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Abstract Dehydration-responsive element-binding protein

(DREB) transcription factors play key roles in plant stress

signal transduction pathways. We herein describe the functions

of a Camellia sinensis DREB transcription factor (CsDREB)

in response to abiotic stress. Subcellular localization analyses

indicated that the CsDREB localizes to the nucleus. CsDREB

expression in C. sinensis leaves was induced by heat, cold,

drought, high salinity, H2O2, and exogenous abscisic acid

(ABA). Additionally, CsDREB showed no transcriptional

activation in Saccharomyces cerevisiae. Transgenic Arabidopsis

thaliana plants overexpressing CsDREB exhibited enhanced

tolerance to salt and drought stresses. The overexpression of

CsDREB in A. thaliana plants resulted in the up-regulated

expression of ABA-dependent stress-induced genes (i.e.,

AtRD29B, AtRAB18, AtABI1, and AtABI2) and ABA-

independent stress-induced genes (i.e., AtCOR15a and

AtRD29A). Furthermore, an analysis of the CsDREB promoter

sequence revealed the presence of several abiotic and biotic

stress-related motifs, along with the developmental stage-

and tissue-specific elements. An examination of the

transient expression of the CsDREB promoter in Nicotiana

benthamiana leaves revealed that the promoter is highly

responsive to ABA and methyl jasmonate. Collectively, these

results suggest that CsDREB may increase plant tolerance to

salt and drought stresses via both ABA-dependent and ABA-

independent pathways.
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Introduction

Being sessile organisms, higher plants face variable forms of

environmental stresses including drought, high salinity, and

extreme temperatures. Plants respond and adapt to these

stresses using an array of physiological, biochemical, and

molecular mechanisms, thereby acquiring stress tolerance.

Transcription factors (TFs) are crucial signal transmitters that

regulate plant adaptations to stresses in plants through various

signal transduction pathways (Agarwal and Jha 2010).

The dehydration-responsive element-binding proteins

(DREBs) form one of the largest families of TFs in the plant

genomes. They can specifically bind to the CRT/DRE

elements (G/ACCGAC) in promoter regions of downstream

target genes and activate or suppress the transcription of

these genes (Zhao et al. 2012a). There are 57 and 52 DREB

TFs in Arabidopsis thaliana (Iida et al. 2005) and Oriyza

sativa (Nakano et al. 2006), respectively, and they play

various roles in responses to abiotic and biotic stresses

(Singh et al. 2002). For example, A. thaliana DREB2A has

dual functions in both water and heat-shock stress responses

(Sakuma et al. 2006b). The overexpression of OsDREB1A in

transgenic A. thaliana plants up-regulates the expression of a

stress-inducible gene (i.e., AtDREB1A) resulting in plants

with increased tolerance to drought, salt, and freezing

stresses (Dubouzet et al. 2003). In addition, the constitutive

expression of DREB genes isolated from cotton (Gossypium

hirsutum), sweet cherry (Prunus avium), maize (Zea mays),

soybean (Glycine max), and Caragana korshinskii in non-

host plants enhances the tolerance of transgenic plants to

various environmental stresses (Kitashiba et al. 2004; Chen

et al. 2007; Gao et al. 2009; Wang et al. 2010; Zhou et al.

2016). In addition to its role in stress responses, it is interesting

to note that the overexpression of a cotton GhDREB1 gene

inhibits plant normal growth and development in transgenic
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tobacco (Nicotiana tabacum) (Shan et al. 2007).

Tea plants [Camellia sinensis (L.) O. Kuntze or China

type] are an important perennial evergreen woody crop used

for the production of non-alcoholic caffeine-containing

beverages around the world. Tea plants experience several

biotic and abiotic stresses during their lifecycle, such as

attacks by Ectropis oblique (Wang et al. 2016c) or

Colletotrichum camelliae (Wang et al. 2016a), extreme

temperatures (Wang et al. 2013; Liu et al. 2016b), heavy

metals (Mukhopadhyay et al. 2013), and especially drought

stress (Das et al. 2015; Liu et al. 2016a), which considerably

decreases tea leaf production and quality (Wang et al.

