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Abstract
Viral diseases are extremely widespread infections that change constantly through mutations. To produce vaccines against 
viral diseases, transient expression systems are employed, and Nicotiana benthamiana (tobacco) plants are a rapidly expand-
ing platform. In this study, we developed a recombinant protein vaccine targeting the major capsid protein (MCP) of iridovirus 
fused with the lysine motif (LysM) and coiled-coil domain of coronin 1 (ccCor1) for surface display using Lactococcus lactis. 
The protein was abundantly produced in N. benthamiana in its N-glycosylated form. Total soluble proteins isolated from 
infiltrated N. benthamiana leaves were treated sequentially with increasing ammonium sulfate solution, and recombinant 
MCP mainly precipitated at 40–60%. Additionally, affinity chromatography using Ni–NTA resin was applied for further 
purification. Native structure analysis using size exclusion chromatography showed that recombinant MCP existed in a 
large oligomeric form. A minimum OD600 value of 0.4 trichloroacetic acid (TCA)-treated L. lactis was required for efficient 
recombinant MCP display. Immunogenicity of recombinant MCP was assessed in a mouse model through enzyme-linked 
immunosorbent assay (ELISA) with serum-injected recombinant MCP-displaying L. lactis. In summary, we developed a 
plant-based recombinant vaccine production system combined with surface display on L. lactis.
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Introduction

Iridoviridae, a family of double-stranded DNA viruses, 
consists of five genera: Megalocytivirus, Lymphocystivirus, 
Ranavirus, Iridovirus, and Chloriridovirus (Williams et al. 
2005). In terms of pathogenicity, Megalocytivirus, Lympho-
cystivirus, and Ranavirus can infect cold-blooded vertebrates 
such as fish, amphibians, and reptiles, whereas Iridovirus and 
Chloriridovirus can infect invertebrates, mainly insects (Wil-
liams 1996; Chinchar et al. 2002). Megalocytivirus members 
are widespread in Europe, America, and Asia in both wild and 
cultured fish populations (Wang et al. 2003). Infection with 
this virus typically presents symptoms including enlargement 
of the liver and spleen, darkening of body color, and high mor-
bidity and mortality (Chua et al. 1994; He et al. 2000; Wang 
et al. 2007; Huang et al. 2012), and outbreaks lead to severe 
economic losses in the aquaculture industry. Red Sea Bream 
iridovirus was first isolated in southwest Japan during summer 
(Shinmoto et al. 2009), and various isolates were subsequently 
identified such as Rock Bream iridovirus (RBIV), Infectious 
Spleen and Kidney Necrosis Virus (ISKNV), Turbot Reddish 
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Body iridovirus (TRBIV), Dwarf Gourami iridovirus (DGIV), 
Taiwan Grouper iridovirus (TGIV), and Sea Bass iridovirus 
(SBIV), all belonging to the genus Megalocytivirus (Chua 
et al. 1994; He et al. 2000; Murali et al. 2002; Kawakami et al. 
2002; Mahardika et al. 2004; Wang et al. 2007; Huang et al. 
2012). In Korea, 10 iridoviruses were characterized from four 
different species of cultured fish, namely Rock bream (Ople-
gnathus fasciatus), Red sea bream (Pagrus major), Sea bass 
(Lateolabrax japonicas), and Rockfish (Sebastes schlegeli), 
during epidemics from 2000 to 2002 (Do et al. 2005). Iridovi-
rus infections typically present symptoms including enlarge-
ment of the liver and spleen, darkening of body color, and high 
mortality (Shimmoto et al. 2010; Liu et al. 2015).

Iridoviruses enter host cells via endocytosis. First, viral 
DNA is transported to the nucleus and replicated using the host 
system. After that, virus morphogenesis and capsid assembly 
take place in the cytoplasm. Depending on the architecture, 
assembled virions are enclosed by an icosahedral outer protein 
coat composed of major capsid proteins (MCPs) and minor 
capsid proteins (Kim et al. 2020a, b). As protein-based vac-
cines, extracellular surface-exposed proteins are better able to 
recognize and remove the virus efficiently (Pintilie et al. 2019). 
Thus, MCPs are important surface antigens and potential can-
didates for vaccine development.

