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Abstract Sugars such as sucrose or glucose function both

as building materials for biosynthesis, and as signaling molecules

that modulate gene expression. Compared to studies of sugar

signaling in bacteria, yeast and animals, knowledge of the

signaling pathways in plants is still poorly understood. Here,

we investigated the effect of the disruption and overexpression of

an Arabidopsis thaliana adenosine 5’-phosphosulfate reductase

2, AtAPR2, on plant responses to glucose stresses. AtAPR2

encodes an enzyme of the sulfate assimilation pathway and

it is a member of a three gene family that also includes

AtAPR1 and AtAPR3. Expression of AtAPR1, AtAPR2 and

AtAPR3 were strongly induced by glucose treatment.

Overexpression of AtAPR2 resulted in enhanced cotyledon

greening and fresh weight increase when plants were treated

with high glucose. By contrast, a T-DNA insertion mutant

(atapr2-2) line showed delayed greening and fresh weight

growth inhibition in response to glucose and also the non-

metabolizable analog 2-deoxyglucose. The expression of three

glucose responsive genes, Hexokinase 1 (HXK1), Phenylalanine

ammonia lyase 1 (PAL1) and Pathogenesis related gene 5

(PR5), was elevated in AtAPR2-overexpressing and WT

plants in response to glucose treatment, but in the atapr2-2

mutant line the transcript level for these genes decreased.

Furthermore, AtAPR2-overexpressing plants displayed delayed

flowering under long day condition. The data implicates

AtAPR2 as a component controlling flowering time and

glucose response in Arabidopsis thaliana, although the exact

function of AtAPR2 is not clear.
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Introduction

Sugar signal transduction cascades are important components

of regulatory networks in cells. However, such signaling

pathways are poorly understood in plants compared with the

situation in bacteria, yeast and animals. Nonetheless, changes

in absolute sugar levels, sugar flux or sugar to nitrogen ratios

have profound effects on plant metabolism, growth, development

and stress response. In general, low sugar levels promote

photosynthesis and mobilization of storage polysaccharides,

whereas high sugar levels stimulate carbon import, storage

and utilization (Koch 1996). Sugars modulate various

developmental processes throughout the entire life cycle of

plants, including seed development and germination, seedling

and vegetative growth, floral induction, senescence and

responses to environmental stimuli (Gibson 2005; Rolland et

al. 2006). A number of genes involved in carbon and nitrogen

metabolic processes have been shown to be regulated either

by sugar excess or starvation conditions (Graham 1996;

Koch 1996; Fujiki et al. 2000). Hesse et al. have reported

that regulation of sulfate assimilation is regulated by sugar

signaling likely for co-ordination of sulfate assimilation with

nitrate and carbon assimilation (Hesse et al. 2003).

Plants assimilate sulfate for biosynthesis of many sulfur-

containing compounds including cysteine, methionine,

glutathionine and secondary metabolites such as glucosinolates

(Leustek et al. 2000; Tsakraklides et al. 2002; Saito 2004;

Zhang et al. 2014). Sulfur starvation is distinctly related with

a decreased pathogen resistance of plants (Rausch and

Wachter 2005; Kruse et al. 2007), thus, its deficiency leads
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to reduced growth and development, and decreased crop

yield and quality. Therefore, uptake and assimilation of

sulfur is necessary for cellular metabolism, plant growth and

development, and response to various biotic and abiotic

stresses (Leustek et al. 2000; Saito 2004; Rausch and Wachter

2005). Plants initiate the assimilation process by activating

sulfate to adenosine 5’-phosphosulfate (APS) catalyzed by

ATP sulfurylase. Adenosine 5’-phosphosulfate reductase (APR)

catalyzes the reduction of APS to sulfite in a glutathione

dependent reaction. Sulfide is formed from sulfite by ferredoxin-

dependent sulfite reductase. O-acetylserine (OAS) thiol-lyase

catalyzes the reaction of sulfide and OAS to form cysteine.