2016b). The exposure of tea plants to drought conditions can

result in oxidative damage due to the enhanced production of

reactive oxygen species (ROS), ultimately causing cell death

(Das et al. 2015). Hence, identifying the genetic components

underlying drought tolerance in C. sinensis is of great

importance. To the best of our knowledge, a total of 29

CsDREB TFs have been identified using the C. sinensis

transcriptome database (Wu et al. 2015), but little information

on the functional identification of CsDREB is available. In

this study, we analyzed one C. sinensis CsDREB gene

(Cs002-DREB-A1; GenBank Accession No. KF988866)

and its promoter regarding their responses to abiotic stresses.

The results indicate that the CsDREB plays a critical role in

the development of A. thaliana tolerance to salt and drought

stresses via both abscisic acid (ABA)-dependent and ABA-

independent pathways.

Results

Cloning and Characterization of CsDREB

The complete CsDREB open reading frame (ORF) was isolated

from C. sinensis cv. ‘Longjing-changyecha’ using RT-PCR.

The CsDREB gene encoded 250 amino acids, and the

predicted protein had a calculated molecular mass of 27.6

kDa and a theoretical isoelectric point of 6.5. An alignment

of the amino acid sequences of CsDREB and its homologs

revealed that the protein contained one conserved DNA-

binding domain (AP2 domain) consisting of 59 amino acids

(68–126) (Fig. 1). In addition, a putative nuclear localization

signal (NLS) sequence (i.e., PKKRAGRKKFK) was detected

in the N-terminal region using NLStradamus (Ba et al. 2009).

Subcellular Localization of CsDREB

CsDREB was predicted to be localized to the nuclei by

WoLF PSORT (Horton et al. 2007). To confirm the subcellular

Fig. 1. Comparison of the deduced amino acid sequences of CsDREB and homologous proteins. The nuclear localization signal (NLS)
sequence is indicated by a red rectangle, while the conserved AP2 domain is underlined. The amino acid sequences are shown as follows:
CsDREB (AHL69786), Camellia sinensis; FaCBF (ADZ95598), Fraxinus americana; JcDREB1B (XP_012087006), Jatropha curcas;
MaDREB1 (AFQ59977), Morus alba; NnDREB1B (XP_010255545), Nelumbo nucifera; NnDREB1D (XP_010278524), N. nucifera;
PmCBF (ALN96413), Prunus mume; PpDREB (AIU39990), Prunus pseudocerasus; RcDREB1E (XP_002509703), Ricinus communis;
ZjDREB1A (XP_015901870), Ziziphus jujuba.
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localization of CsDREB, the 35S::GFP–CsDREB and

35S::GFP (positive control) constructs were introduced into

onion epidermal cells via particle bombardment. Fluorescence

was observed throughout the cells transformed with 35S::GFP

(Fig. 2A–C), while it was only detected in the nucleus of

cells transformed with 35S::GFP–CsDREB (Fig. 2D–F).

These results indicated that CsDREB is a nuclear localized

protein.

CsDREB Expression Profiles in Response to Abiotic Stress

and ABA

To clarify the CsDREB function, the CsDREB expression

patterns following abiotic stress and ABA treatments were

analyzed by qRT-PCR. Exposures to heat (Fig. 3A), drought

(Fig. 3D), and cold (Fig. 3E) conditions increased the

CsDREB transcript levels, with peak values at 1, 2, and 4 h

after treatments, respectively. These increases were followed

by decreases to the original levels over the remaining time

points. After the H2O2 (Fig. 3B) and exogenous ABA (Fig.

3C) treatments, CsDREB transcript abundance sharply increased,

peaking at 1 h after imposition of the treatments, but then

decreased at 2, 4, and 6 h. The CsDREB expression level

was up-regulated by 1.64- and 6.30-fold at 12 h after

treatments, respectively, but then decreased considerably by

the final time point. Exposure to high salinity stress

significantly increased the abundance of CsDREB transcripts

for the duration of the study period, with peaks at 1, 6, and

24 h (Fig. 3F). Our results revealed that CsDREB expression

is up-regulated by several abiotic stresses, suggesting that

CsDREB may participate in various abiotic stress responses

in C. sinensis.

