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Abstract
Heat stress (HS) is detrimental to wheat production and productivity globally. To combat HS, several genetic, molecular, 
and genomic approaches have been employed in the past. Analyzing the physiochemical mechanisms and the important 
regulatory genes involved is the key to develop HS tolerant plants. In the present work, a total of 243 novel simple sequence 
repeat (SSR) markers developed from stress-associated genes identified through RNA-seq were used for understanding 
marker–trait associations. 37 SSRs were found to be clearly polymorphic and among these, 28 SSR loci were significantly 
associated with component traits of HS tolerance. The polymorphic SSRs were validated for diversity analysis on a subset 
of 85 genotypes. The genotypes were grouped into four clusters representing diverse and similar alleles imparting HS toler-
ance in Indian and exotic genotypes. Additionally, 28 genes selected for the expression analysis confirmed that 15 genes 
were induced under HS in the thermotolerant WH1021 and Raj3765 and repressed in thermosusceptible HD2009 cultivar. 
Hence, the information on traits associated with candidate genes and the SSR markers overlying on the gene will enhance 
our understanding of thermotolerance mechanism operating in wheat and will help the breeders in the precise development 
of heat-tolerant genotypes through marker-assisted selection (MAS).
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Introduction

Wheat (Triticum aestivum L.) is one of the most important 
staple food grains on earth. After years of domestication 
in fertile crescent region, the present day wheat varieties 
evolved that are adapted to a wide range of environmental 
conditions ranging from high-humidity regions like South 
America to low-humidity regions like India, Nigeria, Egypt, 
and Australia (Pont et al. 2019). Wheat yields are affected by 

both biotic and abiotic stresses. Among the abiotic stresses, 
drought and heat are the most severe stresses that affect the 
life cycle of the crop (Zampieri et al. 2017). These two fac-
tors progressively became important due to global climate 
change (Akbarian et al. 2011; Zampieri et al. 2017). The 
global temperature has been presumed to increase by 0.18 °C 
per decade (Hansen et al. 2012). An estimated 6% loss in 
wheat production occurs globally for every 1 °C rise in tem-
perature (Asseng et al. 2015). Higher temperatures have a 
direct influence on plant growth and crop yields owing to 
reduced opportunities for photosynthesis since the life cycle 
is truncated (Bita and Gerats 2013; Stocker et al. 2013). At 
grain-filling stages, the rise in temperature adversely affects 
the quantity and quality of wheat grains thereby inducing 
various cellular and metabolic changes.

The advances in biotechnology including recent pro-
gress in genomics and molecular breeding have enabled 
wheat researchers to use the technology in mitigating the 
detrimental effects of HS (Lamaoui et al. 2018). Molecular 
markers improve the efficiency of conventional plant breed-
ing by indirectly selecting for the gene of interest. Simple 
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sequence repeats (SSRs) or microsatellites are efficiently and 
frequently used for the identification of the quantitative trait 
loci (QTL) linked to drought and HS tolerance (Pinto et al. 
2010; Paliwal et al. 2012; Mondal et al. 2015). Such QTL 
linked markers hold promise in forward marker-assisted 
selection for improved selection efficiency and development 
of stress-tolerant cultivars (Rai et al. 2018; Sandhu et al. 
2019). QTLs for various physiological and morpho-agro-
nomic traits have been studied internationally; significant 
progress has been made in the mapping of QTLs for yield 
and contributing traits under HS in wheat (Pinto et al. 2010; 
Sukumaran et al. 2018; Tadesse et al. 2018). However, the 
use and implementation of QTLs is carried out to a limited 
extent due to differences in genetic backgrounds, environ-
ments and poor understanding of expression and regulation 
of genes governing the trait. In addition, the small effect of 
a single QTL enforces the breeder to prioritize for stable and 
strong effect QTLs which limit the whole efforts (Tricker 
et al. 2018). A viable option is the development of markers 
from the genic regions of HS transcriptomes that may help 
in population genetics and association studies through the 
identification of genes/QTLs linked to component traits of 
HS tolerance.

Stress-associated genes are induced in response to heat 
stress (Chauhan et al. 2011; Rampino et al. 2012; Lamaoui 
et al. 2018). Though significant progress has been made in 
research on HS tolerance, information on the genes involved 
in HS response is limited. In the past decade, most of the 
studies were restricted to the identification and mapping of 
QTL/genomic regions for constituent traits of HS tolerance 
(Pinto et al. 2010; Talukder et al. 2014; Mondal et al. 2015; 
Tadesse et al. 2018) but stress-associated genes lying in such 
genomic regions were known to a lesser extent. In the recent 
past, Acuna-Galindo et al. (2015) identified QTL hotspots in 
eight major clusters using the meta-QTL approach on linked 
SSRs and reported a few clusters harboring agronomically 
important genes. Li et al. (2004) reported that the SSRs lying 
in the gene regions may be involved in regulating the expres-
sion of respective genes. The genic SSR markers from candi-
date genes have greater potential in identifying marker–trait 
associations in germplasm collections involving diverse 
backgrounds and environments. Marker–trait associations 
of these candidate genes-based SSRs could prove very help-
ful in future genetic diversity and MAS studies.

Although several gene expression studies have identi-
fied differentially expressed stress-responsive genes in 
contrasting wheat genotypes under HS, yet the association 
with component traits of HS tolerance still remains to be 
learned (Qin et al. 2008; Kumar et al. 2017; Li et al. 2019). 
Keeping this in view, microsatellite markers were developed 
from the RNA sequencing analysis of Indian heat-suscep-
tible and -tolerant genotypes. A total of 1216 differentially 
expressed genes (DEGs) were observed that contain more 

than 2000 SSR motifs. Among these, the stress-associated 
genes (SAGs) including the chaperones, transcription fac-
tors, signaling factors, etc. harbored 243 SSRs. In the present 
study, we assess the performance of candidate gene-based 
novel microsatellite markers in understanding marker–trait 
associations in indigenous and exotic germplasm collections 
and gene expression pattern of selected genes in contrasting 
genotypes.

