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Abstract Most living organisms have a circadian clock,

which coordinates their internal biological events with

external environmental signals. Recent work showed that the

Arabidopsis circadian clock regulates the plant’s responses to

stresses such as drought, cold, pathogens, and wounding.

However, the link between the circadian clock and the

plant’s response to salinity, which retards plant growth and

reduces crop yields, has not yet been investigated. In this

study, we showed that tolerance to salinity stress is regulated

by the diurnal cycle in Arabidopsis. The salt-induced expression

of the salt- and drought-responsive transcription factor gene

RD29A depends on the time of day and the transcription of

the Na+/H+ antiporter gene SOS1 is under the control of the

circadian clock. Furthermore, accumulation of SOS1 protein

upon salt stress in transgenic plants that constitutively

overexpress SOS1 (SOS1ox) appears to occur in a diurnal

cycle. These findings suggest that during the salinity stress

response, the expression of RD29A and SOS1 is modulated

by diurnal cycles and the circadian clock, which allows the

plant to anticipate and respond effectively to daytime

transpiration-triggered dehydration, drought, and salinity

stress. 
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Introduction

Salinity is a growing threat to agriculture worldwide. According

to the Food and Agriculture Organization of the United

Nations (FAO) Land and Plant Nutrition Management

Service (2008) (htpp://www.fao.org/ag/agl/agll/spush), over

800 million hectares of land are affected by salt stress, a

number that is rising very quickly. Salinity has become a

major obstacle to agricultural production, as it limits crop

yields and new farmland cultivation. Sodium chloride

(NaCl), the most soluble and widespread salt on earth,

accounts for most of the harmful effects of salts on plant

growth and development. Excessive [Na+] in soil causes

osmotic stress, resulting in reduced available water and

deficiencies in other nutrients from the soil, such as potassium

(K+). The osmotic effect of salt significantly reduces shoot

growth rates (Munns and Tester 2008). Under salinity stress,

high concentrations of Na+ accumulate in plant cells, and

when they reach a certain level, ion toxicity causes secondary

damage, which hastens senescence in leaves (Munns and

Tester 2008). 

In Arabidopsis thaliana, osmotic stress is more harmful

than sodium ion toxicity (Essah et al. 2003). Plant cells

accumulate osmolytes, which help lower the cytosolic osmotic

potential and maintain cell turgor. Osmolytes are also thought to

function as low-molecular-weight chaperones (Hasegawa et

al. 2000). Many genes involved in osmolyte biosynthesis are

upregulated upon salt stress. For example, the expression of

P5CS (DELTA1-PYRROLINE-5-CARBOXYLATE SYNTHASE

1), which is required for proline accumulation under osmotic

stress (Székely et al. 2008), is induced upon salt stress

(Abraham et al. 2003). The promoters of salt stress-responsive

genes contain some common regulatory cis-elements, such

as the DEHYDRATION RESPONSIVE ELEMENT (DRE)

and ABA RESPONSE ELEMENT (ABRE). Salt stress

induces abscisic acid (ABA) accumulation, as well as

transcription factors that specifically bind to these cis-elements

in the promoters of DREB2A (DEHYDRATION RESPONSIVE

ELEMENT-BINDING FACTOR2A), DREB2B, RD29A/COR28

(RESPONSIVE TO DESICCATION29/COLD REGULATED78)

and RD29B, and genes encoding bZIP (basic leucine zipper)

transcription factors, which activate downstream genes that

are required for plant salt tolerance (Mahajan and Tuteja
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2005). Many abiotic stress responses, such as cold and

drought stress responses, share cis-elements and transcription

factors with salt stress adaptive responses (Mahajan and

Tuteja 2005). 

