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Abstract
Global warming affects various environmental factors, including temperature, precipitation, drought, and flooding. Tem-
perature rise is mainly due to increased levels of carbon dioxide  (CO2), which was increased by approximately 50% since 
the industrialization period. Here, we review the effect of global climate changes on the alteration of flowering time. High 
temperature during vernalization delays flowering mainly due to increased expression of FLOWERING LOCUS C and TaV-
ERNALIZATION 2 encoding floral repressors in Arabidopsis and winter wheat, respectively. Increased ambient temperature 
promotes flowering in many plant species, especially in spring-flowering plants. In Arabidopsis, higher temperature induces 
SHORT VEGETATIVE PHASE–FLOWERING LOCUS M (FLM)-δ complex that promotes FLOWERING LOCUS T (FT) 
expression. Moreover, high temperatures suppress a floral repressor FLM and disturb the stability of the evening complex that 
is an inhibitor of PHYTOCHROME INTERACTING FACTOR 4, which induces FT expression. Drought induces or delays 
flowering depending on plant species, growing season, and developmental stage. In Arabidopsis, drought induces flowering 
by promoting the GIGANTEA-CONSTANS (CO) pathway, whereas the stress delays flowering under short-day conditions 
via ABSCISIC ACID-INSENSITIVE 1. Plants also alter flowering time to avoid wet conditions, including flooding and 
precipitation. Increased  CO2 concentration accelerates flowering, probably by increasing the rate of photosynthesis. We also 
reviewed the effect of climate change on pollination.
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Introduction

The climate has been significantly changing mainly due 
to global warming. Temperature rise is caused largely by 
elevated levels of carbon dioxide  (CO2). The  CO2 level in 
Earth’s atmosphere in May 2020 was 417 ppm, indicating an 
approximately 50% increase from 280 ppm in the pre-indus-
trial period. During this period, the global mean temperature 
increased by 0.93 °C (IPCC 2018; WMO 2019). Climate 
models by the Intergovernmental Panel on Climate Change 
(IPCC) predicted that the global temperature would rise by 
0.3 °C–1.7 °C (or 2.6 °C–4.8 °C in an extreme case) dur-
ing the twenty-first century (Stocker et al. 2013). Elevated 

temperature increases the evaporation rate from the land and 
ocean and imbalances weather patterns, including droughts, 
heatwaves, flooding, and other factors (IPCC 2007). As 
anthropogenic activities become more robust, such climatic 
factors would impact ecosystems worldwide (Craufurd and 
Wheeler 2009; Cramer et al. 2014).

Climate change alters the flowering time in most plant 
species (Craufurd and Wheeler 2009). Altering flowering 
time reduces the yield and seed quality in some crops. In 
addition, it affects the interaction between plants and pol-
linators by changing their meeting time as well as the fra-
grance, color, and organ development of flowers. Increased 
bee visitation to flowers is correlated with increased seed 
set in P. vulgaris (Kehrberger and Holzschuh 2019). In the 
warm spring of 2002, a bumblebee-pollinated species (Cory-
dalis ambigua) and bee-pollinated species (Gagea lutea) 
reduced seed set due to 7–17 days early flowering (Kudo 
et al. 2004).

Several genetic factors that control flowering time are 
affected by environmental factors such as temperature and 
rainfall (Cho et al. 2017). In this review, we focus on the 
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effect of environmental factor changes caused by global 
warming on flowering time. We also review plant–pollina-
tor interactions affected by climate change.

Warm Temperatures During Winter

Winter temperature is one of the climatic factors influencing 
the physiological process of flowering (Blázquez et al. 2003; 
Capovilla et al. 2014). Long time chilling at low tempera-
tures called vernalization (Chouard 1960) accelerates the 
flowering initiation in many species including winter wheat 
(Evans et al. 1975), barley (Fettell et al. 2010), and tulips 
(Rietveld et al. 2000). The optimum temperature and dura-
tion of exposed vernalization state vary among plant species 
(Wiebe 1990; Philips et al. 2020).

