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Abstract
The geoheritage value of sedimentary building stones has mainly focused on physical sedimentary structures and body fossils. By
contrast, little attention has been placed on the geoheritage significance of ichnofabrics, which are the sedimentary fabrics that
have been reworked by organisms. This study aims to fill this gap by analysing the ichnofabric found on the buildings of Piazza
della Vittoria, in Genova (Italy). Here, unusually visible and well-preserved specimens of the fossil burrow Bichordites are
observed on the historical buildings designed byMarcello Piacentini, one of the local most prominent architects of the 1930s. The
Bichordites of Piazza della Vittoria are winding meniscate burrows with a central string-like structure. Here, we interpret this
ichnofabric as the result of the activity of a community of echinoids bioturbating a sand wave system. We have also located the
historical quarry that provided material for the studied buildings with the same ichnofossils exposed. Surprisingly, the cuts on
display on the buildings are much nicer than those in the outcrops and more taxon specific characteristics can be observed just on
the tiles rather than in the field. For all these reasons, the geoheritage value of the Piazza della Vittoria ichnofabric relies in its
unique scientific significance, the cultural value, and its potential future applications in research, teaching, urban geotourism and
reference site.
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Introduction

“Architecture is a visual art and the buildings speak for
themselves”

– Julia Morgan, architect

Since Neolithic times, humankind has strongly relied on
rocks to create buildings, structures and sculptures (Pereira
and Marker 2016). As such, building stones are fundamental
elements of cultural landscapes worldwide, being recognized
as heritage features under the cultural, historical, archaeolog-
ical, architectural and aesthetical perspective (Brocx and
Semeniuk 2019; Todaro 2019). In addition, building stones
can be of geoheritage significance in that they (1) manifest
features important to the geological sciences in education
and research, (2) raise the consciousness of the public and
(3) are rare or of major historical/cultural value (Brocx and
Semeniuk 2019).

In sedimentary building stones, any of these heritage as-
pects is intimately linked to fabric and colour, both of which
commonly depend on the biophysical processes acting in the
depositional environment. For instance, weathering of iron
minerals in a semi-arid depositional environment is responsi-
ble for the red colour of the Exeter Castle (UK) and Silves
Castle (Portugal), built with the Permian-Triassic New Red
Sandstone (Building Stones Database 2020) and the Late
Triassic “Grés de Silves”, respectively. Lisegang rings are
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spectacular diagenetical features of the Late Cambrian Umm
Ishrin sandstones where the city of Petra was built (Seilacher
2008). Permian winds originated the cross-laminated fabric of
the building stone used for the Wribbenhall Railway Viaduct
(UK) (Building Stones Database 2020). The eighteenth-
century fountain in Piazza Unità (Trieste, Italy) bears abun-
dant fossil of Cretaceous rudists; this provides a ‘blooming’
aspect to the building stone, which is indeed known as
‘Flowery Aurisina’ (‘Aurisina Fiorito’). Several other exam-
ples of the geoheritage importance of fossil-bearing building
stones have been described worldwide (e.g., Robinson 1993,
1997; Silva and Cachão 1998; Cachão et al. 1999; Gaffikin
1999; Sutherland 2000; Pätzold 2002; Fernandes and Corrêa
2007; Fernandes et al. 2008; Silva 2009; Palacio-Prieto 2014;
Rodrigues et al. 2014).

Whilst physical sedimentary structures and body fossils are
widely recognized as determinants of the fabric of sedimenta-
ry building stones, the role of biological reworking
(bioturbation) is almost ignored. Bioturbation can take several
forms, including tunnels created by burrowing trilobites (Neto
de Carvalho and Baucon 2016), trails produced by insects
(Minter et al. 2007), displacement of soil by plant roots
(Alonso-Zarza et al. 2008) and footprints left by dinosaurs
(Mateus and Milan 2009). Bioturbation tends to replace the
primary fabric of sediment by the ichnofabric, the overall fab-
ric of a sediment that has been reworked by organisms (Taylor
et al. 2003).

In the context of geoheritage, there is little and sparse ref-
erence to ichnofabric-bearing building stones. This is surpris-
ing because ichnology, the study of life-substrate interactions,
is explicitly cited in the landmark paper of Brocx and
Semeniuk (2007) about the history, definition, scope and scale
of geoheritage. A prominent exception are the flagstones of
the cities of Araraquara and S. Carlos, Brazil (Fernandes and
Corrêa 2007; Fernandes et al. 2008). Sandstones from the
Botucatu Formation were quarried since the beginning of the
twentieth century; only in Araraquara 585 trace fossil-bearing
flagstones, including tracks of dinosaurs, early mammals and
insects, were identified and protected under Municipal Law
(Francischini et al. 2020). Another example is the case of at
least seven villages of the mountain area of Sierra de Peña de
Francia, near Salamanca (Spain), with special emphasis to
Monsagro, where the inhabitants has selectively collected
since the middle twentieth century rock slabs from the
Lower Ordovician Armorican Quartzite covered by trilobite
burrows (Cruziana) and other trace fossils to decorate façades,
streets, communal fountains and even the walls of the church
(Martínez-Graña et al. 2016; Gutiérrez-Marco et al. 2019).
The application of Cruziana slabs in the decoration of public
buildings can be found nowadays in Portugal in some villages
from Central Portugal, including Penha Garcia, Matagosa and
the isolated Chapel of ‘Nossa Senhora dos Matos’ (Neto de
Carvalho and Cachão 2005).

Despite these prominent examples, the study of
ichnofabrics in building stones has been ignored not only in
the field of geoheritage, but also in the field of ichnology
itself. Exceptions are few, and sparse in time. For instance,
one of the earliest published reports of trace fossils in building
stones is that of Shrock (1934), briefly describing worm-like
trace fossils from the building stones of Wisconsin, USA;
these ichnofabric-forming traces were recently attributed to
the ichnogenus Neoeione by Boyd and McIlroy (2018).
Some of the best-known exceptions are represented by the
research on the Spanish ornamental stone known as Bateig
Fantasia Stone, which bears abundant echinoderm burrows
(Bichordites) (Bland et al. 2001; Gibert and Goldring 2007,
2008). A new genus and species (Lapillitubus montjuichensis)
of fossil burrow has recently been detected in the building
stones of the modernist architecture of Barcelona
(Belaústegui and Belaústegui 2017; Belaústegui et al. 2018).
It should be noted that building stones can also foster studies
on vertebrates, as shown by the dinosaur tracks reported from
the 1930s bridges of the Gettysburg National Military Park,
USA (Kenworthy and Santucci 2006).

