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Abstract
Prolonged sedentary behavior in the vast population of office and remote workers leads to increased cardiovascular and
musculoskeletal health challenges, and existing solutions for encouraging breaks are either costly health coaches or notification
systems that are easily ignored. A socially assistive robot (SAR) for promoting healthy workplace practices could provide
the physical presence of a health coach along with the scalability of a notification system. To investigate the impact of such a
system, we implemented a SAR as an alternative break-taking support solution and examined its impact on individual users’
break-taking habits over relatively long-term deployments. We conducted an initial two-month-long study (N = 7) to begin to
understand the robot’s influence beyond the point of novelty, and we followed up with a week-long data collection (N = 14)
to augment the dataset size. The resulting data was used to inform a robot behavior model and formulate possible methods of
personalizing robot behaviors. We found that uninterrupted sitting time tended to decrease with our SAR intervention. During
model formulation, we found participant responsiveness to the break-taking prompts could be classified into three archetypes
and that archetype-specific adjustments to the general model led to improved system success. These results indicate that
break-taking prompts are not a one-size-fits-all problem, and that even a small dataset can support model personalization for
improving the success of assistive robotic systems.

Keywords Socially assistive robots · Robot nudges · Personalization · Markov Decision Process models

1 Introduction

Work-from-home arrangements have become increasingly
common over time, and the COVID-19 pandemic drastically
increased the rates of remote work to heights that have not
(andmaynever) return to pre-pandemic levels. In both remote
work and general sedentary office work situations, health
challenges such as poor cardiovascular and musculoskeletal
health are a common issue for computer users, who often
fail to take sufficient breaks from sitting [1]. Corporations,
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in turn, have explored solutions such as phone apps [2] and
computer notifications [3] to address this sedentary behavior.
Research on these approaches to date show that screen-based
solutions quickly fall into disuse and lack a peer-like social
component [2], which is generally difficult to scale up. In
past work, our research group proposed socially assistive
robots (SARs) as an alternative break-taking support solution
with the potential to offer the scalability of apps along with
the heightened motivation of a health coach [4]. The present
follow-up article focuses on model formulation for such a
break-taking SAR system, to build on promising preliminary
results.

Physically present, or embodied, systems like SARs are
well suited for promoting healthy practices; people are more
likely to oblige the requests of embodied robotic systems
compared to their virtual counterparts [5, 6]. Further, people
aremore attuned to themotions and changes of embodied sys-
tems in their space compared to onscreen agents [7], which
implies that users are also more aware of these systems.
Existing work on embodied break-taking systems in partic-
ular found that participants respond positively to this type of
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Fig. 1 A mock user sitting at their workspace, which is equipped with
the break-taking SAR system presented in this article

robotic application and are more responsive to systems that
are perceived as more social, but that users also have distinct
opinions about how these systems should behave within their
workspace [4, 8]. Relatedly, a past long-term examination of
user break-taking habits revealed both individual and gen-
eralized trends among participants [9], which hints at the
need for more sophisticated interaction modeling within this
domain. Compared to past related work, the efforts presented
in this paper involve a longer-term system deployment and a
more nuanced robot behavior model.

Prior to the current work, the research team conducted a
two-day-long study comparing participant experiences with
a robotic standing break buddy vs. a non-embodied break-
taking prompt system. Results showed that interaction with
the robot option was most pleasant, enjoyable, and engaging,
but that the fixed prompt timing and behavior strategy of the
robot was one key flaw of the system. Accordingly, our key
research goal in the follow-up presented work was to learn
how to formulate behavior models for break-taking robotic
systems that promote system success and continuous use.
After reviewing related past literature in Sect. 2, the presented
work centers on a long-term data collection, a short-term
data collection, and the design of system behavior models
based on the collected data. The long-term data collection
involved the robotic system presented in Fig. 1 and described
in Sect. 3 as part of a two-month-long study of participant
responses to different SAR break-prompting behaviors, as
further detailed in Sect. 4. The short-term data collection
described in Sect. 5 leveraged week-long SAR deployments
to gather additional user response data for model develop-

ment. With the gathered data, we developed the Markov
decision process (MDP) model described in Sect. 6, after
whichwediscuss the resultingpolicies and their effectiveness
for individual participants. Section7 offers a discussion of the
key results and concluding thoughts about how to apply these
ideas in related robotics efforts. Overall, key contributions
of the work include evidence that the proposed intervention
tends to successfully reduce sitting time, in addition to a set
of participant archetype-based interaction models that can
help this type of system personalize successfully and work
even more effectively in the future.

2 RelatedWork

We were guided by existing work related to health impacts
and mitigation of sedentary behavior, strategies for success-
ful interruptions, and SAR systems for encouraging user
behavior changes. The following subsections further explain
this important prior work.

2.1 Taking Breaks for Health

Both office and remote work employees are predominantly
sedentary workers. The wellbeing of these groups has drawn
attention in recent years due to the negative health impacts
associated with prolonged sedentary periods [10, 11]. There
is an abundance of research showing the negative impacts
of prolonged sitting, with consequences including (but are
not limited to) increases in premature mortality rates [1] and
worsened pregnancy outcomes [12]. Expanded research into
these negative health impacts explored how they differed
depending on the duration of sedentary time (i.e., longer
periods of sitting vs. shorter periods of sitting), finding that
mortality increases were significantly lower for sitting peri-
ods less than thirty minutes [13]. In turn, attention on how to
break up sedentary behavior periods has increased. Efforts in
this space show that breaks as short as five minutes improve
physical and cognitive function for sedentary workers [14].
These works informed the intervention behind our project, in
addition to key sitting durations and break periods selected
in this effort, as further discussed in later sections.

Based on the negative health effects of sitting and
beginning findings on how to improve health outcomes of
sedentary workers, subsequent efforts have explored how
to encourage breaks. Solutions include approaches using
digital health management apps or tracking systems [2, 15–
18], as well as training for correct usage of sit-stand desks
[11, 19]. These sit-stand desks in particular—when com-
bined inmulti-pronged approaches that include training, peer
encouragement, and habit tracking—have yielded significant
successes in improving job performance, engagement, and
quality of life [20, 21]. At the same time, screen-based health
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tools fall into disuse quickly, and human-mediated solutions
are difficult to deliver at scale. Accordingly, our work consid-
ers an intervention similar to those of existing digital tools,
but with a robot-mediated physical presence in the user’s
workspace.

2.2 Shaping Beneficial Interruptions

Akey tactic to encourage specific human actions or choices is
the act of nudging. Nudging, as originally defined in behav-
ioral economics, is any designed aspect of a choice “... that
alters people’s behavior in a predictable way without forbid-
ding any options or significantly changing their economic
incentives” [22]. Nudging has since been popularized within
health care in particular. For example, nudges have been
adopted as a new method to encourage individuals to prac-
tice healthy behaviors, and are often used in conjunction
with other health-promoting methods in larger frameworks
[23, 24]. These nudge-based behaviors have been used pri-
marily to direct users toward voluntarily making healthier
choices, such as exercising [25] or limiting use of smart-
phones [26]. We rely on similar principles to encourage
break-taking through our investigated robot interactions.

To encourage break-taking, systems like our robot will
typically need to navigate prompting people during their
day-to-day work, much like any coworker looking to ask
a question or start a conversation. Thus, we need to under-
stand both how and when to interrupt an individual in the
workplace. How to interrupt a person can be broken into
two main modalities: verbal and non-verbal interruptions.
Work examining interrupting conversations between multi-
ple people found that participants preferred non-verbal cues
before verbal cues [27]. Within the open office spaces used
by many modern desk workers, prompting people with non-
verbal behaviors also limits disruption to others in the shared
space. Non-verbal cues can have differing levels of imme-
diacy and subtleness. These spectra are reflected in the use
of always visible systems vs. pop-ups on screens [28], as
well as in subtle versus sudden pose changes in embodied
systems [7]. It has also been shown that human interlocutors
can correctly identify the urgency of non-verbal robot cues
patterned off of human interruptions [29]. These non-verbal
cues focused on aspects of the interruption such as speed
of motion, gaze, head movement, rotation, and proximity to
the person. While this and other existing work has focused
on perceived urgency of interruptions, these works did not
explore the variation in disruption tolerance due to specific
tasks or individual user characteristics.