The first identified player gene for the vernalization 
response is VERNALIZATION 2 (VRN2) in Arabidopsis 
(Gendall et al. 2001) (Fig. 1). The gene product suppresses 
the expression of FLOWERING LOCUS C (FLC), a major 
inhibitor of the florigen gene FLOWERING LOCUS T 
(FT). VRN2 functions together with VERNALIZATION 1 
(VRN1), VERNALIZATION INSENSITIVE 3 (VIN3), and 
VIN3-LIKE1/VERNALIZATION 5 in vernalization-mediated 
pathways (Kim and Sung 2014). Among these components, 
VIN3 is the only member induced by long-term cold tem-
peratures. During this period, VIN3 combines with VRN2 
polycomb-like complex reducing FLC expression (Sung 

and Amasino 2004). When plants face warmer tempera-
tures, FLC transcription levels stay high, causing delayed 
flowering. At higher temperatures, VIN3 transcription levels 
quickly decrease, suggesting that this gene is a major regula-
tor in the vernalization pathway (Sung and Amasino 2004; 
Kim and Sung 2013).

Suppression of FLC-like genes during vernalization is 
found in various Brassicaceae species. For example, the 
expression level of FLC homologous genes was repressed 
during vernalization in Arabis alpina (Wang et al. 2009), 
Tibetan turnip (Zheng et al. 2018), and other Brassicaceae 
clades (Madrid et al. 2020).

The FLC-mediated vernalization pathway is not present 
in many plant species, except in Brassicaceae. In winter 
wheat, a CCT-containing protein called Triticum aestivum 
VRN2 (different from Arabidopsis VRN2, and designated 
as TaVRN2 hereafter) is responsible for vernalization, 
and TaVRN2 expression is suppressed after vernalization 
(Yan et al. 2004) (Fig. 1). Wheat TaVRN2 is a repressor of 
TaVRN3 encoding a florigen protein homologous to FT (Yan 
et al. 2006). A similar pathway is operated during vernaliza-
tion in barley (Yan et al. 2006). Although plants use different 
vernalization pathways, they share a similar mechanism in 
which the gene sensing vernalization is turned on during 
a long-term cold period, and the gene product inhibits the 
expression of a transcription factor repressing florigen genes 
(Fig. 1).

Higher temperatures during the vernalization process 
reduce VIN3 expression, causing increased FLC expres-
sion and delayed flowering or a failure of floral induction 
in some plant species, including A. thaliana, Arabidopsis 
halleri subsp. gemmifera, and Brassica pekinensis (Elers and 
Wiebe 1984; Satake et al. 2013). Similarly, higher tempera-
tures interfere with vernalization by suppressing the expres-
sion of VRN1 (an inhibitor of VRN2) in winter wheat and 
winter rye (Gregory and Purvis 1948; Wu et al. 2017; Dixon 
et al. 2019).

High temperatures before or after the vernalization period 
can also alter flowering time. For example, high-temper-
ature treatment (30 °C) before and after the vernalization 
delayed the flowering date in spring rape (Brassica napus 
var. annua) (Dahanayake and Galwey 1998). These obser-
vations suggest that increased temperatures due to global 
warming will probably affect the flowering time of many 
plant species, including winter crops.