OAS is produced by serine acetyltransferase (Brunold 1990;

Leustek et al. 2000; Kopriva et al. 2002). Cysteine can

directly incorporated into protein or further be metabolized

into methionine or glutathione, a tripeptide with important

functions in oxidative stress defense, regulation of sulfur

assimilation, etc. (Noctor et al. 1998). Thus, cysteine synthesis is

a central point of cellular metabolism as this reaction

interconnects sulfate, nitrate, and carbon assimilation (Kopriva

et al. 2002).

APS reductases play a key role in the reductive sulfate

assimilation pathway of plants. This enzyme is composed of

two domains, an amino terminal reductase domain and a C-

terminal glutaredoxin (GRX)-like domain that serves as the

entry point for electrons from glutathione. The N-terminal

domain resembles bacterial APS reductases that, unlike the

plant type enzymes, use reduced thioredoxin (TRX), rather

than glutathione, as the electron donor for APS reduction

(Lillig et al. 1999; Bick et al. 2000; Kim et al. 2005; Setya

et al. 1996). It is clear that the N-terminal domains of all

plant APS reductases, like the smaller bacterial APS reductases,

contain a single [4Fe-4S] cluster as the sole prosthetic group

(Weber et al. 2001; Kim et al. 2006). Thus, the APS

reductases differ from Escherichia coli 3’-phosphoadenosine

5’-phosphosulfate (PAPS) reductase, which does not contain

any prosthetic groups (Schwenn et al. 1988; Brenedt et al.

1995; Savage et al. 1997; Chartron et al. 2007). Recently

evidence was obtained that the [4Fe-4S] cluster found in

APS reductases does not serve as an electron carrier and its

exact function remains unknown (Kim et al. 2004; Carroll et

al. 2005; Chartron et al. 2006).

In this study, we report that AtAPR2 functions as a

component in the response to glucose (Glc) treatment. The

overexpression of AtAPR2 in transgenic Arabidopsis plants

produced increased tolerance toward Glc during seedling

growth, whereas disruption in the expression of AtAPR2

induced hypersensitivity to Glc. Additionally, the AtAPR2 T-

Fig. 1. Phenotypes of AtAPR2-overexpression plants. (A) Expression levels of AtAPR2 in wild-type (WT), atapr2-2 mutant and two
independent transgenic lines overexpressing AtAPR2 (OX1-3 and OX1-4) were determined by RT-PCR using total RNA isolated from 2-
week-old seedlings. Actin8 was used as an internal control in RT-PCR. (B) Delayed flowering in AtAPR2-overexpression plants (OX1-3
and OX1-4) and early flowering in atapr2-2 mutants grown under a 16-h/8-h light/dark photoperiod. (C) AtAPR2-overexpression lines
developed more leaves before flowering compared with WT plants; atapr2-2 mutant flowered earlier with fewer leaves compared with
WT plants. The data are means ± SE (n = 12 each) from three independent experiments. Differences in the leaf number of Arabidopsis
plants are significant at the P < 0.01 (**) level.
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DNA mutant (atapr2-2) plants showed altered flowering

time. These results indicate that AtAPR2 is capable of

modulating the Glc response and flowering time in

Arabidopsis.

Results

Altered Flowering Timing in Mutant atapr2-2 and AtAPR2-

Overexpression Plants

In an effort to investigate the in vivo functions of AtAPR2,

AtAPR2 was overexpressed in Arabidopsis under the control

of the 35S promoter. Using kanamycin resistance segregation

and reverse transcription (RT)-PCR analysis (Fig. 1A), we

selected plants homozygous for the 35S-AtAPR2 T-DNA

(hereafter referred to as OX1-3 and OX1-4). In an effort to

further evaluate the function of AtAPR2 in Arabidopsis, an

At1g62180-tagged T-DNA insertion mutant CS851804 was

analyzed. The T-DNA inserted in exon 4 of the At1g62180

gene was verified via PCR and the cloning of the left T-DNA

border (Fig. S1). Once homozygosity had been established,

the absence of AtAPR2 was verified via RT-PCR (Fig. 1A).

The respective mutant was designated as atapr2-2.