CsDREB-overexpressing Transgenic A. thaliana Exhibit

Increased Tolerance to Salinity and Drought Stresses

As the tea plant transgenic system has not been established,

CsDREB-overexpressing transgenic A. thaliana plants were

generated to further investigate the biological function of

CsDREB. Exogenous CsDREB expression was detected in

transgenic A. thaliana lines (i.e., OE-8 and OE-12) but not in

the wild-type (WT) and vector control (Vector) plants (Fig.

4A, Fig. S3). There were no obvious phenotypic differences

among the WT, Vector, and transgenic plants under normal

growth conditions (Fig. 4B). In contrast, after high salinity

and drought treatments, the control plants (i.e., WT and

Vector) were severely withered, whereas the transgenic

plants continued to grow relatively normally (Fig. 4C, D).

Only 14.8% of WT and 15.7% of Vector plants survived

after high salinity treatment, whereas 85.3%–90.4% of

transgenic plants survived (Fig. 4E). The survival rate of

transgenic and control plants were 72.2–80.7% and 8.2%–

10.7% after drought treatment, respectively (Fig. 4E). In

addition, the CsDREB transgenic plants under high salinity

or drought stresses showed significantly higher proline

content and lower MDA content than the control plants (P <

Fig. 2. Subcellular localization of CsDREB in onion epidermal cells. (A–C) Onion epidermal cells transformed with 35S::GFP. (D–F)
Onion epidermal cells transformed with 35S::GFP–CsDREB. (A, D) Dark field images for detecting of green fluorescent protein (GFP)
fluorescence. (B, E) Light field microscopy images for presenting morphological features. (C, F) Superimposed light and dark field
images. White arrows indicate cell nuclei. Bar = 100 µm.
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0.001) (Fig. 4F, G). Taken together, these results indicated

that CsDREB-overexpressing A. thaliana plants were more

tolerant to salt and drought stresses than the control plants.

CsDREB Overexpression Activates the Expression of ABA-
dependent and ABA-independent Genes

To clarify the possible CsDREB-associated regulatory

mechanisms influencing plant responses to salt and drought

stresses, the expression levels of ABA-dependent stress-

induced genes (i.e., AtRD29B, AtRAB18, AtABI1, and AtABI2)

and ABA-independent stress-induced genes (i.e., AtCOR15a

and AtRD29A) were compared between control lines (i.e.,

WT and Vector) and transgenic lines (i.e., OE-8 and OE-12).

Under normal growth conditions, the expression levels of the

six stress-induced genes were significantly higher in CsDREB-

overexpressing lines than in the control lines (Fig. 5). These

results suggested that CsDREB may increase plant tolerance

to salt and drought stresses by activating the expression of

Fig. 3. Camellia sinensis CsDREB expression levels. Tea plants exposed to heat (38°C) (A), H2O2 (150 mM) (B), abscisic acid (200 µM)
(C), drought (20% polyethylene glycol 6000) (D), cold (4°C) (E), and high salinity (200 mM NaCl) (F). The data are represented as the
mean ± standard deviation from three independent measurements. Asterisks indicate significant differences between the treated plants and
untreated controls (0 h) (* P < 0.05, ** P < 0.01, and *** P < 0.001).
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ABA-dependent and ABA-independent genes.

Transactivation Analysis of CsDREB

The ability of CsDREB to activate transcription was determined

using a yeast one-hybrid assay. The yeast cells harboring

pCL1 (positive control) grew well on minimal synthetic

dropout medium without histidine and adenine (SD/–His–

Ade). However, the yeast cells transformed with the pGBKT7

(negative control) or the pGBKT7–CsDREB vector were

unable to grow on the same medium (Fig. S1), implying that

CsDREB was unable to activate transcription in yeast cells.

Isolation and Characterization of CsDREB Promoter

The 839-bp putative CsDREB promoter sequence was obtained

by thermal asymmetric interlaced (TAIL)-PCR (Fig. 6, Fig.

S4), and the presence of cis-acting elements was assessed

using the PlantCARE database (Lescot et al. 2002). Abiotic

and biotic stress-related motifs [i.e., ABA-responsive element

(ABRE), TGA, TGACG, and WUN] and developmental

stage-specific elements (i.e., GCN4, Skn-1, and as1) were

observed in the putative promoter sequence. These observations

suggested that the CsDREB promoter region may be responsive

to diverse abiotic and biotic stresses, and activated during

specific developmental stages.