Materials and Methods

Plant Materials

An international core set for abiotic stress comprising of 145 
lines, received from CIMMYT, Mexico under the Genera-
tion challenge Program was evaluated under timely (TS) and 
late sown (LS) environments for three years. The experiment 
was laid out in a randomized complete block design with 
two replications in three rows of one-meter length each. The 
core set was used for screening of 243 candidate gene SSRs 
newly developed from whole transcriptome sequencing of 
contrasting wheat cultivars under HS.

A subset of 85 lines including 34 lines from this larger 
international core set and 57 elite Indian lines developed for 
different agro-ecological conditions were utilized for cor-
roboration of marker–trait associations of identified candi-
date gene SSR markers. The subset mainly included parents 
of Indian and International mapping populations for drought 
and HS tolerance (Table S1). The subset experiment was laid 
out in alpha-lattice design in two environments (timely and 
late sown) in the years 2018–19. Each environment has two 
replications and each replication constitutes 8 blocks. Every 
block had 11 genotypes. For the TS environment, planting 
was done during the second week of November with recom-
mended irrigation; while for the LS, planting on a delayed 
date during first week of January was carried out. The crop 
was maintained using standard cultivation practices pre-
scribed for wheat.

Development and Scoring of SSR Markers

SSR markers were developed from RNA sequencing data 
generated on heat stress-tolerant (HD2985) and a heat stress-
susceptible (HD2329) genotype (for details see, Kumar et al. 
2017). Among the identified SSR motifs, 243 SSRs overlay 
on the stress-associated genes (SAGs) such as chaperones, 
transcription factors, signaling factors, etc. Therefore, a 
total of 243 SSR markers were developed from differen-
tially expressed heat-responsive transcripts obtained under 
control (22 ± 3 °C) and high-temperature stress (42 °C, 
2 h) conditions using the Microsatellite identification tool 
(MISA; https​://pgrc.ipk-gater​slebe​n.de/misa/misa.html). The 

https://pgrc.ipk-gatersleben.de/misa/misa.html
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sequences, repeat motifs and amplification conditions of 243 
SSR markers can be obtained from Kumar et al. (2017). 
These newly synthesized candidate gene-based SSR mark-
ers were evaluated for their performance in 145 lines of the 
international core set. The PCR reaction profile was: DNA 
denaturation at 95 °C for 5 min followed by 35 cycles of 
94 °C for 1 min, 55 or 60 °C for 1 min (depending upon 
primer), 72 °C for 1 min and finally 72 °C for a final exten-
sion of 10 min. Amplified PCR products of each reaction 
were separated on 3% metaphor agarose gel (Lonza, Rock-
land ME, USA) and were photographed using a Gel Docu-
mentation System, by keeping the magnification constant. 
Manual gel scoring was done for each gel picture based on 
the bands of the standard 100 bp DNA ladder. Every allele 
was scored as present (1) or absent (0) for individual SSR 
marker. The markers that produced the expected size of the 
amplicon with clear bands and showed polymorphism were 
further validated on a smaller set of 85 lines.

Phenotypic Characterization of Germplasm Lines

Phenotypic characterization of international core set was 
carried out in three different growing seasons (2013, 2014, 
and 2016) during TS and LS conditions for various agro-
nomic and physiological traits. The gross plot size of the 
TS experiment was 1.38 m × 3.0 m with rows at 20 cm 
apart, whereas for LS experiments, the gross plot size was 
1.08 m × 3.0 m with a row-to-row spacing of 18 cm. Data 
was recorded for days to heading (DH), days to maturity 
(DM), plant height (PH), flag leaf area (LA), 1,000 kernel 
grain weight (TGW), yield per plot (YLD), canopy tem-
perature at vegetative (CT1) and reproductive (CT2) stage, 
normalized difference vegetation index (NDVI) at vegeta-
tive stage (lateboot stage (Z49), NDVI1), grain-filling stage 
(early milk stage (Z73), NDVI2) and grain maturity stage 
(late milk stage (Z83–87), NDVI3) according to Zadoks 
scale (Zadoks, 1974). NDVI at different growth stages was 
recorded using GreenSeeker® (Trimble, Inc.). Hand-held 
infrared thermometer (Kane May Model Infratrace 8000, 
USA) was used for the measurement of CT. Data on DH, 
DM, CT and NDVI were recorded on a plot basis; whereas 
PH, LA were recorded on randomly chosen five plants per 
plot. At maturity, plants were harvested from the experimen-
tal plots individually to record the grain yield.

The experiment on a subset population was conducted 
during 2018–19 in TS and LS environments in alpha-lat-
tice design as described above. Data on various agro-phys-
iological traits viz. DH, grain weight per spike (GWPS), 
TGW, grain length (GL), grain width (GW), biomass (Bio), 
yield per plot (YLD), CT, NDVI were recorded in replica-
tions in both environments. DH, CT, NDVI, Bio, and YLD 
were recorded on a plot basis while GWPS and TGW were 
recorded on randomly collected 20 spikes from each plot. 

GL and GW were measured for a random sample of grains 
of each genotype. Grain characteristics were measured using 
a grain image that was processed using software GrainScan 
developed by CSIRO (www.plant​-image​-analy​sis/softw​are/
grain​scan).