The AtAPR2-overexpression plants showed a delayed

flowering phenotype compared to the wild-type (WT) parental

plants and atapr2-2 plants. To observe this phenotype the

plants were grown under long-day (16-h-light/8-h-dark)

photoperiod (Fig. 1B). Additionally, the AtAPR2-overexpression

plants developed on average about three or five more leaves

than WT or atapr2-2 mutant, respectively, at flowering (Fig.

1C). In contrast, under the same growth conditions the

atapr2-2 mutant produced an average of two leaves fewer

than the WT (Fig. 1C). Aside from altered flowering time no

other differences in growth or development were observed

between WT, atapr2-2 and AtAPR2-overexpressing plants.

No differences in seed germination were observed on

Murashige and Skoog (MS) medium between WT, atapr2-2

and AtAPR2-overexpressing plants. These observations reveal

that AtAPR2 function influences flowering time.

Expression of Three Arabidopsis AtAPR Homologous Genes

After Glc Treatment

It has been relatively well established that flowering time is

altered by Glc treatment (Funck et al. 2012). To determine

how Glc treatment effects AtAPR expression level of mRNA

for three different AtAPR homologous genes was measured

in 14-d-old Arabidopsis seedlings threated with Glc

treatment using quantitative real-time (qPCR). Fig. 2 shows

that time-course transcript levels of AtAPR1, AtAPR2 and

AtAPR3, reached a peak within 6 h after Glc treatment then

slightly decreased until 12 hours. The expression patterns of

AtAPR1, AtAPR2 and AtAPR3 in Glc-treated Arabidopsis

seedlings similar. These observations suggest that all three

Arabidopsis AtAPR genes are Glc responsive.

Arabidopsis Plants Overexpressing AtAPR2 Show Increased

Insensitivity to Glc and 2-deoxyglucose (2-DG)

Given the delayed flowering phenotype of AtAPR2 overex-

pressing plants and the Glc responsiveness of AtAPR2

expression, the Glc-response phenotype of AtAPR2

overexpressing plants was assessed. WT Arabidopsis show

a Glc response that is characterized by an inhibition of

cotyledon greening. When germinated on MS medium

lacking Glc WT, atapr2-2, and AtAPR2-overexpressing

(OX1-3, OX1-4) showed similar germination rate and similar

morphology (Fig. 3A). However, on MS supplemented with

6% (w/v) Glc the cotyledon greening rate of WT was only

slightly above 45% 7 d after germination. By contrast, less

than 24% of the atapr2-2 mutant cotyledons expanded and

turned green, but 73%-78% of the OX1-3 and OX1-4

expanded and produced chlorophyll (Figs. 3B and 3C).

After further growth for 14 d on Glc-supplemented

medium the fresh weight of atapr2-2 reached only 89% of

that of WT, whereas the fresh weight of the AtAPR2-

overexpressing plants reached to 114%-122% compared to

WT (Fig. 3D). These results demonstrated that the atapr2-2

mutant is more sensitive to Glc treatment than WT.

However, the AtAPR2-overexpressing plants were less

sensitive to Glc than WT and the atapr2-2 mutant.

Fig. 2. Expression of the AtAPR isoforms in Arabidopsis under Glc
stress. qPCR analysis showing the induction kinetics of AtAPRs in
plants treated with Glc stress. Two-week-old Arabidopsis seedlings
were exposed to 6% Glc, for 0-12 h. Error bars indicate standard
deviations of three independent biological samples. Differences
between the expression of AtAPR1, AtAPR2 or AtAPR3 in 14-d-
old Arabidopsis seedlings untreated and treated with Glc stress are
significant at the 0.05 > P > 0.01 (*) or the P < 0.01 (**) levels.
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One possibility for the observed phenotype on Glc is that

the plants show symptoms of osmotic stress, compared with

a direct effect of Glc on growth. This possibility was

examined by comparing plant response to mannitol, 3-O-

methylglucose (3-OMG) and 2-DG in control experiments.