This study aims to fill these gaps by analysing the
ichnofabric found on the buildings of Piazza della Vittoria,
Genova, Italy. Here, remarkably visible and well-preserved
specimens of the trace fossil Bichordites can be observed on
the historical buildings designed by Marcello Piacentini, one
of the most prominent starchitects of the 1930s. In light of
these observations, the goal of this paper is to answer the
following research questions:

1) What is the behaviour and palaeoenvironment corre-
sponding to the Piazza della Vittoria ichnofabric?

2) Why the architect Marcello Piacentini used ichnofabric-
bearing rocks as building stones in the Piazza della
Vittoria?

3) What is the geoheritage value of the Piazza della Vittoria
ichnofabric?

4) What is the extraction site of the ichnofabric-bearing
building stones?

Materials and Methods

This paper examines the ichnofabric preserved in the building
stones of Piazza della Vittoria, Genova, Italy (N 44° 24′ 11′′, E
8° 56′ 40′′) (Fig. 1) and those of ‘Cava Vecchia’ (‘Old
Quarry’, N 44° 9′ 44′′, E 8° 19′ 2′′; Verezzi, SV) (Fig. 2).
The ichnofabric-bearing building stones have been sedimen-
tological and ichnologically described on a cm-scale in
March 2019 and January 2020. Bioturbation intensity was
quantified using the bioturbation index (BI), the grades of
which are BI 0 (no bioturbation), BI 1 (1–4% bioturbation:
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sparse), BI 2 (5–30% bioturbation: low); BI 3 (31–60% bio-
turbation: moderate); BI 4 (61–90% bioturbation: high); BI 5
(91–99% bioturbation: intense); and BI 6 (100% bioturbation:
complete) (Reineck 1967; Frey and Pemberton 1985; Gingras
et al. 2011). Width of 14 specimens was measured using a ruler.
The studied ichnofabric was photographed and georeferenced
using a camera with integrated GPS (Nikon AW-100).

The same approach was followed during fieldwork, which
was carried out at the quarry known as Cava Vecchia
(Fig. 2a). The field site was selected because it is the most
likely extraction site of the ichnofabric-bearing building
stones of Piazza della Vittoria. This is demonstrated by his-
torical documents (dossier n.19/36 and 49/37 Archivio Storico
di Genova) reporting that the architect Marcello Piacentini
used an ornamental stone from the surroundings of Finale
Ligure. In this area, the only geological unit with the charac-
teristics of the ichnofabric-bearing building stones is the
Finale Ligure Limestone. Based on existing literature about
this unit (Bonci et al. 2019a, b), the ichnofabric-bearing build-
ing stones present the same texture, colour, and body fossils of
the Verezzi Member of the Finale Ligure Limestone. This unit
crops out in a very restricted area (less than 2 km2; Fig. 2b),
within which Cava Vecchia is the largest historical quarry.

The stratigraphic succession exhibited in the study area
comprises the Verezzi Member (Miocene; Langhian-
Serravallian) of the Finale Ligure Limestone (Aquitanian-
Serravallian) (Fig. 2). Three thin sections were realized from
rock samples and observed at the petrographic microscope
(Leitz Laborlux 12 Pol) and at the stereomicroscope
(Exacta+Optech GZ808). In this paper, we use the building
stone nomenclature listed in Table 1.

Geologic, Architectonic and Historical Setting

Historical and Architectonic Setting

Piazza della Vittoria has been designed by Marcello
Piacentini, who won the first public concourse (1923) for the
project of a new, modern square in Genova and a commemo-
rative altar for the World War I fallen soldiers (Cevini 1989;
Balletti and Giontoni 1990; Brancucci and Spesso 2016).
Because of many contrasts between local administration, gen-
oese architects, local building companies and the central gov-
ernment, the realization works had been delayed and started in
the 1930s (Cevini 1989; Balletti and Giontoni 1990;

Fig. 1 The urban study site: Piazza della Vittoria. a Location of the
buildings bearing the fossil burrow Bichordites. Dashed lines indicate
the borders of Piazza della Vittoria. Legend in Fig. 2a. The map is
based on OpenStreetMap data. b Pillars with a dense Bichordites

ichnofabric and the arch located at the center of Piazza della Vittoria.
Shadows and highlights have been adjusted with the open source
software GIMP to reproduce a wider range of luminosity
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Fig. 2 The field study site: Cava Vecchia. a Location of the study site. b
Geological map of the study site and its surroundings. In the pictured area
four of the five members of the Finale Ligure Limestone crop out.
Modified from Bonci et al. (2019a). c Stratigraphical scheme of the field

study site. Scheme based on Boni et al. (1968). The studied unit (Verezzi
Member) is highlighted. It should be noted that in the study site three of
the five members of the Finale Ligure Limestone crop out
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Brancucci and Spesso 2016). The definitive project consisted
in a square surrounded by six buildings with the memorial
altar in the geometric centre. All the design and construction
phases were supervised by Piacentini, but there were also
other architects who contributed at the modern square design:
Beniamino Bellati, Aldo Camposampiero, Cristoforo Ginatta
and Giuseppe Tallero (Cevini 1989; Balletti and Giontoni
1990; Brancucci and Spesso 2016).

The ichnofabric-bearing building stones are here identified
as Pietra di Verezzi (‘Verezzi Stone’, also known as Pietra
Lara), which is the commercial name given to a type of
Pietra di Finale dimension stone s.l. (Bonci et al. 2019b).
From a stratigraphic perspective, the Pietra di Verezzi belongs
to the Verezzi Member of the Finale Ligure Limestone.

Geologic Setting

The Finale Ligure Limestone crops out in a very limited area
(approximately 5 km2) of the Ligurian Alps (Italy), compris-
ing the towns of Verezzi, Finale Ligure, Calvisio and Boragni.
FollowingVanossi et al. (1984) and Giammarino et al. (2002),
the Finale Ligure area is largely dominated by tectonic units of
the Briançonnais Domain (upper Carboniferous—upper
Jurassic in the study area). According to the same authors,
these units are unconformably overlain by post-orogenic to
recent sedimentary deposits, among which the Finale Ligure
Limestone and its ‘Tertiary substrate’. The Finale Ligure
Limestone Formation has been formally established by Boni
et al. (1968) and accepted by Dallagiovanna et al. (2011);
Brandano et al. (2015) replaced the formal ‘Finale Ligure
Limestone Formation’ with the informal unit ‘Pietra di
Finale Formation’ and provided more refined age for this unit.
According to Boni et al. (1968), the Finale Ligure Limestone
is transgressive on the Tertiary substrate or directly on the
Briançonnais units.

