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Abstract The chloroplast is a semiautonomous photosynthetic

organelle that is essential for plant growth and development,

particularly in crops via manipulation of its photosynthetic

capacity and the biosynthesis of carbon skeletons. Plastid

ribosomal proteins (PRPs) are crucial for the establishment

of the transcription/translation apparatus during chloroplast

differentiation. In this study, we isolated and characterized T-

DNA-tagged rice mutants with defective chloroplasts, named

prpl3, that exhibited a distinct albino seedling lethality.

Transmission electronic microscopy (TEM) observations

showed that the grana stacks in the mutant were not properly

formed, with disrupted thylakoid structures in their chloroplasts.

Chlorophyll content was also significantly reduced in the leaves

of prpl3 mutant seedlings. PRPL3 contains nuclear genes

encoding PRPs localized to the chloroplasts, and prpl3

represents a novel mutant presentation of an impaired PRPL3

gene. Our findings also demonstrated that PRPL3 is responsible

for phenotypic alterations by generating additional mutant

alleles thereof using CRISPR/Cas9 systems. Expression levels

of genes involved in photosynthesis and chloroplast

development, including plastidial transcription and translation

and photosynthesis, were altered in the prpl3 mutant. These

results collectively demonstrate that nuclear-encoded PRPL3 is

indispensable for the proper development of chloroplasts in rice.
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Introduction

Protein synthesis in plants occurs in the cytoplasm, plastids,

and mitochondria. Plastid protein synthesis uses a bacterial-

type 70S ribosome with two subunits, one small (30S) and

one large (50S) (Schippers and Mueller-Roeber 2010; Tiller

and Bock 2014). The 30S subunit contains 16S rRNA and 24

plastid ribosomal proteins (PRPs), including 12 proteins

encoded by plastid genes and 12 encoded by nuclear genes

(Yamaguchi and Subramanian 2003). The 50S subunit consists

of three rRNAs (23S, 5S, and 4.5S) and 33 PRPs, including

eight proteins encoded by plastid genes and 25 encoded by

nuclear genes (Yamaguchi et al. 2003). Although the structure

of the plastid ribosome is thought to be highly conserved

relative to its cyanobacterial counterparts, some PRPs have

diverged from their bacterial ancestry with respect to the

formation of ribosomes in chloroplasts (Tiller and Bock

2014; Ahmed et al. 2017; Bieri et al. 2017). Impaired PRPs

can affect plant growth and development, resulting in diverse

phenotypes mediated by defective protein synthesis. While

certain chloroplast ribosomal proteins are reported to be

associated with plastid translation (Han et al. 1992; Barkan

1993), the nature of other relevant gene products and their

modes of action remains elusive.

The Arabidopsis ghs1 (glucose hypersensitive1) mutant

has a T-DNA insertion in the GHS1 gene encoding the

plastid 30S ribosomal protein S21 and displays an increased

sensitivity to glucose (Morita-Yamamuro et al. 2004). PRPL33

knock-out tobacco plants are more sensitive to low temperatures

despite normal viability and growth under standard growing

conditions. Also, tobacco PRPS18, PRPS2, PRPS4, and

PRPL20 are indispensable for plastid ribosomal function,

including plastidial translation during development (Rogalski et
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al. 2006, 2008). The maize prps17 mutant caused by a

transposon insertion exhibits a seedling-lethal, high-chlorophyllic

fluorescence phenotype (Schultes et al. 2000), and the prps9

mutation induces early embryonic lethality (Ma and Dooner

2004). Similarly, many plastid ribosomal proteins are pivotal

to embryonic development, as shown by mutant analyses of

Arabidopsis, including prps5, 9, 13, 20 and prpl1, 4, 6, 10,

13, 18, 19, 21, 22, 27, 28, 31, 32, 35, 36) (Pesaresi et al.

2001; Morita-Yamamuro et al. 2004; Romani et al. 2012;

Tiller et al. 2012; Yin et al. 2012; Zhang et al. 2016). Rice

PRP mutants albino seedling lethality 1 (asl1), asl2, and albino

lethal 1(al1) exhibit albino and seedling-lethal phenotypes

(Gong et al. 2013; Lin et al. 2015; Zhao et al. 2016). ASL1

encodes the plastid 30S ribosomal protein S20 (PRPS20),

ASL2 encodes the chloroplast 50S ribosome protein L21

(PRPL21), and AL1 encodes the PRPL12 protein. The rice

white leaf and panicles 1 (wlp1) and thermo-sensitive

chlorophyll-deficient mutant 11 (tcd11) mutants are impaired

in PRPL13 and PRPS6, respectively. These mutants display

albino phenotypes at low temperatures, indicating both genes

are required for normal chloroplast development, particularly

in low temperature environments (Song et al. 2014; Wang et

al. 2017). Even though the molecular functional characterizations

of several rice PRPs have been reported, functional validation of

many other rice PRPs has yet to be explored in detail.