Mannitol is a non-metabolizable osmoticum. 3-OMG and 2-

DG are none metabolizable Glc analogs. No apparent difference

was observed among the WT, atapr2-2 and AtAPR2-

overexpressing plants when they were germinated on 400

mM mannitol (Fig. 4C) or 25 mM 3-OMG (Fig. 4C), a Glc

analog that is not phosphorylated by hexokinase, the first

step in the utilization of glucose in glycolysis. However, the

cotyledon greening rate of atapr2-2 mutant was much more

affected than that of WT and AtAPR2-overexpressing plants

by treatment with low concentrations of 2-DG (Figs. 4B and

4C), a Glc analog that can be phosphorylated by hexokinase.

As in the Glc assay, the cotyledon greening percentage of

AtAPR2-overexpressing plants was higher than that of WT

(Fig. 4). Conversely, AtAPR2-mediated suppression of the

cotyledon greening inhibition of HXK1 phosphorylation-

related signal in overexpressing plants might be responsible,

at least in part, for the insensitivity to Glc that is observed in

these plants. 

To obtain different hexose information on how fructose

(Frc) or mannose (Man) treatments act on transgenic cotyledon

greening, the seeds of the WT, atapr2-2 and AtAPR2-ove-

rexpressing plants were germinated in MS media supple-

mented with 6% Frc or 0.1% Man, and then permitted to grow

Fig. 3. Glc sensitivity of atapr2-2 mutant and AtAPR2-overexpression transgenic plants. (A and B) Seeds were sown on MS agar plates
supplemented (B) or not with 6% Glc (A) and allowed to grow for 7 d. The photograph shows that AtAPR2-overexpression transgenic
lines (OX1-3 and OX1-4) show better development and greener than WT and atapr2-2 mutant under Glc stress conditions. (C) Effect of
Glc treatment on cotyledon greening. Seeds were sown on MS agar plates with 6% Glc and permitted to grow for 7 d, and seedlings with
green cotyledons were counted (triplicates, n = 50 each). Error bars represent standard deviations. Differences among the WT, atapr2-2,
and two AtAPR2-overexpressing (OX1-3 and OX1-4) plants grown in the same conditions are significant at the 0.05 > P > 0.01 (*) or the
P < 0.01 (**) levels. (D) Effect of Glc treatment on plant fresh weight. Seeds were germinated on MS medium containing 6% Glc for 14 d, and
measured for the fresh weight (triplicates, n = 30 each). Error bars represent standard deviations. Differences among the WT, atapr2-2, and two
AtAPR2-overexpressing (OX1-3 and OX1-4) plants grown in the same conditions are significant at the P < 0.01 (**) levels.
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for 7 d. As shown in Supplementary Fig. S2, Frc or Man

treatments resulted in no significant differences in the

cotyledon greening rate after 7 d among WT, atapr2-2 and

AtAPR2-overexpressing plants. These results are consistent

with the suggestion that AtAPR2 is a necessary component

for the Glc -triggered developmental leaf growth process.

Effects of Glc on Stress-related Genes

It has been relatively well-established that the expressions of

the HXK1, PR5 and PAL1 genes are induced by Glc

treatment (Xiao et al. 2000; Nambara and Marion-Poll

2005). Fig. 5 revealed that the transcript levels of Glc-

inducible genes including HXK1, PR5 and PAL1 were

enhanced following induction in AtAPR2-overexpressing

and WT plants following Glc treatment, rather than in

atapr2-2 mutant plants. The expressions of the HXK1, PR5

and PAL1 were slightly less reduced in the atapr2-2 mutant

compare with the WT and AtAPR2-overexpressing plants.

