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Abstract
Industry 4.0 has ushered in a new era of process automation, thus redefining the role of people and altering existing workplaces
into unknown formats. The number of robots in the manufacturing industry has been steadily increasing for several decades
and in recent years the number and variety of industries using robots have also increased. For robots to become allies in the
day-to-day lives of operators, they need to provide positive and fit-for-purpose experiences through smooth and satisfying
interactions. In this sense, user experience (UX) serves as the greatest link between persons and robots. Essential to the study
of UX is its evaluation. Therefore, the aim of this study is to identify methodologies that evaluate the human–robot interaction
(HRI) from a human-centred approach. A systematic literature review has been carried out, in which 24 articles have been
identified. Among these, are 15 experimental studies, in addition to theoretical frameworks and tools. The review has provided
insight into how evaluations are conducted in HRI. The results show the most evaluated factors and how they are measured
considering different types of measurements: qualitative and quantitative, objective and subjective. Research gaps and future
directions are correspondingly identified.

Keywords Human–robot collaboration (HRC) · Human–robot interaction (HRI) · User experience (UX) · Systematic
literature review (SLR) · Human factors

1 Introduction

Industry 4.0 has ushered in a new era of process automa-
tion, thus redefining the role of people and changing existing
workplaces into unknown formats [1]. The number of robots
in the manufacturing industry has been steadily increasing
for several decades and in recent years the number and vari-
ety of industries using robots have also increased [2–4]. In
this context, operators will continue to be of great impor-
tance, so optimising the interactions between persons and
robots will be crucial. In contrast to standard automation,
collaborative robots (cobots) [5] enable close and safe inter-
actions between humans and machines, taking advantage of
the benefits of both sides.

ISO8373 [6] defined a robot as a poweredmechanismcon-
trolled via an interface, it is programmable in two or more
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axes with a degree of autonomy and moves within its envi-
ronment to perform intended tasks. Dautenhahn [7, sec. 38.2]
defined human–robot interaction (HRI) as ‘the science that
studies people’s behaviour and attitudes towards robots in
relation to the physical, technological, and interactive char-
acteristics of robots, with the aim of developing robots that
facilitate the generation of human–robot interactions that are
at the same time efficient (in accordance with the original
requirements of their intended area of use), acceptable to
people, meet the social and emotional needs of their individ-
ual users, and respect human values’.

For robots to become allies in the day-to-day lives of oper-
ators, they need to provide positive and fit-for-purpose expe-
riences through smooth and satisfying interactions [8–11].
In this sense, the user experience (UX) serves as the great-
est link between persons and robots. ISO 9241-210 [12, sec.
2.15] defined UX as ‘a person’s perceptions and responses
resulting from the use or anticipated use of a product, system
or service’. This includes user emotions, beliefs, prefer-
ences, perceptions, physical and psychological responses,
behaviours, and achievements that occur before, during, and
after use [12]. This means that humans must experience
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robots as fulfilling existing goals, and as entities that act effi-
ciently andmake people feel confident, safe, and comfortable
while they areworking together [13].Aclearer understanding
of social cognitive constructs (such as determining inten-
tionality, which suggests an intimate connection between
social cues and the perception of robots as social agents) is
required to fully optimise HRI [14]. This statement emerges
from a shift in the perception of robots as tools that extend
human capabilities to teammates that collaborate with people
[15–18].

Over the next few years, the coexistence between peo-
ple and robots will increase [19]. This will take place in
technologically enriched environments, where information
will be exchanged "naturally" between humans and robots,
giving rise to hybrid environments in which people move
between the digital and real worlds [19]. The combination
of human and robotic skills is becoming increasingly impor-
tant [20]. While certain routine tasks or specific skills can
be effectively supported by automation, local decisions or
exceptional interventions often require human input. This
could arise from the extraordinary characteristics of the given
situation or the complexity or the implicit nature of the
knowledge required to find a feasible solution within a lim-
ited period. To date, the combination of human and artificial
resources has not been part of standard automation practice,
in which (i) robots and people are usually kept at arm’s length
from each other, and (ii) people must adhere to work proce-
dures that are as rigid as the rest of the automated production
environment. Symbiotic human–robot collaboration (HRC)
goes beyond these constraints and requires a more respon-
sive, transparent, and accessible environment. Thus, for the
improvement of HRI, the skills and expertise of humansmust
be combined with the accuracy and automation of robots,
which work not as passive tools but as active partners [21].

To this end, it is important to optimise the UX between
human and robot. The evaluation of the UX will enable the
continuous improvement of the industry’s workplaces.

1.1 Research Background on HRI Design
and Evaluation

Numerous contributions have been written on HRI design
and evaluation. The recent adoption of the concept industry
5.0 by the European Commission [22], increased the inter-
est to incorporate human factors. Nevertheless, the literature
reports few attempts to put human factors metrics in a com-
prehensive way in order to evaluate the UX on HRI.

Amethod for performing detailed ergonomic assessments
of co-manipulation activities exists, and this could be applied
to optimise the design of collaborative robots [23]. Maurice
et al. [23] defined multiple ergonomic indicators to esti-
mate different biomechanical demands (muscle force, tendon

deformation,muscle fibre length…) that occur duringwhole-
body activities (e.g., joint loads, joint dynamics, mechanical
energy…). These indicators are measured through virtual
human simulations.

Amoretti et al. [24] stated that understanding the charac-
teristics, advantages and disadvantages of different technical
architecture paradigms and software strategies for their use
in the robotics domain is crucial for the design, implementa-
tion, and successful use of cobotic software architectures.

There are several literature reviews in the context of HRI.
The work by Hentout et al. [25] proposes a rough classifica-
tion of the content of works in HRI into several categories
and subcategories, such as hardware and software design of
collaborative robotic systems, safety in industrial robotics
and cognitive HRI. They stated that the goal of HRI is
to provide robots with three fundamental requirements: (i)
human intention should be easy to infer by the robot, (ii)
the control should be intuitive from the human viewpoint,
and (iii) the designed controller should be safe for both
humans and robots. Simões et al. [21] listed a number of
guidelines broadly classified into: (i) human operator and
technology, (ii) human–robot team performance, and (iii) an
integrated approach to design HRC. As a generic conclusion,
they highlighted the importance of feedback in improving
trust and blame attribution. They presented recommenda-
tions for the design of safe, ergonomic, sustainable, and
healthy human-centred workplaces where not only technical
but also social and psychophysical aspects of collabora-
tion are considered. Savela et al. [26] examined how the
social acceptance of robots in different occupational fields
had been studied and what kinds of attitudes the studies
had discovered regarding robots as workers. Their results
imply that attitudes toward robots are positive in many fields
of work. Nevertheless, they indicated that there is a need
for validated measures. Veling et al. [27] analysed the use
of qualitative methods and approaches in the HRI litera-
ture to contribute to the development of a foundation of
approaches and methodologies in the research area. Their
review revealed six predominant qualitative data gathering
methods in the HRI literature: qualitative observations, semi-
structured interviews, focus groups, generative activities,
reflective and narrative accounts, and textual/content anal-
ysis.

According to Moulières-Seban et al. [28], focusing on
humans, tasks, robots, and system interactions when design-
ing a cobotic system is necessary. These authors introduced a
method of designing cobotic systems that is composed of four
stages: (i) activity analysis, (ii) basic analysis, (iii) detailed
design, and (iv) realisation, setup, validation and putting into
service.

Numerous studies on robots in industries have been pub-
lished, but most of them focus on safety and security aspects
[25, 29, 30]. Other researchers have studied standardisations
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to improve workplaces [31, 32]. In this sense, the robotics
industry is growing to a level where people and robots will
be able to collaborate [33]. However, as Harriot et al. [33]
pointed out, there is still no universal model that assesses the
effect of this collaboration on people’s performance.

Furthermore, it is noted that no attention has been paid
in the literature to the human factors resulting from the
human–robot interaction. Emotional factors such as trust,
satisfaction or mental workload have been poorly studied
for the optimisation of collaborative robotic systems. The
assessment of these factors is beneficial to know how people
feel before, during and after the interaction. In this way, robot
actions could be adapted to people’s needs, in line with the
human-centred design approach.