One way that plants respond to [Na+] involves the SOS

(SALT OVERLY SENSITIVE) pathway. The transmembrane

Na+/H+ antiporter SOS1 is maintained in a resting state by its

C-terminal auto-inhibitory domain under normal conditions

(Quintero et al. 2002). Upon salt stress, root-specific SOS3,

an EF-hand calcium binding protein, senses the changes in

cellular Ca2+ levels (Liu and Zhu 1998). The binding of

calcium to SOS3 facilitates the dimerization of SOS3 and its

subsequent interaction with the serine/threonine protein

kinase SOS2 (Halfter et al. 2000; Liu et al. 2000; Sánchez-

Barrena et al. 2005). The SOS2-SOS3 complex targets the

cell membrane through the N-myristoylation of SOS3 and

subsequently phosphorylates SOS1. This phosphorylation

relieves SOS1 from auto-inhibition, and activated SOS1

starts to pump Na+ out of the cell (Shi et al. 2000; Quintero

et al. 2002; Qiu et al. 2002; Qiu et al. 2003). 

The circadian rhythm is a temporal oscillation of genetic,

metabolic, and physiological processes based on a 24-hour

cycle, which allows organisms to anticipate day-night changes

in the environment (Nakamichi 2011). Many circadian

clock-regulated processes in plants are observable in the

natural environment, such as rhythmic hypocotyl elongation,

flower opening, and leaf movements (Millar et al. 1995;

Dowson-Day and Millar 1999). The biochemical processes

of plant cells that are affected by the circadian rhythm

include oscillations in Ca2+ level (Johnson et al. 1995),

hormone biosynthesis and responses (Thain et al. 2004;

Covington and Harmer, 2007), and water uptake (Takase et

al. 2011). CCA1 (CIRCADIAN CLOCK ASSOCIATED1),

LHY (LATE ELONGATED HYPOCOTYL), and TOC1

(TIMING OF CAB EXPRESSION1) constitute the central

oscillation loop in the plant circadian clock. CCA1 and LHY

are morning-expressed MYB-like DNA binding transcription

factors with partially redundant functions (Wang and Tobin

1998; Schaffer et al. 1998; Mizoguchi et al. 2002). TOC1 (also

referred to as PRR1 [PSEUDO-RESPONSE REGULATOR1])

is an evening-expressed DNA binding transcription factor

(Strayer et al. 2000; Gendron et al. 2012). Recently, several

studies have shown that the plant circadian clock is involved

in adaptive responses to stress (Hotta et al. 2007; Grundy et

al. 2015; Seo and Mas 2015), including drought, cold, pathogens,

and wounding by insect herbivory (Fowler et al. 2005;

Legnaioli et al. 2009; Wang et al. 2011; Goodspeed et al.

2012). For instance, TOC1 regulates plant responses to

drought (Legnaioli et al. 2009), and the induction of CBF/

DREBs (C-REPEAT BINDING FACTOR/DEHYDRATION

RESPONSIVE ELEMENT BINDING FACTOR) under low

temperatures is controlled by the circadian clock (Fowler et

al. 2005). The circadian clock “remembers” the 24-hour light/

dark cycle and anticipates temporal environmental changes,

which has given plants an advantage during evolution. Plants

with a clock period matched to the environment contain

more chlorophyll, fix more carbon, and grow faster than

those with circadian periods differing from their environment

(Dodd et al. 2005). However, the relationship between the

plant circadian clock and salt stress responses has not yet

been clarified. 

We previously showed that a clock-regulated protein,

GIGANTEA (GI), negatively regulates plant salt tolerance

by blocking formation of the SOS2-SOS3 complex and thus

preventing SOS1 phosphorylation (Fowler et al. 1999; Kim

et al. 2013; Park et al. 2013). In this study, to fully elucidate

the relationship between the plant circadian clock and salt

responses, we investigated the expression of two salt stress-

responsive genes, RD29A and SOS1. Salt-induced expression

of RD29A and SOS1 was much higher during the day than

at night, suggesting that their salt-induced expression patterns

are gated by the clock. Furthermore, the oscillations in SOS1

protein abundance appear to be under circadian regulation

upon salt stress. The results of this study indicate that the

diurnal cycling of SOS1 levels is one of the mechanisms that

help plants effectively respond to salt stress. 