To experimentally confirm the responsiveness of the

CsDREB promoter to various plant hormones, the PCsDREB–

GUS construct was transiently expressed in Nicotiana

benthamiana leaves. We observed that GUS activity increased

significantly when the leaves were treated with ABA and

MeJA (Fig. 7).

Discussion

Many TFs have been identified in model plants, including

AP2/ERF (Zhuang et al. 2008), MYB (Stracke et al. 2001),

bHLH (Toledo-Ortiz et al. 2003), NAC (Ooka et al. 2003),

HSF (Guo et al. 2008), and Dof (Lijavetzky et al. 2003).

Regulating the expression of certain TF genes via genetic

engineering techniques can greatly influence plant stress

tolerance (Nishizawa et al. 2006; Jaffar et al. 2016; Jin et al.

2016). However, the functions of these TFs remain poorly

characterized in non-model plants, including C. sinensis.

Accordingly, this study focused on the effects of an AP2/ERF

Fig. 4. Stress tolerance of CsDREB-overexpressing transgenic Arabidopsis thaliana plants. (A) CsDREB expression levels in wild-type
(WT), vector control (Vector), and transgenic (i.e., OE-8 and OE-12) A. thaliana plants based on RT-PCR analysis. Phenotypes of 4-week-
old WT, Vector, OE-8, and OE-12 plants under unstressed (B), high salinity (200 mM NaCl for 7 d) (C), and drought conditions (D). For
drought treatment, 4-week-old seedlings withheld water for 10 d and then re-watered for 3 d. (E) Survival rate, (F) proline, and (G) MDA
contents were measured before/after salinity/drought stresses. The survival rate of each line was the mean of at least 90 seedlings. Asterisks
indicate significant differences between the transgenic plants and control plants (*** P < 0.001). Bar = 3 cm.
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family gene (i.e., CsDREB) on C. sinensis stress tolerance.

Previous studies revealed that TFs must migrate to the

nucleus to complete their functions (Wang et al. 2008; Yang

et al. 2011). Our in vivo targeting experiment confirmed that

the 35S::GFP–CsDREB fusion protein was localized to the

nucleus of onion epidermal cells. This finding implies that

Fig. 5. Transcript levels of the downstream target genes in wild-type (WT), empty vector (Vector), and CsDREB-overexpressing (i.e., OE-
8 and OE-12) Arabidopsis thaliana plants under unstressed conditions. Data are represented as the means ± standard deviation of three
replicates. The transcript levels of each gene in WT plants were assigned a value of 1.0. Significant differences among WT, Vector, OE-8,
and OE-12 plants are indicated by asterisks (** P < 0.01 and *** P < 0.001).

Fig. 6. Analysis of the CsDREB promoter sequence using the
PlantCARE promoter motif analysis tool. The start codon is shown in
parentheses. Functional elements are underlined or highlighted in
different colors.

Fig. 7. β-glucuronidase (GUS) activity levels in transgenic tobacco
(Nicotiana benthamiana) leaves in response to abscisic acid (ABA),
auxin (IAA), and methyl jasmonate (MeJA). Control: the transgenic
tobacco leaves treated with distilled deionized H2O. Data are
presented as the mean ± standard deviation of four replicates (** P
< 0.01).
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CsDREB is a nuclear protein that functions as a TF. However,

we observed that CsDREB has no transcriptional activity in

yeast cells, which is consistent with the findings of Sakuma

et al. (2006a) and Zhao et al. (2012b). Hence, we speculate

that a posttranslational modification is required to activate

CsDREB.

The CsDREB expression level was significantly up-regulated

in C. sinensis by heat, cold, high salinity, drought, H2O2, and

exogenous ABA treatments. These results are inconsistent

with those of other DREB genes. For example, O. sativa

OsDREB1F expression is induced by high salinity, drought,

cold, and ABA application, but not by H2O2 (Wang et al.