When to nudge individuals is the second challenge. While
studies have shown productivity benefits of frequent short
breaks [30], other work has demonstrated that these periodic
interruptions can lead to more fragmented work [31]. This
variation is, at least in part, dependent on the need to focus

on a task [32]. Thus, watching for focused attention helps
to determine when users are more open to disruption. This
strategy was used in short-term learning methods with a past
interrupting robotic system [33]. Further work has examined
both when to interrupt individuals and when they are most
likely to stop or change a task on their own [9]; the research
team tracked software activity, mouse movement, and key-
board activity to build a predictive model of when to prompt
users via a computer-based interruption system. The related
past work supported our beginning understanding of inter-
ruption timing strategies; for example, we know that there is
a need to time interruptions to avoid periods of high focus
[34]. At the same time, there is a notable gap in understand-
ing individual user responses, especially when nudges come
from varying robot behaviors. Our work begins to address
these open questions.

2.3 SAR Systems and Behaviors

SARs for behavior-change is an active area of researchwhich
helps to inform the appropriate design of robotic systems
that influence user behavior via social interaction [35], such
as our proposed break-taking buddy. SAR systems span a
broad range of goals and contexts, including encouraging
social skill practice [36], physical therapy exercises [37, 38],
and daily living tasks [39, 40]. We specifically utilize the
break-taking SAR system described in [4] as a basis for the
current work, building on the same Cozmo robot as the social
agent in the system.

SAR systems’ expressive or emotional behaviors can sig-
nificantly impact user behaviors and behavior change success
[41]. In selecting prompting behaviors for our SAR system,
we leveraged past Cozmo robot behaviors that were designed
and validated in [42]. These behaviors span the valence and
energy axes of Russel’s circumplex model [43], which pro-
vided us with variability in the robot nudging behaviors.
Based on past participatory design work for break-taking
robots, we also noted that participants preferred a system
with minimal noise production and a small footprint [8].
These insights helped us to select the non-verbal expression
modalities, as discussed later in the article.

3 SAR SystemDesign

The robotic system for the data collections was based on
the past SAR system from [4]. This past system used the
commercial Anki Cozmo robot as the embodied agent for
supplying break-taking prompts to the participant and a seat
occupancy sensor to detect periods of sedentary behavior.
Cozmo served as an ideal robot due to its small form fac-
tor, low cost, and considerable expressive ability. From past
related work, we additionally had a set of validated expres-

123



902 International Journal of Social Robotics (2024) 16:899–918

sive behaviors for the Cozmo system [42] which satisfied
known requirements for workplace technology, such as mut-
ing the robot’s inbuilt audio cues for minimal sound emission
[8, 27]. Another advantage of using this system as our basis
was the limited invasiveness of the system’s sensor data.
By avoiding using a camera in the system and by tracking
sedentary behavior without a connection to a user’s personal
computer, we could offer more privacy to these individu-
als, as required in many remote work scenarios. Additional
components of the past SAR system were a Raspberry Pi 3
B+ processor and Android phone, which together controlled
the robot and occupancy sensor. As further described in the
past work, the robot connection for this setup, which relied
on the Cozmo SDK, led to occasional disconnects of the
robot, which needed to be manually addressed. Lastly, the
system included a USB webcam solely for study data collec-
tion purposes. In response to the initial system’s programmed
behavior, which delivered a break-taking prompt after 30min
of sitting behavior, past study participants shared ideas for
improvement of the system’s fit with workflow needs.

For the efforts presented in this article, the SAR system
would be operating for much longer periods than in the pre-
vious work, and we also sought to address flaws identified
by study participants in the past system. Thus, as further
described in the following subsections, we needed to change
both the controlling hardware and software to be robust
enough to operate the robot without direct research team
supervision for a two-month period. Additionally, based on
the results from [4], we knew that interruptions from the
system needed to be timed better to fit in with participant
workflow, in addition to including more options for snooz-
ing or slightly postponing a robot nudge. Our related efforts
to add further informative (and yet noninvasive) sensing, as
well as a snooze button, to the system are detailed below.

3.1 Updated System

The updated SAR system for the present work, as shown in
Fig. 2, included the same Cozmo robot and seat occupancy
sensor as in the past work, in addition to a newly added mini-
PC, keyboard activity sensor, and snooze button.

As in the past work, the small form factor and expres-
sive behaviors offered by the Cozmo robot fit well with the
workplace use context. While the commercial Cozmo robot
has built-in expressive audio cues, like in the past work, we
chose to mute them to satisfy known workplace norms. The
past processor and robot control setup, however, required
significant updates to be able to support a reliable long-term
robot connection. In particular, the official Cozmo SDK, as
used in the past system, requires a tethered smartphone; the
Android phone used for this purpose in the past setup proved
to be unreliable for both staying connected and reconnect-
ing with the robot. Thus, the central robot control hardware

Fig. 2 Labeled system components of the SAR break-taking system at
a mock user’s desk

was upgraded to the aforementioned mini-PC, which has an
Intel i5 processor. The mini-PC runs Ubuntu 20.04 with ROS
Melodic and uses the PyCozmo open-source library to inter-
face with the Cozmo robot [44]. This connection method
allowed for greatly increased connection stability with the
robot, in addition to programmatic reconnection to Cozmo
in the case of any disconnects that do occur, which present as
brief periods during which the Cozmo face screen is blank.

Based on user critiques from the past investigation and
best practices from related work, we changed the previously
static interruption timing to instead be a variable timing
(within a set 15-minute window) meant to interrupt partici-
pants when they were less attentively focused on work. To
accomplish the variable interruption timing, we used a sim-
ple accelerometer-based keyboard activity sensor as a proxy
for focused attention. In addition to the more nuanced inter-
ruption strategy, we introduced a button element that allowed
the user to “snooze” robot prompts. We used the chair occu-
pancy sensor, a large contact pad that rests under a seat cover
and communicates its state (weighted or unweighted) with
the mini-PC via Bluetooth, to track length of sitting time.
The keyboard activity sensor, a LIS3DH accelerometer con-
nected to the base station via a Teensy 3.2 microcontroller,
was affixed to the participant’s keyboard to sense keystrokes
as a means for improving the system’s gauge of user inter-
ruptibility. Specifically, we used the tap detectionmode of the
accelerometer to sense time elapsed since the last keystroke,
and we provided a prompt after two consecutive minutes of
no typing. The halt, or snooze, button is a momentary push-
button connected to the same Teensy 3.2 microcontroller.
Participants could press the button to immediately halt the
current Cozmo prompt action.
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Fig. 3 System operation cycle, beginning with the idle state. After approximately 30min of user sitting time, the robot drives out to prompt the
user. These prompts repeat at five-minute intervals until the user stands up, at which point the system returns to idle state

As in the past work, for study purposes, we used a Log-
itech 920 1080p webcam to record audiovisual information
about how participants responded to the system. This web-
cam recorded five minutes of audiovisual data upon each
delivery of a break-taking prompt.

3.2 Updated Operation States and Behaviors

As mentioned above, the original Cozmo system supplied a
break-taking prompt every 30min, using randomly selected
Cozmo behaviors from the set of available actions. The
updated break-taking system has a richer set of operation
states defined by participant actions, as well as amore clearly
defined delineation of robot behaviors.An example operation
cycle of the system appears in Fig. 3.

The high-level system operation can be broken down into
three key operation states, between which the system transi-
tions depending on user behavior:

• Idling: system state when the user is either standing or
has sat down but not yet been prompted

• Prompting: state during which the system acts to encour-
age the participant to take a break

• Snoozing: state during the five-minute period after a
prompt has occurred and been ignored by the user or
intentionally halted with the button. (After this delay, the
the system will prompt the participant again, returning to
the prompting state above.)