The Finale Ligure Limestone Formation is approximately
150-m thick and is dominated by bioclastic limestone facies.
The fossil content of the Finale Ligure Limestone is abundant

and includes corals, bivalves, brachiopods, echinoids, shark
teeth, foraminifera and codiacean and coralline algae. In this
paper, we follow the stratigraphic nomenclature of Boni et al.
(1968) because it is correctly formalized, whereas ‘Pietra di
Finale’ is a name pertaining to trade, historical/archaeological
and touristic context. Therefore, in this work, we follow the
nomenclature of Boni et al. (1968) and the biostratigraphical
dating of Brandano et al. (2015). Accordingly, the Finale
Ligure Limestone is formed, from bottom to top, by five
members:

1. Poggio Member (about 60-m thick; Aquitanian—
Burdigalian): conglomerate and sandstone with minor
calcarenite lenses. Bivalve fossils are abundant.

2. Torre di Bastia Member (25–70 m; Aquitanian—
Burdigalian): marl, claystone and sandstone with abun-
dant benthic and planktonic foraminifera.

3. Verezzi Member (about 50 m; Langhian—Serravallian):
bioclastic limestone with frequent bivalve coquina.
Calcarenite and sandstone locally found. The fossil record
includes echinoids, bivalves, solitary corals, brachiopods,
shark teeth and trace fossils.

4. Rocce dell’Orera Member (15–40 m; Langhian—
Serravallian): bioclastic limestone with abundant
siliciclastic fraction. Conglomerate and sandstone facies
are also common. Fossil record includes bryozoans, bar-
nacles, echinoids, bivalves, brachiopods, shark teeth, and
rare corals, codiacean algae and benthic foraminifera.

5. Monte Cucco Member (about 200 m; Langhian—
Serravallian): bioclastic limestone. Sandstone and con-
glomerate lenses are rare. Fossils are abundant and in-
clude corals and codiacean algae, bryozoans, barnacles,
echinoids, bivalves, brachiopods, shark teeth, and rare
coralline algae and benthic foraminifera.

The depositional environment of the Finale Ligure
Limestone is not yet fully understood. Two major environ-
mental interpretations have been proposed: the gulf

Table 1 Definitions of the major building stone terms used in this paper

Term Definition Reference

Building stone A general, nongeneric term for any rock suitable for use in construction Neuendorf et al. (2005)

Cladding slab Thin slab of stone used as external, non-load-bearing covering to building structure McMillan et al. (1999); Primavori (2004)

Dimension stone Building stone that is quarried and prepared in regularly shaped blocks
according to specifications

Neuendorf et al. (2005)

Efflorescence Product of the crystallization of substances, generally with a whitish colour
and powdery/stringy appearance on the surface of a stone artefact

Primavori (2004)

Flagstone Fissile, micaceous laminated sandstone, suitable for roofs and pavements McMillan et al. (1999)

Ornamental stone Generic term embracing all natural stones that can be used as ornamental
material essentially with cladding and coverage functions, subordinately
with structural functions

Primavori (2004)

Pillar Free-standing vertical block of stone, circular or polygonal in plan McMillan et al. (1999)

Geoheritage (2020) 12: 70 Page 5 of 22 70



hypothesis (Boni et al. 1968) and the mixed wedge hypothesis
(Brandano et al. 2015). According to the first hypothesis, the
depositional environment of the Finale Ligure Limestone was
a gulf with a relatively restricted connection with the open sea.
Sedimentation took place on a shallow water abrasion plat-
form at the foot of a marine cliff. Here, carbonate sedimenta-
tion was developed, locally influenced by siliciclastic inputs
from the continent. Otherwise, the mixed wedge hypothesis,
which specifically focuses on the upper part of the Finale
Ligure Limestone (Verezzi Member, Monte Cucco Member,
and Rocce dell’Orera Member) considers the depositional set-
ting as a mixed carbonate-siliciclastic prograding wedge
where halimedaceans flourished under a constant and conspic-
uous terrigenous input.

The paleogeographic domain of the Finale Ligure
Limestone is difficult to ascertain because its petrographic
and palaeontological features differ from those of coeval units
of the Tertiary Piedmont Basin (NW Italy) or of the SE France
and N Corsica (Bonci et al. 2019a and references therein).
However, on the basis of the modern geographic position
and the tectonic setting (as discussed by Marini 1986), a
Ligurian-Balearic Ocean pertinence seems to be the more re-
liable hypothesis.

The Verezzi Member, which is the source of the
ichnofabric here investigated, consists of reddish bioclastic

limestone with frequent shell coquinas; the siliciclastic frac-
tion is subordinate (Boni et al. 1968; Bonci et al. 2019a). The
fossil content includes very abundant pectinids (e.g. Chlamys
bollenensis (Mayer-Eymar), Aequipecten macrotis
(Sowerby), Aequipecten malvinae (Dubois de Montpéreux)
and Talochlamys multistriata (Poli), abundant echinoids, rare
solitary and colonial corals, brachiopods (Terebratula spp.
and Gryphus spp.), oysters, small shark teeth, small benthic
forams (mainly textulariids and miliolids) and fragments of
halimedacean algae (Boni et al. 1968; Brandano et al. 2015;
Bonci et al. 2019a). The depositional setting is interpreted to
be comprised between the shoreface-offshore transition
(Brandano et al. 2015).

Results

The Piazza della Vittoria ichnofabric consists of biocalcarenites
reworked by the ichnogenus Bichordites (Fig. 3). The host rock
is reddish in colour and is frequently rich in bivalve body fossils,
which are mostly represented by disarticulated and fragmented
shells of pectinids. Observations at the Cava Vecchia field site
indicate that the Bichordites-bearing layers alternate with virtual-
ly unbioturbated layers, which consist of cross-bedded
biocalcarenites, or shell coquinas. Canalizations are visible and

Fig. 3 General features of the Bichordites ichnofabric. a Bichordites
showing meniscate texture (me) and dark margins (ds). Small specimens
(sb) are associated with larger ones. b Bichordites consisting of curved
(cu) and straight (st) segments. Drain (dr) is visible in the central part of

the structure. c Vertical support of an arch with numerous ichnofabric-
bearing slabs. Several specimens of Bichordites are truncated along the
same line (tl), thus suggesting an erosional episode. Sides of the traces
(ds) are darker than their central parts
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are never exceeding 1.5 m in size, mud drapes are present at
specific intervals and are alternating with low-angle cross strati-
fied beds (Fig. 4). Layer thickness typically ranges between 1 and
3 m.

Thin sections of the biocalcarenites of the Cava Vecchia
show a very subordinate (< 5%) siliciclastic fraction, compris-
ing quartz, mica (biotite and white mica) and feldspars
(Fig. 6). Opaque phases (oxides-hydroxides) are also com-
mon. However, sparry cement and bioclasts are largely dom-
inant in the observed thin sections. The bioclastic fraction
includes fragments of bivalves, bryozoans, solitary corals,
codiacean (halimedacean?) algae, coralline algae and benthic
forams. Porosity is high.

