systemic resistance and its correlation 

with the reduction of plant pathogen susceptibility (Singh 
and Jha 2016).

Plant Growth Promotion

Specific Serratia strains are known to promote plant growth. 
They can produce IAA, which positively influences plant 
growth, especially when exposed to elevated levels of metal-
loids such as arsenic (As), cadmium (Cd), chromium (Cr), 
copper (Cu), manganese (Mn), nickel (Ni), and lead (Pb) 
(Mondal et al. 2022). Greenhouse experiments demonstrated 
that plants bacterized with S. marcescens NBRI1213 showed 
significant increases in shoot length, shoot dry weight, root 
length and root dry weight compared to untreated control 
plants.

Interactions with the Microbiota

Antibiosis

The unique trait of Serratia is the production of prodigi-
osin (2-methyl-3-pentyl-6-methoxyprodiginine) (Han et al. 
2021), a bioactive compound from the prodiginine fam-
ily. Prodigiosin is a tripyrrole red pigment secreted into 
the culture medium as a secondary metabolite (Han et al. 
2021). Only four species—S. marcescens, S. plymuthica, S. 
nematodiphila and S. rubidaea—can produce prodigiosin 
(de Murguia 2018). The bacterial plasma membrane is the 
prodigiosin's primary target (Suryawanshi et al. 2017). As a 
chaotropic stressor, prodigiosin disrupts the bacterial plasma 
membrane and causes the loss of vital intracellular com-
ponents, such carbohydrates, amino acids, proteins and K+ 
ions, from cells exposed to it (Suryawanshi et al. 2017). Pro-
digiosin has broad-spectrum anti-bacterial properties against 
methicillin-resistant Staphylococcus aureus, Staphylococcus 
epidermidis, Staphylococcus saprophyticus, Streptococcus 
pyogenes, Enterobacter faecalis, Bacillus cereus, Acineto-
bacter anitratus, Agrobacterium tumefaciens and Bacillus 
licheniform (ORSA) (Nguyen et al. 2022; Yip et al. 2021). 
Prodigiosin is also effective against other pathogens, includ-
ing insects, nematodes and phytopathogenic fungi, which 
affect crops (Choi et al. 2021; Nguyen et al. 2021).

Antibiotics of the carbapenem group are also produced by 
Serratia isolates (Moellering et al. 1989). Carbapenems are 
a broad group of b-lactam antibiotics characterised by strong 
anti-bacterial and b-lactamase-inhibitory activity (Moeller-
ing et al. 1989). As anti-microbial agents, they have a wide 
range of uses and are particularly useful in infections caused 
by bacteria that are resistant to different drugs (Moellering 
et al. 1989). In Serratia sp. And S. marcescens, carbapenem 
production and regulation have been extensively researched 
(McGowan et al. 1996).
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According to Soberon-Chavez and Maier, Serratia pro-
duces biosurfactants called serrawettins (Soberón-Chávez 
and Maier 2011). They lack amino acid residues with ionic 
hydrophilicity, making them non-ionic (Matsuyama et al. 
2011). They can alter the hydrophobicity of the cell sur-
face, which is crucial for the adherence of these bacteria to 
diverse surfaces and helps promote the surface spreading 
of bacteria in environments with low nutrient availability 
(Su et al. 2016; Zhang et al. 2021). Serrawettin W1, W2 
and W3 are molecular species that have been identified. 
Serrawettin W1 promotes swarming motility and exhibits a 
broad-spectrum anti-microbial action, which may help the 
bacterium survive antibiotics and move into more advanta-
geous microenvironments (Kadouri and Shanks 2013; Lap-
enda et al. 2015). Serrawettin W2, a biosurfactant which 
can disperse Caenorhabditis elegans and exert anti-bacterial 
activity against Staphylococcus aureus, was initially isolated 
from S. marcescens in 1986 (Pradel et al. 2007). Many S. 
marcescens strains simultaneously generate prodigiosin and 
serrawettin W1 (Soo et al. 2014). S. surfactantfaciens YD25 
may simultaneously synthesise prodigiosin and serrawettin 
W2 (Su et al. 2016). In contrast to serrawettins W1 and W2, 
serrawettin W3 has only been partially characterised (Mat-
suyama et al. 1986).

Althiomycin is a secondary metabolite of Serratia. The 
non-pigmented model insect pathogen S. marcescens strain 
Db10 produces althiomycin (Gerc et al. 2012). B. subtilis 
grows slowly due to the presence of this diffusible metabo-
lite (Fujimoto et al. 1970).