Results

Arabidopsis is More Sensitive to Salt Stress During the Day

Than at Night

To investigate how diurnal cycles and/or the circadian clock

affect salt tolerance in plants, we initially tested the effects of

diurnal cycles on salinity stress tolerance in Arabidopsis.

Arabidopsis plants were grown under 12L/12D conditions in

inert soil pots (Fig. 1B, C) or in hydroponic devices (Fig. 1D,

E). The latter method allowed us to quickly and efficiently

rinse salt off of the plants, for short-term salt treatments. Two

groups of plants were treated with salt stress at different

times. The first group of plants, the “Day” group, was treated

with 200 mM NaCl only during the day under the light

period. The second group of plants, the “Night” group, was

treated with 200 mM NaCl only at night, from ZT12 to ZT24

under darkness (Fig. 1A). Two additional groups of plants

were treated with either water or 100 mM NaCl for 24 hours

per day to serve as the negative and positive controls,

respectively. After a 10-d salt treatment, the Day group

exhibited inhibited growth compared to the Night group

(Fig. 1B, D), and the fresh weight of Day group plants was

less than that of Night group plants (Fig. 1C, E). The results

of both the hydroponic and inert soil experiments show that

tolerance to salt stress differs in the day versus the night. 
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Salt-induced Expression of RD29A is Affected by the Clock

The transcription of RD29A, a stress-responsive gene, is

induced quickly and strongly upon drought stress (Yamaguchi-

Shinozaki and Shinozaki 1993). Transcript levels of this salt-

induced gene oscillate, with a peak at ZT8-10 in basal

medium (Kreps et al. 2002; Dong et al. 2011). We previously

showed that the salt-induced expression of RD29A is

affected by the diurnal light/dark cycle and that the clock

modulates RD29A expression (Kim et al. 2013). To determine

the time of day at which RD29 is the most highly induced

upon salinity stress and whether salt-induced RD29A expression

is affected by the clock, we treated wild-type plants (Col-0)

under 12L/12D and LL conditions with 100 mM NaCl for 1

hour at different time points (ZT0, 4, 8, 12, 16, and 20) and

measured RD29A transcript levels in the plants by qRT-PCR

(Fig. 2). The difference between transcript levels in plants

subjected to 0 mM and 100 mM NaCl treatment represents

salt-induced RD29A transcript levels at each time point. The

induction of RD29A expression was higher during the day

(ZT0-1, ZT4-5, and ZT8-9) than at night (ZT12-13, ZT16-

17, and ZT20-21) in 12L/12D conditions (Fig. 2A). A similar

trend was observed under LL conditions. The increase in

RD29A levels was higher during subjective day than during

subjective night, indicating that RD29A was more highly

induced by salt stress in subjective day than in subjective

night (Fig. 2B). These results indicate that plants respond to

salt stress more strongly during the day than at night, and

they suggest that the circadian clock is involved in salt stress

responses through regulating RD29A expression. 

Salt-induced Expression of SOS1 is Affected by the Clock

Next, we wondered whether SOS1 transcription is under

diurnal and circadian regulation, because SOS1 is critical for

the salt stress response (Wu et al. 1996; Oh et al. 2010).

Fig. 1. Salt stress sensitivity differs during the day and night. (A) Strategy used for salt treatment. Three-week-old Arabidopsis wild-type
Col-gl1 plants grown under 12L/12D conditions on inert soil (B, C) or in a hydroponic device (D, E) were exposed to 200 mM NaCl for
10 d. The “Day” group plants were treated with 200 mM NaCl only during the daytime (from ZT0 to ZT12) for 10 d. The “Night group”
plants were treated with 200 mM NaCl only at night (from ZT12 to ZT24) for 10 d. For the control group, the “No Salt” plants were
treated with 0 mM NaCl, and the “Day/Night” group was treated with 200 mM NaCl continuously for 10 d. After salt treatment, the
plants were washed with distilled water twice and placed into basal nutrient medium. (B, C) Salt treatment in inert soil pots. The shoot
fresh weight of plants from Figure (B) was measured and the data are shown in (C). The error bars represent standard error of 15 plants.
(D, E) Salt treatment in the hydroponic devices. The shoot fresh weight of plants from Figure (D) was measured and the data are shown
in (E). The error bars represent standard error of 15 plants. Significant differences compared with No Salt control group were determined
by Student t test (Asterisk (*), P<0.05, Double asterisk (**), P<0.01 to No salt control).
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Wild-type (Col-gl1) plants grown under 12L/12D or LL