The direction indicated by European Commission’s
framework Horizon 2020 establishes that gender equality
must be promoted through changes in the culture of sci-
entific institutions, changes in the composition of research
teams in order to achieve equality, and changes in the con-
tent and design of research activities [34]. Nevertheless,
the gender perspective has not been included in any of the
identified studies. The integration of gender perspective in
research is necessary to avoid biases, where sometimes the
realities, experiences, and expectations of a group of peo-
ple (considering men as a reference) are constructed as
the norm, thus producing partial and non-universal results.
The gender perspective in research means integrating sex
and gender variables in the scientific process, which will
have implications when considering gender norms, identi-
ties, and relations as explanatory variables of the analysed
phenomenon. On the other hand, many people face accessi-
bility barriers when interacting with robots, mainly people
who do not usually interact with new technologies, elderly
people, and users with disabilities [35]. Designing and devel-
oping robotic systems which ensure accessibility to all users
with different abilities and needs is essential to make HRI
systems more inclusive. Nevertheless, none of the identified
reviews considers the inclusivity as a necessary aspect to be
approach.

Therefore, the objective of this systematic literature
review (SLR) is to identify evaluations of HRI that include a
human-centred design perspective. Furthermore, we aim to
understand the human factors that affect HRI in an industrial
environment.

The organisation of this review paper is as follows.
Section 2 provides information about HRI and interaction
types. Additionally, it presents information about UX evalu-
ation. Section 3 explains the search methodology used in this
article. Section 4 details the results, which are the literature
characterisations and the answers to the research questions
(RQs). Section 5 presents the discussion, and Sect. 6 the
research gaps and future research directions. In Sect. 7 the

limitations are set out, and, finally, Sect. 8 presents the sum-
mary and conclusions.

2 Human–Robot Collaboration and UX
Evaluation

HRC implies a deeper interaction between the two entities
involved (i.e., humans and robots). In this context, interfaces
play central roles as themain communication channels.Akey
aspect of collaboration is interaction and talking about inter-
actions also means talking about interfaces. High-quality
HRI requires intuitive user interfaces [36]. On the one hand,
operators can give robots simple inputs without any distrac-
tion from their main tasks. On the other hand, robots provide
clear information to users, resulting in an immediate under-
standing and interpretation of data [19]. The adoption of
intuitive interfaces becomes even more important in the case
of closer collaborations between robots and humans.Humans
naturally interact with the world using multiple resources
simultaneously [37]. Consequently, interacting with cobotic
systems should be easy for them [25].

Establishing what effective communication entails and
determining the interfaces through which humans and robots
can communicate are necessary. In this regard, we should
define (i) the intended interactions between persons and
robots, and (ii) the purpose of the information exchange.Both
elements are largely outlined by the scope of the application
and the functions of humans and robots [38], and they need
to be adapted to different contexts.

Interfaces can generate different types of interactions [39].
For example, graphical communication can take place using
specific devices (e.g., a monitor or a touch screen), voice-
based communication can use natural language interfaces
and gesture-based communication can use cameras suitable
for tracking human hands. Depending on the typology of
communication, human–robot interfaces can be classified
into four categories: (i) visual displays (e.g., graphical user
interfaces and augmented reality [AR] interfaces), (ii) gestu-
ral (e.g., hand and face movements), (iii) voice and natural
language (e.g., auditory and text-based responses) and (iv)
physical and haptic interactions [40].

HRI has been classified into different areas depend-
ing on the authors. Prati et al. [39] used the classification
by Schmidtler et al. [41], who categorised HRI into: (i)
human–robot coexistence, (ii) human–robot cooperation and
(iii) human–robot collaboration (HRC). According to Prati
et al. [39], these interfaces can also be related to the level of
interaction provided. In particular, thefirst level of interaction
(coexistence) is usually satisfied with graphical interfaces.
The second level (cooperation) often requiresmore advanced
interfaces, such as voice and gestures. Finally, the third level
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(collaboration) may require direct physical or haptic interac-
tion to be both effective and natural.

On the other hand,Wang et al. [42] studied the relationship
between interaction and risk. At the first level (coexistence),
commitment and complexity are low, and safety is easy
to guarantee because the operator is protected by physical
boundaries. In the second level (interaction), the interaction
is not significantly higher, but the safety risk is much higher,
as the person and the robot start to share the same space.At the
human–robot cooperation level, the interaction and the safety
risk increase significantly, as direct contact between the oper-
ator and the robot is high. In a fully symbiotic human–robot
partnership, the task is carried out by both parties in a collab-
orative manner, and it is inevitable that the human operator
comes into direct contact with the robot. Therefore, the level
of safety risk is higher than that in cooperation.

As indicated byWang et al. [20], the development of solu-
tions for HRC requires an analysis and synthesis framework
containing (i) means to classify and characterise the problem
and (ii) solution templates and guidelines for developing a
solution that fits seamlessly into existing production require-
ments. The authors identified the fundamental elements in
an HRC scenario as (i) agents (robots and humans actively
participating in the productionprocess), (ii) theworking envi-
ronment, which includes resources that are necessary for
production but do not play an active role in conditions (ambi-
ent light, noise, etc.), and (iii) parts and operations.

UX is a term that has become established in human—
computer interaction research and practice. It denotes that
the interaction with a contemporary technological system
goes beyond usability and extends to the emotions before,
during and after using the system. UX cannot be defined
solely by studying the fundamental attributes of usability,
such as effectiveness, efficiency, and user satisfaction. Mea-
suring UX becomes a more complicated task when the target
of the interaction is not just a technology system or an appli-
cation but an entire environment.

UX is a key factor in the quality of a product, service or
system [43–45]. Essential to its study is its evaluation, which
refers to the application of a set of methods and instruments
whose objective is to determine the perception of the use of
a system or product, allowing the identification of aspects to
improve or maintain [46].

In a study on “User eXperience Evaluation Methods” by
Väänänen-Vainio-Mattila et al. [47], they proposed a set of
requirements for good UX evaluation in industrial environ-
ments. Although they stated that it is not possible to have a
single method that meets all the requirements because some
of them may be contradictory or even unrealistic, it would
be interesting to identify the different evaluation methods to
assess HRI in the literature.

Table 1 Defined research questions

ID Research questions

RQ-1 Is there a human–robot interaction assessment model
that includes human factors in industrial settings?

RQ-2 What human factors does it include, and how does it
assess them?

3 ResearchMethodology

As stated above, this literature review is about identifying
evaluations of HRI that include a human-centred design per-
spective and understanding the human factors that affect HRI
in an industrial environment. This can be achieved by per-
forming a SLR and identifying all the available research
papers within a specific duration.

In this literature review method, the guidelines proposed
by Kitchenham et al. [48] were used to carry out the SLR,
which included three phases: planning, organising, and doc-
umenting. These phases have their own components: (1)
research questions, (2) data/information sources, (3) crite-
ria for the inclusion/exclusion of selected papers, (4) quality
assessment (QA), (5) systematic review strategy and, (6)
extraction of data and synthesis. The following sections
describe these phases.

3.1 Research Questions

In this SLR, two RQs were formulated which are given as
follows: The questions must be clearly answered to complete
the SLR successfully. Table 1 presents the RQs.

3.2 Data/Information Sources

There are three main groups of keywords. Scholars use vary-
ing terms to describe the concepts. Therefore, a range of
keywords were identified and combined to discover differ-
ent studies comprehensively and objectively. The following
terms were used in the search for information:

“Human–robot Interaction” OR “Human–robot Col-
laboration” OR “Human–robot Coexistence” OR “Hu-
man–robot Workstation”
“Human factors” OR “user experience” OR “ux”C
Evaluation OR Assessment

In this way, the following main search equation was cre-
ated:

(“Human–robot Interaction” OR “Human–robot Col-
laboration” OR “Human–robot Coexistence” OR “Hu-
man–robot Workstation”) AND (“Human factors” OR
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Table 2 Description of research databases

Data bases Type of data base Description

ACM Digital Library Research database A scientific database on subjects related to informatics and computer science

Engineering Village Research database A specialised engineering database

IEEE Xplore Digital Library Research database A scientific database on subjects related to computer science, electrical engineering, and
electronics

Inspec Specialised
database

A database specialising in physics, electrical and electronic engineering, computer and
control, information technology, and mechanical and production engineering

Science Direct Publisher’s
database

Offers its own full-text scientific journals. Covers most disciplines, but mainly focuses
on science, technology and social sciences and related publishers, Elsevier

Scopus Citation database Scientific citation indexing service for citation searching of peer-reviewed journal
articles. It is mainly used bibliometric calculations, Elsevier

Web of Science Citation database Scientific citation indexing service for citation searching of peer-reviewed journal
articles. It is mainly used in bibliometric calculations, Thomsson/Reuter

“user experience” OR “ux”) AND (Evaluation OR
Assessment).

The electronic databases used for the search are shown in
Table 2.