Here we describe a rice T-DNA mutant showing albino

seedling lethality, with impaired genes encoding the plastid

ribosomal protein PRPL3. Additional mutant alleles for

PRPL3 were generated with CRISPR/Cas9 for phenotype

verification. The ultrastructure of chloroplasts was defective

in the prpl3 mutant, and the expression levels of genes linked

to chloroplast development and photosynthesis were also

altered. We thereby concluded that PRPL3 is critical to early

development. During chloroplast development, nucleus-encoded

RNA polymerase preferentially transcribes plastid housekeeping

genes, such as those encoding the plastid-encoded RNA

polymerase apparatus, rRNA, and tRNA, and the overall

transcriptional and translational activities in the chloroplast

dramatically increase. Thus, PRPs may be necessary for the

early stages of chloroplast development in rice.

Results

Isolation of Albino Mutant in rice T-DNA Tagged Pool

Members of the rice T-DNA-inserted mutant pool were

screened to isolate leaf senescence-related mutants (Jeon et

al. 2000). One line presenting with an albino phenotype at

the seedling stage was selected for further study. Analyses of

flanking sequences (as determined by TAIL-PCR) in the

albino mutant line demonstrated that the albino mutant had

a T-DNA insertion in PRPL3 (LOC_Os02g04460). The

PRPL3 mutant carrying a T-DNA insert in the middle of an

intron was named prpl3-1 (http://signal.salk.edu/cgi-bin/RiceGE;

PFG_3A-02184) (Fig. 1A). The PRPL3 gene encodes the 50S

plastid ribosomal protein L3, consisting of 271 amino acids and

a predicted chloroplast transit peptide region (cTP) at its N-

terminus of 96 amino acids in length (Emanuelsson et al. 1999;

Schein et al. 2001; http://www.cbs.dtu.dk/services/ChloroP/).

Genotyping analysis showed that homozygous plants for each

T-DNA tagged line displayed seedling-lethal albino phenotypes,

indicating the mutations were recessive (Fig. 1B). RT-PCR

analyses revealed that the prpl3 mutant did not produce full-

Fig. 1. Phenotype of prpl3 mutant. (A) Genomic structure of
PRPL3 and T-DNA insertion position. Black boxes represent
exons; intervening lines represent introns; a, b, and c primers were
used for genotyping. (B) Phenotypes and genotypes of 7-day-old
PRPL3 plants. Albino phenotypes are co-segregated with T-DNA
insertion. WT, Ht, and Hm denote wild type, heterozygote, and
homozygote, respectively. Scale bar = 2 cm. (C) RT-PCR analysis
of PRPL3 transcripts in WT and prpl3 (albino) mutant. OsActin2
was used as a control.
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Fig 2. Multiple sequence alignment and phylogenetic tree of PRPL3 family. (A) Multiple sequence alignment of plant PRPL3 and E.
coli. Black shading, identical residues; gray shading, similar residues. The sequence was multiple-aligned with PRPL3 (XP_015625363),
PRPL3L1 (XP_015617381), N. tabacum (XP_016507364), A. thaliana (NP_181831), B. distachyon (XP_003574295), H. vulgare
(BAJ95950), Z. mays (NP_001339224), S. bicolor (XP_002453273), O. brachyantha (XP_006646861), P. trichocarpa (XP_024439964),
C. maxima (XP_022999904), G. max (XP_003522341), and E. coli (STI10773). (B) Phylogenetic tree constructed using the neighbor-
joining method with the MEGA 7 program (Kumar et al., 2016). Bootstrap values indicated the number of amino acid substitutions per
site.
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length transcripts, demonstrating it was mRNA null (Fig. 1C).

In the rice genome, another homologous gene, PRPL3L1

(LOC_ Os01g14830), was existed, with 47% homology to

PRPL3 in the ORF sequence (Fig. 2A; Fig. S1). Sequence

alignment indicated that the PRPL3 protein sequence in rice

is homologous with that of other higher plants, including Zea

mays, Sorghum bicolor, Brachypodium distachyon, Hordeum

vulgare, Arabidopsis thaliana, and Nicotiana tabacum.