were harvested every 4 hours and SOS1 transcript levels

were measured by qRT-PCR. SOS1 transcription oscillated

approximately every 24 hours under both 12L/12D (Fig.

S1A) and LL (Fig. S1B) conditions, but the amplitudes of

the oscillations were not robust, with peaks around ZT8–10.

Next, we investigated whether the induction of SOS1

transcription by salinity stress is under the control of diurnal

cycles and the circadian clock (Fig. 3). We treated wild-type

plants grown under 12L/12D or LL conditions with 100 mM

NaCl for 1 hour at the indicated time points and measured

SOS1 transcript levels by qRT-PCR. SOS1 transcription was

significantly induced by one hour of NaCl treatment in the

daytime, but SOS1 expression was not affected in plants

treated with 100 mM salt at night (Fig. 3A). Similarly, salt-

induced SOS1 expression was higher in the subjective day

than at subjective night (Fig. 3B). These results suggest that

the salt-induced expression of SOS1 is modulated by the

circadian clock. 

Salt-induced Accumulation of SOS1 Protein is Regulated by

Day/night Diurnal Cycles

Fig. 2. Salt-induced RD29A expression is under the control of the
circadian clock. (A) Salt-induced RD29A transcript levels under
12L/12D conditions. Two-week-old wild-type (Col-0) plants in
12L/12D conditions were treated with 0 mM (open circles) or 100
mM NaCl (filled circles) for 1 hr at the indicated time points.
RD29A transcript levels were normalized to that of TUBULIN2.
The results represent average values from three independent
experiments, with three replicates per experiment. Bars indicate
the standard deviation. (B) Salt-induced RD29A transcript levels
under LL conditions. Twelve-day-old wild-type (Col-0) plants in
12L/12D were transferred to LL conditions. On the second day,
the plants were treated with 100 mM NaCl (filled circles) for 1
hour at the indicated time points. RD29A transcript levels were
normalized to that of TUBULIN2. The results represent average
values from three independent experiments, with three replicates
per experiment. Bars indicate the standard deviation.

Fig. 3. Salt-induced SOS1 expression is under the control of the
circadian clock. (A) Salt-induced SOS1 transcript levels under
12L/12D conditions. Two-week-old wild-type (Col-0) plants in
12L/12D conditions were treated with 0 mM (open circles) or 100
mM NaCl (filled circles) for 1 hr at the indicated time points.
SOS1 transcript levels were normalized to that of TUBULIN2. The
results represent average values from three independent experiments,
with three replicates per experiment. Bars indicate the standard
deviation. (B) Salt-induced SOS1 transcript levels under LL
conditions. Twelve-day-old wild-type (Col-0) plants in 12L/12D
conditions were transferred to LL conditions. On the second day
of LL, the plants were treated with 100 mM NaCl for 1 hr at the
indicated time points. SOS1 transcript levels were normalized to
that of TUBULIN2. The results represent average values from
three independent experiments, with three replicates per experiment.
Bars indicate the standard deviation. 
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SOS1 is not significantly induced by salt stress in wild-type