The Bichordites of Piazza della Vittoria are winding, co-
planar burrows presenting a crudely meniscate texture
(Fig. 3a). Burrow width ranges from 3.0 to 7.9 cm. Rare spec-
imens present a central string-like structure (referred as to
drain, e.g. Belaústegui et al. 2017) that cross-cut menisci
(Fig. 3b). Traces appear darker at their margins, thus indicat-
ing a different texture with respect to the more central areas of
the burrow (Fig. 3c). The difference in texture is also sug-
gested by differential weathering, i.e. the margins of each

specimen of Bichordites are normally more weathered than
the rest of the trace (Fig. 5). This is observed also in the field
site (Cava Vecchia).

Bioturbation intensity is typically moderate (BI3) to
intense (BI5). On the horizontal plane, large bioturbated
patches show sharply transitions to areas without distinct
burrows (Fig. 7). The full extent of each bioturbated patch
is not fully determinable from the Piazza della Vittoria
specimens because of the limited size of the slabs and
logs. However, field observations at the Cava Vecchia site
suggest that bioturbated patches can be tens of meters
wide and ca. 1–1.5-m thick. Within-patch observations
suggest that individuals of the same size tend to occur
together in the same bioturbated patch (size segregation),
although some exceptions have been observed.

At Piazza della Vittoria, several vertical sections of
Bichordites can be observed (Fig. 8a). In oblique sections,
Bichordites reveals its meniscate organization and, more rare-
ly, an apex-like structure (Fig. 8b). In transverse sections,
Bichordites typically present hemispherical outlines
(Fig. 8c). Intriguingly, thin sections show no textural contrast
between Bichordites and its matrix (Fig. 6).
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The vertical distribution of bioturbation has been determined
at the Cava Vecchia field site. Here, bioturbated layers (BI3–5)
alternate with virtually unbioturbated cross-bedded layers
(sporadically heterogeneous distribution of bioturbation sensu
Gingras et al. 2011). In a single case, Bichordites selectively
reworks a channel-like structure of metrical width, leaving the
surroundings unbioturbated (Fig. 9b).

Discussion

The results of this study show that the ichnological character-
istics of Piazza della Vittoria are fully comparable with those

of Cava Vecchia. However, the degree of manifestation of the
trace fossils (trace fossil visibility sensu Savrda 2007) of
Piazza della Vittoria is better than that of the Fossil Quarry,
for which reason we placed emphasis on the Piazza della
Vittoria ichnofabric. Conversely, sedimentary structures (e.g.
cross-bedding) are visible in the field site only. Consequently,
the interpretation that follows is based on both the urban and
field site and can be applied to the Verezzi Member.

Behaviour and Tracemaker

Most of the Bichordites from Piazza della Vittoria are self-
avoiding winding traces, which suggests a feeding behaviour.

Fig. 5 Differential weathering. Themargins ofBichordites are selectively
weathered as a result of differences in texture. a The Bichordites
ichnofabric can be spotted at distance because of differentially
weathered burrow margins (dw). b Tortuous specimens of Bichordites

showing differentially weathered sides of the burrow (dw). c Differential
weathering in Bichordites influenced conservation strategies, as shown
by the parts restored with putty (rp)
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In fact, self-avoiding is an efficient resource-finding move-
ment strategy because it prevents exploring areas that have
been already explored (Seilacher 2007). This fits with the
classical interpretation of Bichordites (D’Alessandro and

Uchman 2007; Gibert and Goldring 2007; Nara 2013;
Caruso 2015; Bernardi et al. 2019).

The Bichordites of Piazza della Vittoria consist of a
meniscate part and, when preserved, a smaller central string.

Fig. 6 Microfacies analysis of the Verezzi member. The samples have
been collected at Cava Vecchia. a Fill of Bichordites with quartz (qz),
opaque phases (op, probably hydroxides) and a bivalve fragment (bi).
Picture imaged at the stereomicroscope against a black background.
Incident light. b Texture of the Verezzi member. The microphotograph

shows quartz (qz) and K-feldspar (kf). Picture imaged at the polarizing
microscope, transmitted light, crossed nicols. c Microphotograph show-
ing white mica (mi) and sparry cement. Picture imaged at the polarizing
microscope, transmitted light, crossed nicols
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Following the traditional interpretation of Bichordites (Gibert
and Goldring 2008; Belaústegui et al. 2017), the meniscate
part is the product of backfilling, i.e. the echinoid tracemaker
excavated sediment in the front and then transported it to the
posterior part, where it was packed with mucus. The central
string corresponds to a cylindrical tube (drain) constructed to
conduct water away from the burrow (Belaústegui et al.
2017). The open drain was kept behind by action of the
subanal tuft spines and the corresponding tube feet (Gibert
and Goldring 2008; Belaústegui et al. 2017). The presence
of a single drain distinguishes Bichordites from the similar
trace fossil Scolicia (Smith and Crimes 1983; Belaústegui
et al. 2017).

The ichnogenus Bichordites is an iconic ichnogenus docu-
mented from the Palaeocene onwards (Grimmberger et al.
2013; Villegas-Martín and Guimar 2017). Bichordites is at-
tributed to echinoids (Gibert and Goldring 2007, 2008), which
are abundant in the Finale Ligure Limestone. Despite the
abundance, the echinoid diversity of the Finale Ligure
Limestone is relatively moderate and comprises a regular ur-
chin (Stylocidaris) and irregular echinoids of the order
Clypeasteroida (Clypeaster), Spatangoida (Spatangus) and
Echinolampadoida (Echinolampas) (Issel 1886; Mammì
2008). Among these, Stylocidaris and Clypeaster can be ruled
out as producers of Bichordites because their body plan is not
compatible with the shape and function of the burrow.
Bichordites has been traditionally attributed to irregular echi-
noids of the Echinocardium group and, more recently, to
spatangoids of the family Maretiidae and Eupatagidae
(Bromley and Asgaard 1975; D’Alessandro and Uchman
2007; Gibert and Goldring 2007, 2008; Bernardi et al. 2011;

Villegas-Martín and Guimar 2017). However, no
echinocardiid, maretiid or eupatagid echinoids have been
found in the Finale Ligure Limestone. Therefore, the
Bichordites tracemarkers might have been either the
spatangoids or the echinolampadoids, as only those are found.
Alternatively, the Bichordites tracemakers may have not been
documented yet from the studied unit.