2008). Additionally, the GhDREB1 expression level in cotton

seedlings is up-regulated by low temperature and salt

stresses, but was not induced by ABA or drought stress

(Shan et al. 2007). The specific expression patterns suggest

that CsDREB may act as a node linking several pathways.

The ABA-inducible features imply that CsDREB may

participate in an ABA-dependent signal transduction pathway.

This suggestion was verified by detecting the expression

levels of ABA-dependent stress-induced genes. The relatively

high CsDREB transcript levels confirmed that CsDREB

affects plant stress tolerance. The analysis of the CsDREB-

overexpressing lines revealed a positive correlation between

CsDREB expression and plant survival rates following

exposures to salt and drought stresses. These results are in

accordance with previous findings. For example, the

overexpression of OsDREB1F in plants can greatly enhance

plant tolerance to high salinity, drought, and cold stresses in

rice and A. thaliana (Wang et al. 2008). In addition, CsDREB

overexpression induced the expression of AtCOR15a and

AtRD29A whose promoters harbor the DRE sequence (Wang

and Hua 2009). This is consistent with the findings of Yang

et al. (2011), and suggests that CsDREB may also participate

in the ABA-independent pathways.

To investigate the mechanisms regulating CsDREB

expression, we isolated the CsDREB promoter region from

C. sinensis genome. Previous studies indicated that the ABA-

responsive element (ABRE) is highly conserved among ABA-

responsive genes (Hobo et al. 1999). In our study, CsDREB

promoter-driven GUS activity increased significantly in response

to ABA and MeJA treatments (Fig. 7). This can be due to the

presence of two ABRE motifs and one TGACG motif in the

CsDREB promoter. However, exogenous auxin had no effect

on the GUS activity, despite of the presence of a TGA

element in the CsDREB promoter region. One possible

explanation for this observation is that MeJA-induced

responses may depend on concentration or time (Zhang and

Xing 2008). In addition to the hormone-responsive elements,

we also identified a GCN4 motif, which is essential for

endosperm-specific gene expression (Wu et al. 1998). The

Skn-1 motif is another endosperm-specific expression element

present in the CsDREB promoter. This motif enables seed-

specific gene expression in transgenic tobacco plants (Depater et

al. 1993). Additionally, the CsDREB promoter contains the

as1 motif, which helps to regulate gene expression levels in

the root tips of transgenic tobacco plants (Verdaguer et al.

1998). The presence of a wound-responsive element (i.e.,

WUN-motif) indicates that CsDREB may also be regulated

by wound stress (Wang et al. 2008). 

In conclusion, our results indicate that CsDREB expression is

rapidly induced by heat, cold, high salinity, drought, H2O2,

and exogenous ABA. The CsDREB-overexpressing transgenic

A. thaliana plants exhibited increased tolerance to salt and

drought stresses. Functional analyses revealed that the

enhanced tolerance to salt and drought stresses may be due

to both ABA-dependent and ABA-independent pathways.

Additional investigations of the transgenic C. sinensis plants

will likely help to more comprehensively characterize the

CsDREB functions related to stress tolerance.

Materials and Methods

Plant Materials and Treatments

Two-year-old cutting seedlings of tea plants (C. sinensis cv. ‘Longjing-
changye’) were grown in a growth chamber under a 12-h light (220
μmol m–2 s–1; 24°C)/12-h dark (20°C) photoperiod with a relative
humidity of 75% for 45 d before treatments. For oxidative stress and
hormone treatments, leaves of tea plants were sprayed with 10 mM
H2O2 and 50 µM ABA, respectively. For high salinity and drought
treatments, plants were irrigated with 200 mM NaCl and 100 g L–1

PEG 6000, respectively. Heat and cold stresses were implemented by
incubating the plants at 38°C and 4°C, respectively. The fourth leaves
from the top buds of tea plants were individually collected at 0, 1, 2,
4, 6, 8, 12, and 24 h after the initiation of treatments. Samples were
immediately frozen in liquid nitrogen and stored at –80°C.