The robot itself had behaviors associated with system
operation state. During both the idle and ‘snooze’ states,
the robot remained still, cycling the ‘blink’ animation of the
default eyes on the Cozmo’s LCD screen. During the prompt-
ing state, the robot used expressive behaviors to encourage
the participant to take a break. These behaviors, from [42],
were designed to span varying energy (active or inactive)
and valence (pleasant or unpleasant) levels based on Rus-
sel’s circumplex model of affect [43]. The alignment of these
behaviorswith their intended affect was also validated in [42]
through an online video-based study. The behaviors belong to
eight behavior categories: Active (A), Pleasant Active (PA),
Pleasant (P), Pleasant Inactive (PI), Inactive (I), Unpleasant

Fig. 4 Circumplex model of robot behaviors. The actions are named
using combinations of [P]leasant or [U]npleasant and [A]ctive or
[I]nactive

Inactive (UI), Unpleasant (U), and Unpleasant Active (UA),
as shown along the circumplex model in Fig. 4. Unpleasant
behaviors are often excluded from SAR interactions, but past
work has shown that sometimes more unpleasant or impo-
lite behaviors can encourage people to carry out actions that
they might be resistant to performing otherwise [45]. Sam-
ple behaviors for selected behavior categories appear in the
repository associated with this work [46].

During each prompting state, one category was randomly
selected, and the robot performed three behaviors randomly
selected (without replacement) from that specific category, as
further illustrated in Fig. 5. This randomization method was
chosen to satisfy requirements associated with maintaining a
consistent connection to the Cozmo robot in real-world envi-
ronments, while still traversing the full robot action space. If
the participant pressed the halt button or failed to stand up
during the robot prompting behaviors, then the robot would
return to the ‘blink’ animation, and the system would enter
the ‘snooze’ operating state.
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Fig. 5 Avisual representation of the behavior categories and individual
behaviors associated with each category that our robotic system could
perform. When prompting the participant, the system randomly selects
one behavior category (depicted here as ovals), and then performs three
behaviors from within that selected category (depicted here as letters
with numbered footnotes)

4 Exploratory Long-TermDeployment

In order to understand how robot nudges can support user
break-taking over extended periods of time, we needed to
evaluate responses to the updated SAR system in natural
day-to-day environments for a duration extending beyond
the novelty effect (i.e., a month or longer for adoption [47]).
Our previous work with a two-day-long deployment of the
system resulted in positive perceptions of the SAR over a
non-embodied alternative [4], but it was not clear if this effect
would persist over time. The longer-term, in-the-wild study
presented in this work allowed for a better understanding of
user experience with continuous use over time by deploy-
ing the robotic system for a month-long intervention period,
in addition to gathering data about each participant’s usual
behaviors without the robot nudges. We also gained a vastly
increased number of interaction observations per user, which
contributed to the modeling efforts discussed in Sect. 6. The
presented methods were approved by the Oregon State Uni-
versity IRB under protocol #IRB-2019-0067.

4.1 Robotic System

Weused the robotic system, asmore fully described inSect. 3,
for the long-term deployment.

4.2 Study Design

To understand participants’ usual break-taking behaviors
before introducing an intervention, and to acclimate users

to the system during the course of the study, we followed a
two-month-long, single-case-style (ABA) design [48] sim-
ilar to approaches used by leading recent human-robot
interaction work [36], which allows each participant to act
as their own control. This design includes pretest/baseline
(A), test/intervention (B), and posttest/retention (A) phases,
which are further outlined below:

• Baseline: two-week initial phase during which the
robotic system was present but stationary.

• Intervention: one-month phase consisting of interactions
with the SAR system, as further described in Sect. 3.

• Retention: two-week final phase duringwhich the robotic
system was present but stationary, like in the baseline
phase.

We used this design to understand the user’s typical behavior
and allow them to acclimate to the presence of the sys-
tem (baseline), before introducing the robotic break-taking
support (intervention), and finally checking how participant
behavior may have changed after the cessation of the nudges
(retention). Based on this approach, we can assess how the
SAR system influences individual users, as well as how it
performs across the full group.

4.3 Participants

The study included seven participants who spend most of
their workday sitting at a desk and working with a computer.
These individuals were recruited through word of mouth
and snowball sampling, and were all academics associated
with the university (primarily graduate students). Most par-
ticipants had limited experience with robots. Four of the
participants were in engineering disciplines and identified
as male. The other three participants were in life sciences
disciplines and identified as female. The mean age of the
participants was 30 (range: 25–38 years).

4.4 Measures

Measurements during the deployment included information
from system sensors, Likert-type self-report data, and quali-
tative semi-structured interviews.

We used the system sensor logs to collect participant
behavioral data, as described below:

• Break-taking information: showed if and when the par-
ticipant stood after each prompt. This information came
from seat sensor readings.

• Snooze inputs: showed when the participant used the
snooze button to delay a break.
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Sensor logs also recorded the timing of break prompts and
the specific Cozmo behaviors used for each prompt.

We used surveys to gauge participant opinions of and
experience with robots, as well as acceptance of the system,
perceptions of workload, affect, bond feelings with the robot,
warmth towards the robot, robot competency, and discomfort
towards the robot throughout each phase of the study. These
surveys, as outlined below, used 7-point Likert scales unless
otherwise noted:

• Pre-study survey: captured baseline robotics and break-
taking technology experience, as well as perceptions
related to technology acceptance. This last construct
was measured using the attitude toward using technol-
ogy and self-efficacy scales from the Unified Theory of
Acceptance and Use of Technology (UTAUT) and the
attachment, cultural context, grouping, and reciprocity
scales from the Object Centered Sociality Factors, based
on the work from [49]. For brevity, we later refer to this
group of six items as “UTAUT” questions.

• Weekly survey: captured participants’ experiences after
each week of the study related to workload (using
questions adapted from the NASA Task Load Index
[TLX] [50]), affect (using the Self-Assessment Manikin
[SAM] [51] on a 9-point Likert scale), bond feelings
with the robot (using the bond scale of the Working
Alliance Inventory [WAI] [52]), and perceptions of robot
warmth, competency, and discomfort (using the Robot
Social Attributes Scale [RoSAS] [53]), in addition to
queries about perceived break-taking success and work
performance asmodified versions of theNASATLXper-
formance measure. Lastly, we gathered open-ended text
input about any additional thoughts or comments.

• Closing survey: included all questions from the weekly
survey to capture to last week of the deployment, as
well as all UTAUT questions from the pre-study survey,
in addition to measuring the Big Five personality traits
through the Ten-Item Personality Inventory (TIPI) [54]
questions and general demographic questions (i.e., gen-
der, age, hometown, ethnicity, and nationality).

To gather further context for both the system observations
and survey responses, we conducted audio-recorded semi-
structured interviews at intervals throughout the study. These
conversations comprised:

• A pre-study conversation about participant health habits
and goals.

• A weekly check-in conversation about current user
thoughts on the system and anything notable about par-
ticipant activities during the past week.

• A closing conversation focused on overall thoughts, sug-
gestions, or concerns about the system.

4.5 Procedure

After consenting to be in the study, participants completed
the pre-study survey and interview. Next, their workspace
was outfitted with the system hardware, which was ini-
tially configured for the two-week baseline phase with no
robot prompts.During the baseline, the participant completed
weekly surveys and check-ins.

After the baseline, the system automatically transitioned
to the intervention phase. The intervention lasted for four
weeks, duringwhich the robot providedbreak-takingprompts
using the system logic described previously. The weekly sur-
veys and check-ins continued.

Finally, the system automatically transitioned to the reten-
tion phase. During this two-week phase, the system operated
in the same way as the baseline (no robot prompts), and we
continued administering the weekly surveys and check-ins.
The retention phase culminated with the closing survey and
interview, after which the study hardware was removed from
the participant’s workspace.

4.6 Analysis

Based on the health literature detailed previously, we knew
that sitting durations of 30min or more are most detrimen-
tal to health. Accordingly, a primary test of the effectiveness
of our intervention was examining how the average duration
of long sitting periods changed over time for each partici-
pant. A participant with good performance using the system
would in theory stand up every 30min (if not more fre-
quently), while sitting to complete work between breaks.
Accordingly, we used the seat sensor data to identify peri-
ods of extended sitting (i.e., sitting for more than 30min)
and computed descriptive statistics on this data as part of our
analysis. Note that breaks which lasted less than ten seconds,
such as readjusting in a seat or reaching for a file folder, were
not counted as a break from sitting. The number of successful
prompts (i.e., the participant stood up during the robot behav-
ior or before the next system prompt) and failed prompts (i.e.,
the participant did not stand during the aforementioned peri-
ods) by the system was tabulated overall and for each robot
behavior category. Lastly, we calculated the mean number
of prompts it took before each participant stood up to take a
break.