Environment of the Bichordites ichnofabric

The interpretation of depositional environments is probably
the best-recognized application for trace fossils (Knaust
2017). In fact, trace fossils are accurate environmental proxies
because they are in situ manifestations of behaviour, which in
turn depends on the prevailing environmental conditions
(Frey and Seilacher 1980). Compared with body fossils, the
environmental information potential of trace fossils is more
specific because trace fossils are rarely transported (Taylor
et al. 2003). This feature is particularly valuable for
interpreting the Verezzi Member because bivalve fossils show
clear evidence of transport, i.e. fragmented and disarticulated
valves. When considering physical sedimentary structures
alone, information can be gathered only about conditions at
the time of deposition, which in many cases can be anomalous
(McIlroy 2004). By contrast, trace fossils provide also infor-
mation about conditions subsequent to the time of deposition.
Trace fossils are particularly useful as environmental proxies
in successions where sedimentary structures are poorly visi-
ble, e.g. because they have been obscured by animal or plant
activity (Taylor et al. 2003). This is clearly the case of the
studied succession.
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Ichnofabric analysis is a highly effective means of
documenting bioturbated sedimentary fabrics and interpreting
their environment (McIlroy 2008). The characteristics of an
ichnofabric depend on physical, chemical and ecological con-
trols (grain size, sedimentation rate, oxygenation, nutrition,
salinity, ethology, community structure and succession), as
well as tiering and colonization style (Taylor et al. 2003).
Consequently, the logic of this section is deriving the physi-
cochemical parameters responsible for the characteristics of
the Bichordites ichnofabric from Finale Ligure Limestone;
these physicochemical conditions can suggest the depositional
setting of the Bichordites ichnofabric, i.e. an environment in
which the derived condition can coexist.

The studied ichnofabric is characterized by a single
ichnofabric-forming taxon, that is, Bichordites. Trace fossil
diversity is commonly taken to be a proxy for the degree of
physicochemical stress, i.e. highly diverse ichnoassociations
reflect optimal conditions, low-diversity ones suggest envi-
ronmental stress (Gingras et al. 2011). Ichnofabrics with few
taxa can also derive from optimal conditions and complex
tiering, e.g. deep-tier structures tend to obliterate shallow-tier
ones (Bromley 1996; Taylor et al. 2003). Nevertheless, there
is no evidence of such processes in the studied ichnofabric.

Consequently, the low diversity of the Piazza della Vittoria
ichnofabric is here interpreted as a highly stressed environ-
ment in which only the Bichordites behaviour allowed
survival.

Low oxygenation is a common source of environmental
stress, but the backfilled nature of Bichordites allows to reject
this hypothesis. Backfilling prevents a direct connection be-
tween the tracemaker and the water column; hence, it requires
well-oxygenated porewaters. In the specific case of
spatangoid echinoids, connection with the seafloor was only
periodically maintained by constructing a vertical respiratory
shaft (Gibert and Goldring 2007, 2008). A similar interpreta-
tion has been provided for the similar echinoid burrow
Scolicia (Löwemark et al. 2006; Gibert and Goldring 2008;
Uchman and Wetzel 2011; Crippa et al. 2018).

The studied ichnofabric has been produced by echino-
derms, which characteristically live within narrow ranges of
salinity (Benton and Harper 2009). This suggests that the
Piazza della Vittoria ichnofabric was produced under normal
marine salinity. This interpretation is also supported by the
large size of the studied Bichordites, whereas reduced size is
one of the most notable characteristics of brackish water
ichnofaunas (Buatois and Mángano 2011; Gingras et al.

Fig. 8 Bichordites in vertical section allow to study the shape in 3d. a
Cladding slab with Bichordites burrows evidenced by white saline
efflorescences. b Vertical sections of Bichordites (se), one of which

shows an apex-like structure (ap) and meniscate organization (me). c
Section of Bichordites (dashed line) where the continuity with the
palaeohorizontal is well-manifested
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2011; Baucon and Neto de Carvalho 2016). Backfilling also
indicates that the substrate was necessarily unconsolidated at
the time of the colonization, i.e. it was a softground. Indeed,
the Bichordites tracemaker backfilled its burrow by moving
sand grains from its front to the back; this would have been
clearly impossible in partially (firmgrounds) or completely
(hardgrounds) consolidated substrates.

Shi f t ing subs t ra tes expla in the observed low
ichnodiversity. In fact, Bichordites is regarded as a typical
trace of highly shifting substrates (Nara 2013), which are a
major source of environmental stress in benthic environments
(Buatois and Mángano 2011). Specifically, shifting substrates
and rapid sedimentation prevent colonization by most benthic
animals, except for rapid burrowers (Nara 2013). This is the
case of echinocardids, which burrow to a depth of 15 cm and

could move through the sand at a speed of 6–8 cm/h
(Buchanan 1966).

The present latitudinal distribution of infaunal echi-
noids, together with their trace fossil record, suggests the
application of Bichordites as a palaeoclimatic proxy.
Accordingly, Bichordites is a common component of tem-
perate and tropical/subtropical climates but is not present
in the Arctic zone (Goldring et al. 2004; Crippa et al.
2018). The climatic interpretation provided here is in line
with that of Brandano et al. (2015), suggesting that the
Verezzi Member deposited in a humid climate with active
carbonate production. Identity of the tracemaker provides a
broad indication of the bathymetric range, although it
should be noted that bathymetry exerts only an indirect
control on trace fossil distribution. One of the modern

Fig. 9 Bichordites at the Cava Vecchia quarry. aWinding specimens ofBichordites. b Bichordites selectively bioturbating a channel fill (bc). c Intensely
bioturbated layer base
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producers of Bichordites, the echinoid Echinocardium
cordatum, l ives at depths from 6 to 15 m in the

Tyrrhenian Sea; deeper (50 m) occurrences are associated
to storm deposits (D’Alessandro and Uchman 2007). Even

Fig. 10 Exterior architecture and ichnofabrics. a Stone wall with an
ichnofabric dominated by Ophiomorpha (Op). The host rock comes
from the Eocene flysch of Cormons. Parco Piuma, Gorizia, Italy. b
Several specimens of Asterosoma (As) are observed in a cladding slab
from Cesarea Street, Genova, Italy. cDry stone wall with several trilobite
burrows (Cruziana; Cr). Armorican Quartzite, Ordovician of Naturtejo
UNESCO Global Geopark. Ichnological information about this

geological unit is found in previous papers (Neto de Carvalho 2006;
Neto de Carvalho and Baucon 2016). d Dry stone wall at Mosqueiro
viewpoint, Naturtejo UNESCO Global Geopark with the fossil burrow
Daedalus halli (Da). Armorican Quartzite, Ordovician. For more
ichnological information on Daedalus from this geological unit, see
Neto de Carvalho et al. (2016a)
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deeper occurrences (up to 230 m) have been reported but
outside from the Tyrrhenian Sea (de Jesus and da Fonseca
1998; D’Alessandro and Uchman 2007; WoRMS 2020).