3.3 Literature Search

Each database was searched, adapting the equation as
required by the database. One problem with this breadth
of databases is the noticeable difference in their search
functionality, which require adjustment according to each
database, as detailed in Table 3. All articles must meet
these general requirements: peer-reviewed journal articles
dated between January 2011 and the date this search was
conducted (November 2021). Using peer-reviewed journal
articles ensured validated knowledge [49], while the publica-
tion year limit was set to reduce the number of inappropriate
hits. We did not expect to find any articles before 2011 that
were significant for the review because it is an emerging field
and the interest in human factors is also recent. Moreover,
we assumed that the latest work builds on that of previous
years. We also excluded papers that were not mainly written
in English or Spanish.

There are 555 identified papers, nearly the half of which
were found in the ScienceDirect database, whose disciplines
focus on science, technology, and the social sciences.

3.4 Selection of Literature

The next step continued with the review protocol. The main
motivation for applying inclusion and exclusion criteria was
to ensure that the studies selected for the systematic review
were related to the evaluation of HRI taking into account
human factors.

3.4.1 Criteria for Inclusion/Exclusion

Table 4 shows the criteria used in this review process. In
addition to the language limitation (LL), we also ensured the
credibility of the published papers by excluding journal arti-
cles that were not peer-reviewed (LP1). Another limitation
was the publication year, which was set to reduce the num-
ber of inappropriate hits (LP3). Therefore, the first step was
to exclude duplicate articles (LP2). A total of 117 duplicate
articles were identified.

The next step consisted of literature selection based on the
article title and abstract and taking into account the directly
related (DR), partially related (PR) and loosely related crite-
ria (LR). A total of 331 articles were excluded.

3.4.2 Quality Assessment (QA)

The next step is to conduct a QA. This process allowed us
to identify whether the articles were related to the specific
topic being reviewed and whether they were useful when
considering an evaluation of the UX in an industrial robotic
environment. For this purpose, five QA questions were for-
mulated, reviewed in detail and scored based on the analysis.
Because of the nature of this type of experimentation, sam-
ple size or replicability has not been established as a crucial
aspect in the QA. There is a large variability in the sample
size used in the different experiments because of the differ-
ent application protocols that may exist [50]. Considering
that QA does not exist in isolation, but directly or indirectly
serves to answer RQs and support conclusions in this study
[51], our RQs are merely associated with the human factors
in HRI, ways to evaluate it and the consideration of gender
and inclusiveness. Therefore,wedefined theQAquestions by
following the recommendations by Yang et al. [51], resulting
in the following ones:
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Table 3 Adopted search syntax for each database and number of results obtained

No Database Date search was carried out Search equation No. of results

1 ACM 05/11/2021 [[All: "human–robot interaction"] OR [All:
"human–robot collaboration"] OR [All:
"human–robot coexistence"] OR [All:
"human–robot cooperation"] OR [All:
"human–robot workstation"]] AND [[All: "human
factors"] OR [All: "user experience"] OR [All: ux]]
AND [[All: "evaluation"] OR [All: "assessment"]]
AND [Publication Date: (01/01/2011 TO
12/31/2021)]nt")

67

2 Engineering Village 12/11/2021 ((((("Human–Robot Interaction" OR "Human–Robot
Collaboration" OR "Human–Robot Coexistence"
OR "Human–Robot Cooperation" OR
"Human–Robot Workstation") AND ("Human
factors" OR "user experience" OR ux) AND
("Evaluation" OR "Assessment")) WN ALL)) AND
(({ja} WN DT) AND ((2021 OR 2020 OR 2019 OR
2018 OR 2017 OR 2016 OR 2015 OR 2014 OR
2013 OR 2012 OR 2011) WN YR)))

29

3 IEEE Xplore 12/11/2021 ("Human–Robot Interaction" OR "Human–Robot
Collaboration" OR "Human–Robot Coexistence"
OR "Human–Robot Cooperation" OR
"Human–Robot Workstation") AND ("Human
factors" OR "user experience" OR ux) AND
("Evaluation" OR "Assessment")

20

4 Inspec 13/11/2021 ("Human–Robot Interaction" OR "Human–Robot
Collaboration" OR "Human–Robot Coexistence"
OR "Human–Robot Cooperation" OR
"Human–Robot Workstation") AND ("Human
factors" OR "user experience" OR ux) AND
("Evaluation" OR "Assessment")

53

5 ScienceDirect 13/11/2021 5.1 ("Human–Robot Interaction" OR "Human–Robot
Collaboration") AND ("Human factors" OR "user
experience") AND (evaluation OR assessment)
5.2 ("Human–Robot Coexistence" OR
"Human–Robot Cooperation" OR "Human–Robot
Workstation") AND ("Human factors" OR "user
experience" OR ux) AND ("Evaluation" OR
"Assessment")

296

6 Scopus 13/11/2021 TITLE-ABS-KEY ( ( "Human–Robot Interaction"
OR "Human–Robot Collaboration" OR
"Human–Robot Coexistence" OR "Human–Robot
Cooperation" OR "Human–Robot Workstation")
AND ("Human factors" OR "user experience" OR
ux) AND ("Evaluation" OR "Assessment")) AND
(LIMIT-TO (PUBYEAR, 2021) OR LIMIT-TO
(PUBYEAR, 2020) OR LIMIT-TO (PUBYEAR,
2019) OR LIMIT-TO (PUBYEAR, 2018) OR
LIMIT-TO (PUBYEAR, 2017) OR LIMIT-TO
(PUBYEAR, 2016) OR LIMIT-TO (PUBYEAR,
2015) OR LIMIT-TO (PUBYEAR, 2014) OR
LIMIT-TO (PUBYEAR, 2013) OR LIMIT-TO
(PUBYEAR, 2012) OR LIMIT-TO (PUBYEAR,
2011)) AND (LIMIT-TO (DOCTYPE, "ar")) AND
(LIMIT-TO (LANGUAGE, "English"))

51

7 Web of Science 13/11/2021 ("Human–Robot Interaction" OR "Human–Robot
Collaboration" OR "Human–Robot Coexistence"
OR "Human–Robot Cooperation" OR
"Human–Robot Workstation") AND ("Human
factors" OR "user experience" OR ux) AND
("Evaluation" OR "Assessment")

39
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Table 4 Inclusion and exclusion criteria

I/E Criteria Code Description

Inclusion Directly related DR A paper responds
to both research
questions

Partially
related

PR A paper responds
to at least one of
the research
questions

Exclusion Limited
language

LL A full text is not
mainly written
in English or
Spanish

Limited
publication

LP1 A paper is not
published as a
journal article in
the databases
studied

LP2 A paper is
duplicated on
the different
databases

LP3 A paper is not
published
between 2011
and 2021

Loosely related LR A paper does not
respond to any
research
question

QA-1—Does the proposed topic relate to human factors in a
human–robot interaction in an industrial environment? QA-
1 aims to give higher scores to articles related to human
factors in HRI and specifically in industrial settings.
QA-2—Does this research help identify human factors that
affect human–robot interaction? QA-2 aims to value papers
which at least assist in the identification of human factors
influencing HRI, those that are most aligned with the human-
centred design approach, and therefore with the purpose of
this research.
QA-3—Is the proposed topic adequately described? QA-3
has been established to assess quality and rigorous articles,
which are well written, and the subject is described correctly.
QA-4—Does the proposed theme consider a gender or inclu-
sive perspective? Directly aligned with the scope of this
research, QA-4 aims to value papers that consider the gender
perspective and inclusiveness.
QA-5—Does the research describe how to evaluate the user
experience of human–robot interaction?QA-5 aims to assess
those papers that present experiments where HRI evaluations
are carried out from a UX perspective.

Table 5 Papers that obtained a quality score higher than 7

Score No of articles References

9 8 [11, 53–73]

8 16 [33, 39, 60–73]

The five QA questions mentioned help in evaluating the
selected studies in terms of their contributions to the present
literature review. The aim of the QA was to facilitate the
understanding of the studies’ appropriateness and usefulness
to the current study. Nidhra et al. [52] proposed high-level
quality criteria by providing specific scores for the findings,
which consisted of three types of ratings for the assessment:
high, medium, and low. These ratings are given by answering
QA questions.

A score of 2 was given to studies that fully met the qual-
ity standard, a score of 1 was given to studies that partially
met the quality standard, and a score of 0 was given to the
studies that did not meet the quality standard. Therefore, the
maximum score for each study is 10 (i.e., 5 × 2 = 10), and
the lowest possible score is 0 (i.e., 5 × 0 = 0).

In this SLR, we considered those articles that obtained
a score higher than 7 which is a quite reasonable result to
answer the RQs of this study and to ensure a high quality and
reliable findings (Table 5), which was a total of 24 articles.