plants (Dinneny et al. 2008). However, SOS1 is highly and

rapidly induced upon salt treatment in SOS1-overexpressing

transgenic plants (SOS1ox), where SOS1 is constitutively

expressed under the control of the 35S promoter (Chung et

al. 2008), probably through salt-induced increases in mRNA

stability. SOS1 is activated by the SOS2-SOS3 kinase

complex upon salt stress. This phosphorylation leads to an

increase in the Na+/H+ exchange rate of the SOS1 transporter

(Shi et al. 2000; Quintero et al. 2002; Qiu et al. 2002; Qiu et

al. 2003). Thus, we next investigated whether the protein

stability of SOS1 is also under a diurnal cycle using the

SOS1 overexpressor SOS1ox (35S::SOS1-HA transgenic

line) and performing immunoblotting with HA antibody

(Fig. 4; Fig. 5). While the protein abundance of SOS1 in

SOS1ox transgenic plants did not display an obvious diurnal

cycle in basal medium without salt treatment, a 2-hour salt

treatment with 100 mM NaCl from ZT0 to ZT2 increased

the accumulation of SOS1, which reached a peak in 8 to 12

hours. Salt-induced SOS1 levels exhibited robust cycling,

with a period of nearly 24 hours (Fig. 4; Fig. S2). However,

salt stress treatment given at night (from ZT12 to ZT14)

failed to induce the accumulation of SOS1 (Fig. 5). Instead,

8 to 12 hours after the 2-hour salt treatment and at dawn on

the following day, salt-induced accumulation of SOS1

began, but the levels of this protein increased only

approximately 2-fold at their peak, exhibiting very weak

oscillation (Fig. 5C). These results suggest that the diurnal

cycle affects SOS1 accumulation under salinity stress, which

might represent an adaptive stress response.

Discussion

Our findings demonstrate that plants have different levels of

sensitivity to salt stress in the day versus at night, as plants

exposed to salinity stress during the day grew much more

poorly than those treated at night (Fig. 1). This temporal

variation in the susceptibility to high salinity is not unexpected,

because the rate of transpiration, which facilitates Na+

transport from root to shoot, as well as the accumulation of

salt in plant cells, is much higher during the day than at

night. 

The transcription of almost one-third of Arabidopsis genes

Fig. 4. Salt-induced SOS1 protein accumulation during the daytime exhibits a diurnal cycle. (A) Strategy of salt treatment. 35S::SOS1-HA

transgenic plants under 12L/12D conditions were treated with 0 mM or 100 mM NaCl for only 2 hours from ZT0 to ZT2. After salt
treatment, the plants were moved back to normal MS medium and harvested at the indicated time points. (B) Total proteins were
extracted from plants treated with 100 mM NaCl for 2 hours from ZT0 to ZT2 in panel (A). SOS1-HA protein levels were analyzed by
immunoblotting with anti-HA. Relative amounts of SOS1-HA were measured based on the band intensity of SOS1-HA relative to
Coomassie Blue staining (CBS). (C) The graph shows the standardized quantification of SOS1-HA levels from one representative blot.
Open and filled circles indicate 0 mM and 100 mM NaCl treatment, respectively.
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is regulated diurnally and/or by the circadian clock, including

stress-responsive genes such as RD29A, CBF/DREB, and

ABA biosynthesis and signaling pathway genes (Harmer et

al. 2000; Fowler et al. 2005; Nováková et al. 2005; Covington

et al. 2008; Michael et al. 2008; Lee and Thomashow 2012).

A range of transporter genes are also regulated, such as

genes encoding nutrient and ion transporters including

sucrose transporters (SUC2 and SUC5), nitrate transporters

(NRT1.1 and NRT2.7), potassium transporters (K+ uptake

permeases [KUP3, KUP5, KUP6, and KUP11] and Arabidopsis

Potassium Transport 2/3 [AKT2]), vacuolar Na+/H+ antiporter

(NHX1), copper transporters (CORT1 and CORT2), and zinc

transporter precursors (ZIP11 and ZTP29) (Haydon et al.