The alternation between intensely bioturbated layers and
virtually unbioturbated ones (Fig. 4d) suggests fluctuating en-
vironmental conditions. In fact, the distribution of trace fossils

reflects the degree of stability and temporal persistence of
physicochemical conditions (Gingras et al. 2011).
Consequently, the observed sporadically heterogeneous distri-
bution of bioturbation is the result of persistent spatio-
temporal variability in environmental conditions. A question
might, therefore, arise: which were the fluctuating conditions?

Fig. 11 Ichnofabrics as tiles. a Numerous trilobite burrows (Cruziana)
are preserved in each of the building stones of this hotel and restaurant.
Sierra de Peña de Francia, Spain. Ordovician. b Floor tile with winding
specimens of the trace fossil Psammichnites. Moher, Ireland. c Intensely

burrowed building stone in the façade of S. Fosca Church in Venice, Italy.
The yellow panel says ‘first built in 1297; last modification in 1741’.
Rosso Ammonitico facies
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The sedimentation rate is a plausible answer because high
bioturbation intensities are difficult to achieve unless sedimen-
tation rates are at least sporadically slow, whereas very low
levels of bioturbation commonly correlate to elevated rates of
sedimentation (Gingras et al. 2011). In addition, hydrodynam-
ic energy and shifting substrates may have played a role. For

instance, it has been shown that during times of continuous
bar and dune migration under the action of vigorous currents,
organisms may be unable to colonize the shifting substrate
(Hofmann et al. 2012). Accordingly, the colonization window
(i.e. the duration of time potentially available for colonization
to take place; Taylor et al. 2003) was brief during the

Fig. 12 Interior architecture and ichnofabrics. a Wall tile with the
branched burrow Thalassinoides (Th). Unknown age. Brignole station,
Genova, Italy. b Stone bar of a café with several burrows (bu). Rosso
Ammonitico, Jurassic. Arenzano, Italy. c Painting imitating Rosso

Ammonitico. Note the detailed representation of the burrows which
commonly characterize Rosso Ammonitico facies. Artwork by Miata
Marcolini. d Floor tile with the foraging burrow Dactyloidites (Da) and
other burrows (bu). Unknown age. Eataly building, Trieste, Italy
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deposition of the Verezzi Member. According to this interpre-
tation, echinoids colonized the seafloor during relatively short
periods of favourable conditions, followed by heightened in-
tensity of stress factors (hydrodynamic energy, shifting sub-
strates, sedimentation rate).

On the horizontal plane, large bioturbated patches abruptly
transition to areas without distinct burrows. These sharp tran-
sitions could reflect comparably abrupt spatial changes in en-
vironmental conditions. However, the sharp transitions found
in Piazza della Vittoria are accompanied by the truncation of
otherwise continuous traces (e.g. Fig. 3c). For this reason,
these transitions are interpreted as the product of high-
energy events that first eroded bioturbated sediments, and then
filled the erosional through. In other words, these sharp tran-
sitions indicate a post-colonization erosional event rather than
a syn-colonization ecological process. In other cases, biotur-
bation is clearly subsequent to erosion, as manifested by bio-
turbated channel fills (Fig. 9b). In these cases, bioturbating
organisms followed the nutrient-rich fill of channels.

The environment of the Piazza della Vittoria ichnofabric
was a temperate to tropical ecosystem characterized by (1)
normal marine salinity; (2) well-oxygenated porewaters; (3)
erosional events; (4) fluctuating environmental conditions,
with stressed conditions presenting (5) high sedimentation
rate, (6) highly shifting substrates and (7) high hydrodynamic
energy.

These features are characteristic of sand waves, which are
large wave-like bedforms on the seafloor, being a few metres
high and spaced hundreds of metres apart. In fact, sand waves
are common features of shallow, sandy marine and estuarine
environments where strong tidal currents are a dominant force
(Field et al. 1981). Specifically, tidal sand waves are generally
associated with strong currents in the range of 0.5 to 1 m/s
(Tonnon et al. 2007). In the Messina Strait (Italy), where sand
waves are a common bedform, currents higher than 5m/s have
been measured (Santoro et al. 2002). In the studied unit, evi-
dence of current-swept seafloors does not only come from
trace fossils but also sedimentary structures, i.e. cross-
bedding (Fig. 4c, d). Sand wave systems are typified by rapid
sedimentation and highly shifting substrates (Nara 2013); the
migration speed of sand waves can reach several meters per
year (Santoro et al. 2002).

For these reasons, the Bichordites ichnofabric of Piazza
della Vittoria is here interpreted to represent a sand wave
system, deposited in close proximity of the fair-weather wave
base, bordering the lower shoreface conditions. Accordingly,
the colonized seafloor was strongly influenced by tides and,
less intensely or sporadically, by waves. This interpretation is
supported bymultiple lines of evidence. Nara (2013) studied a
Bichordites ichnofabric from the Pleistocene of Japan, sug-
gesting that the Bichordites ichnofabric typically represents
sand wave deposits regardless of its water depths or driving
processes. The link between Bichordites and sand waves is

strongly supported by actualistic observations, e.g. the mod-
ern producer of Bichordites (Echinocardium cordatum) has
been observed in sand wave troughs at approx. 30 m of depth
(Weber et al. 2004). Our interpretation runs on the same line
with the sedimentology-based interpretation of Nembrini et al.
(2017), according to which the Verezzi Member represented a
sand wave system. The presence of mud drapes points to
gently shallower conditions or anyway less energetic with
alternating conditions of bedload transport and slack water
stages. Such structures can sporadically be associated with
sand waves (Allen 1982), but their co-occurrence can point
to an alternation of wave to tide dominated settings.

Sandwaves can be produced by different current types, e.g.
tidal currents, storm-induced currents, fair-weather-generated
currents and gravity flows (Nara 2013). Tidal currents are a
plausible process to explain the sand waves of the Verezzi
Member because of the frequent tidal signatures such as the
canalizations. Indeed, the sedimentological record of the
Verezzi Member includes reactivation surfaces and mud
drapes (Fig. 4), which are typically interpreted to reflect tidal
influence (Nichols et al. 2007). The very limited spatial distri-
bution of the Verezzi Member (less than 1 km2; Fig. 2b) sug-
gests a space-constrained depositional environment. A possi-
ble analogue is represented by the strait of the Golden Gate in
California, where tidal currents accelerate (current velocity >
2.5 m/s) towards the San Francisco Bay and produce a field of
sand waves (Barnard et al. 2006). Accordingly, the Verezzi
Member could have represented a sand wave system at a bay
mouth. It should be noted that the strait scenario is proposed
here as a new working hypothesis and further tectono-
sedimentary data are needed to test it.