3.4.3 Systematic Process Review

Figure 1 describes the process carried out during the liter-
ature review. In the first phase, a total of 555 articles were
identified, of which 117 were duplicates and were therefore
discarded. In the second phase, screening was carried out
by reading the titles and abstracts based on the previously
defined inclusion and exclusion criteria (Table 4). A total of
438 titles and abstracts were reviewed, of which 331 were
discarded. The next phase consisted of a complete reading of
the 107 remaining articles, which were evaluated one by one
based on the QA questions. After evaluation, only articles
scoring more than 7 were considered, of which 24 articles
were finally analysed in depth for data extraction and syn-
thesis.

4 Results

4.1 Literature Characterisation

4.1.1 Evolution in the Field

The first article identified dates from 2013. Three articles
have been identified for that year: they concern the studies of
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Fig. 1 Diagram of the data collection process, according to the guidelines [48]

Fig. 2 Number of articles
identified per year. Note that the
search only includes articles
published before mid-November
2021 and thus does not include
all 2021 publications
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[33, 53] and [54]. It is only in 2017 that publications studying
the evaluation of human factors in industrial human–robot
environments begin to increase. In fact, more than 80% of
the identified publications date from 2017 to 2021 (Fig. 2).

4.1.2 Nature of Journals

The journals in which the most articles have been identi-
fied, with three articles in each, are Procedia CIRP, a journal

focused on publishing high quality proceedings of CIRP
conferences and, ACMTransactions onHuman–Robot Inter-
action (THRI). Two articles have been identified in the IFAC
PapersOnLine journal, two in Procedia Manufacturing, and
two in Robotics and Computer Integrated Manufacturing
(Fig. 3). Journals in which most articles have been identi-
fied.

As for the impact of the publications, Table 6 shows that
only one journal is not indexed. In other words, 96% of the

Fig. 3 Journals in which most
articles have been identified
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Table 6 Impact of the identified journals (nd= no data, SJR= Scimago
Journal Rank)

Journals Quartile SJR
2020

ACM Transactions on Human–Robot
Interaction (THRI)

Q2 0.6

Applied Sciences Q2 0.44

Electronics Q2 0.36

Human Factors Q1 0.82

IFAC-PapersOnLine Q3 0.31

International Journal of Advanced
Manufacturing Technology

Q1 0.95

International Journal of
Human–Computer Studies

Q2 0.73

International Journal of Social Robotics Q1 0.66

Journal of Robotics Q2 0.3

Mechatronics Q1 0.94

Modeling, Identification and Control Q4 0.22

Procedia CIRP nd 0.68

Procedia Manufacturing Q2 0.5

Proceedings of the ACM on
Human–Computer Interaction

Q2 0.38

Robotics and Computer-Integrated
Manufacturing

Q1 1.56

Sensors Q2 0.64

Sustainability Q2 0.61

articles belong to indexed journals. Of the 17 journals iden-
tified, 5 of them (29%) are classified in the first quartile, and
9 (53%) in the second quartile.

4.1.3 Number of Citations per Article

The number of citations in the articles is relatively low com-
pared with that in broader fields. The most cited article is
that by Villani et al. [63] with 246 citations. The paper by
Lasota et al. [55] is in second place with 97 citations. With
31 citations, the third most cited article is that by Hietanen
et al. [68]. Table 7 lists the 10 most cited articles included in
this review.

4.2 RQ-1: Is there a HRI Assessment Model
that Includes Human Factors in Industrial
Settings?

Although no widely validated assessment model has been
identified, 24 papers inwhich assessment ofHRI in industrial
settings is carried out have been determined. Five of these
studies are theoretical frameworks, 5 are tools and 15 are
experimental studies (Table 8). The study by Prati et al. [39]

first showed the theoretical framework and then the tools.
This is why the article appears in both groups, making a total
of 25; however, there are only 24 articles.

4.2.1 Theoretical frameworks

This SLR has identified five recently created theoretical
frameworks. The studies by Cohen et al. [64] and Villani
et al. [63] date from 2018. The studies by Meissner et al.
[59] and Lindblom et al. [11] are from 2020, and that by
Prati et al. [39] is from 2021. As these are recent theoreti-
cal frameworks, it could be said that interest in the field is
growing. In addition, the high impact of the journals included
shows the acceptance and interest of the scientific commu-
nity of HRI. Specifically, the study by Villani et al. [63] has
246 citations (as of December 2021).

In the study by Cohen et al. [64], they proposed a theoret-
ical framework for analysing and improving workplaces, the
framework focuses on three phases: observation, analysis,
and reaction. They emphasised the importance of examin-
ing the inputs, whether from the operator or the workplace
itself, analysing them and selecting how the reaction must
take place on that basis. According to Schillaci et al. [53]
and Kildal et al. [58], providing the right feedback is impor-
tant for the interaction to be perceived satisfactorily by users.
In this regard, Cohen et al. [64] underlined the selection of
the reaction mode (i.e., the channel, frequency and intensity
by which feedback should be given) based on observation
and analysis of the different elements involved.

Villani et al. [63], on the other hand, placed safety at the
centre of the system. According to Bo et al. [74] and Hentout
et al. [25], safety is the foremost consideration in HRI. Indus-
trial cobots interact and perform tasks with humans, creating
close ties between the two. However, this close relationship
changes the current paradigm regarding safety procedures
and separation in workspaces between humans and robots
[75]. The safety of working with cobots is a challenge today.
Reducing the weight of their moving parts is one of the main
factors to be considered when designing intrinsically safe
cobots [76]. The sensorial apparatuses of robots could be
improved [25], such as, using proximity sensors, to reduce
risk during interactions.

To this end, the importance of designing intuitive inter-
faces has been emphasised. The information provided by
robots should be adequate for users to be aware of the sit-
uation, understand the behaviour of the system and thus
intervene in dynamic and unexpected situations. Villani et al.
[63] stated that affective robotics could be suitable for guar-
anteeing an intuitive interface, alleviating the cognitive load
of the user, as the robot would adapt to the person’s situation.
Cohen et al. [64], Schillaci et al. [53] and Kildal et al. [58]
reported that providing adequate feedback is indispensable in
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Table 7 Papers by citations, retrieved from December 2021

Ref Title Authors Year No of citations (December 2021)

[63] Survey on human–robot collaboration in
industrial settings: Safety, intuitive
interfaces and applications

Villani, V., Pini, F., Leali, F., Secchi, C 2018 246

[55] Analyzing the Effects of Human-Aware
Motion Planning on Close-Proximity
Human–Robot Collaboration

Lasota, P., Shah, J 2015 97

[68] AR-based interaction for human–robot
collaborative manufacturing

Hietanen, A., Pieters, R., Lanz, M.,
Latokartano, J., Kämäräinen, J

2020 31

[53] Evaluating the Effect of Saliency
Detection and Attention Manipulation
in Human–robot Interaction

Schillaci, G., Bodiroza, S., Hafner, V 2013 22

[61] The development of a Human Factors
Readiness Level tool for implementing
industrial human–robot collaboration

Charalambous, G., Fletcher, S., Webb, P 2017 19

[56] Assessing Instructions in Augmented
Reality for Human–robot
Collaborative Assembly by Using
Demonstrators

Danielsson, O., Syberfeldt, A., Brewster,
R., Wang, L

2017 14

[65] The Design and Evaluation of an
Ergonomic Contactless Gesture
Control System for Industrial Robots

Tang, G., Webb, P 2018 10

[58] Empowering assembly workers with
cognitive disabilities by working with
collaborative robots: a study to capture
design requirements

Kildal, J., Martín, M., Ipiña, I., Maurtua,
I

2019 9

[66] Digital Human and Robot Simulation in
Automotive Assembly using Siemens
Process Simulate: A Feasibility Study

Baskaran, S., Niaki, F., Tomaszewski,
M., Gill, J., Chen, Y., Jia, Y., Mears, L.,
Krovi, V

2019 9

[33] Assessing physical workload for
human–robot peer-based teams

Harriott, C., Zhang, T., Adams, J 2013 8

Table 8 Classification of the
identified papers taking into
account the type of study

Type of study No of articles References

Theoretical frameworks 5 [11, 39, 59, 63, 64]

Tools 5 [39, 57, 61, 69, 73]

Experimental studies 15 [33, 53–56, 58, 60, 62, 65–68, 70–72]

establishing bidirectional person-robot communication. Fur-
thermore, Villani et al. [63] stressed the importance of having
adequate design methods and introducing adaptive solutions
for inclusive robotics.

Beyond feedback, the theoretical framework of Meiss-
ner et al. [59] showed the factors that influence worker
acceptance in HRC contexts. They indicated that the most
influential factors (the primary ones) are perceived risk, per-
ceived benefits, and positive and negative emotions. They
also pointed out that a number of secondary factors affect the
acceptance process, such as object-related, subject-related
and context-related factors. All these factors influence peo-
ple’s attitudes towards the acceptance of the system [59].