Phylogenetic tree analysis suggested that PRPL3L1 was

divided in to different clade, and PRPL3 was closely related

to monocotyledonous plant species, a group that includes

maize, sorghum, Brachypodium, and barley (Fig. 2A, B). 

PRPL3 Mutant Present Impaired Chloroplast Development

We investigated the development of chloroplasts in the

albino mutant by examining the ultrastructures of chloroplasts

in the leaves of 10 day-old seedlings with transmission electron

microscopy (TEM). Normal chloroplasts were observed in

WT control plants; however, in the albino mutants, abnormal

plastids were observed, and chloroplast development appeared

to be arrested at the proplastid stage (Fig. 3A, B). The albino

mutant showed reduced chlorophyll and carotenoid content

compared to WT, likely due to disrupted chloroplast

development (Fig. 3C). These observations imply that the

prpl3 mutation resulting in impaired plastid ribosomal proteins

had a significant influence on chloroplast development. 

Targeted Mutagenesis of PRPL3 by CRISPR/Cas9

We examined mutant alleles for PRPL3 by designing a target

site within the first exon of PRPL3; CRISPR/Cas9 on a

Nippon bare background was then conducted to generate

these mutants (Fig. 4A). This process produced 16 independent

transgenic lines with albino phenotypes and 19 heterozygous

plants (green phenotypes). Sequencing analysis of the flanking

Fig. 3. TEM analysis and chlorophyll measurement of wild type and albino mutants. (A) Section of WT chloroplast. (B) Sections of
prpl3 chloroplast. Arrowhead indicates the chloroplast. Scale bar = 5 µm. (C) Pigment contents of WT and prpl3 mutant. Total
chlorophyll and carotenoid concentrations were obtained from 10-day-old plants. All values are means of three biological repeats. Error
bars indicate standard deviation (SD).
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region of target site showed that KO #1 had deletions in both

chromosomes and KO #2 and KO #3 had a single base

insertion (Fig. 4B; Fig. S2). Each homozygous mutant line

for PRPL3 phenocopied the albino prpl3-1 mutant phenotype

and was seedling lethal (Fig. 4C), implicating the PRPL3 gene

in the albino seedling lethal phenotype.

Spatiotemporal Expression Patterns of PRPL3 

We used qRT-PCR to examine the expression patterns of

PRPL3 in WT plants. PRPL3 transcripts were detected in the

young root, young shoot, mature flag leaf, and immature

panicles. Expression of PRPL3 was higher in the young

shoot, mature flag leaf, and young root than in either the

immature (~3 cm) or mature (~14 cm) panicles (Fig. 5A).

We also examined the expression of PRPL3 in the Rice

Expression Profile Database and found that this expression

pattern was relatively similar to those already documented

(RicexPro: (http://ricexpro.dna.affrc.go.jp/) (Fig. S3). Binary

vectors used for the generation of the PFG rice T-DNA

insertional mutant population contained a promoterless reporter

gene such as GUS or GFP for the purpose of gene trap

(Jeong et al. 2002; Ryu et al. 2004; Kim et al. 2013). The

expression of GUS driven by the PRPL3 promoter and the

first exon containing 532 bp in the T-DNA tagged line,

PFG_3A-02184, was examined because the T-DNA was

inserted in the middle of an intron, resulting in in-frame

fusion to the GUS gene (Fig. 5B). In the homozygous seedling

of PFG_3A-02184, GUS expression was detected in the root,

leaf sheath, and leaf blade because plastids are also present

in the root and chloroplasts. At mature stages in heterozygous

plants, GUS expression was observed in the spikelet, internode,

and in immature seeds (Fig. 5C). The GUS staining pattern

mirrored the PRPL3 mRNA expression pattern analyzed by

quantitative RT-PCR, although the GUS staining appeared

more intense in the green tissues (leaf and leaf sheaf) than in

the root and young panicles. Taken together, our results

indicates that PRPL3 is constitutively expressed in the

various tissues and may functions in the green tissues.

Albino Mutations Caused by Impaired Ribosomal Proteins

Affect Expression of Related Genes

We then investigated the expression levels of genes involved

in chlorophyll biosynthesis, photosynthesis, and ribosome

development in the albino mutant compared to WT plants.