Although some injectable immunizations are applicable, 
this method is very stressful to fish and requires significant 
labor, time, and cost (Shin et al. 2013). To overcome these 
shortfalls, plant-based vaccine platforms are being explored 
due to advantages including oral immunization, rapid pro-
duction, relatively low cost, no risk of contamination by an 
animal viruses, efficient storage, and easy scale-up (Rybicki. 
2014, Park et al. 2016). Plant-based recombinant protein pro-
duction has been employed to develop vaccines for classical 
swine fever virus, and seasonal and pandemic flu (Pillet et al. 
2019; Park et al. 2021). We recently confirmed that the dis-
play of recombinant hemagglutinin-adhesin (HA) proteins of 
two different AIV strains (H5N6 and H9N2) on the surface of 
Lactococcus increased the immune response in animals (Song 
et al. 2021).

In the present study, we aimed to develop a plant-based 
recombinant vaccine in the form of bacteria-like particles 
(BLPs) targeting iridovirus using a transient expression sys-
tem in Nicotiana benthamiana leaves and an antigen delivery 
platform based on Lactococcus lactis. Furthermore, we charac-
terized the structure of a purified iridovirus MCP and assessed 
immunogenicity in a mouse model.

Results and Discussion

Plant‑Based Recombinant Vaccine Construction 
Targeting Major Capsid Protein (MCP) of Iridovirus 
and Expression in Tobacco Leaves

A transient tobacco expression system is a powerful and 
commonly used tool for preparing large amounts of thera-
peutic proteins (Rybicki. 2014). To develop a vaccine against 
iridoviruses isolated from cultured fish species in Korea, we 
generated a construct for the production of MCP of RBIV-
KOR-TY1 (GenBank accession number AY532606) isolated 
from Rock bream (Oplegnathus fasciatus) (Do et al. 2005). 
According to previous reports, recombinant proteins were 
highly expressed in the endoplasmic reticulum (ER) in plants 
(Sohn et al. 2018); hence we made a chimeric construct that 
included a BiP signal peptide and an HDEL ER-retention 
signal to accumulate large quantities of chimeric protein in 
the ER. In addition, the lysine motif (LysM) and coiled-coil 
domain of coronin 1 (ccCor1) were fused with the chimeric 
protein to explore their effects (Fig. 1a). LysM, a 101 amino 
acid domain, forms a highly conserved structure consisting 
of two α-helices stacked on two antiparallel β-sheets, and it 
binds non-covalently to various types of peptidoglycan and 
chitin (Visweswaran et al. 2014). Therefore, a single LysM 
fusion protein binds on the surfaces of L. lactis. As a vac-
cine delivery system, L. lactis has many advantages includ-
ing safety and adjuvant-free immunogenicity (Song et al. 
2021). Short coiled-coils have been applied to change the 
topology of engineered proteins, and ccCor1 is a 32-residue 
coiled-coil domain of the actin-associated protein coronin 1 
that plays a role in oligomerization (Kammerer et al. 2005).

To explore whether this recombinant protein is expressed 
in plants, the fusion construct was transformed into Agro-
bacterium strain GV3101 and infiltrated into leaf epidermal 
cells of N. benthamiana. In western blotting analysis, full-
length recombinant MCP was detected at ~ 80 kDa (Fig. 1b) 
compared with a predicted size of 68 kDa based on the 
amino acid sequence. In silico prediction revealed that MCP 
contains six N-glycosylation sites at positions 8, 237, 302, 
311, 398, and 419 (Fig. 1c). Thus, recombinant MCP could 
appear larger than the predicted size in western blotting.

To confirm the glycosylation state of recombinant 
MCP, we treated samples with PNGaseF, which removes 
N-glycans from proteins. SDS-PAGE analysis showed that 
recombinant MCP bands were decreased in size following 
PNGaseF treatment to ~ 68 kDa, indicating that recombi-
nant MCP expressed in plants was indeed N-glycosylated. 
Plant-produced N-glycosylated antigen enhances vaccine 
efficacy via balanced multifunctional Th1 T cell immu-
nity (Kim et al. 2020a, b). Therefore, we expected strong 
immunogenicity against MCP.
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Purification of Plant‑Produced Recombinant MCP

To prepare the antigen for immunization, total soluble 
proteins isolated from infiltrated leaves of N. benthami-
ana were incubated with Ni–NTA resin and eluted by a 
gradient of imidazole. Recombinant MCP was eluted in 
40–100 mM and 300 mM imidazole fractions (Fig. 2a). 
However, large amounts of recombinant MCP remained 
bound to the resin after elution. One possible reason is 
that recombinant MCP forms a highly oligomeric structure 
through ccCor1; hence the binding affinity for Ni–NTA 
resin becomes stronger through the avidity effect.