Phenotypic Data Analysis

Phenotypic data recorded on each genotype of the subset 
population are subjected to descriptive statistical analysis. 
The analysis included block, replication, and treatment for 
each variable. Best Linear unbiased estimates (BLUEs) for 
the phenotypic data were calculated using R 3.6.0. Analysis 
of variance on mean values of 2 replications per genotype 
were analyzed in alpha-lattice design using SAS 9.3. The 
BLUE values of different traits were further used to perform 
the correlation analysis.

Genotypic Data Analysis

The model-based (Bayesian) Structure version 2.3.4 was 
applied to identify clusters of genetically similar individu-
als on the basis of their genotypic data. The program was run 
five times independently for K value (number of subpopula-
tions) ranging from 1 to 10, adopting the admixture model. 
The normal logarithm of the probability was calculated 
against each K value, and the optimal number of subpopu-
lations was determined using the ΔK approach described 
by Evanno et al. (2005). The threshold for statistical sig-
nificance was determined by running 10,000 permutations.

To study the candidate gene-based genetic diversity on 
subset genotypes, the binary data produced from the scor-
ing of bands on randomly chosen nineteen polymorphic 
SSR markers from above (37 polymorphic markers) were 
used as input for further analysis. Genotypic data obtained 
from 85 germplasm lines were used as input in DARwin 6.0 
program (https​://darwi​n.cirad​.fr/darwi​n), and a dendrogram 
was constructed using the unweighted neighborhood joining 
algorithm.

Marker–Trait Associations

The association of genotypic and phenotypic data was con-
ducted using TASSEL 2.1 software (https​://www.maize​
genet​ics.net), via a general linear model (GLM) with 1000 
permutations. The significance threshold of the association 
was determined by the p value (< 0.05). In GLM model, 
population structure of the germplasm was included as fixed 
effects, while the association was estimated by simultaneous 
accounting of the population structure (Q matrix).

http://www.plant-image-analysis/software/grainscan
http://www.plant-image-analysis/software/grainscan
https://darwin.cirad.fr/darwin
https://www.maizegenetics.net
https://www.maizegenetics.net
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qRT‑PCR Analysis

Ten-day-old seedlings of three moderate to highly toler-
ant (Halna, Raj3765, and WH1021) and one susceptible 
(HD2009) varieties were used for the purpose of qRT-
PCR validation of 28 gene specific SSRs. The candidate 
gene SSRs included: Four SSRs (SSR30, SSR32, SSR35, 
and SSR36) located in genes encoding heat shock proteins 
(HSPs), two SSRs (SSR100, SSR155) from gene involved 
in signaling, nine SSRs (SSR12, SSR13, SSR60, SSR64, 
SSR79, SSR166, SSR177, SSR179, SSR205) from genes 
encoding transcription factors (TFs), two SSR (SSR158, 
SSR223) belonging to gene encoding regulatory proteins 
and 11 SSR belonging to genes with miscellaneous function.

Total RNA was extracted using TRI reagent (Sigma-
Aldrich, St. Louis, MO, USA) from the control (22 ± 3 °C) 
and heat shock-treated (42 °C for 4 h) leaf tissues of the 
four varieties at 10-day-old seedling stage. The first strand 
cDNA synthesis was performed using Verso cDNA syn-
thesis kit (Thermo Scientific Inc., USA) following the 
manufacturer’s instruction. Expression of the 28 genes was 
analyzed using real-time PCR with SYBR Premix (ABI, 
USA). PCR primers were designed using the NCBI Primer 
design tool (https://www.ncbi.nlm.nih.gov-tools-primer-
blast) (Table S1). 18S RNA was used as a reference gene 
for normalization of expression. The relative expression was 
determined using the comparative Ct method (Livak and 
Schmittgen 2001). The relative fold change expressions were 
calculated for normalized heat shock-treated versus control 
samples. The change in expression between control and heat 
stress treatment was statistically analyzed using Student’s t 
test at a 5% level of significance.

Results

Screening on International Core Set

A total of 243 genic SSRs were screened on an international 
core set. Out of 243 SSRs, 93SSRs amplified specific bands; 
58 markers produced monomorphic bands and 37 markers 
were polymorphic. The remaining 148 SSRs did not amplify 
well and produced nil/fuzzy/multiple bands and were not 
used for further analysis. The 37 polymorphic SSR markers 
produced a total of 106 alleles ranging from 2 to 5 alleles per 
SSR (Table 1). These SSR markers belonged to candidate 
heat-responsive genes encoding transcription factors (11), 
heat shock proteins (4), regulatory proteins (7), signaling 
(3) and others (12) (Table 1).

To understand the association of 37 markers with phe-
notypic traits, the ancestral contribution of genotypes in 
the population was estimated; for this purpose data on 145 
lines with 37 SSR markers were utilized. The model-based 

analysis with Structure identified an optimal number of 
subpopulations at K = 3 (Fig S1) as the maximum likeli-
hood when K was set from K = 1 to K = 10 subpopula-
tions. The number of 145 wheat accessions assigned to 
each of the three inferred clusters is 58, 36 and 51 when 
the membership proportion was set at more than 0.5 for 
each cluster. Fixation index (FST) values between all 
groups were significant (p < 0.001) suggesting a real dif-
ference among these clusters. The inferred cluster values 
were subsequently utilized for understanding marker-trait 
associations. The phenotypic data on 8 agronomic traits 
from different growing seasons (2013, 2014, and 2016) 
were used for association with SSRs (Table S2). A total 
of 22 SSR markers were identified to be associated with 
the 7 traits at the 0.05 probability level (Table 2), and 
phenotypic variation ranged from 5.11 to 18.01%. SSR 
markers viz., SSR30, SSR32, SSR35, and SSR36 (gene 
encoding heat shock proteins) were associated with the 
physiological traits, NDVI and CT. SSR64 (gene encoding 
ethylene-responsive TF) was associated with various traits 
including NDVI, CT and YLD. SSR141 was associated 
with LA and NDVI in the years 2013 and 2014, and YLD 
in the year 2016.