Fig. 4. Phenotypes of knock-out (KO) mutants of PRPL3 in Nippon bare background. (A) Schematic diagram of sgRNA target site in
PRPL3. Exons and introns are indicated by rectangles and lines, respectively. The target sequence and the protospacer adjacent motif
(PAM) sequences of PRPL3 sgRNA are underlined. The number of changed bases is shown on the right. “−” indicates deleted
sequences; “+” indicates the inserted sequences. The indels are shown in red letters or dashes. (B) Chromatogram of sequence of the KO
#2 mutant line. The cytosine inserted is marked by a red circle. The PAM sequences of the PRPL3 sgRNA are underlined. (C)
Phenotypes of PRPL3 mutant alleles generated by CRISPR/Cas9 method. Scale bar = 2 cm.
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The expression levels of chlorophyll biosynthesis genes

chlorophyll a oxygenase1 (CAO1), Mg chelatase H subunit

(CHLH), and divinyl reductase (DVR) were examined. As

shown in Fig. 6A, the expression of CAO1 and CHLH genes

was reduced in both mutants compared to WT plants.

However, transcript levels of DVR were increased in the

prpl3 mutant. We also examined the expression levels of the

photosynthesis genes photosystem I P700 chlorophyll a

Fig. 5. Expression pattern analysis of PRPL3. (A) Relative expression levels of PRPL3 in different organs. RNA was isolated from 10-
day-old root, shoot, flag leaf, young panicle (~3 cm), and young panicles (~14 cm). Error bars indicate standard deviation (SD). (B)
Schematic diagram of PRPL3-GUS fusion transcript. Fusion transcript was generated by splicing between the donor of the first intron
and the first acceptor of the 3SD/AD (Jeon et al. 2000). RT-PCR analysis of PRPL3-GUS fusion transcript. PCR performed with the gene
specific primer (a) and GUS-specific primer (b) using the genomic DNA and cDNA of PRPL3 heterozygote plants. (C) PRPL3-GUS
staining analysis of the root, leaf sheath, and leaf blades from 10-day-old plants in the homozygous plants and flowering stages including
spikelet, internode, and early seed development in the heterozygous plants. 

Fig. 6. Relative expression analysis of chloroplast-associated genes (A, B) Relative expression levels of chlorophyll biosynthesis-related
genes and photosynthesis-related genes in WT and prpl3 mutant. All values are means of three biological repeats; error bars indicate
standard deviation (SD). Levels of significant difference are indicated by * (P < 0.05).
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apoprotein A1 (psaA) and photosystem II protein D1 (psbA)

which encode photosystem components. Expressions of both

the psaA and psbA genes were down-regulated in the prpl3

mutant compared to WT plants (Fig. 6B). 

Subcellular Localization of PRPL3

Subcellular localization of PRPL13 was reported in the

chloroplast, as predicted (Song et al. 2014). PRPL3 were

predicted to localize to chloroplasts by ChloroP (Emanuelsson

et al. 1999; Schein et al. 2001). To test actual subcellular

localization of PRPL3 protein, pUbi:PRPL3:GFP and

pUbi::GFP (empty vector) were transfected into Arabidopsis

protoplasts, with the empty GFP vector serving as a negative

control. Inverted fluorescent microscopy was applied to

observe green florescence signal in the protoplasts 12 hours

after transformation. The protoplasts transformed with the

empty GFP vector displayed green fluorescent signals in the

cytoplasm and the nucleus (Fig. 7A); however, green fluorescent

signals from PRPL3-GFP fusion proteins were colocalized

with chlorophyll autofluorescence in the chloroplasts, suggesting

the PRPL3 protein localizes there (Fig. 7B). 

Discussion

Chloroplasts are cellular organelles that perform photosynthesis

on behalf of plants. When chloroplast development or

chlorophyll biosynthesis is disrupted, leaf color phenotypes

are altered (Jung et al. 2003). The development of a functional

chloroplast is controlled by multiple genetic factors, particularly

nuclear-encoded factors. PRPs are crucial for ribosome

biogenesis, plastidial protein biosynthesis, and early chloroplast

development (Lin et al. 2015). Many PRP mutants have been

identified in higher plants, with some shown to participate in

many different biological processes in Arabidopsis (Romani

et al. 2012). However, few studies have reported on the

functions of PRPs in rice. The asl1 mutant was the first

plastid ribosomal protein isolated in rice and shows an albino

lethal phenotype at the seedling stage. ASL1 encodes PRPS20,

and a mutation therein disrupts the expression of plastid and

nuclear genes associated with chloroplast development

(Gong et al. 2013). Mutation of the rice ASL2 gene encoding

PRPL21 causes chloroplast developmental defects and seedling

death (Lin et al. 2015). The AL1 gene encodes PRPL12, one of

the genes involved in chloroplast biogenesis that participates

in ribosomal assembly (Zhao et al. 2016). The rice tcd11

mutant displayed an albino phenotype at low temperatures,

similarly to the wlp1 mutant. TCD encodes PRPS6, and

WLP1 encodes PRPL13 (Wang et al. 2017; Song et al.