Ammonium sulfate protein fractionation is helpful for 
removing debris and unwanted proteins (Park et al. 2015). 
To apply this technique during purification, total soluble 
proteins isolated from infiltrated leaves of N. benthami-
ana were treated sequentially with a series of increasing 
(NH4)2SO4 concentrations (15%, 40%, 60%, and 80% satu-
ration). Recombinant MCP was precipitated at 40–60% 
and 60–80% ammonium sulfate (~ 66% and 21%, respec-
tively; Fig. 2b). The 40–80% ammonium sulfate fraction 
was dialyzed against phosphate-buffered saline (PBS) and 
successfully purified by Ni–NTA resin in 250 mM imida-
zole (Fig. 2c).

Purified Recombinant MCP Forms a High Molecular 
Weight Oligomer

Oligomerization of recombinant proteins gives rise to 
increased protein binding affinity through the avidity effect, 
as well as enhanced stability (Song et al. 2021). This is 
an advantage for both antigen display on the surface of L. 
lactis and storage. Recombinant MCP contains ccCor1, a 
short coiled-coil domain. Even though these domains are 
predicted to form a dimeric structure, many proteins with 
these domains adopt a trimeric structure (Kammerer et al. 
2005). Thus, we analyzed the native structure of purified 
recombinant MCP using size-exclusion chromatography 
(SEC). Recombinant MCP proteins were fractionated from 
about 2000 kDa to about 550 kDa complex and showed the 
estimated protein peaks at 1436 kDa (Fig. 3). Recombinant 
MCP monomers are ~ 80 kDa. Therefore, purified MCP pro-
teins formed various oligomers from hexamer to tetracosa-
mer. According to 3D cryo-electron microscopy (cryo-EM) 
analysis, MCPs of Singapore grouper iridovirus (SGIV) 
consist of trimers and hexamers (Pintilie et al. 2019). This 
raises the possibility that our recombinant MCP proteins 
mimic both the native protein structure and physicochemical 
behavior in vivo.
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Fig. 1   Design of antigen in the form of plant-produced iridovirus 
MCP vaccine and transient expression in Nicotiana benthamiana. a 
Schematic view of the BiP-LysM-Cor1-MCP-His-HDEL construct. 
macT, macT promoter; BiP, the leader sequence of BiP; LysM, the 
first LysM repeat in the cell wall binding domain of AcmA; Cor1, 
trimerization motif of mouse Coronin 1; MCP, iridovirus major 
capsid protein; His, hexahistidine tag; HDEL, ER retention signal; 
RD29B T, RD29B terminator. b Expression levels of recombinant 
BiP-LysM-Cor1-MCP-His-HDEL proteins in N. benthamiana. Con-
structs were transiently transformed into leaf epidermal cells of N. 

benthamiana. Total proteins were extracted from infiltrated tobacco 
leaf tissues and analyzed by SDS-PAGE (right, Coomassie Brilliant 
Blue-stained gel) and immunoblot analysis using anti-His antibody 
(left). M, molecular weight standards; NT, non-transformed tobacco 
leaves; MCP, BiP-LysM-Cor1-MCP-His-HDEL-transformed tobacco 
leaves; −/ + PNGase F, with (+) or without (−) peptide-N-glycosi-
dase F treatment of MCP-expressing protein extracts. (c) Prediction 
of N-glycosylation sites on iridovirus MCP using the NetNGlyc 1.0 
server (colored red). Predicted results (threshold = 0.5) are shown 
below
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LysM‑Fused Recombinant MCP is Displayed on the L. 
lactis Surface