Phenotypic and Genomic Analysis on Subset 
Population

The 37 polymorphic SSR markers identified as above were 
used for validation on a subset population of 85 lines. The 
summary statistics of phenotypic data recorded under TS 
and LS environments on this subset is presented in Table 3. 
Analysis of the variance indicated significant variations for 
the majority of the traits (Table 3). The germplasm lines 
showed difference in adaptive traits under the two environ-
mental conditions. The coefficient of variation (CV) ranged 
from 4.10 to 18.52 for TS, and 5.71 to 22.4 for LS environ-
ments. Heritability ranged from as low as 0.29 for CT to 0.70 
for NDVI in LS environments. Significant genotypic differ-
ences were observed for all the traits. The average reduction 
due to HS for agronomically important traits in LS environ-
ments can be seen in Fig. 1.

To investigate the level of association of grain yield with 
various phenotypic traits, the correlation between physio-
logical and agronomic traits with YLD was analyzed under 
normal and HS conditions (Table 4). There was a positive 
correlation of YLD with GL, GW, TGW and GWPS under 
LS environments. NDVI at different intervals showed sig-
nificant positive correlation with GL, GW, and GWPS in TS 
and LS condition. A significant negative correlation of DH 
was observed with GL, GW, GWPS, and TGW under LS. On 
the other hand, during TS environments CT had a negative 
correlation with GW and, TGW.
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Table 1   List of heat-responsive SSRs, their gene description, repeat motifs and number of alleles amplified in wheat

TF transcription factor, HSP heat shock protein, S signaling molecule, R regulatory protein, M miscellaneous

SSR ID Gene ID Gene description Role Repeat motifs No. of alleles

SSR12 IWGSC_CSS_4BL_scaff_6990050:1:3750:1 stress_transcription factor a-1b TF (GCA)6 4
SSR13 IWGSC_CSS_2BL_scaff_8050210:1:14,690:1 stress_transcription factor rf2b-like TF (CAG)5 5
SSR30 IWGSC_CSS_1AL_scaff_3975644:1:3913:1 heat shock protein 101 HSP (CGG)5 3
SSR32 IWGSC_CSS_7AS_scaff_4217917:1:8113:1 heat shock protein HSP (ACG)6 3
SSR35 TRIAE_CS42_6AS_TGACv1_485621_

AA1548950
HSP70 HSP (TGT)5 4

SSR36 TRIAE_CS42_U_TGACv1_643360_
AA2131150

heat shock protein HSP (GTC)6 4

SSR50 IWGSC_CSS_3B_scaff_10614606:1:3273:1 expansin expa11 M (GAA)6 4
SSR54 IWGSC_CSS_7AS_scaff_4230709:1:9177:1 E3 ubiquitin-protein ligase ring1-like R (TTCT)5 3
SSR59 TRIAE_CS42_2BL_TGACv1_131330_

AA0426150
dehydrin 1 M (TCC)5 3

SSR60 IWGSC_CSS_2BL_scaff_7993893:1:6513:1 dehydration-responsive element-binding 
protein

TF (CCA)6 2

SSR62 IWGSC_CSS_2BS_scaff_5200682:1:27,955:1 plastid omega-3 fatty acid desaturase M (CGC)5 2
SSR64 IWGSC_CSS_6AL_scaff_5780850:1:6292:1 ethylene-responsive transcription factor TF (GCC)6 2
SSR72 IWGSC_CSS_1AL_scaff_3795905:1:9082:1 early flowering 3 M (CAA)5 2
SSR73 IWGSC_CSS_7DL_scaff_3319496:1:17,313:1 pollen-specific protein sf21-like M (TTC)6 2
SSR76 IWGSC_CSS_4AL_

scaff_4AL_7061370:1:12,528:1
barley stem rust resistance protein M (CCT)8 5

SSR79 IWGSC_CSS_5BL_scaff_10789552:1:1723:1 wrky transcription factor partial TF (CGG)5 2
SSR92 IWGSC_CSS_1BL_scaff_3858292:1:11,020:1 heme oxygenase 1 S (CGC)5 2
SSR100 TRIAE_CS42_2BL_TGACv1_129772_

AA0395400
glutaredoxin S (TCC)5 2

SSR122 IWGSC_CSS_6BL_scaff_4398244:1:3993:1 alpha-galactosidase alpha-n- M (GA)7 3
SSR131 IWGSC_CSS_7BL_scaff_6739810:1:2252:1 dna-binding protein mnb1b R (TGC)5 4
SSR141 TRIAE_CS42_5DL_TGACv1_433651_

AA1418390
aba 8-hydroxylase M (CGA)5 4

SSR155 IWGSC_CSS_2BL_scaff_8087983:1:24,078:1 -glutaredoxin subgroup i S (GAG)5 3
SSR157 IWGSC_CSS_1AS_scaff_3259168:1:13,155:1 ocs element-binding factor 1 R (CAG)5 2
SSR158 IWGSC_CSS_5BL_

scaff_10793275:1:15,180:1
lipid-binding protein R (AGTG)5 2

SSR166 IWGSC_CSS_2AL_scaff_6429764:1:12,906:1 fd-like 15 protein TF (CTTG)6 2
SSR170 TRIAE_CS42_2BS_TGACv1_146521_

AA0467430
alpha-galactosidase alpha-n- M (GA)7 2

SSR175 IWGSC_CSS_7BL_scaff_6747596:1:7144:1 nuclease harbi1-like R (GGTT)5 2
SSR177 IWGSC_CSS_7DL_scaff_3351966:1:6586:1 golden2-like transcription factor TF (CGG)5 5
SSR179 TRIAE_CS42_3B_TGACv1_221666_