The Likert-type results were analyzed using descrip-
tive statistics and repeated-measures analysis of variance
(rANOVA) tests across weeks with an α = 0.05 significance
level.We performed Tukey’smultiple comparison tests in the
case of significant main effects. These tests were run for the
following survey dependent variables: attitude toward tech-
nology, self-efficacy, attachment, cultural context, grouping,
and reciprocity from the UTAUT; mental demand, physical
demand, temporal demand, effort, and frustration from the
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NASA TLX; happiness, stimulation, and control from the
SAM inventory; bond perception from the WAI; warmth,
competency, and discomfort from the RoSAS ratings; and
our questions about perceived break-taking success andwork
performance.

We performed thematic analysis on the qualitative free-
response comments and transcribed interview conversations.
One trained coder completed a review of all the qualitative
data, and a second rater coded data from 14% of the par-
ticipants. Inter-rater reliability was confirmed using Cohen’s
kappa.Additionally, we used the qualitative data to help track
and understand any gaps or large changes in the data logged
by the system.

4.7 Results

All seven participants remained in the study for the entire
two-month duration. As is typical in academic research set-
tings, participants spent varying amounts of time at their
desks day-to-day and week-to-week. The collected data
included system use information for every participant dur-
ing every week except in one case; one participant missed a
full week of the study due to illness during the first part of
the retention phase. The quantitative behavioral and survey
results appear in the following subsections.

4.7.1 Objective Behaviors

The average sitting duration (i.e., length of time sitting with-
out taking a break), was 58min (SD = 10) during the
baseline phase, 45min (SD = 17) during the intervention
phase, and 55min (SD = 11) during the retention phase.
The average sitting duration per week for each participant
are shown in Fig. 6.

Within the intervention phase, there was a large varia-
tion in total numbers of prompts. Over 60% of the time, the
first prompt was successful in getting the participant to stand
up, and over 90% of successes occurred within the first six
prompt attempts (i.e., up to double the recommended sitting
duration without a break), although there were instances of
needing to prompt a participant up to seventeen times before
they stood up. The median number of prompts for a given
user over the course of the study was 87 (SD = 104), and
the participant-wise total number of prompts, average num-
ber of prompts before success, and total number of incipient
(i.e., first since the participant began sitting) prompts appear
in Table 1.

The table information reveals a possible split between dif-
ferent types of users; for participants 2, 3, and 7, one nudge
from the robot is typically sufficient, with very low variation
for the former two participants and some variation for the
latter. Other participants require more prods from Cozmo,
although within this second group, there may be a split in the

Fig. 6 Boxplots showing the average time in hours participants spent
at their desks between breaks. Each particpant’s average is plotted as
a line, while boxplots show the spread across users during each week.
The boxes extend from the 25th to the 75th percentiles, the middle
horizontal line marks the the median, and an asterisk (*) marks the
mean. The whiskers extend to the most extreme data points that are not
considered outliers, and the outliers are plotted as a “+”

degree to which this is needed. Participants 4 and 5 require
between two and three nudges on average, while participants
1 and 6 need a far greater number of prompts, with the great-
est variability.

4.7.2 Self-Reported Ratings

We describe the phase-wise averages for the survey results
below, as well as the results of our statistical analysis across
weeks of the study.

UTAUT Ratings: The average pre-study and closing sur-
vey technology acceptance results appear in Table 2. Average
ratings sat close to the center of each scale, and closing rat-
ings tended to be similar, but slightly lower, compared to
pre-study ratings. However, there were no statistically signif-
icant differences between the pre-study and closing survey
responses.

NASA TLX Ratings: The average baseline, intervention,
and retention phase results for workload are presented in
Table 3; note that only five of the six TLX questions about
system use experiencewere administered, so each subscale is
presented individually. Most responses outside of the inter-
vention phase tended to be near the bottom of the scales.
During the intervention, the responses tended to be higher
for each rating. However, most of these differences were not
significant; week-to-week ratings only varied significantly
for mental demand (F(7, 42) = 3.00, p =.012, η2 = 0.274).
Specifically, week one in the baseline phase was considered
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Table 1 Intervention phase data
for total number of prompts
experienced by each participant,
M(SD) number of prompts
needed for the participant to
stand up, and total number of
incipient prompts

Participant Total prompts Prompts to stand Incipient prompts

01 343 4.1 (2.9) 79

02 20 1.2 (0.4) 15

03 78 1.0 (0.2) 75

04 79 2.6 (2.0) 28

05 87 2.1 (2.1) 41

06 113 5.0 (5.3) 20

07 87 1.3 (1.1) 63

Table 2 Results for eachUTAUTmeasure for the pre-study and closing
surveys for the long-term study, reported as M(SD)

Measure Pre-study Closing

Attitude to technology 4.93 (1.31) 4.36 (1.25)

Self-efficacy 4.77 (1.58) 4.29 (1.95)

Attachment 4.25 (1.53) 3.64 (1.95)

Cultural context 3.71 (1.25) 3.43 (1.27)

Grouping 3.69 (1.16) 3.29 (1.48)

Reciprocity 3.54 (1.52) 3.00 (1.80)

All values were on a seven-point Likert scale

Table 3 Results for each TLXmeasure for each phase for the long-term
study, reported as M(SD)

Measure Baseline Intervention Retention

Mental demand 1.43 (0.65) 2.61 (1.31) 1.43 (0.94)

Physical demand 1.29 (0.61) 2.00 (1.12) 1.36 (0.93)

Temporal demand 1.21 (0.58) 3.50 (1.93) 2.07 (1.73)

Effort 2.21 (1.48) 4.14 (1.21) 3.57 (1.91)

Frustration 1.21 (0.58) 3.54 (2.10) 2.14 (1.79)

All values were on a seven-point Likert scale

Table 4 Results for eachSAMmeasure for each phase for the long-term
study, reported as M(SD)

Measure Baseline Intervention Retention

Happiness 4.00 (0.88) 4.71 (1.96) 4.29 (1.38)

Stimulation 5.64 (1.15) 4.50 (1.40) 5.43 (2.31)

Control 6.36 (1.39) 5.36 (2.25) 6.14 (2.07)

All values were on a nine-point Likert scale

less mentally demanding than week six in the intervention
phase (Mdi f f = 1.286, t(9) = 4.5, p =.042).

SAM Ratings: The average baseline, intervention, and
retention phase results for user affect appear in Table 4. All
of these ratings tended to be near the middle of the scale,
representing moderately pleasant feelings, medium energy,
and a slight leaning toward feelings of control. There were
no statistically significant differences in the responses across
each week.

Table 5 Results for each RoSAS measure for each phase for the long-
term study, reported as M(SD)

Measure Baseline Intervention Retention

Warmth 4.35 (0.46) 3.76 (1.56) 3.85 (1.40)

Competence 4.33 (0.53) 3.66 (1.45) 4.06 (1.64)

Discomfort 1.70 (0.40) 2.20 (1.16) 1.76 (0.89)

All values were on a seven-point Likert scale

Table 6 Mean results for our additional ratings for each phase for the
long-term study, reported as M(SD)

Measure Baseline Intervention Retention

Break-taking success 4.00 (0.68) 4.32 (1.49) 3.36 (1.39)

Work performance 5.43 (0.94) 5.21 (0.99) 5.43 (0.94)

All values were on a seven-point Likert scale

WAI Ratings: From the WAI, we administered only the
questions for the bond scale,which tended toyield low ratings
across each phase: baseline (M = 1.88, SD = 0.61), inter-
vention (M = 2.32, SD = 0.76), and retention (M = 2.39,
SD = 0.98), as gathered using a seven-point Likert scale.
(Since we administered just oneWAI scale, we omit showing
this single rowof data in a corresponding tabular form.) There
were no statistically significant differences in the responses
across each week.

RoSAS Ratings: The average baseline, intervention, and
retention phase results for social perception of the SAR sys-
tem are presented in Table 5. Feelings about the robot’s
warmth and competence tended to be above the center point
of the respective scales, and discomfort with the system was
generally low. There were no statistically significant differ-
ences in the responses across each week.

Additional Performance Ratings: The average baseline,
intervention, and retention phase results for considered types
of user performance appear in Table 6. Participants overall
tended to feel successful in taking breaks and performing
work, though the average rating of break-taking success was
below the scale midpoint for the retention phase specifically.
However, there were no statistically significant differences
in the responses across each week.
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4.7.3 Qualitative Results

The thematic analysis yielded a Cohen’s kappa inter-rater
reliability of 0.78, which shows substantial agreement. A list
of codes and related counts appears in Table 7.