In relation to system acceptance, the study by Lindblom
et al. [11] was based on Donald Norman’s seven-stage action
model [77, 78]. In the model, the person starts from an inten-
tion, which is executed and subsequently has consequences,
such as perception, interpretation, and evaluation of the con-
text. In this sense, designers develop systems with specific
intentions for users. However, this does not always happen,
and people’s resulting emotions may differ from the inten-
tion with which the system is designed. Along these lines,
Lindblom et al. [11] constructed the ANEMONE theoreti-
cal framework. It consists of a phased, iterative procedure
that focuses on (i) determining whether people can perceive,
understand, and predict robots’ intentions and actions and on
(ii) providing relevant insight into why something works or
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does not work in a particular use situation. The goals are to
provide guidance on how UX evaluation can be conducted
and to facilitate an understanding of why something does or
does not work by identifying UX issues.

Prati et al. [39] proposed a structuredUX-orientedmethod
to investigate human–robot dialogue. The method aims
to introduce a set of UX techniques that support inter-
face design. In accordance with the human centred design
approach, the method places the user at the centre, it is also
an iterative process. The first step of the method consists
of requirements gathering, this involves a multidisciplinary
team, user analysis (for which a set of tools is proposed),
activity analysis and interaction visualisation. The second
step consists of interface design, subsequent prototyping and,
finally, UX evaluation. For the latter, the authors proposed
user testing, but they did not present any process, technique,
or tool to carry out the evaluation.

4.2.2 Operational Tools

This SLRhas also identifiedfive tools. The five articles show-
ing the tools are fairly recent. The study by Charalambous
et al. [61] dates from 2017; Von Der Pütten et al. [57], from
2018; Gualtieri et al. [69], from 2020; and Qbilat et al. [73]
and Prati et al. [39] from 2021.

Charalambous et al. [61] proposed a system to determine
industrial maturity level. The goal is to develop a new human
actor readiness level tool for system design practitioners and
thus optimise the successful implementation of industrial
HRC.

Von Der Pütten et al. [57] developed and validated a new
measure of self-efficacy in HRI. After conducting several
experimental studies, they proposed a questionnaire consist-
ing of 18 items. Participants have to rate the items on a
six-point Likert scale [79].

In the study by Gualtieri et al. [69], a collection and
classification of prerequisites and design guidelines were
developed. These guidelines could help application design-
ers properly develop and evaluate safe, people-centred, and
efficient collaborative assembly workstations. Qbilat et al.
[73] proposedHRI accessibility guidelines. These guidelines
were evaluated by 17 HRI designers and/or developers. The
authors developed a questionnaire consisting of nine five-
point Likert-scale questions and six open-ended questions to
evaluate the proposed guidelines for developers and design-
ers in terms of four main factors: usability, social acceptance,
UX and social impact.

Prati et al. [39] presented two design tools in addition to
the theoretical framework. The first is the user/task matrix,
which is used to synthesise in a chart all the information
about users and tasks, as well as operational conditions, this
tool helps designers define suitable interfaces. The second is
experiencemaps, which represent a synthetic visualisation of

Table 9 Type of robot used in each experimental study

Type of robot Robot References

Humanoid
robot

Robot NAO [53]

Robotic arm Nachi MC70 [54]

ABB IRB-120 [55]

YumiIRB 14,000 [58]

Universal RobotsUR5 [65, 68]

UniversalRobotsUR10 [71]

KUKA LBR IIWA 14 R820 [70]

Integral robot Robot consisting of: (1) a
four-wheel drive (4WD)
remote-controlled vehicle, (2) a
robotic arm, a Lynx al5d, and (3)
a pan and tilt camera

[62]

Nomad Scout [72]

Magabot [72]

Giraff Robot [72]

the entire end-to-end experience that a "generic" user goes
through to achieve a given goal. These maps are used to
understand general human behaviour, as opposed to journey
maps, which aremore specific and focused on aspects related
to a specific business.

4.2.3 Experimental Studies

The SLR has also identified 15 experimental studies evaluat-
ing HRI. Interest in experimental studies is growing, as can
be seen in the results, more than 50% of the studies were car-
ried out in the last three years (2019–2021). Furthermore, the
high impact of the journals shows the scientific community’s
interest in the field.

In general terms, the experiments are divided into three
phases: (i) prior to the execution of the task, *ii) during the
execution of the task and (iii) after the execution of the task.
However, no validated evaluation model has been identified,
as each of the experimental studies uses a different process.
A comparison is shown in Table 10.

Regarding the phase prior to task execution, none of the
studies have conducted an expert evaluation using tools, such
as heuristics. Nor are data collected from expert’s or user’s
perspectives. It is important to note that experience consists
of the emotions before, during and after an interaction, as
stated in the definition of UX in the ISO 9241-210 [12].

In the phase during execution, most studies have used
robots of various kinds, commonly robotic arms (defined in
Table 9). However, the study by Baskaran et al. [66] was an
evaluation carried out using Siemens Process software, so the
authors did not use any robots. Similarly, Colim et al. [60]
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Table 10 Summary of the reviewed experimental studies

Ref. PRE DURING POST

Expert Assess-
ment

Collection of the participant's per-
ception Task execution Collection of the participant's per-

ception

Questionnaire Interview Use of Robot

Quantitative objective measures

Observation Questionnaire Interview

Performance
Psychophysio-
logical meas-

urements

Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No
[53]

[54]

[55]

[56]

[58]

[33]

[62]

[65]

[66]

[67]

[68]

[70]

[71]

[60]

[72]

performed the experimentation on a workstation, did not use
any robots, and the samewas the case in the study byAlmeida
et al. [67], who focused on interfaces.

Performance is measured in seven experiments. Psy-
chophysiological measures are only used in one of the
experiments. In seven of the experiments, observation during
the task is also carried out, from which qualitative informa-
tion about the interaction is obtained.

As for the phase after execution, data collection of the
participants’ perceptions is carried out mainly through ques-
tionnaires (on 13 occasions). In one of the experiments, an
interview is also carried out.

4.2.4 Sample Size and Gender Perspective

The sizes of the samples used in the different case studies
and the number of men and women have also been collected.
Table 11 shows the number of people who participated in
each of the case studies, and the distribution betweengenders.
Of the total sample, 30% are women and 65% men. There
were 450 participants (134 women and 291 men). Only two
studies (one of the case studies of Aromaa et al. [62] and the
study by Tang et al. [65]) use equal samples. Furthermore,
the studies do not show the results obtained disaggregated
by gender, preventing us from determining whether there are
differences between genders when interacting with robots.

Table 11 Sample size in each experimental study (nd = no data)

Ref No. of people Women Men Others

[53] 28 8 20 0

[54] 16 4 12 0

[55] 20 7 13 0

[56] 25 7 17 1

27 7 19 1

25 7 18 0

21 4 14 1

[62] 10 2 8 0

9 4 5 0

[65] 8 4 4 0

[67] 25 2 23 0

[68] 20 ND ND ND

[70] 19 4 15 0

[71] 32 4 28 0

[72] 85 35 50 0

80 35 45 0

Total 450 134 291 3
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4.3 RQ-2:What Human Factors Does It Include
and HowDoes It Assess Them?

Human factors is the scientific discipline concerned with the
interaction between humans and artifacts and design of sys-
tems where people participate [80]. The purpose is to match
systems, jobs, products and environments to the physical
and mental abilities and limitations of people [80]. Accord-
ing to Beith [81] human factors focus on system usability
and designing system interfaces to optimize the users’ abil-
ity to accomplish their tasks error-free in a reasonable time
and, therefore, to accept the system as a useful tool. Con-
sidering applying human factors principles leads to designs
that are safer, more acceptable, more comfortable, and more
effective for accomplishing their given tasks [81]. Table 12
shows the factors evaluated in the experimental studies and
the ways in which they were evaluated. Four groups of mea-
sures have been identified: (i) performance, (ii) posture, (iii)
robot-related factors and (iv) Emotionsrelated factors.

4.3.1 Performance

Performance is the most evaluated factor; it refers to how
people perform their task. Users’ performance is shaped by
their capabilities (e.g., memory, attention, flexibility), and it
is the consequence of the human factors displayed in the sys-
tem. Therefore, a human centred approach involves taking
into account also performance consideration. The indicators
in this group are indicators that are directly or indirectly
reflected in human performance, and hence provide insights
into the human factors and UX. Eight indicators to evaluate
it have been identified in seven of the fifteen studies.

(i) Task execution time is measured in seven of the fifteen
studies (47%). Thus, it is the most evaluated factor
among the studies identified, in fact, it is measured by
all the studies that assess performance.

