
Vol.:(0123456789)1 3

Journal of Plant Biology (2020) 63:331–336 
https://doi.org/10.1007/s12374-020-09260-8

REVIEW ARTICLE

Down‑Regulation of Zeaxanthin Epoxidation in Vascular Plant Leaves 
Under Normal and Photooxidative Stress Conditions

Minh Hien Hoang1,2 · Ho‑Seung Kim1 · Ismayil S. Zulfugarov1 · Choon‑Hwan Lee1 

Received: 18 February 2020 / Revised: 27 May 2020 / Accepted: 29 May 2020 / Published online: 4 June 2020 
© Korean Society of Plant Biologist 2020

Abstract
The down-regulation of zeaxanthin (Zx) epoxidation is important for the regulation of Zx accumulation in xanthophyll cycle 
and for the development of non-photochemical quenching (NPQ). The NPQ development and Zx accumulation kinetics in 
rice, barley, and spinach leaves under light of different intensities were highly similar among the three plants. When the 
leaves were pre-treated with an inhibitor of Zx epoxidase (ZE), salicylaldoxime (SA), the two kinetics patterns in the leaves 
under low and moderately high light intensities became similar to those of high light intensity-treated leaves. Therefore, 
we propose that reversible down-regulation of Zx epoxidation plays an important role in plants, and this reversible down-
regulation mechanism is a general mechanism in plants which occurs at room temperature under various light conditions 
as well as under different stress conditions in the presence of light. This reversible down-regulation is different from the 
irreversible down-regulation mechanism of ZE which involves ZE protein degradation together with D1 protein degrada-
tion under photooxidative conditions. There will be discussion on the mechanisms for the actual regulation of ZE activities 
involving phosphorylation/dephosphorylation of still unknown regulator(s) and/or by the redox regulation involving NADPH 
thioredoxin reductase C and thioredoxin m.
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Introduction

While light energy is converted to useful chemical energy 
during photosynthesis, excess light is harmful to the plants. 
Most of the excess energy, which is not required for pho-
tosynthetic  CO2 assimilation, is dissipated as heat via 

non-photochemical quenching (NPQ) of chlorophyll fluo-
rescence (Horton et al. 1996; Niyogi 2000; Zulfugarov et al. 
2010, 2014). Zeaxanthin (Zx), a component of the violax-
anthin (Vx) cycle, participates in the non-photochemical 
protection mechanism in vascular plants and algae (Dem-
mig et al. 1987; Krause and Weis 1991; Pfündel and Bilger 
1994; Jahns et al. 2009). In the Vx cycle, also known as the 
xanthophyll cycle, Vx is reversibly converted to Zx via the 
intermediate antheraxanthin (Ax). In the forward de-epoxi-
dation reaction, two epoxy groups are removed stepwise by 
Vx de-epoxidase (VDE) in the thylakoid lumen. The back-
ward epoxidation reaction is catalyzed by Zx epoxidase (ZE) 
in the chloroplast stroma.

Given the important function of Zx as a photoprotector 
against photoinhibition, the majority of studies have focused 
on the regulation of VDE in the Vx cycle. There have been 
several reports regarding the regulatory factors of de-epox-
idation involved in the light-driven lumen acidification and 
ascorbate availability (Pfündel and Dilley 1993; Hager and 
Holocher 1994; Neubauer and Yamamoto 1994; Bratt et al. 
1995), Vx availability and temperature (Siefermann and 
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Yamamoto 1974; Bilger and Björkman 1991; Arvidsson et al. 
1997), Vx orientation (Gruszecki et al. 1999), aggregation of 
light-harvesting complex II (LHCII), and lipid properties of 
thylakoid membrane (Jahns 1995; Gruszecki et al. 2006; Jahns 
et al. 2009; Schaller et al. 2010). A structural study of VDE 
suggested that the activation of VDE at low pH involves its 
dimerization that permits the parallel de-epoxidation of two 
epoxide rings of Vx (Arnoux et al. 2009).

However, there are far fewer studies on the regulation of 
ZE. Zx retention has been observed in plants under severe 
stress such as in overwintering evergreen plants, suggesting a 
long-term regulation mechanism (Adams et al. 2002; Öquist 
and Huner 2003). Moreover, significant inhibition of Zx epoxi-
dation has been observed under prolonged illumination of high 
intensity or by chilling under light (Jahns 1995; Reinhold et al. 
2008). This short-term down-regulation of Zx epoxidation was 
found to be independent of trans-thylakoid pH gradient (Xu 
et al. 1999; Gilmore and Ball 2000). Reinhold et al. (2008) 
attributed the short-term down-regulation of ZE to its direct 
modification, possibly by photooxidation.