The analysis found that prior to the study, over half of
participants did not take breaks except to get food or use
the restroom, but all but one of the participants mentioned
the potential health or productivity benefits of taking breaks.
Only two participants had workplace practices that promoted
regular breaks from sitting. When discussing the value of
break-taking as well as their own lack of break-taking, par-
ticipants mentioned a lack of the needed “conviction” to
implement break-taking, as well as previous attempts at
break-taking that ebbed away over time. For example, partic-
ipant 4 discussed how they “know the importance of taking
breaks,” but they “just don’t practice what [they] preach.”
Further, participant 1 noted a past “decision [...] in the fall
to try to take breaks every day” which tapered off due to
“the reality of schedules.” We also heard about non-physical
types of breaks, such as seated “mental” breaks for things like
checking their phone. Additionally, while describing their
experiences with break-taking and healthy workplace prac-
tices, participants described their posture practices using a
variety of descriptors such as “good” or “bad,” or providing
more nuanced descriptions, like “starting with good posture
and just leaning further back with time.”

participants primarily viewed Cozmo as either toy-like
or pet-like, and (contrary to perceptions discussed later on,
in the follow-on data collection results), no participants
viewed Cozmo as tool-like. Toy-like comparisons focused
on expected interaction behaviors such as participant 4’s
assertion that the robot should automatically be snoozed
when lifted, since “if you hold a toy, it’ll stop.” Partici-
pant 2 lamented that they “can’t really negotiate” breaks with
Cozmo. Participants 1 and 4 compared Cozmo’s responses
to their cats, although one mused that “usually with cats, if I
just push them away a couple of times, they get the idea and
go away.”

When it came to the interactions with Cozmo, participants
were concerned about it possibly disturbing other people
working around them in the office. For example, participant
2 noted feeling “self-conscious about how loud Cozmo is
because [their] office is supposed to be quiet.” Participants
also mentioned noticing or responding to the incidental noise
(such as motor noise and sound caused by physical inter-
action with the environment) of Cozmo before the prompt
(e.g., “it’s like if you hear it come out, I’m like, okay, I need
to go” [participant 7]), and although the system provided a
response (in the form of a positive Cozmo expression and
head nod) when participants stood up, only one of the partic-
ipants (participant 6) noticed this signaling behavior, noting
that “when I stand up, it looks like [Cozmo is] smiling”.

Table 7 Thematic analysis codes and counts of participants who men-
tioned each code (out of the seven total participants)

Code Participant count

Mentioned benefit of breaks 6

Said Cozmo is toy-like 5

Did not previously take breaks 4

Said Cozmo is pet-like 4

Worried about disturbing others 4

Noticed noise before prompt 4

Claimed good posture 3

Claimed hunching posture over time 3

Had awareness of sit time post 3

Worried about video recording 3

Stretching/walking breaks 2

Previously took routine standing breaks 2

Previously took “mental” seated breaks 1

Claimed “bad” posture 1

Noticed Cozmo’s nod reaction 1

Said Cozmo is tool-like 0

Related to the topic of video-recording in the robotic system,
three participants had reservations (e.g., participant 4’s quip
that “my expression the first day was really bad” and they
were embarrassed later after remembering that the camera
was recording).

Three of the participants commented during the retention
phase that they felt more awareness of their sitting time (e.g.,
participant 5 mused that they frequently felt that “okay, it’s
really beyond the time, the period I should sit there”). Like-
wise, participant 3 mentioned that “every now and then [...]
I [felt] like the system would have turned on right now.”

4.8 Summary of Key Findings

The results show a tendency for our proposed intervention
to hold promise; the trend was for the intervention sitting
behaviors to be shorter than sitting lengths during the base-
line and retention periods. It seems that the robot’s behaviors
can serve as a helpful nudge.At the same time, there is clearly
variation across participants, resulting in overall variability
in responses to prompts. For example, a subset of participants
were near-perfect system users who stood almost every time
they received a prompt, while a different group was quite
challenging to encourage to stand. We also did not see a
positive trend in the self-report results, but these responses
did tend to show a larger variation during the intervention
than during the baseline phase. These variations (in both the
behavioral and self-reported data) imply that a single nudging
model for the robotic system may not be well aligned with
all users. The thematic analysis results included glints of the
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system’s effectiveness at encouraging breaks and even yield-
ing habit-like results, although some of the pet metaphors
show a common desire for the system to better account
for participant-specific preferences when determining how
and when to supply a prompt. Based on the results of this
first study, we realized that important next steps for success-
fully modeling break-taking interactions included the need
to gather both more observations of robot nudges and data
from more participants for a better understanding of typical
system user archetypes.

5 Follow-on Data Collection

Based on the variety of user responses to the SAR sys-
tem in our long-term deployment, we sought to gather a
larger dataset and to understand if the same types of partic-
ipant responses generalized more broadly. Accordingly, our
follow-on data collection used a similar procedure, but with
a shorter-term use period to allow for us to work with a larger
set of participants. By using a similar procedure and set of
measures to the previous study, we could also assess whether
participant responses to the system were similar to reactions
from the intervention phase of the long-term study in this
new round of data collection. The presented deployment was
approved by the Oregon State University IRB under protocol
#IRB-2019-0067.

5.1 Robotic System

We made a single specific change to our SAR system
compared to the long-termdeployment:we removed theweb-
cam. This update was made to address self-consciousness
from selected participants in the long-term deployment, who
described feeling “watched” or notwanting the research team
to “judge them later.” We believed that the resulting behav-
ioral data would be more authentic and show whether the
participant behavior groupings persisted even without this
feeling of close observation.

5.2 Data Collection Design

To augment our overall set of participant responses to the
robotic system and gain insights about more users’ personal
experiences with the system, we shortened the deployment
length and de-emphasized the single-case-style design in this
follow-up work. For length of data collection, we wanted to
still capture interactions over a much longer period than a
typical human-robot interaction study, while relaxing some
of the resource-intensiveness brought about by a full two
months of deployment. Accordingly, we shortened the inter-
vention period of deployment to one week and removed the
baseline and retention phases.

5.3 Participants

Werecruited 14 participants, none ofwhomwere participants
in the initial study, for the follow-on data collection. All but
two participants had advanced experience with robots, and
participants primarily identified as men (11 men, 3 women).
The participants had a mean age of 24 (range: 20–31 years).

5.4 Measures

Our measures for the week-long data collection comprised
a subset of those from the long-term deployment. We used
the same system sensor log measures as well as the same
pre-study and closing surveys and conversations.

5.5 Procedure

The timing of the deployment for all participants was from
Monday to Friday during their selected week of enrollment.
After consenting, participants completed the pre-study sur-
vey and interview. Next, their workspace was outfitted with
the system hardware, configured to operate in the interven-
tion mode using the system logic described in Sect. 3. At
the end of the deployment, participants would complete the
closing survey and interview, after which the robotic system
hardware was removed from their workspace.

5.6 Analysis

The analysis methods for the sitting logs were the same as
those of the long-term deployment, as described in Sect. 4.6.
We also performed a similar rANOVA test to the one
described previously for the UTAUT results, and we used
descriptive statistics to understand the other survey feedback,
which were now just reported at a single time point.

We again performed thematic analysis on the qualitative
free-response comments and transcribed interview conver-
sations. One trained coder completed a review of all the
qualitative data, and a second rater coded approximately 14%
of participants. Inter-rater reliability was confirmed using
Cohen’s kappa.