Furthermore, the transcript levels of these three Glc-

inducible genes were significantly induced under the control

(H2O) condition in atapr2-2 mutant plant. While, the

transcript levels of Ribulose-1,5-bisphosphate carboxylase/

oxygenase small subunit 1 (RBCS1), which is known to be

down-regulated during Glc treatment (Krapp et al. 1993),

was not significantly different between the control (H2O) and

Glc treatment in WT, atapr2-2 mutant and AtAPR2-

overexpressing plants. These observations support the notion

Fig. 4. Glc analogs sensitivity of atapr2-2 mutant and AtAPR2-overexpressing transgenic seedlings. (A and B) Seeds were sown on MS
agar plates supplemented (B) or not with 0.02 mM 2-deoxyglucose (2-DG) (A) and allowed to grow for 7 d. The photograph shows that
AtAPR2-overexpression transgenic lines (OX1-3 and OX1-4) show better development and greener than WT and atapr2-2 mutant plants
under Glc stress conditions. (C) Effect of Glc analogs treatment on cotyledon greening. Seeds were sown on MS agar plates with 400
mM mannitol, 0.02 mM 2-DG or 20 mM 3-O-methylglucose (3-OMG) and permitted to grow for 7 d, and seedlings with green
cotyledons were counted (triplicates, n = 50 each). Error bars represent standard deviations. Differences among the WT, atapr2-2, and
two AtAPR2-overexpressing (OX1-3 and OX1-4) plants grown in the same conditions are significant at the 0.05 > P > 0.01 (*) level.
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that AtAPR2 regulates the expression of these Glc marker

genes under Glc condition. However, the expression levels

of HXK1, PR5 and PAL1 in WT and AtAPR2-overexpressing

plants seems to be very similar under Glc condition. This

likely indicates that the overexpression of AtAPR2 by itself

is not sufficient for the induction of Glc-related genes, and

may need additional components.

Discussion

APR catalyses a highly regulated step in sulfate reduction

and plays an important role is control of the flux through the

pathway (Mugford et al. 2011). Sulfur assimilation is one of

three assimilative pathways that converge to form cysteine,

the central sulfur-containing metabolite in plants. In addition

to the thiol group of cysteine derived from sulfur assimilation,

this compound also contains an amino group derived from

nitrogen metabolism, and a carbon skeleton derived from

carbon assimilation. These three pathways need to be

coordinated to deliver the cysteine necessary for growth and

development. In the context of the present discussion, it is

especially important to note that expression of AtAPR2 is

Glc-responsive. According to quantitative analysis of AtAPR

isoforms expression during Glc treatment, AtAPR isoforms

are up-regulated by Glc (Fig. 2). In this study, the transgenic

plants overexpressing AtAPR2 show late flowering and the

atapr2-2 T-DNA mutant show early flowering phenotype

compared to its WT plants grown at a long-day condition

(Fig. 1), suggesting that flowering time response in Arabidopsis

involves AtAPR2.

The results of the present paper show that the AtAPR2-

overexpressing plants were demonstrated to be more

insensitivity to exogenous Glc but not mannitol than were the

WT and atapr2-2 mutant (Fig. 3). This clearly demonstrates that

the carbohydrate effect is not mediated via an increase in the

osmotic potential of the nutrient solution.

Glc is most likely the predominant hexose signal in gene

regulation in plants and other organisms. Just like sucrose,

Glc represses photosynthesis and germinative and postger-

minative developmental programs in different plant systems

(Smeekens 2000; Rolland et al. 2002). Glc is phosphorylated

in plant cells by both unspecific hexokinases (HXKs) and

Glc-specific HXKs (glucokinases). The Glc analog 2-DG

and Man are transported into the plant cells and phosphorylated

by HXK to 2-DG-6-phosphate (2-DG-6-P) and Man-6-phosphate

(Man-6-P), respectively (Loreti et al. 2001). Two other Glc

analogs, 6-deoxyglucose (6-DG) and 3-OMG, are transported

Fig. 5. Expression of sugar-regulated genes in atapr2-2 mutant and AtAPR2-overexpression transgenic plants. mRNA levels were
determined by qPCR using total RNA from 10-d-old seedlings, which were exposed in 6% Glc with gentle shaking for indicated time.
Actin8 was used as an internal control in qPCR. Differences between the expression of HXK1 (A), PR5 (B), PAL1 (C) or RBCS1 (D) in
Arabidopsis seedlings untreated and treated with Glc stress are significant at the 0.05 > P > 0.01 (*) or the P < 0.01 (**) levels.
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into the cells but not phosphorylated by HXK (Smeekens