2014). WGL2 (white green leaf 2) encode plastid ribosomal

protein S9, which mutant shows an albino phenotype at three

leaf stage, and then gradually transitioned to green through

the later developmental stages (Qiu et al. 2018).

Previous studies have shown that many genes participate

in leaf color development using mutant analyses of rice. For

example, OsCHlH (Jung et al. 2003), OsCAO1, and OsCAO2

(Lee et al. 2005; Yang et al. 2016), OsDVR (Wang et al.

2010), OsGluRs (Liu et al. 2007), YGL1 (Wu et al. 2007),

OsSGR1 (Park et al. 2007), OsPPR1 (Gothandam et al.

2005), YSA (Su et al. 2012), WGL2 (Qiu et al. 2018), and

VAL1 (Zhang et al. 2018) mutants all present with altered

Fig. 7. Subcellular localization of PRPL3 protein. Transient expression of pUbi::GFP in the Arabidopsis protoplast. (B) Transient expression
of pUbi::PRPL3::GFP in the Arabidopsis protoplast. pUbi::GFP vector was used as a control. GFP pseudocolored - green, chloroplast
autofluorescence pseudocolored – red. Scale bar = 5 μm.
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leaf colors. Many PRP mutants have been identified in

higher plants, as well, with some PRPs shown to contribute

to a diverse array of biological processes including embryonic

development, photosynthesis, and plant height in Arabidopsis

(Romani et al. 2012). 

In this study, we isolated rice mutant presenting with an

albino seedling lethality phenotype, wherein PRPL3 gene

was disrupted by tagged T-DNA. The prpl3 mutant exhibited

altered pigment contents and defective chloroplast development.

The phenotype of the PRPL3 mutant was verified with

additional mutant alleles generated by CRISPR/Cas9 systems,

indicating that the phenotype was caused by impaired PRPL3

gene function. Endogenous expression of PRPL3 was

observed through GUS staining wherein the promoter region

plus 532 bp of the first exon of PRPL3 was fused to the GUS

gene from the T-DNA. PRPL3-GUS was found in the root,

shoot, leaf sheath, and leaf blade at the seedling stage, and at

the mature stage, was observed in the mature spikelet,

internode, and immature seeds. Results of qRT-PCR analyses

support this GUS expression data and indicated that PRPL3

is important for the general development of rice plants.

PRPL3 was also found to localize to chloroplasts as evidenced

by subcellular localization experiments using a construct for

PRPL3-GFP fusion proteins, implying that PRPL3 protein is

a component of the plastidial ribosome. Reduced expression

of genes involved in chlorophyll biosynthesis (CAO1, CHLH)

and photosynthesis (psaA, psbA) was observed in prpl3

mutant. In the chloroplast and mitochondria, inter-organellar

signaling (anterograde and retrograde signal) is important for

controlling the organellar gene expression, metabolic and

development of chloroplast and mitochondria. Retrograde

signaling regulates the expression of nuclear-encoded chloroplast

genes in response to the metabolic and/or developmental

state of the plastid (Hess et al. 1993, 1994; Pesaresi et al.

2007; Kleine et al. 2009; Moller 2009). In prpl3 mutant, the

expression of chloroplast biosynthesis gene, DVR, was increased

suggesting that a retrograde signaling may exist from chloroplast

to nucleus. Also, lower chlorophyll and carotenoid contents

were observed in the prpl3 mutant, as well. Our findings

suggest that PRPL3 is critical for chloroplast development,

representing key components of chloroplast ribosomal proteins.

Materials and Methods

Plant Growth

Rice (Oryza sativa cv. Dongjin) lines used in this study were isolated
from a T-DNA insertional mutant population (Jeon et al. 2000).
Surface-sterilized T2 seeds of prpl3-1 and wild type (WT) plants
were germinated in half-strength Murashige and Skoog (MS)
medium with 3% sucrose and 0.4% phytagel. Plants were grown in a
greenhouse, and PCRs for genotyping were performed. PCR primers
are listed in Supplementary Table 1. 