2011). A recent report indicates that COPPER TRANSPORTER2

(CORT2) and IRON SUPEROXIDE DISMUTASE (FSD1),

the targets of the SQUAMOSA PROMOTER BINDING

PROTEIN-LIKE7 (SPL7) transcription factor, are under

circadian and diurnal regulation (Perea-García et al. 2016a;

Perea-García et al. 2016b). Here, we showed experimentally

that SOS1 expression is modulated by the circadian clock,

because the basal transcript levels of this plasma membrane-

localized Na+/H+ antiporter oscillate even under normal growth

conditions and in constant light (Fig. S1).

The circadian clock facilitates predictive regulation of

molecular and physiological processes in plants, with temporal

changes over the 24 hour day/night cycle (Seung et al. 2011;

Chow and Kay 2013; Seo and Mas 2015; Singh et al. 2015).

A few studies have investigated the effects of circadian

rhythms on stress responses (Greenham and McClung 2015),

including shade avoidance (Salter et al. 2003), gibberellin

(GA) signaling (Arana et al. 2011), jasmonate-mediated

defense responses to fungal pathogens (Ingle et al. 2015) and

herbivores (Goodspeed et al. 2012), ABA signaling and its

downstream targets (Seung et al. 2011; Lee et al. 2016), and

osmotic stress responses (Kiełbowicz-Matuk et al. 2014).

For example, the response to ABA varies with the time of

day, as ABA-induced stomatal closure is the most sensitive

in the afternoon, indicating that plant defense against

dehydration varies during the day (Correia et al. 1995). The

resistance of a plant to pathogen infection is highest in the

morning, when the environment is most favorable for

pathogen infection due to high humidity levels (Bhardwaj et

Fig. 5. Salt treatment at night does not induce diurnal cycling of SOS1 protein abundance. (A) Strategy of salt treatment. 35S::SOS1-HA

transgenic plants under 12L/12D conditions were treated with 0 mM or 100 mM NaCl for only 2 hours from ZT12 to ZT14. After salt
treatment, the plants were moved back to normal MS medium and harvested at the indicated time points. (B) Total proteins were
extracted from plants treated with 100 mM NaCl for 2 hours from ZT12 to ZT14 in panel (A). SOS1-HA protein levels were analyzed by
immunoblotting with anti-HA. Relative amounts of SOS1-HA were measured based on the band intensity of SOS1-HA relative to
Coomassie Blue staining (CBS). (C) The graph shows the standardized quantification of SOS1-HA levels from one representative blot.
Open and filled circles indicate 0 mM and 100 mM NaCl treatment, respectively.
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al. 2011; Wang et al. 2011). Cold-responsive genes such

as CBF transcription factor genes are more inducible

during the day than at night, as cold-induced increases in

CBF transcript levels are much higher in the morning

(ZT4) than at night (ZT16), suggesting that the plant can

deal with low temperatures more efficiently in the

morning than in the evening or at night (Fowler et al.

2005). In the current study, we showed that Arabidopsis

has different responses to salinity stress in the day and at

night, using two salt stress-responsive genes, RD29A and

SOS1. Salt-induced expression of RD29A and SOS1 was

much higher in the daytime than at night (Fig. 2 and 3),

indicating that the plant apprehends dehydrating

conditions and higher cellular sodium concentrations in

the daytime over repeated 24 dark/night cycles and

schedules its defensive processes or systems for temporal

changes. 

The molecular mechanism by which the circadian clock

regulates stress responses, especially cold stress responses,

involves transcriptional regulation. The promoter regions of

CBF transcription factor genes include several Evening

Elements (EE, AAATATCT) and CCA1 binding sites (CBS,

AA[A/C]AATCT) (Harmer et al. 2000). The MYB transcription

factors CCA1 and LHY, which are morning-expressed circadian

components of the plant oscillator, directly bind to CBF

promoter regions and regulate their expression. We therefore

investigated the promoter region of RD29A using the Plant

Promoter Analysis Navigator (http://PlantPAN2.itps.ncku.edu.

tw) (Chang et al. 2008; Chow et al. 2016). The RD29A

promoter region contains a putative CBS and two putative

EEs, which might be subjected to regulation by CCA1 and

LHY (Wang et al. 1997; Harmer and Kay 2005). The SOS1

promoter contains two putative CBS (AACAATCA, -1731

bp and -1059 bp from the ATG start codon) and one putative

EE (AAAAATCT, -1111 bp). However, further experiments

are required to determine whether circadian components

such as CCA and LHY associate with the promoter regions

of RD29A and SOS1, consequently leading to transcriptional

regulation.