AA0746950
ap2 protein TF (TCC)6 3

SSR183 IWGSC_CSS_5BL_scaff_10805401:1:9312:1 g-type lectin s-receptor-like serine threonine-
protein kinase sd2-5-like

R (GA)6 4

SSR184 TRIAE_CS42_5BL_TGACv1_404628_
AA1306740

ring finger protein TF (CGG)5 2

SSR205 IWGSC_CSS_2BL_scaff_8008064:1:11,548:1 zinc finger protein TF (CGA)5 2
SSR221 IWGSC_CSS_1BL_scaff_3850458:1:18,499:1 NADH dehydrogenase M (TGG)5 2
SSR223 IWGSC_CSS_2AL_scaff_6392290:1:6702:1 silencing group b protein R (CAC)5 2
SSR230 IWGSC_CSS_5AL_scaff_2781953:1:6260:1 peroxisomal biogenesis factor 11 family 

protein
M (TA)6 2

SSR235 IWGSC_CSS_1BS_scaff_3464231:1:11,062:1 gata transcription factor 16-like TF (CAG)5(CAA)5 2
SSR240 IWGSC_CSS_4AL_

scaff_4AL_7121598:1:5090:1
fructan:fructan 1-fructosyltransferase M (GCG)5 4
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Diversity analysis Using Candidate Gene SSRs

The polymorphic SSR markers obtained as above in the 
core set were used for generating polymorphism profiles 
of the selected subset population. A total of 50 alleles 
were generated with an average of 2.6 alleles per locus. 
The allele diversity data was used to estimate dissimi-
larity which was subsequently used for cluster analysis. 
Four major clusters were produced; Cluster I and II were 
predominantly represented by genotypes of Indian origin 
with the exceptions of Frontana, Chiriya3, Giza163, Bavi-
acora, synthetic lines, and UASD lines whereas Cluster III 
involved the majority of the exotic genotypes representing 
HS tolerant cultivars (Fig. 2). Cluster IV comprised of 
only six genotypes; two among these were exotic.

Marker–Trait Associations

The allele diversity data of the subset population were 
utilized in estimating population structure for infer-
ring marker–trait associations subsequently. The k was 
assumed from 1 to 10 subpopulations using the co-ances-
try model. The estimated linkage probability revealed that 
eighty-five germplasm lines were grouped into two clear 
subgroups (Fig. 3). The genotypes with more than 70% of 
the proportion of similar genome (based on shared alleles) 
were assigned to a common subgroup. One group (Red) 
represented mostly exotic lines from Australia and CIM-
MYT and the other group (Green) represented lines from 
Indian wheat breeding programs (Fig. 3). The lines G5, 
G12, G16, G31, G32, G34, G46, G6, G62, G65, G70, G74, 

Table 2   Marker–trait 
associations (R2) of the 37 
candidate gene SSR markers 
with various agro-physiological 
traits in international core set 
during three (2013, 2014 and 
2016) different crop seasons 
under late sown conditions

LA flag leaf area, NDVII normalized difference vegetation index at lateboot stage (Z49), NDVI2 at grain-
filling stage Z73, NDVI3 at grain maturity stage (Z83–87), DH days to heading, DM days to maturity, CT1 
canopy temperature at vegetative stage, CT2 at reproductive stage, YLD yield per plot, TGW​ 1000 kernel 
grain weight

Trait 2013 2014 2016

Locus p value R2 Locus p value R2 Locus p value R2

LA SSR141 0.049 0.0821 SSR141 0.0482 0.0824 – – –
NDVI 1 SSR59 0.0437 0.083 SSR59 0.0203 0.0548 SSR12 3.28E–118 0.9448

SSR60 0.0224 0.0606 SSR141 0.0092 0.1109 – – –
NDVI 2 SSR64 0.0108 0.0582 SSR223 0.0056 0.1049 SSR13 0.0292 0.0538

SSR141 0.0184 0.0995 SSR141 0.0276 0.0909 SSR155 1.52E–05 0.1801
NDVI 3 SSR64 0.0176 0.0507 SSR30 0.0322 0.0781 – – –
DH SSR60 0.0224 0.0616 SSR60 0.0224 0.0616 SSR50 0.0025 0.1052

SSR79 0.0052 0.0739 SSR79 0.0052 0.0739 SSR155 1.23E–05 0.1789
SSR166 0.0309 0.0623 SSR166 0.0309 0.0623 – – –

DM SSR50 0.0408 0.0603 SSR50 0.0408 0.0603 – – –
CT1 SSR50 0.0138 0.0807 SSR50 0.0138 0.0807 SSR13 2.97E–04 0.1143

SSR35 0.0079 0.094 SSR35 0.0079 0.094 SSR32 1.42E–08 0.2371
SSR122 0.0135 0.0725 SSR122 0.0135 0.0725 SSR76 9.32E–09 0.1276
SSR221 0.0229 0.0531 SSR221 0.0229 0.0531 SSR155 1.68E–05 0.1779

CT2 SSR59 0.0341 0.0861 SSR59 0.0466 0.0792 SSR155 0.0046 0.0988
SSR60 0.0284 0.0547 SSR60 0.0058 0.0767 SSR240 0.0301 0.0677
SSR64 7.17E–05 0.1261 SSR64 1.42E–04 0.1148 – – –
SSR122 3.85E–05 0.1397 SSR122 1.68E–04 0.1198 – – –
SSR179 0.0251 0.054 SSR35 0.0316 0.0678 – – –
SSR221 1.10E–04 0.1149 SSR221 7.42E–04 0.0891 – – –

YLD SSR64 0.0104 0.0583 SSR64 0.0144 0.0518 SSR12 0.0061 0.0704
SSR122 0.0217 0.0666 – – – SSR36 0.0294 0.1351
– – – – – – SSR76 0.0029 0.1689
– – – – – – SSR141 0.0194 0.0995
– – – – – – SSR177 0.0113 0.0743

TGW​ SSR122 0.0088 0.079 SSR122 0.0087 0.0793 SSR36 0.0063 0.1637
– – – – – – SSR205 0.009 0.0503
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and G77 showed less than 70% majority with any single 
group and, therefore, carried mixed proportion of alleles 
both from Indian and exotic origin.