Warm Temperatures During the Growing 
Season

Increased temperatures over the past century altered the 
flowering date of many species (Hu et al. 2005; Menzel 
et  al. 2006). For example, plants that flower in spring 
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Fig. 1  Schematic diagram to compare the effect of higher tempera-
tures during the winter on flowering. In Arabidopsis, FLC expression 
is released, and FT is suppressed when VIN3 expression is reduced 
under high temperatures. In winter wheat, the expression of TaVRN2 
that suppresses TaVRN3 is induced due to reduced expression of 
TaVRN1 under high temperatures
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flowered earlier (Fitter and Fitter 2002). The heading date 
of winter wheat in the US was advanced 0.8–1.8 d per 
decade, mainly due to the increased minimum temperature 
in spring (Hu et al. 2005). Analysis of several hundred 
wild plant species at an elevation (945–1079 m) of South-
western US showed that the flowering date was advanced 
at a rate of 2.5 days per year between 1984 and 2014 
(Rafferty et al. 2020). At higher elevations, the advance 
was less significant. The flowering date was advanced 0.36 
days per year during that period at 1671–1939 m and no 
significant change was observed at the highest location 
(above 1939 m). The flowering date of Boechera stricta 
at the Rocky Mountains in Colorado, US (approximately 
2900  m) was advanced 0.2–0.5 days per generation 
between 1975 and 2011 (Anderson et al. 2012). An analy-
sis of 21 shortgrass species from 1995 to 2014 showed that 
the first flowering date was advanced at a rate of 7.5 days 
for every 1 °C increase (Moore and Lauenroth 2017; Fox 
and Jönsson 2019).

In many plant species, an earlier flowering is positively 
correlated with spring temperatures (Bustamante and Bur-
quez 2008). For example, warmer spring temperatures cause 
early flowering in lilac, hawthorn, elder, and blackthorn 
(Siegmund et al. 2016). However, other season temperatures 
also influence flowering time. An increase in winter and 
monsoon temperatures caused a 22-day earlier flowering in 
three alpine ginger species from 1913 to 2011 (Mohandass 
et al. 2015). Warmer summer temperatures in the previous 
year can also induce earlier flowering, such as in Erythro-
nium grandiflorum (Benscoter et al. 2010).

Molecular mechanisms by which the flowering time is 
hastened by elevated temperatures have been extensively 
studied in Arabidopsis as a model plant. Genetic and 
molecular studies indicate that ambient temperature affects 
flowering time through multiple pathways (Lee et al. 2008; 
Capovilla et al. 2014; McClung et al. 2016; Susila et al. 
2018). Expression of the florigen gene FT is enhanced when 
the temperature is increased from 23 to 27 °C, indicating 
that temperature influences the flowering time by controlling 
regulatory genes functioning in the upstream of FT (Balasu-
bramanian et al. 2006; Kumar et al. 2012; Sánchez-Bermejo 
et al. 2015; Shim and Jang. 2020).

Photoperiodic mechanisms normally rapid the time of 
flowering in Arabidopsis thaliana under long day (LD), 
however, delay in short-day (SD) condition. Higher tempera-
ture (27 °C) can overcome this delay process (21 °C) even 
under SD condition. In this process, CO and PIF4 physically 
interact and the expression of FT as well as TWIN SISTER 
OF FT (TSF) is improved at dusk. Although FT expression 
is lower under 27 °C-SD compared with 21 °C-LD, it is 
enough to induce flowering probably due to reducing flo-
ral repressor action of SVP and FLM at higher temperature 
(Fernández et al. 2016).

Two MADS-box genes, FLOWERING LOCUS M (FLM) 
and SHORT VEGETATIVE PHASE (SVP), that func-
tion upstream of FT play key roles in sensing temperature 
change. Mutations in FLM and SVP cause temperature-
insensitive flowering at different ambient temperatures (Lee 
et al. 2013). FLM has at least four diverse splicing transcripts 
(Scortecci et al. 2001). Among them, FLM-β is abundantly 
found at 16 °C and FLM-δ at 27 °C. Their translated proteins 
compete to combine with SVP, whereas SVP–FLM-β sup-
presses flowering under lower temperatures, and abundance 
of FLM- δ causes SVP to form a non-functional complex at 
higher temperatures for earlier flowering (Lee et al. 2013; 
Posé et al. 2013; Lutz et al. 2015) (Fig. 2). Alternatively, 
higher temperature reduces the expression level of FLM 
through alternative splicing together with nonsense-medi-
ated mRNA decay to de-press FT expression (Sureshkumar 
et al. 2016). These observations suggest that the proportional 
transcript level of FLM variants plays an important role to 
induce flowering at higher temperatures. Protein stability 
of SVP at different temperatures also participates in sens-
ing higher temperatures. SVP protein is degraded via the 
26S proteasome pathway at higher temperatures, releasing 
a suppressive activity on floral marker genes by reducing the 
SVP–FLM-β complex (Lee et al. 2013) (Fig. 2).