2000; Loreti et al. 2001; Rolland et al. 2002). Generally, Glc-

induced repression of photosynthesis and seed germination

can be mimicked by 2-DG and Man, but not by 6-DG or 3-

OMG, demonstrating that hexose transport as such does not

suffice for gene repression, but that the sensor is intracellular

and that hexose phosphorylation is essential. Frc is also

phosphorylated by HXK and it is likely that this mediates

signals via the same pathway as Glc. AtAPR2-overexpressing

transgenic plants showed enhanced insensitivity to Glc in

comparison to the WT, whereas the atapr2-2 lines displayed

enhanced sensitivity to Glc in cotyledon greening (Fig. 3),

which implies that AtAPR2 is a component in the regulation

of Glc or Glc-mediated stress response pathways in Arabidopsis.

As in the Glc assay, T-DNA mutant plants were hypersensitive

to low concentration of 2-DG, as shown by the inhibition of

cotyledon greening (Fig. 4). The AtAPR2-overexpressing

transgenic plants were 2-DG hyposensitive and appeared

green (Fig. 4). By testing other Glc analogs, 3-OMG, Frc or

Man treatments resulted in no significant differences in the

cotyledon greening rate among WT, atapr2-2 and AtAPR2-

overexpressing plants (Figs. 4 and S2). These observations

suggest that AtAPR2 is a necessary component for the Glc-

triggered developmental leaf growth process. 

The evidence does not clarify the exact function that

AtAPR2 plays in flowering time and Glc response control,

whether it is part of a signaling or response pathway or

whether the phenotype results from a pleiotropic effect of

changing AtAPR2 expression.

Materials and Methods

Plant Materials, Growth Conditions and Glc Induction

Arabidopsis (Col-0) plants were grown in growth chambers under
intense light (120 µmol m−2 s−1) at 22 oC, 60% relative humidity, and a
16 h d length. The AtAPR2 T-DNA insertion line CS851804 (atapr2-2)
was acquired from the Arabidopsis T-DNA insertion collection of the
Arabidopsis Biological Resource Center (http://www.arabidopsis.
org). In order to select plants homozygous for the T-DNA insertion,
the gene-specific primers 5’-ATTAGGTTATCTGATCGAACCC-3’
and 5’-GATGTTCCCTTTGTGTAGACC-3’ (forward and reverse,
respectively) were utilized for the atapr2-2 line. Plants yielding no
PCR products with the gene-specific primers were subsequently
tested for the presence of the T-DNA insertion using the gene-specific
forward primer in combination with the T-DNA left border specific
primer 5’-AACGTCCGCAATGTGTTATTAAGTTGTC-3’. The plants
were challenged with Glc via the submersion of 10-d-old Arabidopsis
seedlings in a solution containing 6% Glc. Samples were obtained at
0, 3, 6 and 12 h of Glc treatment, frozen in liquid nitrogen, and stored
at -80oC.

Overexpression Construct of AtAPR2

Total RNA was isolated from Arabidopsis leaves using Trizol reagent
(Invitrogen, Carlsbad, CA, USA). RT-PCR was utilized to obtain a

full-length AtAPR2 cDNA (At1g62180). The cDNA was then cloned
into the pENTR1A vector (Invitrogen) for DNA sequence analysis.
RT-PCR primers were: forward primer 5’-ACGTGGATCCAGATGGC-
TTTAGCTGTTACTTC-3’ and reverse primer 5’-ACGTGAATT-
CAGTCACCGAAGAAGATTCACAAAC-3’. Amplification proceeded
for 35 cycles as follows: 94oC, 30 sec; 57oC, 30 sec; 72oC, 1 min.
After cloning into pENTR1A, the final construct was generated by LR-
reaction with pEarleyGate100 vector (Earley et al. 2006). The
resulting construct was introduced into A. tumefaciens strain GV3101
by in planta vacuum infiltration. Homozygous lines (T3 generation)
from 11 independent transformants were obtained and two lines
(OX1-3 and OX1-4) evidencing high levels of transgene expression
were selected for phenotypic characterization. Kanamycin resistance
of the T2 generation from these two selected lines segregated as a
single locus.