A total of 30 marker–trait associations was identified 
with 14 different SSR markers in both the environments 
using days to heading as a covariate (Table 5). The average 
phenotypic variation (R2) value ranged from 5.2 to 25.1% 
in the population. Few candidate gene SSR markers were 
associated with more than a single trait; SSR13 (stress 
transcription factor) was closely associated with CT, GL, 
GW, GWPS; SSR76 (barley stem rust resistance protein) 
was associated with NDVI1, NDVI3 and GWPS; SSR230 
(peroxisomal biogenesis factor 11) was associated with 
GL under TS, LS and YLD under LS. Candidate genes 
belonging to SSR72, SSR73, SSR100, SSR158, SSR166, 
SSR170 were also associated with more than one trait. 
Five markers viz. SSR12, SSR50, SSR60, SSR205, and 
SSR240 associated with one trait; Bio, CT, Bio, Yld and 
CT, respectively, in only one (either TS or LS) environ-
ment (Table 5).

Expression of Genes Encoding Heat‑Responsive 
SSRs

Among the SSR overlaying candidate genes, 28 candidate 
genes that associated significantly with important pheno-
typic traits (Tables 2 and 5) were selected for analyzing 
expression. Two genes encoding SSR141 and SSR205 did 
not produce single amplification products in qRT-PCR and 
were not included in further analysis. The details of qRT-
PCR expression analysis are as follows: (i) The two signal-
ing genes harboring SSR100 and SSR155 were significantly 
upregulated in thermotolerant lines compared to the thermo-
sensitive cultivar HD2009 (Fig. 4) (ii) Heat shock protein 
(HSP) genes harboring SSR30, SSR32, SSR35, SSR36, 
had higher expression in the tolerant lines, WH1021 and 
Raj3765 (iii) TFs carrying SSR12, SSR60, SSR64, SSR166, 
and SSR179 and genes overlaying SSR73, SSR122, SSR170 
and SSR240 had higher expression in the thermotolerant 
lines (iv) Genes overlaying SSR13, SSR50, SSR76, SSR79, 
SSR158, SSR177, and SSR221 had low expression under 
HS in all the four lines (v) the remaining four genes (SSR59, 
SSR72, SSR223, SSR230) were neither over-induced in 
tolerant cultivars nor highly reduced in susceptible culti-
var under HS. Overall, the genes displayed lower expres-
sion in the susceptible line, HD2009, and medium tolerant 
line, Halna, with an exception of genes carrying SSR12, 
SSR32, SSR36, SSR64, and SSR179. In Halna, these five 
genes displayed higher expression under HS. Despite our 
repeat efforts, no amplification was observed for Raj3765 
and WH1021 for the candidate genes carrying SSR179 and 
SSR76, respectively.Ta
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Discussion

Heat stress has a huge consequence in limiting the total 
grain yield of wheat (Hatfield and Prueger 2015). High 

temperature during grain-filling stages induces a number of 
cellular and metabolic changes leading to reduced produc-
tion of normal proteins. Plants employ various stress adap-
tive mechanisms to cope up with elevated temperatures. It 
has been widely accepted that morpho-physiological and 

Fig. 1   Box-plots representing best linear unbiased estimates (BLUEs) 
for mean data on various traits in timely sown (control) and late 
sown (heat stress) environments. a Days to Heading. b Normalized 
difference vegetation index. c Grain yield. d Grain weight per spike. 

e Biomass. f Canopy temperature. g Grain length. h Grain width. i 
Thousand grain weight. In the timely sown environment, sowing was 
carried out in mid-November and in the late sown environment, sow-
ing was carried out in first week of January

Table 4   Correlation coefficients among various phenotypic traits under timely (TS) and late sown (LS) conditions. The significance of correla-
tion is depicted by *(p > 0.05) and **(p > 0.01)

DH days to heading, NDVII normalized difference vegetation index at lateboot stage (Z49), NDVI2 at grain-filling stage Z73, NDVI3 at grain 
maturity stage (Z83–87), CT1 canopy temperature at vegetative stage, CT2 at reproductive stage, GWPS Grain weight per spike, Bio biomass, 
YLD yield per plot, GL grain length, GW grain width, TGW​ 1000 kernel grain weight