Light signaling is also involved in the thermo-sensitive 
flowering pathway. PHYTOCHROME INTERACTING 
FACTOR 4 (PIF4) activates FT expression at high tempera-
tures under short-day conditions (Fig. 2). This activation is 
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Fig. 2  Schematic illustration of the effect of high ambient tem-
perature on the flowering time in Arabidopsis. Pathway 1. Reduced 
expression of JMJ13 causes FT upregulation and flowering under 
high ambient temperatures. Pathway 2. High temperatures disturb the 
stability of EC complex that is an inhibitor of PIF4, which induces FT 
transcription. Pathway 3. High ambient temperature increases SVP–
FLM-δ complex that promotes FT expression and flowering. Pathway 
4. An FT inhibitor, EFM expression is decreased under high tempera-
tures
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mediated by a decrease in H2A.Z nucleosome on FT (Kumar 
et al. 2012). The circadian clock is also involved in thermo-
sensitive flowering. Mutants in the evening complex (EC) 
consisting of DNA binding proteins LUX ARRHYTHMO, 
EARLY FLOWERING 3 (ELF3), and ELF4 exhibit early 
flowering (Hicks et al. 1996; Doyle et al. 2002; Hazen et al. 
2005; Koini et al. 2009; Silva et al. 2020). The EC complex 
represses PIF4 expression at lower temperatures, and the 
repression is relieved at higher temperatures (Silva et al. 
2020) (Fig. 2).

Temperature fluctuations change the protein structure and 
affect plant developmental processes, including flowering 
time. ELF3 protein contains repeated hydrophilic amino acid 
residues (e.g., glutamine and asparagine) called prion-like 
domain (PrD) that respond to environmental stresses such 
as temperature change. The domain helps accelerate flower-
ing in Arabidopsis in a warmer climate. However, when the 
domain is replaced with PrD from Brachypodium distach-
yon, which survives in warmer climates, engineered Arabi-
dopsis does not express early flowering at high temperatures. 
This is probably due to “temperature-driven phase transi-
tion” (i.e., this protein is active at lower temperatures and 
blocks FT expression, but becomes inactive at higher tem-
peratures), resulting in earlier flowering (Jung et al. 2020).

An MYB transcription factor EARLY FLOWERING 
MYB (EFM) protein appears to be an important joint point 
converging the responses to temperature and light (Yan et al. 
2014). EFM protein represses FT expression by directly 
binding to the FT genomic region. Therefore, the expres-
sion level of EFM decreases with increasing temperature 
from 16 to 27 °C through SVP (Fig. 2).

Epigenetic regulators can also affect flowering time in 
a temperature-dependent manner. Chromatin remodeling 
factor JUMONJI 13 (JMJ13) possesses demethylase activ-
ity, specifically on H3K27me3. A mutant defect in JMJ13 
increases FT expression and induces earlier flowering, indi-
cating that JMJ13 functions as a floral suppressor (Fig. 2). 
The mutant displays an early flowering phenotype at 28 °C 
but not at 16 °C or 22 °C under SD conditions (Zheng et al. 
2019). This result indicates that JMJ13 delays flowering time 
in a temperature- and day-length-dependent manner.

Oryza sativa (rice) flowers earlier at 27 °C compared 
with 23 °C under both LD and SD conditions. The expres-
sion levels of Ehd1 (a floral inducer) and Hd3a and RFT1 
(florigen genes) are low, whereas Ghd7 (a floral repressor) 
expression level is higher at a low temperature than at a high 
temperature. This result suggests that other floral regulators 
upstream of Ehd1 and Ghd7 are responsible for the early 
flowering at higher temperatures (Luan et al. 2009; Song 
et al. 2012). Hd1, OsPRR37, DTH8, and Hd6 appear to be 
the regulators responding to temperature increases (Guo 
et al. 2020). However, in Oryza sativa “Koshihikari,” Hd1 
and OsPRR37 function as negative regulators of flowering 

under lower temperatures, and OsPRR37 accelerate flower-
ing under warmer temperatures (Guo et al. 2020; Shim and 
Jang 2020).