Generation of CRISR/Cas9 Plants

To investigate the function of PRPL3 gene, we designed knockout
target sequence (227-246th nucleotide from start codon) using the
CRISPRdirect (Naito et al. 2015; https://crispr.dbcls.jp) and generated
the U3p-gRNA construction in pRGEB32 vector (Addgene plasmid #
63142; Xie et al. 2015). After the plasmid was introduced into the
Agrobacterium tumefaciens LBA4404, transgenic plants were generated
using the Agrobacterium-mediated transformation in WT (Nippon
bare), as previously reported (Lee et al. 1999; Lee et al. 2007).

Subcellular Localization

Subcellular localization of PRPL3 was investigated by amplifying
full length ORFs without a stop codon from WT plants using primers
containing the BamHI and SpeI sites (Supplementary Table 1); these
were introduced into vector pGA3651 (pUbi::MSC::GFP) which
contains the maize (Zea mays) ubiquitin promoter and GFP protein
(Kim et al. 2009). The GFP empty vector (pGA3651) and pUbi::
PRPL3-GFP vector were transfected into Arabidopsis protoplast cells
(Yoo et al. 2007), and the transformed protoplasts were observed in
the GFP and RFP (autofluorescence) channel and with a Nikon Eclipse
Ti2 inverted fluorescent microscope (Nikon, JAPAN), respectively. 

RNA Isolation and RT-PCR and Quantitative RT-PCR Analyses

Total RNA was isolated from different plant organs, including seedling
root, shoot, mature flag leaf, and immature panicles using QIAzol
lysis reagent following the manufacturer’s instructions. First, cDNA
was synthesized with 2 µg of total RNA using reverse transcriptase
(Solgent, KOREA) with 10 ng of the oligo (dT) primers. Synthesized
cDNAs were used as templates for reverse transcription PCR (RT-
PCR) and quantitative RT-PCR (qRT-PCR). QRT-PCR was performed
with a CFX Connect Real-Time System (Bio-Rad) using TOYOBO
THUNDERBIRD SYBR qPCR Mix (TOYOBO, Japan). Rice actin 2
and UBQ5 were used as internal controls for RT-PCR and qRT-PCR,
respectively. All primers for PCR are listed in Supplementary Table 1.
Data are expressed as the mean ± SD of three biological replicates.
Relative expression levels were calculated by 2−ΔΔCT (Livak and
Schmittgen, 2001). 

Histochemical GUS Staining Assay

PRPL3-GUS activity was evaluated in 10-day-old seedling using the
homozygous plants and mature PFG_3A-02184 heterozygous plants
at reproductive stage. GUS staining was performed according to
methods described previously (Jefferson 1989).

Chlorophyll Content Measurement

The total chlorophyll and carotenoid contents were spectrophotometrically
evaluated in 10-day-old prpl3-1 and WT plants according to methods
described previously (Lichtenthaler 1987). Briefly, leaves (approximately
0.1 g fresh weight) were cut and soaked in 100% acetone before
spectrophotometry. 

Phylogenetic Analysis

PRPL3 sequences were used as a query in a BLASTP search at the
National Center for Biotechnology Information (NCBI, http://
www.ncbi.nlm.nih.gov/) for phylogenetic analysis. The full-length
sequences were aligned with ClustalW (DDBJ, https://www.ddbj.
nig.ac.jp/index-e.html) and a neighbor-joining tree was constructed
using MEGA version 7.0 software with the Poisson correction method;
data are shown in units of the number of amino acid substitutions per
site (Kumar et al. 2016).
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Transmission Electron Microscope (TEM) Analysis

Leaf samples were fixed with 2.5% glutaraldehyde in 0.02 M phosphate
buffer, pH 7.2, for 2 h at 4oC. After several washes in phosphate
buffer, samples were post-fixed with 1% osmium tetroxide overnight
at 4? and then again washed in phosphate buffer. Samples were
dehydrated with a graded series of ethanol substituted with propylene
oxide and then embedded in Epon 812 for 48 h at 60oC. After
embedding, 100 nm sections were cut on a Leica Ultracut UCT ultra-
microtome using a diamond knife (Diatome). Ultrathin sections were
transferred onto 200 mesh copper grids and stained with 2% uranyl
acetate for 20 min, and then with lead citrate (Reynolds, 1963) for an
additional 10 min. Sections were examined under TEM with a
Hitachi H-7650 operated at 80 kV. 
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