LS/TS DH NDVI1 NDVI2 NDVI3 CT1 CT2 GWPS Bio YLD GL GW TGW​

DH 1 0.404** 0.579** 0.543** − 0.157 − 0.174 − 0.100 0.028 − 0.119 − 0.182 − 0.125 − 0.059
NDVI1 0.199 1 0.440** 0.482** − 0.072 − 0.043 − 0.141 0.167 0.031 − 0.152 − 0.221* − 0.150
NDVI2 0.020 0.573** 1 0.641** − 0.111 − 0.114 0.026 0.196 − 0.008 − 0.093 − 0.065 0.044
NDVI3 0.038 0.469** 0.576** 1 − 0.109 − 0.208 0.141 0.132 − 0.026 − 0.078 0.141 0.151
CT1 − 0.097 − 0.052 0.183 0.179 1 0.158 − 0.050 − 0.109 0.003 0.180 − 0.171 − 0.022
CT2 − 0.045 0.125 − 0.012 − 0.061 − 0.260* 1 − 0.055 − 0.114 − 0.009 0.087 − 0.261* − 0.225*
GWPS − 0.254* 0.151 0.227* 0.433** 0.108 − 0.002 1 0.276** 0.25* 0.188 0.541** 0.508**
Bio − 0.117 0.067 0.060 0.183 0.042 − 0.101 0.204 1 0.459** 0.026 0.161 0.222*
YLD − 0.017 0.107 0.158 0.097 0.003 − 0.198 0.302** 0.081 1 0.078 − 0.086 − 0.015
GL − 0.288** 0.084 0.224* 0.064 0.289** − 0.058 0.244* − 0.024 0.395** 1 0.252* 0.557**
GW − 0.404** − 0.001 0.276** 0.402** 0.253* − 0.064 0.614** 0.185 0.358** 0.362** 1 0.82**
TGW​ − 0.215* 0.060 0.129 0.082 0.166 0.021 0.333** 0.316** 0.305** 0.260* 0.339** 1
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yield contributing traits such as DH, DM, NDVI, chlo-
rophyll content, chlorophyll fluorescence, CT, spikelets/
spike, grain number/spike, spike length, biomass, tillers/
plant and, harvest index had high correlation and heritabil-
ity under HS and, thus can be effectively used in the breed-
ing program as selection criteria for improvement of stress 
tolerance and for selection of best genotypes (Araus et al. 
2008; Reynolds et al. 2001; Gupta et al. 2017; Pinto et al. 
2010; Jain et al. 2018). We observed a high correlation 
between the majority of the studied morpho-physiological 
and component traits of yield under HS. Plants tend to 
have early anthesis and early maturity to avoid the effect 
of HS (Mondal et al. 2016). In the present study, genotypes 
showed early heading and a negative association of DH to 
yield and contributing traits under LS. Grain morphology 
is also found to be an important parameter under stress 
conditions. GW had a positive correlation with GL and a 

negative correlation with DH (Table 3). Kushwaha et al 
(2011) suggested that heat stress during the terminal stage 
of the crop growth inhibits the starch biosynthesis which 
leads to reduction in normal grain size.

Availability of superior and diverse alleles/genes is 
the starting point of genetic enhancement of crop plants 
including wheat, for the development of improved cultivars 
(Abouzied et al. 2013). In the present study, a large propor-
tion of the newly developed candidate gene SSRs had mono-
morphic alleles (58), implicating that the genes are either 
conserved or involved in housekeeping among both the sus-
ceptible and tolerant genotypes. For the remaining polymor-
phic SSRs, the subpopulation structure grouped individuals 
based on their shared alleles into two subpopulations, differ-
entiating genotypes of exotic origin from the Indian origin. 
This suggests the use of diverse germplasm in bringing out 
tolerant genotypes at International breeding programs and 

II

I 
IV

III

Fig. 2   Neighbor joining tree representing genetic relationships of 85 genotypes using candidate gene-based SSR markers. Four clusters were 
produced that represent exotic genotypes in red color and indigenous genotypes in black color
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Fig. 3   Population structure of 85 germplasm lines using allele diver-
sity data on polymorphic SSRs. The proportion of genome assigned 
to each subpopulation is depicted on Y-axis. The bars in red and 
green colour for each genotype depict the proportion of genome 
assigned to the two subpopulations. Subpopulation1 (red) comprised 

of majority of exotic genotypes while subpopulation II (green) com-
prised of majority of Indian genotypes. The numbers 1–85 represents 
the serial number of the genotype given in Online Resource1 in the 
same order

Table 5   Marker–trait 
associations (R2) of the 
identified polymorphic 
SSR markers with the agro-
physiological traits in subset 
population of 85 genotypes

NDVII normalized difference vegetation index at lateboot stage (Z49), NDVI3 at grain maturity stage (Z83–
87), CT1 canopy temperature at vegetative stage, CT2 at reproductive stage, GWPS Grain weight per spike, 
Bio biomass, YLD yield per plot, GL grain length, GW grain width

Trait LS (Late sown) TS (Timely sown)