Geoheritage Value of the Piazza della Vittoria
Ichnofabric

Geoheritage encompasses features of geology, at all scales,
that are intrinsically important sites or culturally important
sites offering information or insights into the evolution of
the Earth; or into the history of science, or that can be used
for research, teaching or reference (Brocx and Semeniuk
2007, 2019). The Bichordites ichnofabric of Piazza della
Vittoria reflects all these characteristics.

First, the building stones of Piazza della Vittoria are scien-
tifically important because, without the building stones them-
selves, it would have been challenging to describe the
ichnofabric of the Verezzi Member and derive a
palaeoenvionmental reconstitution from it. In fact, the
Verezzi Member crops out in a very limited area (less than
1 km2) where the characteristics of the Bichordites ichnofabric
are not as nicely evident as in Piazza della Vittoria.

Second, Piazza della Vittoria is a culturally important site
because it represents a prominent example of monumentalist
architecture. The presence of the Bichordites ichnofabric in

70 Page 16 of 22 Geoheritage (2020) 12: 70



many of the building stones of Piazza della Vittoria poses
significant challenges to the conservation of the monuments.
Understanding the primary fabric changes, the degree of bio-
turbation and mineralogical composition of the burrow
backfilling and margins is of considerable importance for the
application of methods that may prevent differential
weathering and can be effective in the restoration of pillars
and façades.

Third, the public can appreciate the behaviour of past or-
ganisms and their paleoenvironmental significance through
the building stones of Piazza della Vittoria. This raises the
geological consciousness of the public and, following Brocx
and Semeniuk (2019), it, therefore, represents another
geoheritage aspect of the ichnofabric-bearing building stones.
The ichnofabric-bearing building stones of Piazza della
Vittoria can be easily used for research, science non-formal
education and communication, as a complement for
geotourism activities. Thanks to these three characteristics,
the studied buildings can communicate scientific, cultural
and behavioural aspects to the visitor of Piazza della
Vittoria. Paraphrasing the opening quote of this paper, attrib-
uted to the prominent architect Julia Morgan (see Benaroya
2018: p. 194), the buildings of Piazza della Vittoria speak
through their ichnofabrics.

The present case study encourages the appreciation of the
geoheritage value of other ichnofabric-bearing building
stones, which are commonly used in many urban contexts
(Fig. 10, Fig. 11). It is also especially interesting the work that
have been developed in the city of Araraquara, State of S.
Paulo, Brazil (Francischini et al. 2020). A municipal law es-
tablishes the regulations for protection and restoring, and
against destruction or misuse, of the flagstones applied in
the old town sidewalks, which are rich in dinosaur and other
tracks of scientific relevance. The local museum has an inven-
tory with the distribution of the trace fossil-bearing flagstones
and their conservation status. It also develops educational and
geotourist activities as an extension of the museum agenda.
These activities contribute for the cultural offer of the city and
raise awareness not only of the local community, but of a
broader national and international audience interested in
geoscientific/naturalistic subjects, about the significant pale-
ontological heritage that is available in such unique condi-
tions. This may be the trigger for the development of a
geotourism product based on a unique, unrepeatable experi-
ence (Neto de Carvalho 2009). This is the case of some vil-
lages of Sierra de Peña de Francia, in Castile and León, Spain
(Fig. 11a). Restaurants, public buildings and many private
buildings, especially in the village of Monsagro, have been
decorated since 1950s with quartzite slabs profusely biotur-
bated mostly by trilobite trace fossils, creating a unique iden-
tity. This identity based on the paleontological (ichnological)
heritage is now explored in Monsagro through the recent de-
velopment of an urban route starting from an interpretative

centre dedicated to exploring the trace fossils exhibited in
the streets (Martínez-Graña et al. 2016). The definition of this
unique geotourism product is providing conditions for raising
the offer of services that contribute with a positive feedback to
enhance the identity and the quality of the product itself. This
is the case of the rural hotel named after the main trace fossil,
Cruziana, in the neighbour village of Serradilla del Arroyo
(Castile and León, Spain).

Bichordites ichnofabric from Piazza della Vittoria and the
Cava Vecchia could be integrated in a broader geotourist route
of the city of Genova that combine the appreciation and un-
derstanding of historical monuments with the nature connec-
tion and the natural history of the region provided by the
building stones, natural and man-used outcrops, landscape-
interpreting viewpoints and geomorphosites, similar to other
geotourist routes already developed in urban areas (Silva and
Cachão 1998 and Silva 2009 for Lisbon; Rodrigues et al. 2014
and Rodrigues and Agostinho 2016a, b, c for three cities in the
Algarve region of Portugal; Pätzold 2002 for Bremen; Stern
et al. 2006 and Del Lama et al. 2015 for S. Paulo; Liccardo
et al. 2008 and 2012 for Curitiba; Palacio-Prieto 2014 for the
City of Mexico; Kubalíková et al. 2020 for Brno; Díez-
Herrero and Vegas-Salamanca 2011 for Segovia; and
Fernández-Martinéz and Castaño-de-Luis 2013 for Burgos,
among several other examples).

Why Marcello Piacentini Used Ichnofabric-Bearing
Building Stones?

Trace fossils are beautiful. This may seem a subjective opin-
ion, but historical evidence clearly indicates that humans de-
veloped an aesthetical appreciation for trace fossils and
ichnofabrics as texture differentiators of ornamental rocks.

In fact, calcarenite blocks with trace fossils (Scolicia,
Cardioichnus, Ophiomorpha, Gastrochaenolites) appear to
have been deliberately chosen as building stones of the mon-
umental tombs (tholoi) of La Pastora and Marrubilla (Seville,
Spain; Third Millennium BCE), probably to highlight specific
decorative or symbolic meanings (Cáceres et al. 2019; see also
Cáceres et al. 2014). Statistical data from Late Palaeolithic
archaeological sites demonstrate that humans selectively col-
lected molluscs with bioerosional trace fossils (Oichnus) to
use them as items of personal adornment (Baucon et al.
2012 and references therein). Trace fossils sparked the visual
interest of Leonardo da Vinci (Baucon 2010a) and other em-
blematic figures of the Renaissance such as Konrad Gesner,
Johann Bauhin and Ulisse Aldrovandi (Seilacher 2007;
Baucon 2010b). The Renaissance naturalist Ulisse
Aldrovandi called two specimens of trace fossils
(Cosmorhaphe and Gastrochaenolites) ‘pulcherrimas,’ or
‘beautiful’ (Baucon 2009). Aldrovandi also dealt with
ichnofabrics in ornamental stones by using snakes to represent
the ichnofabric of the ‘Verona Stone’, which is an ornamental
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stone extracted from the Jurassic Rosso Ammonitico
Formation (Baucon 2010b). When artists imitate Rosso
Ammonitico using a technique known as faux marbling,
ichnofabric-forming burrows are reproduced (Fig. 12b–c);
this demonstrates that ichnofabrics are perceived as an integral
part of the aesthetical value of building stones. The same phe-
nomenon is reported for body fossils, e.g. painted rudist
biofabrics, imitating those of the building stone known as
‘Lioz’, can be seen in many churches and chapels all over
Portugal (Silva 2009; see also Barreto et al. 2010).