5.7 Results

All 14 participants remained in the data collection for the
entire week-long duration. As is typical in academic research
settings, participants spent varying levels of time at their
desks, but all participants worked at their desks for at least
one full day during the deployment duration.
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Table 8 Intervention data for
total number of prompts
experienced by each participant,
M(SD) number of prompts
needed for the participant to
stand up, and total number of
incipient prompts

Participant Total prompts Prompts to stand Incipient prompts

11 6 1.0 (0.0) 6

12 24 1.8 (1.1) 13

13 36 7.2 (7.3) 5

14 8 4.0 (2.0) 2

15 48 1.6 (1.2) 30

16 50 2.5 (2.3) 20

17 28 3.5 (3.8) 8

18 20 1.1 (0.4) 15

19 47 2.3 (3.3) 20

20 72 4.7 (5.0) 14

21 31 2.2 (1.7) 14

22 29 2.4 (3.0) 12

23 49 4.6 (3.7) 10

24 32 4.0 (4.7) 8

5.7.1 Objective Behaviors

Like in the long-term deployment, there was a large variation
in the total number of times a participant was prompted. The
number of prompts necessary for a participant to stand up
had a long tail: over 47% of the time the first prompt was
successful in getting the participant to stand up, and over 90%
of successes occurred within the first six prompt attempts
(i.e., up to double the recommended sitting duration without
a break), although there were instances of needing to prompt
a participant up to fifteen times before they stood up. The
median number of prompts for a given user over the course
of the data collection was 32 (SD = 18), and the participant-
wise total number of prompts, average number of prompts
before success, and total number of incipient (i.e., first since
the participant began sitting) prompts appear in Table 8.

As in the long-term deployment, the table information
reveals a possible split between different types of users; some
participants responded quickly and reliably, and others were
less responsive and more variable in their behaviors. This
trend appears to generalize regardless of the overall number
of prompts a participant experienced.

5.7.2 Self-Reported Ratings

We describe the averages for the survey results below, as
well as the results of our statistical analysis. This information
helps us to compare trends in participant perceptions and
experiences during the follow-on data collection to those of
the long-term deployment.

UTAUT Ratings: The average pre-study and closing sur-
vey technology acceptance results are presented in Table 9.
Similarly to in the long-term deployment, these ratings
tended to be above the midpoint of each scale, and there were

Table 9 Results for eachUTAUTmeasure for the pre-study and closing
surveys for the follow-on data collection, reported as M(SD)

Measure Pre-study Closing

Attitude to technology 4.68 (1.10) 4.29 (1.58)

Self-efficacy 5.50 (0.78) 5.62 (1.22)

Attachment 4.25 (1.01) 4.36 (1.47)

Cultural context 3.88 (1.06) 3.93 (1.10)

Grouping 3.62 (0.69) 3.79 (0.94)

Reciprocity 3.71 (1.14) 3.71 (1.31)

All values were on a seven-point Likert scale

no statistically significant differences between the pre-study
and closing survey responses.

NASA TLX Ratings: The mean ratings for each consid-
ered workload subscale were mental demand at 2.14 (SD =
1.35), physical demand at 1.79 (SD = 0.97), temporal
demand at 2.79 (SD = 1.63), effort at 3.57 (SD = 1.45), and
frustration at 3.00 (SD = 1.66), as measured on seven-point
Likert scales. These evaluations tended to be in a similar scale
range, but slightly lower in magnitude, compared to the anal-
ogous ratings from the long-term deployment’s intervention
phase.

SAM Ratings:
Participants rated their mean happiness as 3.29 (SD =

1.53), stimulation as 3.86 (SD = 1.30), and control as 5.64
(SD = 1.80) on nine-point Likert scales. These evaluations
tended to be lower than in the long-term deployment, but still
represented values near the center or low center of each scale.

WAI Ratings: The WAI bond questions yielded a mean
rating of 2.89 (SD = 0.89), as measured on a seven-point
Likert scale. This result is similar in magnitude to the same
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ratings for the intervention phase of the long-term deploy-
ment.

RoSAS Ratings: The ratings of robot social attributes
included a mean warmth of 4.40 (SD = 0.63), competence
of 4.26 (SD = 1.04), and discomfort of 2.10 (SD = 0.81),
as reported on seven-point Likert scales. The former two rat-
ings tended to be higher than those seen in the long-term
deployment, while the level of discomfort appeared to be
very similar.

Additional Performance Ratings: Participants rated their
mean break-taking success as 4.64 (SD = 1.55) and work
performance as 5.07 (SD = 1.07) on the related seven-point
Likert scales. These values tended to be similar to the evalu-
ations seen in the long-term deployment.

5.7.3 Qualitative Results

The thematic analysis yielded a Cohen’s kappa inter-rater
reliability is 0.86, which shows excellent agreement. A list
of codes and related counts appears in Table 10.

The analysis found that prior to the study, half of par-
ticipants did not take breaks except to get food or use the
restroom, and only two of the participants mentioned the
potential health or productivity benefits of taking breaks.
Just two participants had workplace practices that promoted
regular breaks from sitting. Interestingly, one of these two
participants (participant 20) talked about how their regular
break practices were “too much sometimes” because they
felt that they “should be sitting at one desk and staying
focused and working for like 2 to 3 [hours].” Participant 23,
the other break-taker, recognized the value of their regular
breaks, but noted that they sometimes heeded and sometimes
ignored their current break-taking aid, “this watch which
buzzes every [30min] if I’m not active.” Participants who
did not take breaks included participant 22 who mentioned
that “once I’m working I tend to try to keep working” and
participant 17 who noted only getting up when they “need
to get another glass of water.” Self-assessments of sitting
posture included participant 14’s quip that they “look like a
shrimp [while working]” and participant 16’s statement that
they are “not a board, but pretty straight up.”

Nine participants viewed Cozmo as pet-like, with partic-
ipant 24 in particular talking about “sometimes [looking]
over at what the Cozmo was doing and then kind of pet-
not pet[ting] but like touch[ing] it.” Counter to our observa-
tions in the long-term study, over two-thirds of participants
viewed Cozmo as tool-like (e.g., Cozmo “looks more like
a car [which] doesn’t seem interactive [socially]” [partici-
pant 13]), and only a third of participants viewed Cozmo
as toy-like. Similar to in the long-term deployment, partici-
pants occasionally struggled with trying to communicate that
“right now I really do need to stay here” (participant 19),

Table 10 Thematic analysis codes and counts of participants whomen-
tioned each code (out of the fourteen total participants)

Code Participant count

Said Cozmo is tool-like 10

Said Cozmo is pet-like 9

Did notpreviously take breaks 7

Noticed noise before prompt 6

Noticed Cozmo’s nod reaction 6

Previously took stretching/walking breaks 5

Worried about disturbing others 5

Said Cozmo is toy-like 5

Claimed “bad” posture 4

Claimed hunching posture over time 3

Claimed good posture 3

Previously took “mental” seated breaks 3

Mentioned benefit of breaks 2

Previously took routine standing breaks 2

when important periods of focus coincided with a Cozmo
nudge.

When it came to the interactions with Cozmo, fewer par-
ticipants were concerned about the robot possibly disturbing
other people working in the office, but concerns that did arise
were still primarily attributed to the incidental noise of the
system (e.g., participant 21 found themselves “worried about
other people in the lab hearing it move around and being
annoyed by it”). Almost half of participants mentioned notic-
ing or responding to the incidental noise of Cozmo before the
prompt, with some participants noting that they “didn’t real-
ize it was going to be that loud.” Almost half of participants
noticed the programmed system response (a positive expres-
sion and head nod) when they stood up, with several of these
users expressing appreciation of the movement, such as par-
ticipant 19 noting that they “loved the stupid nod” and that
“it was way too effective.” Participant 22 likewise noted that
once they noticed this social cue, they started standing up
“just to look at [Cozmo] nod.” Since the follow-up effort’s
design did not include a camera for video-recording or a
retention phase, the two codes related to these concepts were
not part of the thematic analysis in this section.

5.8 Summary of Key Findings

Our week-long deployment results were similar to the results
of the intervention phase from the long-term deployment.
These results show large variations both in overall numbers
of prompts, as well as the number of prompts necessary for
participants to stand up. The variation in self-report responses
is also large, and both the average and spread of responses are
generally similar to those reported in the intervention phase
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of our long-termdeployment. The qualitative results included
similar themes as the long-term deployment, although the
frequency of perception of the system as tool-like was much
higher and toy metaphors were less common, perhaps due to
the higher robotics experience of the new participant group.
Notably, however, these participants often noticed Cozmo’s
social nod, and some even felt compelled to adopt better
workplace practices simply to elicit this behavior. Within
the set of 14 additional participants, we saw hints of simi-
lar types of participant archetype groupings as in the initial
long-term deployment. These groupings of participant reac-
tions imply that a single generalized system behavior policy
might be insufficient, as further investigated in Sect. 6. On
the other hand, the rough groupings of participant behaviors
may reveal a shortcut to model personalization based on typ-
ical user archetypes. We build on these insights to propose
and assess two different approaches to model formulation in
the following section.