Extraction of RNA and RT-PCR

Total RNA was extracted from the frozen samples using the Plant
RNeasy extraction kit (Qiagen, Valencia, CA, USA). In order to
remove any residual genomic DNA in the preparation, the RNA was
treated with RNAse-free DNAse I in accordance with the manufacturer’s
instructions. The concentration of RNA was spectrophotometrically
quantified and 5 µg of total RNA was separated on a 1.2%
formaldehyde agarose gel to verify the concentration and monitor the
extraction integrity. RT-PCR was employed to measure the levels of
AtAPR2 expression in WT, mutant and transgenic plants, using 500
ng of total RNA together with the following primers: AtAPR2: forward
(5’-AACGCTGAGTCACATTCACGAAGCG-3’) and reverse (5’-
GAAAGTTCCACACATCAGCTCCTTC-3’); Actin8 (At1g49240):
forward (5’-TGCCTATCTACGAGGGTTTC-3’) and reverse (5’-GTC-
CGTCGGGTAATTCATAG-3’). After 27 PCR amplification cycles,
20 µL of each RT-PCR product was loaded onto a 1.2% (w/v) agarose
gel to visualize the amplified DNA.

Stress Tests

For the Glc, Frc and Man stress tests, seeds were sown on MS
medium (Murashige and Skoog 1962) medium supplemented with
6% Glc, 6% Frc and 0.1% Man, respectively, grown in a growth
chamber, and assessed for percentage of cotyledon greening after 7 d.
Experiments were conducted in triplicate for each line (50 seeds each).
To test osmotic stress, seeds were sown on MS medium supplemented
with 400 mM mannitol. Growth and phenotypic assessment was as
described for the sugars. For 2-DG stress test, seeds were sown on
MS medium supplemented with 0 and 0.01 mM 2-DG. Growth and
phenotypic assessment was as described for the sugars. For 3-OMG
stress test, seeds were sown on MS medium supplemented with 0 and
25 mM 3-OMG. Growth and phenotypic assessment was as described
for the sugars.

qPCR

Total RNA was extracted from the variously-treated 10-d-old Arabidopsis
seedlings using an RNeasy Plant Mini kit (Qiagen). qPCR was carried
out using the SensiMix One-Step kit (Quantance, London, UK) and a
Rotor-Gene 6000 quantitative PCR apparatus (Corbett Research,
Mortlake, NSW, Australia). Arabidopsis Actin8 was used as the internal
control. Results were analyzed using RG6000 1.7 software (Corbett
Research). Quantitative analysis was carried out using the Delta Delta
CT method (Livak and Schmittgen 2001). Each sample was run in three
independent experiments. The reaction primers utilized were: AtAPR1
(At4G04610), forward 5’-CTCGTTTCGGTGTTTCATTGGAGCC-3’
and reverse 5’-ACAATCCCTTGCTCTAACCAAACC-3’; AtAPR2
(At1G62180), forward 5’-AACGCTGAGTCACATTCACGAAGCG-3’
and reverse 5’-GAAAGTTCCACACATCAGCTCCTTC-3’; AtAPR3
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(At4G21990), forward 5’-GGCTTCTCTGAGTTTGTCCGGGAAG-3’
and reverse 5’-TCCAAGCACGTAAACCCTTCAACGC-3’; HXK1
(At4G29130), forward 5’-GACGAACCCACCAAGCTCGAG-3’ and
reverse 5’-TGCATCTCAACGGTCATAGC-3’; RBCS1 (At1G67090),
forward 5’-CACGGATTTGTGTACCGTG-3’ and reverse 5’-CTTTA-
GCGACTCATGGTTC-3’; PR5 (At1G75040), forward 5’-CACTCT-
GGCTGAATTCACTC-3’ and reverse 5’-ACCTCTCACAGGCAC-
TCTTG-3’; PAL1 (At2G37040), forward 5’-GGAACAAATACAATT-
CCTTAAC-3’ and reverse 5’-GCACCAAAACCAGTAGTAAC-3’;
Actin8, forward 5’-TGCCTATCTACGAGGGTTTC-3’ and reverse 5’-
GTCCGTCGGGTAATTCATAG-3’.
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