Cloning of CsDREB and Sequence Analyses

Total RNA was extracted from C. sinensis leaves using the RNAiso
Plus reagent (TaKaRa, Dalian, China). The purified RNA was reverse
transcribed to cDNA using the PrimeScript™ 1st Strand cDNA Synthesis
Kit (TaKaRa) according to the manufacturer’s instructions. Based on
the CsDREB (GenBank: KF988866) sequence details available in the
National Center for Biotechnology Information database (http://
www.ncbi.nlm.nih.gov/), a primer pair (i.e., CsDREB-ORF-F/R; Table
S1) was designed to amplify the complete CsDREB ORF using the
first-strand cDNA as the template. Specific PCR products were
isolated and sub-cloned into the pEASY-T1 Simple Cloning Vector
(TransGen, Beijing, China) for sequencing (Genscript, Nanjing,
China). The amino acid sequences of CsDREB and its homologs
were aligned using the DNAMAN 6.0.3.99 program and BLAST
online tools (http://www.ncbi.nlm.gov/blast).

Subcellular Localization of CsDREB

To construct the 35S::GFP–CsDREB vector, the CsDREB ORF
lacking a termination codon was amplified using the CsDREB-
EGFP-F/R primers (Table S1). The confirmed PCR product was
double-digested with BamHI and XbaI, and then inserted into the
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pCAMBIA2300–C–EGFP vector (Wang et al. 2014) upstream of the
green fluorescent protein (GFP) sequence. Both the recombinant
plasmid (35S::GFP–CsDREB) and the empty vector (35S::GFP)
were transiently introduced into the onion (Allium cepa) epidermal
cells using the PDS-1000/He particle delivery system (Bio-Rad,
Hercules, CA, USA) for transient expression experiments. The onion
peels were subsequently incubated for 16 h at 22°C on Murashige and
Skoog plates in darkness (Li et al. 2015). The GFP signals were
monitored using a confocal laser scanning microscope (LSM 710;
Carl Zeiss, Jena, Germany).

Gene Expression Analysis by Quantitative Real-time PCR (qRT-
PCR)

Total RNA was extracted using the EasyPure® Plant RNA Kit
(TransGen) following the manufacturer’s instructions. Approximately
1 μg of total RNA was reverse transcribed to cDNA using the
TransScript® All-in-One First-Strand cDNA Synthesis SuperMix for
qPCR (One-Step gDNA Removal) (TransGen) following the
manufacturer’s instructions. The qRT-PCR using the TransStart® Tip
Green qPCR SuperMix (TransGen) was used to analyze the
expression levels of CsDREB gene and the downstream target genes.
The PCR solution (20 µL) contained 10 µL of 2 × TransStart® Tip
Green qPCR SuperMix, 0.2 µM forward and reverse primers, 100 ng
cDNA template, and nuclease-free water. The qRT-PCR was conducted
in a LightCycler 480 Real-Time PCR System (Roche Applied
Science, Indianapolis, IN, USA) with the following program: 95°C
for 2 min; 40 cycles of 95°C for 10 s, 58°C for 15 s, and 72°C for 20
s; 72°C for 3 min. β-actin (GenBank Accession No. HQ420251) and
ACTIN2 (GenBank Accession No. AT3G18780) were used as the
internal reference genes for C. sinensis and A. thaliana, respectively.
The relative transcript abundances were calculated using the 2−ΔΔCT

method (Livak and Schmittgen 2001). The resulting data are presented as
the mean ± standard deviation of three biological experimental replicates.
The qRT-PCR primer sequences are listed in Table S1.

Analysis of CsDREB Transcriptional Activity

The CsDREB ORF lacking a termination codon was amplified using
the CsDREB-pGBKT7-F/R primers (Table S1). The amplified product
was inserted into the EcoRI/BamHI cloning sites of pGBKT7 to
produce the yeast expression vector pGBKT7–CsDREB. The pGBKT7
(negative control), pCL1 (positive control), and pGBKT7–CsDREB
vectors were used to transform Saccharomyces cerevisiae strain
Y2HGold following the method described in the YEASTMAKER Yeast
Transformation System 2 User Manual (Clontech, Mountain View,
CA, USA). The transformants were selected according to the method
described by Gao et al. (2015) and transferred to SD/-His-Ade medium
supplemented with 20 mg mL–1 5-bromo-4-chloro-3-indolyl-α-D-
galactopyranoside (X-α-Gal) to analyze cell growth (Lei et al. 2016).