Recently, we showed that the down-regulation of Zx epox-
idation is a key factor that confers chilling-tolerance to the 
japonica rice cultivar compared with an indica one cultivar 
(Kim et al. 2017). Although previous studies mostly focused 
on the activity of VDE as a key regulator of the non-photo-
chemical protection mechanism (Latowski et al. 2004; Szabó 
et al. 2005; Chen and Gallie 2012; Murchie and Ruban 2019), 
no significant differences have been observed in the activity 
of VDE between the two cultivars. In this review, we suggest 
that reversible down-regulation of Zx epoxidation is important 
in the leaves of a vascular plant at various light intensities at 
room temperature, and this reversible down-regulation mecha-
nism is a general mechanism that functions in vascular plants 
at room temperature under various light conditions as well as 
under stress conditions in the presence of light. Under stress 
condition, a rather irreversible down-regulation mechanism is 
working, as we have mentioned earlier. Still, the actual mecha-
nism for this down-regulation of ZE activity is uncertain. We 
will discuss about the redox regulated activation of ZE activity 
in the low light, which is proposed recently (Nikkanen et al. 
2019), but cannot explain its down-regulation under higher 
light. We have proposed that the down-regulation of ZE activ-
ity is by phosphorylation of itself or one of its regulators (Kim 
et al. 2017), but still without suggesting candidate(s) for the 
regulator(s).

NPQ Development and Zx Accumulation 
Kinetics in a Dicot and Two Monocot Plant 
Leaves Under Light of Various Intensities

Faster NPQ development and Zx accumulation kinetics 
shown in leaves at room temperature under light of higher 
intensity can be due to down-regulation of ZE activity 
rather than up-regulation of VDE activity. To prove this 
hypothesis, we compared NPQ development and Zx accu-
mulation kinetics in rice, barley, and spinach leaves under 
different light intensities.

The seeds of the rice (Oryza sativa L.) cultivar Dongjin-
byeo were grown in a growth chamber under a 14-h light 
period with a PPFD of 100 μmol m–2 s–1 under a day/
light temperature regime of 28 °C/25 °C. Barley (Hor-
deum vulgare L. ‘Albori’) seeds were grown at a PPFD of 
50 μmol m–2 s–1 under a photoperiod of 14 h at 25 °C. For 
all the experiments, fully expanded first leaves of 1-week-
old barley were used. Fresh spinach (Spinacia oleracea L.) 
leaves were obtained from a local market. The leaves of 
spinach, rice, and barley were floated on distilled water in 
Petri dishes with the adaxial side up and dark-adapted at 
25 °C for 3 h to remove Zx that is present in plants under 
non-stressed growth condition. The dark-adapted leaf seg-
ments floated on distilled water were then exposed to dif-
ferent PPFDs (50–2100 μmol m–2 s–1) at 25 °C. The light 
provided using 500-W halogen lamps was passed through 
a 10-cm-deep water bath.

The NPQ development kinetics at room temperature 
were compared as reported previously (Kim et al. 2017) 
using the Stern–Volmer equation: NPQ = (Fm − Fm′)/Fm′, 
where Fm′ is the maximum yield of fluorescence in the 
light-acclimated leaves and Fm was measured after 10 min 
of dark adaption at room temperature for photoinhibition 
at 25 °C. Chlorophyll fluorescence quenching was ana-
lyzed using a pulse-amplitude modulated fluorometer 
(PAM-2000, Walz, Effeltrich, Germany). The illumina-
tion of spinach, rice, and barley leaves at four to five 
different PPFDs varying from low (50–100, 60–150, 
and 180–300 μmol m–2 s–1 for barley, rice, and spinach, 
respectively) to moderately high (300–600 μmol m–2 s–1 
for barley and rice, and 700–1400 μmol m–2 s–1 for spin-
ach), and high (1000, 1200, and 2100 μmol m–2 s–1 for 
barley, rice, and spinach, respectively) led to differ-
ent NPQ development kinetics (Fig. 1a–c). The pattern 
of kinetics was highly similar among the three plants in 
each light group: NPQ increased rapidly or exponentially 
and saturated under light at high PPFDs (high light, HL), 
increased exponentially and saturated but rather slowly 
under light at moderately high PPFDs (medium light, ML), 
and increased initially but then decreased under light at 
low PPFDs (low light, LL). The saturated level of NPQ 



333Journal of Plant Biology (2020) 63:331–336 

1 3

was approximately 3.6, 2.4, and 1.5 for spinach, rice, and 
barley, respectively.