Nonetheless, we found that the circadian cycling of basal

SOS1 transcription did not display great robustness. Salt

enhances the stability of the SOS1 transcript rather than

promoting new transcription (Chung et al. 2008). However,

SOS1 must be phosphorylated by SOS2, a Serine/Threonine

protein kinase (Liu et al. 2000), after which activated SOS1

can export Na+ out of the cell (Quintero et al. 2002). Thus,

we decided to analyze whether the clock influences the

abundance of SOS1 protein (Fig. 4;  Fig. 5). The basal levels

of SOS1 protein did not exhibit robust cycling. However,

surprisingly, in plants treated in the morning, salt-induced

SOS1 protein levels exhibited diurnal cycling (Fig. 4; Fig.

S2). Salt treatment in the evening failed to induce the robust

cycling of SOS1 protein abundance, and SOS1 protein

abundance did not show clear dampening in the dark period,

even though SOS1 protein levels increased during the day

(Fig. 5). We employed SOS1-overexpressing transgenic

plants (SOS1ox), which exhibited constitutively high SOS1

transcription. The diurnal oscillation of SOS1 levels might

arise from the diurnal cycling of the stability (and/or

turnover) of SOS1 transcripts and the resulting translation or

diurnal oscillation of protein abundance. There are a few

examples of posttranslational degradation and regulation

of clock protein stability, such as the proteasomal

degradation of GI, ZTL, TOC1, and PRR5 (Kim et al.

2003; Mas et al. 2003; Yu et al. 2008) and the phytochrome-

mediated degradation of PHYTOCHROME-INTERACTING

FACTOR (PIF3). PIF3, which promotes seedling growth,

undergoes oscillations in protein abundance under diurnal short-

day light/dark conditions. PIF3 degradation is mediated by

photoactivated PhyB, leading to a peak in PIF3

accumulation before dawn, which results in the strong

accumulation of bHLH (basic helix-loop-helix protein)

during the dark period, as well as hypocotyl elongation

(Soy et al. 2012). Whether the salt-induced oscillation in

SOS1 levels occurs through ubiquitin-mediated proteasomal

degradation or phytochrome-mediated degradation remains to

be determined. 

We are also interested in understanding how plants anticipate

and respond to the elevated cellular sodium levels that are

likely driven by daytime transpiration. Transpiration in leaves

leads to higher cellular sodium concentrations. This

diurnal variation in cellular sodium levels might serve as

an input to coordinate the circadian clock in the shoot and

root under a certain threshold salt concentration in the

plant cell. Sucrose transported from the shoot to root was

proposed to serve as a signal that coordinates the

circadian clock in the shoot and root or helps synchronize

the internal clock to environmental factors (James et al.

2008). Transpiration from the shoot results in diurnal

changes in root hydraulic conductivity and root-specific

aquaporin expression (Sakurai-Ishikawa et al. 2011). In

addition, exogenous copper (Cu) influences a few circadian

clock components such as GI, leading to the proposal that

dynamic oscillations in Cu levels are integrated into the

clock to maximize metabolic efficiency under Cu-limited

conditions (Perea-García et al. 2016a; Perea-García et al.

2016b). Thus, once the amount of Na+ increases to a level

not toxic to plant cells, diurnal fluctuations in cellular Na+

levels could serve as a signal, which moves rapidly from

shoot to root upon exposure to light, since roots are

present underground and cannot usually sense the light

signal. 

In summary, plants modulate clock-dependent processes

during the salinity stress response through regulating the
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expression of salt stress-responsive genes such as RD29A and

SOS1. This mechanism reflects the effective, elaborate way in

which plants adapt to temporal environmental changes. 