6 Robot Behavior Model

We began this project with the goal of formulating behavior
models that would lead to the success of robot nudges, such
as our break-taking robot intervention. This aim led us to
conduct a first long-term study to assessmany interactions (as
well as potential changes in interaction over time), in addition
to a follow-on data collection to supplement the overall size
and number of system users in our dataset. The results of both
the initial study and the follow-up data collection showed
apparent differences in the number of prompts necessary to
lead users to take a break. Therefore, this section proposes a
general model, considers the user types observed across the
two studies, and assesses how the model would perform, as
well as how it may need to be adjusted, across the groups.

6.1 General Model Formulation

Based on our past related work in [4], we knew that user
state at the time of a robot prompt could have an important
impact on the reception of a break-taking robotic system.
Accordingly, to advance the success of robot nudges beyond
the small improvement offered in this manuscript’s deploy-
ments (i.e., using a keyboard sensor as a minor adjustment
method for break timing), we decided to use reinforcement
learning to develop a more sophisticated policy for robotic
break-taking nudges, building on the work of [33], which
modeled user attention toward a robot via online learning
during shorter interaction sessions. Our system included sen-
sors which return clear information about the user state, and
the robot’s set of behaviors spans a rich but simple-to-define
action space. Accordingly, interaction scenarios with our
break-taking SAR system can be discretized into a relatively

small set of known state-action pairs. Thus, we formulate
the behavior response problem for the system as a Markov
decision process (MDP) model.

At a high level, the MDP is defined by a structure of finite
world states and actions, in addition to state-transition prob-
abilities and a cost-reward function that we use to determine
an optimal behavior policy for our system. The world state of
our system is defined based on the state of the user, while the
actions are the robot behavior categories defined in Sect. 3.
Our state-transition probabilities are determined using the
two rounds of robot deployment data, which included 1,256
prompt interactions and 497 successful prompts. Each partic-
ipant’s raw scoreswere converted to normalized probabilities
before combining across participants to prevent participants
with higher numbers of prompts from being dominant.

6.1.1 State Space

For our MDP state space, the state s is defined by the
tuple {i, b, u, d}, including prompt attempt number i , button
pressed value b, participant standing value u, and standing
duration d. We discretized each of these variables as follows:

• i = {1,2,3,4,5,6} - This count represented the current
prompt attempt number, capped at six attempts since in
the vast majority (> 90%) of instances, users stood by
the sixth prompt across both studies.

• b = {True,False} - This value represented whether or not
the participant had pressed the snooze button during the
previous robot nudge.

• u = {True,False} - This value represents whether or not
the participant is standing up. This variable helps to deter-
mine if the system scenario is in a terminal state.

• d = {1,2} - This value represents if the standing duration
of the user is short (five minutes or less) or long (beyond
five minutes), where breaks of at least five minutes are
known to be beneficial [55]. This threshold was not used
during the human subjects studies; it was used just here
to define preferential behaviors within the reward state.
Like the past variable, it is relevant in the terminal state;
d helps to later define the reward formulation.

The initial system state always begins with i = 1, b = False
(since there has not yet been an opportunity to press the
snooze button), and u = False.

6.1.2 Actions

Actions, denoted asa, are definedby the previously described
robot behavior categories. As a reminder, these eight possible
action (i.e., robot behavior) options are Active (A), Pleasant
Active (PA), Pleasant (P), Pleasant Inactive (PI), Inactive (I),
Unpleasant Inactive (UI), Unpleasant (U), Unpleasant Active
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(UA). Each action has its own associated cost value, as further
described below.

6.1.3 Cost-Reward Function

Our cost-reward function is the additive combination of dis-
tinct cost and reward functions, as detailed in this subsection.

Cost Function: Based on past work that shows the sound
level of assistive workplace robotic systems to be potentially
detrimental [8, 27] and the action footprint of the robot to
come at some expense to the user experience [4, 8], the pro-
posed cost function is determined with consideration of the
invasiveness of the robot action (via incidental sound such as
motor noise and sound caused by physical interaction with
the environment and area ofmovement), aswell as the prompt
attempt count i .

To capture the cost associated with incidental sound in
each robot action, we used the International Organization for
Standardization’s (ISO) standard 532 [56], which describes
how to calculate loudness level (in sones) based on recorded
sound. The audio from incidental sound for each behav-
ior category was recorded at a sampling frequency of 16
kHz. Each recording was analyzed with MATLAB’s in-built
acoustic loudness function (acousticLoudness()),which
complies with ISO 532. The resulting cost of each robot
action’s sound appears in Table 11.

To capture the cost of the movement for each robot action,
we assessed the amount of desk space traversed during each
prompt type. The trace of each robot action was recorded
using a marker attached to the robot to determine both area
traversed and cumulative distance traveled within that area.
We grouped the actions into categories nominally defined
by traversal area, with the exception of the Active action;
while the area of the Active motion was smaller, the cumu-
lative distance traversed within that area was double that of
the other actions with similar areas. These categories were
assigned cost values from zero (no motion) to three (largest
area) and are presented in Table 11. Note that the relative cost
of sound (compared to motion) is higher based on its fairly
uniform description as a negative feature across related lit-
erature. While footprint of motion also appears to play an
important role, it is a bigger factor in the case of small desk
areas.

In the cost function equation (Eqn. 1), these robot action
costs and the attempt number i play a role in determining
overall cost. With respect to the prompt number, the cost
is formulated to encourage variation in first prompt action,
impose more costs for more invasive robot actions in middle
prompts, and encourage more invasive (and ideally influen-
tial) actions for later prompts. This idea is captured in the
overall cost function C(i, a) below, which includes sound

Table 11 Each action’s
calculated sound cost and
defined movement cost

a Cs Cm

A 18.3 2

PA 19.6 3

P 15.7 1

PI 11.7 0

I 7.1 0

UI 13.8 1

U 16.0 1

UA 22.5 2

cost Cs(a), motion cost Cm(a), and prompt attempt i .

C(i, a) = Cs(a) + Cm(a)

2
e−(i−1)/5 (1)

Reward Function: For maximal health benefits to the sys-
temuser, it is best for users to stand as soon after the first robot
nudge as possible and spend time standing or being active
before returning to being seated. Accordingly, the reward
function R(i, d), as shown in Eqn. 2, is determined with con-
sideration of break length d and prompt count i . Differing
lengths of break determine the base reward, r(d). While the
primary goal is to encourage any break, based on related liter-
ature such as [55], wewant themodel to encourage behaviors
that lead to longer breaks over shorter breaks. Therefore,
short breaks return a reward value of seven, while long breaks
lead to a reward value of 10. The reward decreases with
prompt number, where the sixth prompt no longer provides
any reward.

R(i, d) = (6 − i) ∗ r(d) (2)

6.1.4 Results

We used Q-learning to generate a set of maximized policy
actions and associated success probabilities for each system
state, with transition probabilities based on the aggregate
information of our user response data from both system
deployments, after normalizing to provide equal weightings.
This general policy appears in Table 12.

The success of the chosen maximized action decreases
for the fifth prompt attempt and fails to succeed for the
sixth prompt attempt. Based on average number of prompts
required for the different participants for each study, and the
notable drop off in success, these results led us to further
explore how these participant-wise (or at least participant
group-wise) trends interacted with our model.
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Table 12 The general maximized policy and the probability of success
for the maximized policy action for each state, aggregated across all
participants

Attempt Button Action Success probability

1 False UI 0.518

2 True PA 0.405

2 False UA 0.437

3 True U 0.611

3 False U 0.312

4 True PA 1.0

4 False A 0.469

5 True PI 0.206

5 False A 0.259

6 True PA 0.0

6 False P 0.0

6.2 Participant-Specific Modeling

As alluded to in the results for each deployment, one unex-
pected observation as we collected data was that participants
seemed to belong to one of roughly three archetypes in their
responses to the robotic system.We further clarify these user
types and consider the effects of specific tactics that work
best for each group in this subsection.