(ii) The number of interactions performed is measured
once, i.e., in the study by Daniel et al. [54]. As the
authors stated, this variable shows the quality of the
user interface and offers insight into the possibilities
for incorrect data input [54].

(iii) Errors are measured once, i.e., in the study by
Almeida et al. [67].

(iv) Robot idle time is measured twice, i.e., in the studies
by Lasota et al. [55] and Hietanen et al. [68].

(v) Person idle time is measured once, i.e., in the study
by Lasota et al. [55].

(vi) Variability in production times is measured once, i.e.,
in the study by Colim et al. [60].

(vii) Production rate is measured once, i.e., in the study
by Colim et al. [60]. According to the authors, this
is a key indicator measuring performance in terms of

pieces produced within a specified time interval (e.g.,
number of preforms per hour).

(viii) The ratio between the time required to complete the
task with and without the robot is measured once, i.e.,
in the study by Beschi et al. [71]. As they stated, this
indicator verifies whether human productivity is also
affected by robot movement during unsynchronized
tasks [71].

4.3.2 Posture

Related to anthropometrics and biomechanics, this focuses
on eliminating harmful and unsafe work practices and aims
to study human capabilities and limitations in order to adapt
the task to the person while minimizing fatigue [82]. Four
of the fifteen studies analyse the posture of the person. Six
indicators have been identified from the studies.

(i) Postural load is measured once, i.e., in the study by
Harriott et al. [33]. It measures the percentage of time
the participants spent with the flexion of their trunks at
an angle of more than 45º from the vertical [33]. The
longer a participant spent with severe trunk flexion, the
higher the physical workload [83].

(ii) Variance in posture is measured once, i.e., in the study
by Harriott et al. [33].

(iii) Total movement is measured once, i.e., in the study by
Harriott et al. [33]. It is presented as the total number
of times the participant stood up and crouched down.

(iv) Vector magnitude is measured once, i.e., in the study
by Harriott et al. [33]. As stated by the authors, it is
a measure of overall physical activity and combines
acceleration from the three axes of movement. Vector
magnitude measures participants’ physical movement
in the evaluation area.

(v) Rapid upper limb assessment (RULA) is an observa-
tional method [84] to evaluate physical work-related
upper limb disorders [85]. Its application involves the
assessment of a worker’s posture, as well as the exerted
forces, the repetitiveness of movements, and external
loads (e.g., handling heavy materials) [85]. It is mea-
sured in three studies: those byAromaa et al. [62], Tang
et al. [65] and Colim et al. [60].

(vi) The revised strain index (RSI) is also measured in the
study of Colim et al. [60]. The RSI consists of a five-
variable model using continuous multipliers. The five
variables/risk factorsmeasured are the intensity of exer-
tion (force), exertions per minute (frequency), duration
per exertion, hand–wrist posture and duration of a task
per day [86].
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Table 12 Factors and techniques
evaluated in each experimental
study

Factor Technique Reference

Performance Task execution time [54, 55, 33] [67, 68,
60] [71]

Number of interactions [54]

Errors [67]

Robot idle time [55, 68]

Person’s idle time [55]

Variability in production times [60]

Production rate [60]

Ratio between the time needed to complete the task
with and without the robot

[71]

Posture Postural load [33]

Variance in posture [33]

Total movement [33]

Vector magnitude [33]

RULA [62, 65, 60]

RSI [60]

Robot-related factors Anthropomorphism Godspeed questionnaire [53, 72]

Animacy Godspeed questionnaire [53, 72]

Likeability Godspeed questionnaire [53, 72]

Perceived Intelligence Godspeed questionnaire [53, 72]

Perceived Safety Godspeed questionnaire [53, 72]

Self- generated
questionnaire

[55]

Usability SUS questionnaire [56]

IBM Computer Usability
Satisfaction
Questionnaire based
questionnaire

[67]

Learnability SUS Questionnaire [56]

Emotion-related
factors

Trust Self-generated
questionnaire about
Trust

[54]

Satisfaction Self-generated
questionnaire

[55]

IBM Computer Usability
Satisfaction
Questionnaire based
questionnaire

[67]

Mental workload NASA-TLX [62, 70, 33]

Heart Rate [33]

Heart rate Variability [33]

Physical and mental
stress

Physical and mental stress
questionnaire
(self-generated)

[68]

Perceived risk Perceived Risk
Questionnaire

[71]
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4.3.3 Robot-Related Factors

This includes the characteristics that describe the nature of
the system and, therefore, influence human perception. Fac-
tors related to the robot are measured in five of the fifteen
studies. In total, seven factors have been identified.

(i) Anthropomorphism is measured using the Godspeed
questionnaire [87] in two studies. As Bartneck et al.
[87] stated, anthropomorphism refers to the attribu-
tion of a human form, human characteristics, or human
behaviour to nonhuman things, such as robots.

(ii) Animacy is measured in the same two studies using
the Godspeed questionnaire [87]. As Bartneck et al.
[87] stated, the goal of many robotics researchers is to
make their robots lifelike.

(iii) Likeability is also measured in the same two studies
using the Godspeed questionnaire [87]. As Bartneck
et al. [87] stated, theway inwhich people formpositive
impressions of others is, to some degree, dependent on
the visual and vocal behaviour of the targets, positive
first impressions of a person often lead tomore positive
evaluations of that person.

(iv) Perceived intelligence is also measured in the same
two studies using the Godspeed questionnaire [87].
As Bartneck et al. [87] stated, interactive robots face
tremendous challenges in acting intelligently. The
reasons can be traced back to the field of artificial intel-
ligence (AI). Robots’ behaviours are based onmethods
and knowledge developed with AI.

(v) Perceived safety is measured in three studies. In two of
them, it is measured using the Godspeed questionnaire
[87]. A key issue for robots interacting with humans is
safety [87]. This topic has received considerable atten-
tion in the robotics literature, particularly in terms of
the systems and standards established for both indus-
trial robots and service robots intended for use in the
home. In the study by Lasota et al. [55], they used a
self-generated four-item questionnaire tomeasure per-
ceived safety.

(vi) Usability ismeasured twice. In the studybyDanielsson
et al. [56], they used the system usability scale (SUS)
questionnaire [88], and in the study by Almeida et al.
[67], they used a questionnaire based on IBM Com-
puter Usability Satisfaction Questionnaire. The ISO
9241-11 defines usability as ‘the extent to which a sys-
tem, product or service can be used by specified users
to achieve specifiedgoalswith effectiveness, efficiency
and satisfaction in a specified context of use’ [89].

(vii) Learnability is measured once, i.e., in the study by
Danielsson et al. [56], using the SUS questionnaire
[88]. According to Joyce [90], learnability considers
how easy it is for users to accomplish a task the first

time they encounter the interface and how many rep-
etitions it takes for them to become efficient at that
task.

In summary, the seven robot-related factors have been
measured through four questionnaires, which are as follows:

(i) Godspeed questionnaire [87]—to measure anthropo-
morphism, animacy, likeability, perceived intelligence,
and perceived safety. It was used twice, i.e., in the stud-
ies by Schillaci et al. [53] and Joosse et al. [72].

(ii) SUSquestionnaire [88]—tomeasure usability and like-
ability. It was used once, i.e., in the study byDanielsson
et al. [56].

(iii) A questionnaire based on the IBM Computer Usability
Satisfaction Questionnaire, was used once, i.e., in the
study by Almeida et al. [67], to measure usability and
satisfaction.

(iv) Another questionnaire was also used in the study by
Lasota et al. [55] to measure satisfaction with robots
as teammates and to determine perceived safety and
comfort.

4.3.4 Emotion-related factors

This includes emotional responses resulting from
human–robot interaction which evaluate the hedonic
quality [91] of the system. Eight studies of the fifteen
measured factors related to emotions. A total of five factors
have been identified.

(i) Trust is measured once, i.e., in the study byDaniel et al.
[54]. The authors asked participants some questions
adapted from theweb accessibility initiative (WAI) Site
Usability Testing Questions [92].

(ii) Satisfaction is measured in two studies, i.e., those by
Lasota et al. [55] and Almeida et al. [67]. In the former
[55], the authors used a questionnaire that measured
satisfaction with robots as teammates; in the latter [67],
the authors used a questionnaire based on the IBM
Computer Usability Satisfaction Questionnaire.

(iii) Mental workload is measured in three studies. All of
these studies, i.e., those by Aromaa et al. [62], Pantano
et al. [70] and Harriott et al. [33], used NASA-Task
Load Index (NASA-TLX) [93] questionnaire. Harriott
et al. [33] also used physiological measures, such as
heart rate and heart rate variability.