As Zx accumulation is closely related to NPQ develop-
ment, Zx accumulation kinetics at room temperature were 
also compared among the three plant species under light 
of various intensities (Fig. 1d–f). After the measurement 
of NPQ, pigments were extracted with 100% cold-acetone 
from three segments of leaves at each measuring point, and 
the Vx cycle components were determined as described 
by Kim et al. (2017) following the method of Thayer and 
Björkman (1990) with some modifications. The pattern of 
accumulation kinetics was highly similar to that of the NPQ 
development kinetics. Within 2 h of illumination, the rela-
tive amount of accumulated Zx reached a steady-state in all 
light groups. Remarkably, the fluctuations with respect to 
the relative amount of Zx were more prominent than those 
of the NPQ development kinetics in the plants under LL. 
Under HL, approximately 80%, 70%, and 50% of the Vx 
cycle pigments were converted from Vx to Zx in spinach, 
rice, and barley, respectively.

Effects of Salicylaldoxime on NPQ 
Development and Zx Accumulation 
in the Leaves of Three Vascular Plants Under 
Light of Various Intensities

To ensure that the differences in the rate of Zx formation 
at different PPFDs are due to the availability of Vx to de-
epoxidase or the activity of epoxidase as reported in Jahns 
(1995), the leaves of three plants were pre-inhibited using 

5 mM salicylaldoxime (SA), an epoxidase inhibitor (Pfündel 
and Bilger 1994), and then exposed to PPFDs varying from 
50 to 2100 μmol m–2 s–1 (Fig. 2). Both the NPQ development 
kinetics and the rate of Zx formation in the leaves of three 
plants under low and moderately high PPFDs increased, 
reaching the level of leaves under high PPFDs. However, 
the treatment with SA did not significantly alter the avail-
ability of Vx in all the three plant species (Fig. 2d–f, Tables 
S1, S2, S3). This indicates that the differences in the rate of 
Zx formation in the three plant leaves under different PPFDs 
depend on the differences in the activity of ZE, and not on 
the availability of Vx to VDE. Although our data shown 
in this study are consistent with our conclusion, we cannot 
exclude the possible side effects of SA.

Reversible Down‑Regulation of ZE Activities 
is a General Mechanism Working on Vascular 
Plant Leaves Under Light of Various 
Intensities

The leaves of plants tolerant to photoinhibitory stress are 
expected to have relatively high VDE activity compared 
with that in the leaves of sensitive plants. However, as 
reported earlier, a light-chilling resistant rice cultivar revers-
ibly down-regulates the rate of Zx epoxidation rather than 
promoting the rate of Vx de-epoxidation, serving the pho-
tosystems in thylakoid membranes with the large amount 
of photoprotectors (Zx) (Kim et al. 2017). Under the same 
light-chilling condition, in the leaves of a light-chilling-sen-
sitive rice cultivar, large amounts of Zx were re-converted to 

Fig. 1  Development of non-
photochemical quenching 
(NPQ) and time course of 
zeaxanthin formation under 
light of various intensities at 
25 °C in the leaves of spinach 
(a, d), rice (b, e), and barley (c, 
f). Light intensity is presented 
as photosynthetic photon flux 
density (PPFD) and is expressed 
as μmol m−2 s−1. After the 
measurement of NPQ, pigments 
were extracted with 100% cold-
acetone from three segments of 
leaves at each measuring point 
and analyzed by a high-perfor-
mance liquid chromatography 
system. % VAZ = % (violaxan-
thin + antheraxanthin + zeaxan-
thin) (n = 3, mean value ± SD; 
n = 1 ~ 2 for 0 h samples, rice 
high light (1200 μmol m−2 s−1) 
treated samples and barley 
samples)
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Ax and Vx due to relatively higher ZE activity, resulting in 
the slower accumulation of Zx in the thylakoid membranes 
compared with that in the tolerant plants. Extending this 
idea, the results of the present study suggest that the down-
regulation of Zx epoxidation is a key factor that regulates 
Zx accumulation in vascular plant leaves (including both 
monocots and dicots) at various light intensities, and this 
down-regulation mechanism is a general mechanism that 
works at room temperature as well as under other stresses 
in the light including light-chilling.

Irreversible Down‑Regulation of ZE 
Activities During Photoinhibition of PSII

The down-regulation of Zx epoxidation by a different mech-
anism was proposed by Reinhold et al. (2008) using Arabi-
dopsis leaves under prolonged illumination of high-intensity 
light or under light-chilling stress. The gradual retardation 
of Zx epoxidation when authors increased light stress during 
pre-illumination was referred to the gradual down-regulation 
of the Zx epoxidase activity. Increasing the light intensity 
or the illumination time or decreasing the temperature dur-
ing pre-illumination which decreases the PSII quantum 

efficiency after the pre-illumination treatment, also delays 
the epoxidation rates. Authors show that Zx epoxidation was 
retarded in thylakoids isolated from pre-illuminated leaves 
and on the basis of this data suggest that modification of the 
Zx epoxidase is most probably involved in the light-induced 
down-regulation. They speculated that the down-regulation 
of Zx epoxidation was due to the modification of ZE induced 
by photooxidation. The down-regulation of ZE protein by 
degradation has also been suggested by Schwarz et al. (2015) 
using Arabidopsis leaves under drought stress, not under 
high light. In Arabidopsis, pea and tobacco plant leaves 
under photoinhibitory stress condition, ZE protein degrada-
tion is also reported together with D1 protein degradation 
as a photoprotective mechanism by Bethmann et al. (2019).