Flowering is delayed at high temperatures in some spe-
cies. For example, flowering time is delayed under 30 °C 
compared with 20 °C in Chrysanthemum species. Flowering 
is associated with the low expression level of FLOWERING 
LOCUS T-like3-encoding florigen in the species (Nakano 
et al. 2013, 2015). Similarly, the red firespike (Odontonema 
strictum) grown at 35 °C does not show inflorescence for-
mation, whereas the plants flower at 25 °C (Rezazadeh et al. 
2018). The temperature increase to 34 °C causes no flower-
ing in both early- and late-flowering varieties of Manihot 
esculenta (Adeyemo et al. 2019). Further study is needed to 
investigate the mechanisms by which flowering is delayed 
by increased temperatures.

Precipitation

The temperature has a high impact on global precipitation 
(Lawson and Rands 2019). The flowering time is signifi-
cantly affected by the precipitation amount in many plant 
species (Benscoter et al. 2010; Moore and Lauenroth 2017; 
Zhang et al. 2018). For example, decreasing rainfall is asso-
ciated with the early flowering of winter annual plants in 
Mediterranean desert regions (Kigel et al. 2013). The flower 
in E. grandiflorum blooms early when a high precipitation 
amount occurred in the previous summer (Benscoter et al. 
2010). Moreover, precipitation two months before flowering 
significantly affects the flowering time in late-blooming spe-
cies (Zhang et al. 2018).

Molecular mechanisms by which the flowering time is 
controlled by the precipitation amount is not well known 
because several environmental factors are involved. Water 
spray stimulates jasmonic acid (JA) accumulation and 
expression of many key transcriptional activators of JA-
mediated gene expression, including MYC2, MYC3, and 
MYC4 (Van Moerkercke et al. 2019). Double and triple 
mutants in the MYC genes flower early, suggesting that these 
factors are inhibitors of flowering. FT and its closest relative 
TWIN SISTER OF FT (TSF) transcript levels are signifi-
cantly higher in mutant plants, and MYC2 overexpression 
delays the flowering by suppressing FT transcript. Chroma-
tin immunoprecipitation assay indicates that MYC2 binds 
to the FT genomic region (Wang et al. 2017). Therefore, 
water spray delays flowering by inducing the accumulation 
of JA and MYC transcription factors suppressing FT expres-
sion. However, this induction might be due to touch response 
rather than increased water. Regulation of flowering time by 
precipitation may be due to abscisic acid (ABA) that plays a 
major role in controlling flowering time because precipita-
tion is inversely related to drought.
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Drought

Increasing temperature due to global warming frequently 
leads to drought (Gol et al. 2020), influencing the flower-
ing timing. Flowering is significantly induced by drought 
in several plants such as rice, Brassica, Arabidopsis, Erica 
multiflora, and wheat (Kato and Yokoyama 1992; Franks 
et al. 2007; Bernal et al. 2011; Han et al. 2013; Shavrukov 
et al. 2017; Du et al. 2018). However, drought delays flow-
ering in some species, including Genista tinctoria and Cal-
luna vulgaris (Jentsch et al. 2008; Nagy et al. 2012). The 
drought response is often affected by the growing season 
(Monroe et al. 2018). Plants tend to display delayed flow-
ering in case of drought in winter and spring. For example, 
drought stress during winter causes delayed flowering in 
sweet oranges by 2–4 weeks (Melgar et al. 2010). How-
ever, drought in summer often causes earlier flowering. 
The early flowering due to drought correlates with drought 
escape (DE) response. However, delayed flowering is asso-
ciated with dehydration avoidance strategy (Melgar et al. 
2010; Kooyers 2015; Monroe et al. 2018). This seasonal 
difference indicates that the drought effect on flowering 
is affected by day length and temperature (Rosenthal and 
McCarty 2019).