(iv) Physical and mental stress is measured once, i.e., in
the study by Hietanen et al. [68], using a self-generated
questionnaire.

(v) Perceived risk is also assessed once, i.e., in the study by
Beschi et al. [71], using a self-generated questionnaire.
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4.3.5 Types of measurements

A classification of the measurements used is made to under-
stand the types of measurements applied and the interest in
them. In addition to those previously mentioned, other mea-
surements have been identified. The classification involves
objective, subjective, qualitative, and quantitative measures.

Table 13 presents that the subjective and quantitative mea-
sures are basically questionnaires. Various questionnaires
have been identified according to the indicator to be mea-
sured.

(i) Path following precision is measured in the study by
Almeida et al. [67]. According to the authors, this indi-
cator refers to a 3D path following precision with the
tip of a stick.

(ii) The ratio between the touch screen and keyboard inter-
actions is measured once, i.e., in the study by Daniel
et al. [54]. The ratio between the interactions with the
touch screen and the keys on the teach pendant or the
robot controller may indicate the tendency of divided
attention caused by the user interface [54].

(iii) Percentage of concurrent motion is measured once, i.e.,
in the study by Lasota et al. [55].

(iv) Distance between the human and the robot verifies
whether human motion is affected by robot movement
during unsynchronized tasks. It has been measured
twice, i.e., in the studies byLasota et al. [55] andBeschi
et al. [71].

(v) The Siemens process is capable of virtually validat-
ing manufacturing concepts up front. Through this
platform, an evaluation of the interactions between
associates working on the assembly line, equipment
and materials flow can be performed [66].

Regarding subjectivemeasurements, we can classify them
into: i) quantitative and ii) qualitative, as shown in Table 13.
Questionnaires are particularly efficient methods of appli-
cation and analysis that are commonly used for user-driven
assessments [94]. They allow for efficient quantitative mea-
surements of product characteristics, as they are usually
measured using Likert scales [79] or semantic pairs [95].
Questionnaires measure user’s perspectives and do not nec-
essarily require any kind of monitoring.

(i) A general interest questionnaire is used in the study by
Danielsson et al. [56]. Participants filled out question-
naires with six questions regarding general interest and
five questions regarding the information displayed on
the screen.

(ii) Observation is used in two studies, i.e., those by
Danielsson et al. [56] and Kildal et al. [58].

5 Discussion

In the context ofHRC, the role of people remains central. This
mutual relationship between people and robots results in a
powerful collaboration framework with a positive impact on
productivity and flexibility. Using a human-centred approach
is essential to knowing people’s perceptions and thus bring-
ing out the best in them during interactions. Therefore,
analysing UX in these environments is crucial. Users must
perceive robots as allies so that they can leverage the strengths
of both for common goals. Collaborative robots enable closer
and safer interactions between humans and machines, so that
both sides can benefit from each other’s strengths. An SLR
was conducted to learn how evaluations of HRI occur. The
review identified a total of twenty-four articles, of which five
were theoretical frameworks, fivewere evaluation techniques
or tools and fifteen were experimental studies.

The theoretical frameworks identified are consistent, and
they present similarities. Although the articles are recent,
their similarities make us understand that there is a common
line within this field of research.

In general terms, the importance of safety is emphasised
to ensure an effective HRC.However, the safety perceived by
the person should be considered equally important because if
the user does not perceive it as such, the interaction will not
be satisfactory and the UX will not be evaluated positively.

According to Norman [77, 78], when a person interacts
with any object, in this case a robot, they start from an inten-
tion, which is executed and subsequently has consequences,
such as the perception, interpretation and evaluation of the
context. Along this line, Lindblom et al. [11] built a theoreti-
cal framework consisting of a phased and iterative procedure
with the aims of providing guidance on how to carry out
a UX evaluation and facilitating an understanding of why
something works or does not work identifying UX problems.

The human factors that influenceHRI have also been iden-
tified, and those described by Meissner et al. [59] stand out.
Themost influential factors affecting the acceptance ofwork-
ers in HRC contexts are perceived risk, perceived benefits,
and positive and negative emotions. These factors influence
attitudes towards system acceptance.

The present paper reveals how HRI evaluations have been
performed to date. There is a lack of experiments that eval-
uate UX before, during and after interactions. It would be
appropriate to include the evaluation in these three phases and
with a comprehensive approach, i.e., by using different mea-
sures (qualitative and quantitative, objective and subjective),
to better interpret the data obtained from each measurement.

In the experiments on HRI assessment, only a single study
using physiological monitoring was identified. The use of
physiological monitoring could be beneficial in obtaining
objective data on user emotions. Compared with traditional
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Table 13 Type of measurements and tools used in each study

Tools References

Objective
measurements

Quantitative
measurements

Task execution time [54, 55, 33] [67, 68, 60]
[71]

Number of interactions [54]

Errors [67]

Path following precision [67]

Ratio between touch screen and keyboard interactions [54]

Percentage of concurrent motion [55]

Average separation distance between the human and the
robot

[55, 71]

Robot idle time [55, 68]

Human idle time [55]

Variability in production times [60]

Production rate [60]

Ratio between the time needed to complete the task with
and without the robot

[71]

BioHarness heart rate monitor [33]

Siemens process [66]

Postural measurements Postural load [33]

Variance in posture [33]

Total movement [33]

Vector magnitude [33]

RULA [62, 65, 60]

RSI [60]

Subjective
measurements

Quantitative
measurements

Godspeed questionnaire [53, 72]

Questionnaire Trust in Automation [54]

Questionnaire (Satisfaction with the robot as a teammate
and perceived safety and comfort)

[55]

SUS questionnaire [56, 65]

General interest questionnaire [56]

NASA-TLX [33, 62, 70]

IBM Computer Usability Satisfaction Questionnaire based
questionnaire

[67]

Physical and mental stress questionnaire [68]

Perceived Risk Questionnaire [71]

Questionnaire on changes in planning configuration and
what they are most comfortable with

[71]

Questionnaire on worker perception (impact of robotics in
the work context, perceived effort associated with the
tasks and overall evaluation of the job)

[60]

Qualitative
measurements

Observation [56, 58]

Verbal rating of workload (auditory, visual, speech, tactile
and motor)

[33]

methods, including physiological monitoring in UX test-
ing has limitations in terms of price, complexity and time
required to ensure that the assessment is done properly.

Moreover, physiological signals require somedegree of inter-
pretation, as the output must be processed to move from the
raw data to actionable insights [50].

It can be concluded from this study that the evaluation of
UX by combining methods, tools and physiological devices
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couldbebeneficial, as the interactionwouldbe evaluated con-
sidering different types of information. Physiological devices
provide quantitative and objective data about the user at
the moment of the interaction, questionnaires help obtain
quantitative and subjective data, useful to understand user
perceptions of a system.

Finally, this study highlights the need to consider the gen-
der perspective. A marked difference was observed in the
samples used in the experimental studies, which consisted
of 65% men and only 30% women. To contribute to the
reduction of the gender digital gap, researchers should use
equal samples and disaggregate the data obtained by gender
to determine whether differences between genders in exist
HRI.

6 Research Gaps and Future Research
Directions

6.1 Research on the Correlation Between Dynamics
of Robots and User Perceptions

Dynamic variables have had significant influence on percep-
tion studies. An important factor in HRI is the speed at which
robots act. Several works in the literature have examined the
appropriate speeds for robotic actions [58, 80, 81], determin-
ing that robots should act slower than people. According to
Joosse et al. [72], a possible reason for people’s preference
for a slower robot speed may be that not all robots give a
clear indication of when they are going to stop, i.e., they do
not provide feedback on their intentions. One way to over-
come this is to equip robots with functional feedback systems
so that they can convey their intentions. Therefore, there is
an opportunity for research into dynamic variables and the
correlation between user perceptions and performance. One
further opportunity is evaluating people’s abilities to under-
stand robots, the degree of accuracy in predicting the robots’
actions, and whether the sequence of actions performed is
appropriate.

According to Lindblom et al. [11], UX is not absolute,
which means that each person may perceive their experience
differently. Helping a person understand a robot, perceive
its intention, predict the sequence of actions that will take
place, evaluate its actions, determine whether any action is
necessary, specify a sequence of actions and perform these
actions is necessary to optimally perceive UX in HRI. To
this end, and according to Cohen et al. [64] and Villani et al.
[63], robots must provide adequate feedback so that users
can understand and predict their actions. There is a research
opportunity to analyse how this feedback can be presented
according to the robots’ actions and the people’s emotions. In
this sense, affective robotics could be used to provide useful

feedback by determining the appropriate channel, frequency,
and intensity of interaction.