L. lactis is Gram-positive lactic acid non-colonizing gut 
bacterium with generally recognized as safe (GRAS) sta-
tus awarded by the Food and Drug Administration (FDA) 
(Song et al. 2017). Therefore, L. lactis is commonly used 
in various biotechnological applications including metabo-
lite and enzyme production, protein expression, and surface 
display (Song et al. 2017). As a vaccine delivery vehicle, 
recombinant MCP is displayed on the surface of L. lactis to 
form bacteria-like particles (BLPs), but pretreatment with 
trichloroacetic acid (TCA) and heat is necessary for LysM-
fused recombinant protein display on the surface of L. lactis 
(Bosma et al. 2006). To optimize the proper dosage of L. 
lactis, total soluble proteins isolated from infiltrated leaves 
of N. benthamiana were incubated with five concentrations 
(OD600 values) of L. lactis; 0.5, 0.4, 0.3, 0.2, and 0.1 (Fig. 4). 
The amount of antigen displayed increased depending on L. 
lactis concentration and was saturated at OD600 = 0.4, indi-
cating that this was the minimum concentration of L. lactis 
required for efficient antigen display.

Recently, L. lactis was engineered as a food-grade strain 
to produce antimicrobial peptides (Tanhaeian et al. 2020). 
Therefore, L. lactis is a useful tool for oral delivery systems. 
In the aquaculture industry, vaccination against infection is 
generally achieved using needles and syringes. By compari-
son, oral delivery systems for vaccination are less stressful 
and more effective in terms of labor, time, and cost (Shin 

et al. 2013). L. lactis-mediated oral delivery systems could 
be used for the development of protein-based therapeutics as 
well as a wide range of potential biotechnological applica-
tions (Michon et al. 2016).

Recombinant MCP‑displayed L. lactis Induces 
Immunogenicity in Mouse

To test whether plant-produced MCP displayed on L. lactis 
acts as a vaccine for pharmaceutical use, we investigated 
immunogenicity in a mouse model. Three doses (1, 5, and 
10 µg) of MCP displayed on L. lactis were injected into 
mice twice (first immunization and booster) at 2-week 
intervals and the IgG antibody production titer was meas-
ured (Fig. 5a). Total sera at 28 days post-infiltration (dpi) 
were diluted threefold from titers of 100 to 218,700, and 
production of antibodies against plant-expressed MCP was 
analyzed by enzyme-linked immunosorbent assay (ELISA) 
(Fig. 5b). The MCP-displaying L. lactis-immunized group 
exhibited a strong ELISA signal in a dose-dependent man-
ner. Since 5 µg and 10 µg MCP-displaying L. lactis-immu-
nized groups yielded similar signals, 5 µg was considered 
the saturation dose for immunization. In a previous study, 
a recombinant vaccine-displaying L. lactis strain induced 
a strong immune response even in the absence of adjuvant 
(Song et al. 2021). L. lactis serves dual roles as a delivery 
system as well as an adjuvant. This is a huge advantage in 
efficacy, cost, time, and process simplification.
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Fig. 2   Purification of plant-produced recombinant MCP proteins. a 
Affinity purification of plant-produced iridovirus MCP proteins. Pro-
tein extracts (input) prepared from infiltrated N. benthamiana leaves 
were loaded onto Ni–NTA resin and eluted by a gradual increase in 
imidazole concentration. PBR post-binding resin; PER post-elution 
resin. b Purification by ammonium sulfate precipitation. Protein 
extracts (input) were precipitated by a gradual increase in ammonium 
sulfate concentration. c Purification using a combined protocol. Total 

extracts (input) were precipitated by a gradual increase in ammonium 
sulfate concentration and proteins precipitated at 40–80% ammonium 
sulfate concentration (loaded proteins) were purified using Ni–NTA 
affinity chromatography. E1 to E4, first elution to fourth elution. 
Proteins were analyzed by SDS-PAGE (bottom, Coomassie Brilliant 
Blue-stained gel) and immunoblot analysis using anti-His antibody 
(top). Red asterisks represent iridovirus MCP proteins
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Materials and Methods

Plant Growth Conditions

Nicotiana benthamiana plants were grown in soil in a growth 
chamber maintained at 25 ℃ and 50% relative humidity 
under a 16 h light/8 h dark photoperiod with 100 μmol pho-
tons m−2 s−1 of cool white fluorescent light.