In Arabidopsis, drought condition causes earlier flower-
ing under LD conditions through the DE response (Riboni 
et al. 2013) (Fig. 3). Drought activates florigen genes (FT 
and TSF) via photoperiod sensor GIGANTEA (GI) (Riboni 
et al. 2013; Takeno 2016). Under LD drought conditions, 
GI and FLAVIN-BINDING, KELCH REPEAT, F BOX 
protein1 (FKF) form a complex to degrade CYCLING 
DOF FACTOR1 (CDF1) that is a repressor of CO. The 
CO protein released from suppression of CDF activates 
FT to trigger the flowering (Sawa and Kay 2011). Moreo-
ver, drought induces flowering through the ABA signaling 
pathway. ABA-responsive element-binding factors ABF3 
and ABF4 interact with NUCLEAR FACTOR Y subunit C 
(NF-YCs) to promote SOC1, a flowering inducer (Hwang 
et al. 2019) (Fig. 3).

The molecular mechanism of the dehydration avoidance 
strategy was examined mainly in Arabidopsis. Arabidopsis 
delays flowering due to drought when grown under SD 
(Fig. 3). Plants defective in ABSCISIC ACID-INSENSI-
TIVE 1 (ABI1) flower early in SD, suggesting that ABI 
mediates the ABA effect during drought (Riboni et al. 
2016). In abi1 mutant, expression levels of FT and TSF 
were not altered, but SOC1 transcript level was increased, 
and FLC transcript level was reduced. This finding sug-
gests that drought delays flowering by inducing the FLC 
expression in shoot apical meristem.

In rice, the expression of Hd3a and RFT1, as well as 
an immediate upstream inducer Ehd1, is repressed when 

drought occurs at the floral transition time (Galbiati 
et al. 2016). Drought induces the expression of O. sativa 
ABA-responsive element-binding factor 1 (OsABF1) that 
redundantly functions with OsbZIP40 (Zhang et al. 2016). 
OsABF1 induces OsWRKY104 that suppresses Ehd1 and 
therefore, delay flowering. The upstream repressors of 
Ehd1, including LEC2 and FUSCA3-Like 1 (OsLFL1), 
Ghd7, COL4, and DTH8 are not significantly affected by 
OsABF1, suggesting that drought delayed flowering via 
photoperiod-independent manner. However, drought pro-
moted flowering when rice plants were under the stress at 
early developmental stages. The stress activates Hd3a and 
RFT1 by increasing the level of OsMADS50, OsGI, and 
OsELF3, and suppressing the floral repressor OsPRR37 
through ABA-independent regulation (Du et al. 2018).

Flooding

Global climate change leads to increased rainfall and flood-
ing in certain regions and therefore, impacts flowering time 
and crop yield (Claire et al. 2019). In Pakistan, between 
2010 and 2014, at least 11 billion tons of crops were lost 
due to flooding (Rehman et al. 2015). Flooding restricts 
the external  CO2 entry to the cells and reduces photosyn-
thesis efficiency, therefore decreasing plant growth and 
flowering (Jackson and Colmer 2005). Moreover, flooding 
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Fig. 3  Schematic illustration of drought effect on flowering time in 
Arabidopsis. Under LD, drought activates the photoperiod sensor 
GI and FKF, which are suppressors of CDF1 to release CO. Drought 
also activates ABF3 and ABF4 that are positive regulators of SOC1 
to allow early flowering. Under SD, drought induces ABI1 that is an 
activator of FLC and, therefore, delays flowering
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induces hypoxic stress and causes a defect in the balance 
of hormones and metabolic processes (Ruperti et al. 2019). 
Plants delay flowering during flooding because floral organ 
development is one of the most energy-consuming processes 
(Peña-Castro et al. 2011). For example, hydric habitat plant 
Cardamine pratensis expresses good vegetative and floral 
development within 2 days of flooding, but the plant exhib-
its poor flowering under 7 days flooding (Brotherton et al. 
2019).