Materials and Methods

Plant Growth and Salt Stress Treatments

Seeds of wild-type (Col-0 or Col-gl1), SOS1ox, and SOS1-overexpressing
(35S::SOS1-HA in Col-gl1) (Kim et al. 2013) Arabidopsis thaliana
plants were surface-sterilized with 2.4% sodium hypochlorite
(NaClO). The seeds were plated onto 1X Murashige and Skoog (MS)
medium (sucrose 1.5%, pH 5.7), stratified at 4°C for 2–3 d before
germination, and incubated in a growth chamber under a 12 h light/12
h dark (12L/12D) cycle (~120 μmol m−2s−1, 22–23°C). For plants in
constant light conditions (LL), seedlings were entrained for 12 d
under 12L/12D conditions before being introduced to the assay
conditions. For salinity stress, the seedlings were treated with 100
mM NaCl as indicated in the figure legends. 

Hydroponic experiments were performed using an in-house-made
hydroponic device and inert soil (Isolite CG-1; Isolite Insulating
Products, Osaka, Japan) (Ali et al. 2012). The plants were supplied
with 1/8 liquid MS medium. Two-week-old wild-type Arabidopsis
plants in the hydroponic device or artificial soil were treated with 200
mM NaCl as indicated in the figure legends. For salt treatment,
hydroponic devices containing plants were transferred into MS
solution supplemented with NaCl. After 12 h salt treatment, the entire
hydroponic device and artificial soil pots were rinsed twice with fresh
tap water before being transferred to standard MS solution to wash off
the salt residue on the roots. 

RNA Isolation and Expression Analysis

Plant tissue (100 mg) harvested at the appropriate times was used for
RNA extraction. Total RNA was extracted using an RNeasy Plant
Mini Kit (Qiagen, Venlo, The Netherlands). Total RNA (2 μg) was
digested with DNase1 (SIGMA, St. Louis, USA) and reverse transcribed
with SuperScript III Reverse Transcriptase (Invitrogen, Carlsbad,
USA) for cDNA synthesis. The amplified products from quantitative
reverse-transcription (qRT) PCR were detected using iQ SYBR Green
Supermix (Bio-Rad) in a thermal cycler (CFX384 C1000TM Real
time system, Bio-Rad, Hercules, USA). Primers used for RT-PCR
include: Tubulin2-qRT-F (5′-AGCAAATGTGGGACTCCAAG-3′),
Tubulin2-qRT-R (5′-CACCTTCTTCATCCGCAGTT-3′), SOS1-qRT-F
(5′-CGCCAAACAACAACAAGAGA-3′), SOS1-qRT-R (5′-GGCT-
GAAACGAGACCTTGAG-3′), RD29A-qRT-F (5′-ATCACTTGG-
CTCCACTGTTG-3′), and RD29A-qRT-R (5′-ACAAAACACACA-
TAAACATCCAAAGT-3′). The level of TUBULIN2 (TUB2) mRNA
was used as an internal control. All qRT-PCRs were performed at
least twice with three independent biological RNA samples. 

Protein Extraction and Immunoblot Analysis

Plant tissue (100 mg) was extracted with 100 μL protein extraction
buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.5% Nonidet P-40,
1 mM EDTA, 3 mM DTT, 1 mM phenylmethylsulfonyl fluoride, 5 g/
mL Leupeptin, 1 g/mL Aprotinin, 1 g/mL Pepstatin, 5 g/mL Antipain,
5 g/mL Chymostatin, 2 mM Na3VO4, 2 mM NaF, 50 mM MG132).
The total protein extract was separated by SDS-PAGE, followed by
immunoblotting using anti-HA (clone 3F10; Roche, Penzberg, Germany)
to detect SOS1-HA. Coomassie Brilliant Blue Staining (CBS) was
used as the loading control. The graphs show standardized quantification
of SOS1-HA levels from one representative blot. 
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