6.2.1 Participant Groupings

To better articulate the types of system user observed during
the system deployments, we sorted the participants into three
groups, whichwe refer to as archetypes, based on the average
number of prompts required for them to stand up and take
a break from working. The resulting archetype groupings
appear in Table 13 and are further described below:

• Compliant participants averaged between one and two
prompts before taking a break. This group was often very
responsive and typically stood up in response to the very
first prompt.

• Moderate participants averaged between two and four
prompts. Participants in this group sometimes responded
to robot prompts right away, but sometimes required a
larger amount of nudging before taking a break.

• Resistant participants averaged four or more prompts
before standing up. These users would frequently ignore
the system, and sometimes ignored up to seventeen
prompts in a row.

Table 13 The participants for each archetype and their associated aver-
age number of prompts

Compliant Moderate Resistant

P Average P Average P Average

02 1.2 04 2.6 01 4.1

03 1.0 05 2.1 06 5.0

07 1.3 16 2.5 13 7.2

11 1.0 17 3.5 14 4.0

12 1.8 19 2.3 20 4.7

15 1.6 21 2.2 23 4.6

18 1.1 22 2.4 24 4.0

6.2.2 Archetype-Specific Results

Althoughwewould expect adaptive system performance that
is personalized to individual users over time to yield the best
intervention results, accruing enough data to individualize
models takes time. The proposed user archetypes provide an
alternative whereby very early model customization might
be possible, before collecting almost any data from a new
system user. To assess how much impact this type of pre-
liminary personalization might have compared to a general
MDP model, we used Q-learning to identify the maximized
policy actions for each system state using policies trained
based on data from each archetype group. These new result
appear next to the general model results in Table 14.

The recommended system behaviors for each archetype
vary widely, and only match the general policy for a small
number of states. This led us to wonder about the impact of
archetype-specific models (compared to the general model)
on system effectiveness in prompting breaks. Figure 7 dis-
plays the success probability (averaged across button state,
for easy viewing) for each archetype when using the general
policy, compared to each archetype-specific policy. The gen-
eral policy success is well aligned for the first two prompt
attempts, before beginning to deviate from the compliant and
subsequently the other two archetypes. However, even when
well-aligned the general policy does not show success above
that of the archetypal policy.

6.3 Summary of Key Results

The maximized general policy may offer promise for
improved user responses compared to random robot actions,
but evidence of this potential was not strong. For example,
the probability of success of a first system prompt was sim-
ilar for the general policy compared to the average success
of the first prompt across the two robot deployments. This
finding, combined with the apparent user groupings hinted
at by the results of each deployment, suggested that more
personalization was needed for maximal SAR intervention
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Table 14 The maximized
actions for the general policy, as
well as for the
archetype-specific policies. Note
that the General policy row
reflects the same information as
the policies selected in Table 14,
but flipped from a column to a
row orientation

Attempt 1 2 3 4 5 6

Button False True False True False True False True False True False

General UI PA UA U U PA A PI A PA P

Compliant P PA UA PA A A UA A A A A

Moderate I P UA UA PA I A I A PA A

Resistant A I P U UI PA U U I U P

Fig. 7 Plots comparing the success probabilities of the general maxi-
mized policy to each archetype best policy for each archetype

success. Once implemented, these archetype-specificmodels
(for compliant, moderate, and resistant system users) demon-
strated benefits for the intervention; themaximized behaviors
between archetypes are distinct, with only a small overlap
across archetypes and compared to the general policy. Note
that the lower success for the compliant archetype beyond the
second prompt is strongly influenced by the available data;
overall, there were only nine instances of members of this
group remaining seated after the second prompt. In contrast,
both the resistant and moderate archetypes have a broader
distribution of prompt counts; thus, the later results for these
archetypes are likely apt.

7 Discussion

The SAR intervention tended to lead to shorter continuous
sitting periods in the initial long-termdeployment, and results
also showed apparent groupings in the way users responded

to the robot prompts. The follow-on data collection results
reflected these same groupings. We used the results of these
two deployments to generate a generalMDPpolicy, aswell as
more archetypal policies designed to fit the needs of the three
identified participant groups. We found that while a general
policy may be useful as a naïve starting point, archetype-
specific strategies are a better choice across all participant
groupswithin ourmodel analysis. For themoderate and resis-
tant archetypes, this more personalized approach seems to
offer a particularly big performance boost.

Although qualitative data hinted at the need for personal-
ization to individuals’ styles, and evenmoods andworkflows,
there was a conflicting trend wherein users were also wary
of invasive data collection techniques (e.g., video recording).
Strategies such as user archetype modeling and less-invasive
sensing methods such as the occupancy sensor used in this
work hold promise for helping to navigate this challeng-
ing tension. More follow-up work is needed to determine
if robotic systems that nudge can encourage habit formation,
but anecdotes from the long-term deployment suggest that
after-effects from our intervention led to more awareness of
uninterrupted periods of sedentary behavior.

7.1 Design Implications

The alignment of types of participant responses across
both the long-term and follow-on system deployments has
promising implications about patterns of user needs in SAR-
mediated break-taking support (and possibly beyond).While
a general policy may serve as a reasonable default, the abil-
ity to categorize participants into distinct archetypes using a
single, minimally invasive sensor and personalize the robot’s
policy accordingly provides a promising avenue for improv-
ing SAR system success while accounting for user concerns
related to data collection. Our methods could be used for
offline training and even model personalization after a brief
trial interaction with the robotic system.

Further, ourMDPmodel generation process included con-
crete proposed measures of impact for non-verbal embodied
system behaviors. Methods for measuring robot sound lev-
els and amounts of movement can support a more structured
process for quantifying robot affect and potentially apply-
ing and transferring our proposed model across systems with

123



916 International Journal of Social Robotics (2024) 16:899–918

different SAR agents. Beyond the robotic break-taking sup-
port space, the introduced technique for quantifying aspects
of non-verbal robot behavior might inform new methods
for proposing and automatically validating robot affect in
expressive robotic systems generally.

7.2 Key Strengths and Limitations

Strengths of this work include the length of studied robot
interventions, the relatively noninvasive sensing used by the
SAR system, and the modeling tactics further highlighted in
the previous subsection. In human-robot interaction research,
deployments extending beyond an hour or so are unusual,
and experiments lasting a month or more are especially rare.
At the same time, efforts like ours which surpass brief-
interaction-based studies are important for understanding
potential effects of novelty and for collecting sufficient data
to advance the state of modeling in human-robot interaction.
Past participants both within and beyond our research efforts
have expressed hesitance about having a camera in their day-
to-day spaces; thus, our design of interaction models that do
not rely on cameras (or access to a user’s personal or corpo-
rate electronic devices, for that matter) can support broader
relevance and adoption of everyday SAR systems for healthy
nudging. Lastly, as already highlighted in Sect. 7.1, the par-
ticipant archetype-specific models and non-verbal behavior
quantification proposed in this work can benefit the field both
within and beyond the robot nudging space.

At the same time, this work was not without limitations.
For example, without a larger SAR system fleet and research
team, we were limited in the number of participants we
could recruit. We aimed for a sample that was sufficient
for informing the proposed models, but more data collec-
tion would be needed to reach conclusive empirical findings
about the nudging intervention and its benefits. Further, the
participant group was mostly male and tended to include
individualswithmoderate-to-high levels of technology expe-
rience. Recruiting a sample more representative of general
consumer electronic device users would help to ensure that
the observed findings can generalize as desired. Lastly, our
proposed policies have only been tested post hoc within the
presented work. Future real-world application and testing of
the policies will be essential for fully understanding their
potential impact on SAR system success.

7.3 Conclusions

While we began this work based on an interest in exploring
break-taking SARs and understanding the impact of such
systems over longer-term deployments, we became curious
along theway about howparticipant needsmight bemodeled,
both generally andwithinmorepersonalized archetypes.This
emergent interest was fueled by the user archetypes that pre-
sented themselves during both the long-term and short-term
system deployments. After observing that our SAR inter-
vention tended to be effective, but appeared to work better
for some participants than others, we used the collected user
response data and participant archetype groupings to model
both general and group-specific system policies. In initial
testing, we found that archetype-specific policies performed
better than the general policy for each user group, with
especially noticeable benefits for the moderate and resistant
groupings. Future work is needed to understand the influence
of the proposed policies in real-world deployments, but over-
all, we believe that this work can help to advance the state of
decision-making in nudge-related SAR research, in addition
to assistive and expressive robotics more broadly.
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