Plasmid Construction and Transformation of A. thaliana

The CsDREB coding sequence was amplified with the CsDREB-
pBI121-F/R primers (Table S1) harboring the XbaI and BamHI sites.
The amplicons digested by XbaI and BamHI were cloned into the
plant expression vector pBI121 (Chen et al. 2003) to generate the
35S::CsDREB construct (Fig. S2A). The recombinant plasmid and
empty vector were inserted into Agrobacterium tumefaciens strain
EHA105 cells, which were then used to transform A. thaliana plants
using a floral dip method (Zhang et al. 2006). The transgenic A.
thaliana plants were screened on Murashige and Skoog medium
containing 50 µg mL–1 kanamycin. Putative transformants were
confirmed by RT-PCR using the CsDREB-ORF-F/R primers (Table
S1). Only the homozygous T3 plants were used for subsequent stress
tolerance assays.

Evaluation of Salt and Drought Tolerance of Transgenic A. Thaliana

Homozygous transgenic A. thaliana lines (i.e., Vector, OE-8, and OE-
12) and the wild-type (WT) (Columbia ecotype) plants were grown in
a 3:1 (v/v) mixture of vermiculite and soilrite in a growth chamber
under a 16-h light (220 µmol m–2 s–1; 24°C)/8-h dark (20°C) photoperiod
with a relative humidity of 75%. For the exposure to high salinity
stress, 4-week-old seedlings were treated with 200 mM NaCl for 7 d.
Drought conditions were stimulated by withholding water for 10 d.
And then, the plants were re-watered for 3 d before being scored and
photographed.

The proline content was quantified based on the method of Bates et
al. (1973). MDA content was measured as described previously
(Draper and Hadley 1990).

Cloning and Transient Expression of CsDREB Promoter

Genomic DNA was extracted from tea plants leaves using the Plant
Genomic DNA Kit (Tiangen, Beijing, China). The CsDREB promoter
sequence was then isolated with the Genome Walking Kit (TaKaRa).
The Pro-GSP1, Pro-GSP2, and Pro-GSP3 primers (Table S1) were
used during the primary, secondary, and tertiary reactions of TAIL-
PCR (Liu and Whittier 1995), respectively. The final amplicon was
ligated into the pEASY-T1 Simple Cloning Kit and transformed into
E. coli strain Trans5α Chemically Competent Cell (TransGen) for
sequencing. The resulting sequences were analyzed using the PlantCARE
database (Lescot et al. 2002).

The CsDREB promoter was amplified using the primer pair Pro-F/
-R (Table S1), and then double digested with HindIII and BamHI. The
resulting fragment was inserted into the HindIII and BamHI cloning
sites of the pBI121 vector to replace the 35S promoter (PCsDREB–GUS;
Fig. S2B). The transformation of N. benthamiana plants for transient
gene expression analyses was conducted according to the method
described by Pascual et al. (2015). Briefly, after a 48-h infiltration, N.
benthamiana leaves were treated with 200 µM ABA, 100 μM MeJA,
50 μM IAA, or distilled deionized water (control), respectively. The
infiltrated leaves were harvested 12 h after initiating the treatments.
Quantitative assays to examine β-glucuronidase (GUS) activity were
repeated three times according to the method described by Jefferson
(1989).

Statistical Analysis

Data were analyzed using SPSS 17.0 (SPSS Inc., Chicago, IL, USA)
software. Significant differences between values were determined
with Duncan’s multiple range tests, and are indicated by asterisks (* P
< 0.05, ** P < 0.01, and *** P < 0.001).
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Supporting Information

Fig. S1. Transactivation analysis of CsDREB.
Fig. S2. Diagrammatic representation of the 35S::CsDREB and
PCsDREB–GUS recombinant vectors.
Fig. S3. Expression level of CsDREB in wild-type (WT), vector
control (Vector), and 8 transgenic (i.e., OE-1, OE-2, OE-4, OE-7, OE-
8, OE-9, OE-12, and OE-13) A. thaliana plants.
Fig. S4. Isolation of CsDREB promoter by thermal asymmetric
interlaced polymerase chain reaction (TAIL-PCR).
Table S1. Primers used in this study.
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