The degradation of ZE protein in this irreversible mecha-
nism in induced by photooxidation. However, the content of 
ROS produced in the chilling-tolerant rice cultivar was less 
than that produced by chilling-sensitive rice cultivar (Kim 
et al. 2017). Further, the down-regulated ZE quickly re-
activated in the dark, suggesting that the down-regulation is 
a reversible process. Therefore, this irreversible mechanism 
is different from the above-mentioned reversible down-reg-
ulation mechanism. However, the involvement of irrevers-
ible inactivation of ZE by ROS or its degradation cannot be 

Fig. 2  Development of non-photochemical quenching (NPQ) and 
time course of zeaxanthin formation under light of various intensities 
at 25 °C in the salicylaldoxime (SA)-treated leaves of spinach (a, d), 
rice (b, e), and barley (c, f). Light intensity is presented as photosyn-
thetic photon flux density (PPFD) and expressed as μmol m−2 s−1. To 
inhibit epoxidation, pre-darkened leaves were infiltrated with 5 mM 
SA through the cut petiole at 25 °C for 3 h in dark before the light 

treatment. After the measurement of NPQ, pigments were extracted 
with 100% cold-acetone from three segments of leaves at each meas-
uring point and analyzed by a high-performance liquid chromatogra-
phy system. % VAZ = % (violaxanthin + antheraxanthin + zeaxanthin) 
(n = 3, mean value ± SD; n = 1 ~ 2 for 0  h samples, rice high light 
(1200 μmol m−2 s−1) treated samples and barley samples)
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excluded, and this irreversible mechanism can be partially 
involved under mild stress conditions and is likely involved 
under severe stress conditions.

ZE Inactivation Mechanism for Reversible 
Down‑Regulation

According to the data in our published paper (Kim et al. 
2017) and the data shown in Figs. 1 and 2, we hypothe-
sized that the reversible down-regulation of Zx epoxida-
tion in vascular plants at room temperature under various 
light conditions as well as under stress conditions in the 
presence of light might be regulated by phosphorylation 
of ZE. Based on the research using stn7/stn8 mutants of 
Arabidopsis, Reinhold et al. (2008) suggest that phospho-
rylation is not involved in the short-term down-regulation of 
Zx epoxidation. However, this result still does not exclude 
the participation of other chloroplast kinases, because there 
are at least an overall set of 15 chloroplast-localized protein 
kinases are present in diverse vascular plants (Reiland et al. 
2009; Bayer et al. 2012). However, we still cannot answer 
whether ZE itself is phosphorylated for its inactivation or 
other reaction partners of ZE that can influence ZE activity 
are phosphorylated.

Recently, several papers have been published suggesting 
the redox regulation of the activity of ZE. At light-limiting 
conditions, both Arabidopsis mutants defective in NADPH 
thioredoxin (Trx) reductase C (NTRC) (Naranjo et al. 2016) 
and Arabidopsis trxm mutants with silenced Trx m proteins 
(Da et al. 2018) accumulate higher levels of Zx than wild-
type plants. Although the redox state of ZE was not altered 
in ntrc mutants (Naranjo et al. 2016), Da et al. (2018) pro-
vides evidences suggesting that by either NTRC or via Trx 
m, the sulfhydryl group of the ZE is reduced and activated 
through oligomerization. Because of the degradation of ZE 
in trxm mutants, Da et al. (2018) suggests that the redox-
dependent oligomerization of ZE stabilizes and activate ZE, 
as well.

In conclusion, ZE can be somewhat inactive in darkness 
possibly with the oxidation of Trx and is activated and stabi-
lized in the LL by the Trx system. However, we do not know 
how this stabilized ZE or activated ZE is degraded or inac-
tivated under HL. Therefore, under HL, the current redox 
regulation mechanism need further evidences to explain the 
irreversible down-regulation of ZE by concomitant degra-
dation of D1 and ZE proteins (Bethmann et al. 2019), and 
the reversible down-regulation mechanism of ZE activity by 
phosphorylation (Kim et al. 2017) need further regulators 
that influence ZE activity by phosphorylation.
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