Anti‑fungal

Natural anti-fungal substances have been identified in Serra-
tia. Because of its powerful bioactivity against plant patho-
genic oomycetes, oocydin A, a chlorinated macrolide, was 
originally isolated from the plant epiphytic strain S. marc-
escens MSU97 in 1999 (Strobel et al. 1999). Oocydin A is a 
polyketide-type natural product with anti-fungal activity. S. 
plymuthica strains A153, 4Rx5 and 4Rx13 generate oocydin 
A (Matilla et al. 2015). The potential of Serratia sp. B1_6 to 
prevent the plant disease caused by Verticillium dahliae may 
be linked to its capacity to produce oocydin A. Several S. 
plymuthica strains exert in vitro anti-fungal activities against 
fungal infections (Berg 2000). However, the chemical nature 
of these anti-fungal products remains to be determined.

VOCs

Sodorifen, a recently discovered VOC, is another distinc-
tive substance generated by S. plymuthica isolates (Domik 
et al. 2016b; Weise et al. 2014). Sodorifen, also known 
as 1,2,4,5,6,7,8- heptamethyl-3-methylenebicyclo[3.2.1]
oct-6-ene, is a rare and unique volatile hydrocarbon (Reuß 

et al. 2010). The biological function of sodorifen remains 
unknown, although it may result from terpene metabolism, 
and the gene cluster in charge of its manufacture has been 
located (Domik et al. 2016a). S. plymuthica PRI-2C pro-
duces sodorifen when exposed to VOCs released by the fun-
gus Fusarium culmorum (Schmidt et al. 2017). Dimethyl 
is also a VOC secreted by Serratia. Serratia ureilytica and 
S. bockelmannii can synthesise dimethyl disulphide in vitro 
(Abreo et al. 2021). The growth of Pythium cryptoirregu-
lare is inhibited by bacterial and exogenous dimethyl disul-
phide. As a result, P. cryptoirregulare-induced damping-off 
of tomato seedlings is reduced by S. ureilytica (Abreo et al. 
2021).

The soil is a complex and highly competitive ecosystem, 
and many soil bacteria react to complex and highly com-
petitive conditions in different ways. Some of these bac-
teria outcompete other species in their capacity to (1) uti-
lise a wide range of frequently resistant carbon compounds 
and (2) grow efficiently on those substrates, giving rise to 
vast populations in a short amount of time (Varivarn et al. 
2013). To fight potential competitors, natural soil bacteria 
frequently use ‘chemical warfare’, generating and secreting 
bioactive, inhibiting chemicals (Czaran et al. 2002; Hibbing 
et al. 2010). Some Serratia isolates, particularly those com-
ing from soil, have adopted this strategy (de Murguia 2018). 
The root and foot rot of Piper betle caused by the oomycete 
Phytophthora nicotianae can be biologically controlled by S. 
marcescens NBRI 1213 (Lavania et al. 2006). Wheat fungal 
infections are reduced by S. marcescens CDP-13 (Singh and 
Jha 2016). S. plymuthica HRO-C48 can inhibit the patho-
gens V. dahlia in strawberries, oilseed rapeseed and olive 
and Rhizoctonia solani in lettuce (Kai et al. 2007; Grosch 
et al. 2005; Kurze et al. 2001). It also produces mVOCs with 
detrimental effects on the mycelial proliferation of R. solani 
(Kai et al. 2007; Grosch et al. 2005; Kurze et al. 2001). 
S. plymuthica S13 is antagonistic toward Didymella bryo-
niae, the causal agent of black rot in pumpkins under field 
conditions (Fürnkranz et al. 2012; Muller et al. 2013). S. 
plymuthica 4Rx13 has anti-fungal activities and produces 
mVOCs, especially sodorifen (Kai et al. 2007; Domik et al. 
2016b; Weise et al. 2014). S. proteamaculans 1–102 can act 
as a BCA against V. dahliae (Alström 2001).

Concluding Remarks and Future 
Perspectives

Bacillus, Streptomycetes, Pseudomonas and Serratia show 
great potential as effective BCAs against various plant path-
ogens. They use different mechanisms, including antibiosis, 
competition for nutrients and space, induction of systemic 
resistance and plant growth promotion, to suppress pathogen 
growth. However, several improvements, such as optimising 
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formulation techniques and delivery methods, scaling up 
production, meeting regulatory requirements and increasing 
cost-effectiveness, are necessary before they can be success-
fully implemented in the field. Nevertheless, the use of bac-
terial BCAs provides a promising and sustainable solution to 
the plant pathogen problem in agriculture, and their potential 
applications in promoting plant growth and enhancing soil 
health make them an important tool in maintaining the one-
health principle. Further research and development of these 
BCAs is essential for the future of sustainable agriculture.
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