Plasmid Construction

The full open reading frame (ORF) encoding the major cap-
sid protein (MCP, AAT71822.1) was isolated from Rock 
bream iridovirus (Do et al. 2005). The MCP coding sequence 
was codon-optimized for expression in N. benthamiana.

Transient Expression of Antigens in N. benthamiana 
Leaves

The BiP:LysM:Cor1:MCP:6xHis:HDEL constructs 
were transformed into Agrobacterium tumefaciens strain 
GV3101 by electroporation. Transformed Agrobacterium 
cells were cultured overnight at 30 °C in 3 mL YEP liquid 
media containing antibiotics, and subsequently sub-cul-
tured overnight in 50 mL media. Cells were harvested by 
centrifugation, resuspended in infiltration buffer contain-
ing 100 mM MgCl2, 100 mM MES, and 100 μM acetosy-
ringone to OD600 = 1.0, and infiltrated into N. benthami-
ana leaves of 3-week-old plant. Tissues were harvested at 
3 days after infiltration and frozen in liquid nitrogen. For 
the deglycosylation, total soluble proteins isolated from 
infiltrated leaves of N. benthamiana were treated with 
1 × glycoprotein denaturing buffer and incubated in boiling 
water for 10 min, and the sample was then chilled on ice. 
The 15 µl denature protein mixed with 2 µl GlycoBuffer 2 
(10x), 2 µl 10% NP-40, and 1 µl PNGase F and incubated 
at 37 °C for 1 h (NEB, Cat#P0704S).
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Fig. 3   Size-exclusion chromatography (SEC) of purified recombi-
nant iridovirus MCP. a SEC chromatogram. Purified iridovirus MCP 
proteins were separated by a Superdex 200 10/300 GL column. Elu-
tion volume (mL) is shown relative to protein absorbance at 280 nm 
(A280). Molecular masses of known standards (inset) run on the 
same column are indicated in the chromatogram. b Identification of 
fractionated iridovirus MCP protein using immunoblot analysis. Frac-
tionated proteins separated by SEC were confirmed by immunoblot 
analysis using anti-His antibody. Molecular masses of known stand-
ards are shown on the left (for SDS-PAGE) and below (for SEC frac-
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analyzed by immunoblot analysis using anti-His antibody (top)
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Extraction and Purifications of Antigen Proteins

Total crude proteins were extracted in extraction buffer con-
taining 1 × PBS (pH 7.5), 10 mM imidazole, 0.2% (v/v) 

Triton X-100, 1 mM dithiothreitol (DTT), and protease/
proteasome inhibitors. After centrifugation, the resulting 
supernatant was applied to Ni–NTA Agarose Resin (Qia-
gen) and incubated at 4 °C for 4 h. Unbound proteins were 
removed by washing buffer containing 1 × PBS (pH 7.5) 
and 10 mM imidazole, and His-tagged target proteins were 
eluted by elution buffer containing 1 × PBS (pH 7.5) and 
imidazole. All proteins were separated by SDS-PAGE. For 
ammonium sulfate precipitation, total soluble proteins iso-
lated from infiltrated leaves of N. benthamiana were treated 
with a series of increasing ammonium sulfate solutions. The 
required amount of solid ammonium sulfate was calculated 
using an online calculator (http://​www.​encor​bio.​com/​proto​
cols/​AM-​SO4.​htm). Ammonium sulfate was added slowly 
with constant stirring for 1 h, samples were centrifuged at 
12,000 rpm for 20 min to precipitate proteins, dissolved in a 
1/10 volume of 1 × PBS, and subsequently dialyzed against 
1 × PBS at 4 °C overnight.

Antigen Display on the Surface of L. lactis

Total soluble protein of the infiltrated N. benthamiana leaves 
was extracted by 1 × PBS buffer with 0.1% (v/v) Triton 
X-100, 1 mM EDTA and protease/proteasome inhibitors 
and centrifuged at 12000 rpm for 20 min. Glycerol (final 
concentration 25% (v/v)) was added in supernatant. L. lac-
tis cells were harvested in stationary phase, washed with 
1 × PBS, and resuspended in a 1/10 volume of 10% (v/v) 
TCA at 100 °C for 30 min. After centrifugation, pellets were 
washed three times with PBS to remove TCA, incubated 
with total soluble proteins in incubation buffer comprising 
PBS, 1 mM EDTA, 0.1% (v/v) Triton X-100, protease inhibi-
tors, and 25% (v/v) glycerol at 37 °C for 1 h, and washed 
three times with incubation buffer.