6.2 Research on the Evaluation of HRI in Design
and Interaction

Operators need to have positive and fit-for-purpose expe-
riences through trust-based, smooth, safe, and satisfying
interactions in order to integrate robots as natural parts of
their daily lives. Therefore, evaluation is a key aspect of
ensuring a good UX. According to Gammieri et al. [98], vir-
tual reality (VR) and AR are effective tools that are capable
of simulating industrial cobotic systems with a high level of
immersion. These can simulate HRI safely and economically
with a digital twin, even in earlier design phases in which the
workplace is still under development.

In conclusion, the lack of a structured evaluation method
that is adapted to different HRI contexts and stages of the
design process has been identified in this SLR. Such a model
would need to function in a virtual context, since the HRI
system might be designed virtually in the early stages of the
design process. Thismodel would also need to be operational
at later stages when the system is, for example, in a labora-
tory or even in a real environment. The framework proposed
by Prati et al. [39], called the UX cycle in HRI, is the clos-
est approach, however, it has shortcomings in the evaluation
phase.

Meissner et al. [59] identified several influencing factors
on the individual in the context of collaborative robotics in
industry. There is an opportunity to investigate how these fac-
tors can be evaluated, and more specifically the correlation
between the influencing factors and already validated assess-
ment questionnaires. For example, perceived risk could be
identified using questionnaires measuring perceived safety
(Godspeed questionnaire [87] or the one that was used in
the study by Lasota et al. [55]) or confidence (SUPR-Q
[67] or UEQ + [100]). Physical and mental relief could
be related to ease of use, which could be measured by the
Perceived Usefulness and Ease of Use Questionnaire [101],
PSQ [102], ASQ [103], and USE [104]. It could also be
related to intuitive use (measured by UEQ + [100]) or cog-
nitive effort (measured by the DEEP questionnaire [105]).
As for the perception of progress, it could be measured by
efficiency (SUMI [106], WAMMI [107], UEQ [94], UMUX
[108], UEQ + [100]), and effectiveness (UMUX [108]). In
this sense, another line of research could study positive and
negative emotions and the use of physiological tools.

The lack of experiments evaluating the temporal nature
of UX, i.e., before, during and after interactions, provides
an opportunity to investigate how it can be included in these
three phases. In particular, emphasising the phase before the
interaction is necessary because only in one experiment was
an interview conducted prior to task execution (Table 12).
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It has also been observed that, in the phase during the inter-
action, performance-related aspects are mainly evaluated,
whereas emotions are hardly examined. The retrospective
and subjective evaluation facilitated by questionnaires and
interviews is, in all cases, not an optimal approach, because
it does not measure UX at the moment when the interac-
tion between a person and a robot occurs. Thus, it can be
prone to human error because of inaccurate recall. Using
physiological monitoring to assess UX during interactions is
essential. According to Neumann et al. [109], psychophys-
iological measures are more objective than self-recording
measures, such as questionnaires. The opportunities offered
by physiological signals are increasing because of the evo-
lution of sensors and signal processing [110].

6.3 Research on the Differences Between Genders
when Interacting with Robots

In the experimental studies, the gender variable was not stud-
ied. Therefore, investigating the gender digital gap and to
addressing it are considered important.

Women continue to be underrepresented in technology
compared with their number in the overall workforce [111].
As indicated by Holtzblatt et al. [112], research shows that a
diverse and inclusive workforce correlates with higher inno-
vation, creativity, revenue, and profit [113, 114]. Bala et al.
[115] stated that today’s workforce needs to be filled in a
holistic manner that ensures a diverse group of people creates
the technology of the future. From the perspective of the anal-
ysis of HRI, focusing on the differences in the behavioural
modes, perceptions and emotional effects experienced by
women and men when faced with different designs of these
machines is appropriate.

For all these reasons, evaluating UX during HRI in indus-
trial environments using an equal sample and disaggregating
the results obtained by gender are necessary. Doing so will
help identify whether there are differences in HRI between
genders. In this way, workplaces can be designed in a gender-
inclusive way to mitigate the gender digital divide.

7 Limitations

Our review has the following limitations:

(i) The SLR methodology does not guarantee that all the
publications related to a given research area will be
identified [116].

(ii) Having limited the search to peer-reviewed articles, we
may have missed case studies published at conferences
that could have been relevant to the study.

(iii) The reviewer bias: Despite having attempted to objec-
tify the review, we may have introduced bias in some
cases.

(iv) The choice of databases used. Although we strate-
gically selected the databases to ensure appropriate
coverage of this research area and designed a search
strategy to ensure that as many publications as pos-
sible were captured, it is possible that if we had used
any additional databases,we could have identifiedmore
significant articles for the research.

(v) The QA criteria. If we had defined other QA questions,
the result of the SLR would have been completely dif-
ferent. However, we wanted to focus on human factors,
gender, and accessibility. The same with having set the
cut-off in the QA at 7. If we had set a lower value, may
be other relevant papers would have been identified.
Despite our efforts to avoid bias, according to Yang
et al. [51] QA could result from factors that potentially
bias the findings of the study. Nevertheless, both the
used QA questions and the cut-off value have provided
us with quality papers, and this is supported by the
literature characterisation. Since 96% of the articles
correspond to articles published in indexed journals,
29% in the first quartile and 56% in the second quar-
tile.

(vi) Another limitation is restricting results to English and
Spanish languages only.

8 Conclusions

The number of robots in the manufacturing industry has
been steadily increasing for several decades and in recent
years the number and variety of industries using robots have
also increased. As stated by Hentout et al. [25], HRI can
effectively contribute to developing future factories in which
humans and robots can share tasks and work shoulder to
shoulder. Therefore, operators need to have positive and fit-
for-purpose experiences through trust-based, smooth, safe,
and satisfying interactions in order to integrate robots as natu-
ral parts of their daily lives. According to the HCD approach,
placing the human at the centre of the system is important to
guarantee fluid, safe and satisfactory interactions.

This article reviewed existing works on HRI evaluation
that considered human factors in industrial environments
and were published between 2011 and 2021. A total of
twenty-four full-text articles that provided a summary of (i)
theoretical frameworks, (ii) operational and evaluation tools
and (iii) experimental studies were analysed.

(i) The theoretical frameworks identified emphasised
safety and provided insight into the human factors that
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could influence HRC. In the context of interaction with
a robot, safety and perceived risk are determining fac-
tors, as they directly impact the person’s performance
and emotions. The theoretical framework proposed by
Villani et al. [63] placed safety at the centre, and the
framework proposed by Meissner et al. [59] indicated
that one of the primary influential factorswas perceived
risk. Emotions, such as loyalty, stimulation, and trust,
must also be considered, and even appearance must
be taken into account, because little attention has been
given to the emotional effects of aesthetic impressions
on users [117]. A theoretical framework of HRI from
the UX perspective was also identified [39], but it had
shortcomings in the evaluation phase. Nevertheless,
evaluation is a key aspect to optimising UX.

(ii) Theoperational tools identified throughSLRare recent.
They are tools of different nature that determine
industrial maturity, assess the measure of self-efficacy
in HRI, propose design guidelines for collaborative
assembly workstations, or allow synthesising HRI
experiences. In addition to the development of these
tools, other tools have been identified which have been
applied in experimental HRI evaluation studies. On
the other hand, physiological tools allow objective
assessment because they provide information without
retrospective bias. Given the lack of experiments using
these tools to evaluateUX inHRI, integratingusermon-
itoring using physiological tools would be essential in
future experiments. Including different tools in a new
evaluation model would also be essential, allowing the
evaluation of UX in different phases of the design pro-
cess, such as VR or AR, which would, in turn, enable
assessment of UX in the design phases of the work-
place. The combination of different tools,with different
characteristics, at different times could help ensure the
accuracy and reliability of the results, as it would pro-
vide a better understanding of the context in which the
interaction takes place.

(iii) The present article summarised howevaluations ofHRI
were performed in the literature. No validated model
to assess UX in HRI was identified. In general terms,
the experiments are composed of three phases: (i) prior
to the execution of the task, (ii) during the execution of
the task and (iii) after the execution of the task. Perfor-
mance is themost evaluated factor, mainly through task
execution time. As for subjective evaluation, question-
naires were the most frequently used tools, although
different questionnaires were identified in the different
case studies. Complementing the study with traditional
tools, such as questionnaires or interviews, that pro-
vide subjective insight into users’ perceptions would
be interesting.

Future experimentations must integrate a holistic
approach to capture people’s perceptions at all times, i.e.,
before, during and after an interaction. Including differ-
ent methods of measurement at different moments of the
interaction—quantitative and qualitative, objective and sub-
jective—and integrating gender aspects to guarantee the
interpretation of the data and the understanding of the entire
flow of interaction.
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