Plants face low-oxygen stress as well as other stresses 
during submergence that leads to the induction of various 
regulatory factors (Fukao et al. 2019). The master regula-
tor of submergence tolerance in rice is SUB1A, a group 
VII ethylene response factor (ERF-VII), which can allow 
the plant to survive for 14–16 d under complete submer-
gence (Xu et al. 2006). Other ERF-VII genes (SNOKEL1 
and SNOKEL2) enhance internode elongation of deep-water 
rice under flooding (Hattori et al. 2009). ERF-VII plays key 
roles in adaptive responses to flooding in many plant species, 
including Arabidopsis, Rumex, and Rorippa (Voesenek and 
Bailey-Serres 2015). Under normal conditions, ERF-VIIs 
are degraded by N-recognition E3 ligase PROTEOLYSIS 6 
in Arabidopsis (White et al. 2017). Under low-oxygen  (O2) 
conditions during submergence, degradation is inhibited, 
resulting in the accumulation of ERF-VII proteins. How-
ever, in rice, some ERF-VIIs, including SUB1A and SUB1C, 
are not degraded by  O2. Instead, their downstream proteins 
are degraded under ambient  O2 conditions (Lin et al. 2019). 
Arabidopsis over-expressing rice SUB1A displays delayed 
flowering phenotype with gibberellin insensitivity and ABA 
hypersensitivity (Peña-Castro et al. 2011).

Other factors can also delay flowering under submer-
gence conditions. For example, VRN2 protein preferentially 
accumulates in the shoot meristem under stress to inhibit 
flowering (Labandera et al. 2020). In addition, various miR-
NAs involved in delaying flowering time are accumulated 
by stress. The expression of miR156 is up-regulated under 
flooding in Arabidopsis (Jeong et al. 2013). Flowering is 
delayed during submergence because miR156 maintains 
vegetative development. Submergence also induces the 
accumulation of miR5200 that suppresses FT-like genes in 
Brachypodium (Jeong et al. 2013).

CO2

The rapid increase in  CO2 concentration has a signifi-
cant impact on increasing temperature globally as well 
as plant physiology and growth such as photosynthesis 
and flowering time (Curtis and Wang 1998; Prentice et al. 
2001; Long et al. 2004; Teng et al. 2006; Springer and 
Ward 2007; Thompson et  al. 2017). Most crops grow 
faster and flower earlier at higher  CO2 concentrations due 
to increased photosynthesis (Rolland et al. 2006). For 

example, flowering is promoted at higher  CO2 concentra-
tions in rice and barley (Kleemola et al. 1994; Seneweera 
et al. 1994; Ohnishi et al. 2011; Tanaka et al. 2016). How-
ever, some species do not respond to  CO2 concentration 
changes or show delayed flowering phenotype at increased 
 CO2 concentrations (Springer and Ward 2007). However, 
soybean (Glycine max) and maize (Zea mays) do not show 
consistent patterns in flowering time at elevated  CO2. Dis-
similar to crop species, many wild species flower late or do 
not respond to increased  CO2 concentrations.

The time of flowering accompanied by rising  CO2 is 
often influenced by other factors, including photoperiod, 
temperature, and water availability (Springer and Ward 
2007; Song et al. 2009). Regarding photoperiod,  CO2 gives 
more effect in LD plants than in SD species (Johnston and 
Reekie 2008). Greater effects in LD species compared with 
SD species may be partially due to differential effects of 
temperature because the LD species flower in spring and 
early summer. However, the SD species flower in late sum-
mer and autumn.

Elevated  CO2 concentration promotes flowering time 
and hastens the process at higher temperatures in many 
species. For example, most Asteraceae species flower ear-
lier at elevated  CO2 and flower much faster at additional 
rising temperatures (Johnston and Reekie 2008). Similar 
synergistic effects were detected in Arabidopsis and Gly-
cine max (Walker and Ward 2018; Nagatoshi and Fujita 
2019).