Immunoblot Analysis

To confirm the target proteins in extraction and purification 
steps, proteins were separated by SDS-PAGE and transferred 
onto a polyvinylidene fluoride (PVDF) membrane. Immuno-
blot analysis was carried using α-His monoclonal antibody 
(Invitrogen; 1:1,000 dilution).

Size‑Exclusion Chromatography (SEC)

Proteins purified by Ni–NTA affinity chromatography were 
filtered through a 0.2-μm filter (Advantec). SEC analysis 
was performed using an AKTA Fast Performance Liquid 
Chromatography System with a pre-packed Superdex 200 
10/300 GL column (Cytiva). The column was equilibrated 
with elution buffer containing 50 mM Tris–HCl (pH 8.0), 
200 mM NaCl, and 0.02% (w/v) sodium azide, and the 
injected proteins were fractionated in elution buffer at 8 °C 
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Fig. 5   Immunogenicity of plant-produced recombinant iridovirus 
MCP-displayed BLPs. a Immunization schedule (dpi, days post-
immunization). b Induction of MCP-specific antibody. Twenty five 
to twenty six-week-old healthy BALB/c mice were randomly divided 
into five groups. PBS and L. lactis not displaying MCP served as 
negative control groups. All groups contained four mice. Mice were 
intraperitoneally injected twice with 1, 5, and 10  μg of L. lactis 
displaying MCP as BLPs according to the schedule. Sera were col-
lected 2 weeks after the second injection. Levels of specific antibod-
ies against antigens in serum were analyzed by ELISA after coating 
with the indicated antigens. c Immunogenicity of coated antigens at 
a 1:2700 serum dilution ratio. Results are mean ± standard deviation 
(SD; n = 4)

http://www.encorbio.com/protocols/AM-SO4.htm
http://www.encorbio.com/protocols/AM-SO4.htm


27Journal of Plant Biology (2022) 65:21–28	

1 3

with a flow rate of 0.5 mL min−1. Eluted proteins were pre-
cipitated in 12.5% (v/v) TCA, dissolved in urea/SDS buffer, 
and confirmed by immunoblot analysis (Van Nguyen et al. 
2019). The column was calibrated with molecular mass 
standards including blue dextran (2000 kDa), thyroglobulin 
(669 kDa), ferritin (440 kDa), aldolase (158 kDa), conalbu-
min (76 kDa), and ovalbumin (44 kDa).

Vaccination in Mice

Female BALB/c mice at 5–6 weeks old (four animals per 
group) were vaccinated with 1, 5, and 10 μg MCP-displaying 
L. lactis with a 1:1 volume of complete Freund’s adjuvant 
for the first immunization and incomplete Freund’s adju-
vant for the booster. PBS and L. lactis not displaying MCP 
served as negative controls. Blood samples were collected 
at 28 days post-infiltration.

ELISA of Iridovirus MCP

The purified plant-expressed BiP-MCP-Cor1-LysM-His 
protein was coated onto the surface of a 96-well microtiter 
plate at 4 °C overnight. After blocking at room temperature 
with 5% (w/v) skim milk in TBST buffer for 2 h, mice serum 
was diluted three-fold from 1:100 with 5% (w/v) skim milk 
in TBST buffer and incubated in a microplate for 2 h. After 
washing three times with TBST, horseradish peroxidase 
(HRP)-conjugated anti mouse IgG antibody (Invitrogen, 
Cat# 32,430, 1:5,000 dilution) was added and incubated for 
2 h. After three washes with TBST, TMB substrate (Thermo 
Fisher, Cat# 34,025) was added followed by 0.1 M H2SO4 
to stop the reaction. The signal intensity was measured at 
an absorbance of 450 nm using multi-microplate readers 
(Perkin Elmer).
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