The reason for this aesthetic appreciation is explained by
the fact that trace fossils are rich in structure. In fact, studies on
visual perception (Sprott 1993; Sphear et al. 2003) proved that
humans have an aesthetic preference for fractal objects and
images with intermediate fractal dimension. These features
are found in many trace fossils; being rich in structure, such
traces have been acknowledged for their instant aesthetic ap-
peal (Baucon 2010b).

This instant aesthetic appeal explains either the long-
standing human interest for trace fossils or the use of some
ichnofabric-bearing geological units as a source for building
stones, both for exterior (Fig. 10) and interior (Fig. 12) appli-
cations. This double side is well-exemplified by the trilobite
burrows of Penha Garcia (Portugal). In fact, the inhabitants of
Penha Garcia have admired for centuries the fossil burrows,
calling them ‘Painted Snakes’ (Neto de Carvalho et al. 2014),
and also used ichnofossil-bearing building stones as a
decoration.

It should be noted that not all ichnofabric-bearing building
stones may have been quarried for their ichnofabric-related
aesthetic qualities (colour, grain texture and pattern). For in-
stance, the Cormons Flysch is the only building stone outcrop-
ping in the area of Parco Piuma (Gorizia, Italy); hence, avail-
ability, not ichnofabrics, is likely to have played a primary role
in its choice (Fig. 10a). The ichnofabric of the Canelas slates
(Neto De Carvalho et al. 2016b) is remarkable but poorly
visible to the untrained eye, hence their appreciation as build-
ing stones is likely to derive from aesthetic qualities other than
those related to ichnofabrics. In other cases, however, the col-
our and the pattern of some building stones markedly derive
from ichnofabric-forming trace fossils (Fig. 12a, b).

Because of the aesthetic appeal of trace fossils, a question
might arise: did the starchitect Marcello Piacentini choose the
Pietra di Verezzi for the aesthetical value of its ichnofabric?
The answer necessarily relies on the history of Piazza della
Vittoria. This history is somehow peculiar, because Piacentini
supervised the Piazza della Vittoria project, for which the
general standards were fixed, but in every building project
there were flexible decorative alternatives chosen by each de-
signer (Cevini 1989; Balletti and Giontoni 1990; Brancucci
and Spesso 2016). Other architects contributed at the modern
square design, i.e. Beniamino Bellati, Aldo Camposampiero,
Cristoforo Ginatta and Giuseppe Tallero. This is reflected by

the use of different ornamental stones in the entrance halls
decoration or for the main facades. For instance, in the Nafta
Palace, Ginatta chose Travertino stone, instead Piacentini de-
cided for a local ornamental stone from Finale Ligure (dossier
n.19/36 and 49/37 Archivio Storico di Genova).
Consequently, it was Piacentini himself that choose the bio-
turbated Verezzi Stone. Closeness to the extraction site is like-
ly to have played a role in this choice since the Verezzi quarry
is less than 100 km from Piazza della Vittoria. However, at the
same distance, there are other quarries with different varieties
of the Pietra di Finale stone with comparable mechanical
properties. For this reason, it is likely that the choice of
Piacentini was guided by the aesthetical qualities of the
Verezzi Stone, which partly derives from its Bichordites
ichnofabric.

This aesthetic role of ichnofabrics could be extended to at
least some of the historical applications of the Verezzi Stone.
The extensive use of the Pietra di Verezzi seems to begin
around the mid-sixteenth century in Genova with the large
construction sites (e.g. Nostra Signora Assunta di Carignano,
Chiesa del Gesù, stately homes of Strada Nuova, Palazzo
Balbi), in Savona (e.g. Sanctuary of Nostra Signora della
Misericordia), in Loano (Savona province, e.g. the cloister
of the Madonna del Carmelo) (Conventi and Murialdo 2019;
Murialdo 2019a, b, c). The use of other commercial varieties
of the Pietra di Finale seems to have taken place earlier, i.e. in
the Roman age. A widespread use of the Pietra di Verezzi
occurred in the twentieth century when it was used as facing
stone for building façades and colonnades in Genova (e.g.
Piazza della Vittoria, Piazza Dante, Palazzo Custo,) and
Savona (e.g. Seminario Diocesano), but also for sculptures
(e.g. Monumento al Marinaio, Genova; Monumento ai
Caduti, Pietra Ligure, Savona) (Murialdo and Servente
2019). The abundance of Bichordites ichnofabrics in
Genova suggests that the Verezzi Member was intensely quar-
ried in the past. It is worthwhile to note that in 1600s the
scientist Giovanni Antonio Magini reported Pietra di Finale
Stone as an appreciable building stone known as ‘arena
congelata’ (frozen sand) rich in shells, teeth and fish bones
(Santamaria 2019).

Conclusions

This study analysed for the first time the abundant and well-
preserved fossil burrows characterizing the 1930s buildings of
Piazza della Vittoria, Genova. The fossil burrows, produced
by irregular echinoids, replaced the primary fabric of the sed-
iment by an ichnofabric. Characteristics of the ichnofabric
have enabled to propose a new palaeoenvironmental reconsti-
tution of the Verezzi Member of the Finale Ligure Limestone.
Accordingly, the Piazza della Vittoria ichnofabric represent
the colonization of a sand wave system which possibly
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deposited at the mouth of a narrow strait. This interpretation
would have been challenging without the Piazza della Vittoria
ichnofabric, thus underlining its geoheritage value. Through
the ichnofabric visible at Piazza della Vittoria, the public can
explore ancient behaviours and ecosystems. Consequently,
the studied ichnofabric can be used for research, teaching,
geotourism or reference, which enhances the geoheritage sig-
nificance of the Piazza della Vittoria ichnofabric. As sug-
gested in the introduction, ichnofabric-bearing building stones
‘speak’ of ancient organisms, behaviours and environments.
This case study allows recognising ichnofabric as a major
geoheritage aspect in sedimentary building stones. Scientific
research, including assessment of ichnofabric-bearing concen-
trations of building stones in urban areas and their quarry
provenances, conservation conditions and protection status,
as well as their applicability in broader educational programs
and geotours are, thus, highly recommended.
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