Locus p value R2 Locus p value R2

CT1 SSR13 0.0174 0.0731 SSR73 0.0138 0.0856
– – – SSR50 0.0028 0.1269
– – – SSR13 0.046 0.0525

CT2 SSR170 0.0192 0.0897 SSR240 0.0429 0.1018
SSR13 0.0115 0.0825 – – –

NDVI1 SSR158 0.0447 0.0542 SSR166 0.0124 0.1909
SSR76 0.0149 0.1758 – – –

NDVI3 SSR100 0.0287 0.0633 – – –
SSR76 0.0083 0.1973 – – –

GL SSR13 0.0011 0.127 SSR73 0.0307 0.0632
SSR230 3.57E–06 0.2326 SSR166 0.0225 0.1886
– – – SSR230 1.12E–06 0.2515

GW SSR13 0.009 0.0847 – – –
GWPS SSR13 0.0361 0.0587 SSR13 0.018 0.0753

– – – SSR76 0.0246 0.1688
Bio SSR72 0.0137 0.0888 – – –

SSR60 0.0045 0.1026 – – –
SSR12 0.0301 0.0621 – – –
SSR170 0.0482 0.0658 – – –

YLD SSR158 0.0349 0.0621 SSR72 0.0421 0.0632
SSR230 0.0216 0.0674 SSR205 0.000351 0.2214
– – – SSR100 0.0095 0.0907
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that of the Indian breeding programs. Lines from Australia 
and CIMMYT formed a distinct subpopulation representing 
diverse alleles imparting tolerance; however, exotic lines that 
have been used so far in Indian crossing program shared 
common alleles and were grouped with the Indian subpopu-
lation. For instance, Kauz is a heat-tolerant genotype from 
CIMMYT and the lines carrying Kauz in their pedigree such 
as DBW173, DBW88, MACS6273, Baj and Kachu grouped 
together in cluster III suggesting the presence of common 
alleles. The neighbor joining cluster-based findings were 
in total agreement with the population structure analysis 
which suggested two subpopulations (exotic and Indian) 
based on > 70 percent of shared ancestry among individuals. 
Clusters I and II majorly comprised of heat-tolerant Indian 
genotypes including HD2932, WH1021, Raj3765, Halna, 
DBW71, DBW90 and PBW226. These Indian genotypes can 
themselves serve as a source as parents and could be used 
in breeding programs without much effort for adaptation. In 
cluster III, Indian and exotic genotypes did not form separate 
clusters, which reflect upon the similar expression of stress-
responsive genes under HS.

Abiotic stress is a complex process that involves several 
factors like secondary metabolites, hormones, transcription 
factors and signaling systems (Lamaoui et al. 2018). Con-
ventional breeding has had limited success in improvement 
for heat tolerance. Breeding for heat stress is a tough pro-
cess as the component traits are quantitative in nature, hence 
the use of MAS and QTL mapping approaches may prove 

helpful (Collins et al. 2008). Information on QTL hotspots 
with significant marker-trait associations is being generated 
in several crops including wheat (Sukumaran et al. 2018; 
Tadesse et al. 2018; Sinha et al. 2018; Acuna-Galindo et al. 
2015). The probability of finding significant marker–trait 
associations is further enhanced by the availability of genic 
SSRs. The markers identified from heat stress transcriptome 
revealed high phenotypic variance in this study either for 
the same or other correlated traits under stress. As many 
as 28 SSR loci revealed significant associations with vari-
ous phenotypic traits. The marker-trait associations were 
further supplemented with information on heat-responsive 
genes that are induced under stress. A synergistic response 
of genes belonging to TFs, HSPs, signaling molecules is 
observed suggesting specific genomic locations for adapta-
tion and acclimation.

Although transcriptomes have majorly been used for 
expression analysis, a number of SSRs derived from tran-
scriptome sequencing had been extensively used in plant 
genetic diversity analyses such as in pigeon pea (Dutta 
et al. 2011) and chickpea (Kant et al. 2017). SSRs derived 
from transcriptional approaches are highly suitable for 
assessing functional diversity. In this study, the polymor-
phic genic SSRs from diverse TFs, HSPs, signaling and 
regulatory molecules were associated with important phe-
notypic traits. Such functional SSRs may regulate gene 
expression and function under HS. The expression of as 
many as 15 genes (SSR12, SSR30, SSR32, SSR35, SSR36, 
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Fig. 4   Relative expression of the SSR harboring genes belonging to 
signaling (a), Regulatory proteins (b), HSPs (c), TFs (d), miscella-
neous functions (e) in four wheat genotypes: HD2009 (thermosus-
ceptible), Halna (medium tolerant), WH1021 (thermotolerant) and, 
Raj3765 (thermotolerant). For normalizing the data, the expression of 
the 18SRNA gene was used; 10-day-old untreated control (C) sam-

ples at 22  °C and treated samples (T) with heat shock at 42  °C for 
four hours were used for estimation of fold change in each genotype; 
vertical bars indicate SE. Comparison of means between control and 
treatment samples was carried out by Student’s  t  test and significant 
differences (p < 0.05) are represented by asterisk for each genotype
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SSR60, SSR64, SSR73, SSR100, SSR122, SSR155, 
SSR166, SSR170, SSR179, and SSR240) were signifi-
cantly induced under HS in either of the two thermotoler-
ant lines compared to control (Fig. 4). Expression of only 
five genes (SSR12, SSR32, SSR36, SSR64, and SSR179) 
was elevated in Halna under high temperature. In fact, 
Halna is a medium tolerant line that follows the mech-
anism of heat avoidance by early completion of its life 
cycle and hence poor expression of candidate genes. The 
expression of the majority of the genes was reduced in the 
HD2009 suggesting under-expression of TFs, HSPs and 
regulatory molecules that might have led to lower expres-
sion of associated traits upon high-temperature stress. 
Heat stress-responsive TFs and proteins are known to be 
induced in wheat in several previous reports (Zhang et al. 
2017; Xue et al. 2015; Kumar et al. 2017). Heat shock 
factor C2a was involved in heat protection in developing 
grains in wheat (Hu et al. 2018). Not only an individual 
gene is expressed but also a cluster of genes is expressed 
in response to stress that signifies the presence of sev-
eral loci in a bonafide QTL. In the tolerant lines WH1021 
and Raj3765, genes for HSPs, DREB transcription fac-
tor, ethylene-responsive TF, ring finger proteins and sugar 
metabolism genes were elevated coherently for adaptation 
to stress. Either such genes or the associated traits may be 
selected for precise improvement under heat stress.

Candidate genes harboring the newly developed SSR 
markers were linked to various phenotypic traits in this 
study. This knowledge of candidate genes governing phe-
notypic traits will help in a better understanding of the 
underlying mechanism for HS tolerance which is impor-
tant to address the issue of heat stress through the use 
of molecular technology and MAS. The information gen-
erated on the traits governed by stress-associated genes 
is useful for the plant breeders who might be indirectly 
selecting for the superior traits/genes. The candidate gene-
based SSRs have potential use in the transfer of traits for 
improvement of future breeding programs on HS tolerance.
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