Early flowering under increased  CO2 may be due to 
increased carbon metabolism (Springer and Ward 2007; 
Wahl et al. 2013; Jagadish et al. 2016) in which high car-
bohydrate concentration in the apical meristem may likely 
be lined up with floral transition (Bernier et al. 1993; Wahl 
et al. 2013). As an example, TREHALOSE-6-PHOSPHATE 
SYNTHASE 1 (TPS1) mutant plants show delayed flower-
ing (Wahl et al. 2013). Moreover, sucrose, a major pho-
toassimilate, may function as a signal molecule to promote 
flowering (Yoon et al. 2021). Application of exogenous 
sucrose to KIN10-overexpression plants interrupts the 
development of root and shoot, and causes delayed flower-
ing (Baena-González et al. 2007). In addition, unbalancing 
the endogenous sugar levels by alternating the function 
of INDETERMINATE DOMAIN (AtIDD8) affects the 
expression level of SUCROSE SYNTHASE 1 (SUS1) and 
(SUS4), thereby changing the flowering time (Seo et al. 
2011).

The molecular mechanism by which  CO2 influences the 
flowering time is not well known. Analysis of Arabidopsis 
mutants defective in the gene involved in flowering indicated 
that mutations in PHYB, CRY2, and CO cause early flower-
ing under elevated  CO2 in SD, but not in LD (Song et al. 
2009). This result suggests a possible interaction between 
 CO2 and light signaling pathways under SD.
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Pollinators

Approximately 87% of flowering plants depend on pollina-
tors for fertilization (Christmann 2019). The mutual rela-
tionship between pollinators and plants provides benefits to 
each other (Abrha 2019; Gérard et al. 2020). For example, 
plants offer nectar and food for pollinators. In turn, polli-
nators help the reproduction and genetic exchange of the 
respective plants. Maintaining a good ecosystem and criti-
cal ecological value depends largely on plant and pollinator 
interactions (Morton and Rafferty 2017). Major pollinators, 
including bumblebees, stingless bees, and honeybees are 
vitally essential in agricultural food and natural ecosystems 
(Dyer et al. 2006; Whitney et al. 2008; Norgate et al. 2010). 
Approximately 35% of global food production is assisted by 
pollinators (Kjøhl et al. 2011).

The synchronization between plants and pollinators is 
mismatched in many plant species due to climate change 
and flowering time alteration. This reduces reproduction 
and the seed set (Morton and Rafferty 2017; Gérard et al. 
2020; Richman et al. 2020). Moreover, it causes the pollina-
tor food shortage. For example, in a warm spring of 2002, a 
bumblebee-pollinated species Corydalis ambigua and a bee-
pollinated species Gagea lutea reduced seed set due to 7–17 
days early flowering (Kudo et al. 2004). Moreover, higher 
temperatures alter flower development, pollen production, 
and nectar quality. Pollinators also change their body size, 
life span, and pollination success at increased temperatures 
(Scaven and Rafferty 2013; Giannini et al. 2020).

Conclusions and Perspectives

Climate has been rapidly changing mainly due to anthropo-
genic activities, including the emission of greenhouse gases 
from both industrial and agricultural land. Major greenhouse 
gases (e.g.,  CO2, nitrous oxide, and methane) cause global 
warming and affect plant physiology. Greenhouse gases lead 
to successive changes in temperature, precipitation, flood-
ing, and drought through which affects flowering time and 
pollinator interactions. Global efforts to reduce the produc-
tion of greenhouse gases are urgently needed because altered 
flowering time affects plant evolution and crop yield. The 
use of fossil energy should be replaced by renewable energy 
such as sunlight, wind, tides, and geothermal heat to miti-
gate the adverse effects of climate change. Engineering to 
make genetic factors less sensitive to climate change can 
help reducing crop loss. Chemical treatment to reduce the 
effect of climate change can also diminish the damage.
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