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Abstract
We present a new neuro-inspired reinforcement learning architecture for robot online learning and decision-making during
both social and non-social scenarios. The goal is to take inspiration from theway humans dynamically and autonomously adapt
their behavior according to variations in their own performance while minimizing cognitive effort. Following computational
neuroscience principles, the architecture combines model-based (MB) and model-free (MF) reinforcement learning (RL).
The main novelty here consists in arbitrating with a meta-controller which selects the current learning strategy according
to a trade-off between efficiency and computational cost. The MB strategy, which builds a model of the long-term effects
of actions and uses this model to decide through dynamic programming, enables flexible adaptation to task changes at the
expense of high computation costs. The MF strategy is less flexible but also 1000 times less costly, and learns by observation
of MB decisions. We test the architecture in three experiments: a navigation task in a real environment with task changes (wall
configuration changes, goal location changes); a simulated object manipulation task under human teaching signals; and a
simulated human–robot cooperation task to tidy up objects on a table. We show that our human-inspired strategy coordination
method enables the robot to maintain an optimal performance in terms of reward and computational cost compared to an MB
expert alone, which achieves the best performance but has the highest computational cost. We also show that the method
makes it possible to cope with sudden changes in the environment, goal changes or changes in the behavior of the human
partner during interaction tasks. The robots that performed these experiments, whether real or virtual, all used the same set
of parameters, thus showing the generality of the method.
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1 Introduction

The field of robot reinforcement learning (RL) has seen
a fast growth in the last decade [28,35,39]. In particular,
notable progresses have been made with the use of deep
RL algorithms [46], which enable to deal with large con-
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tinuous state and action spaces. Nevertheless, these methods
are computationally very costly, requiring millions of itera-
tions before convergence [31,59].Moreover, they aremost of
the time designed specifically for a given scenario, thus pre-
venting generalization. More precisely, the human designer
either goes for a model-based (MB) RL, when it seems
feasible for the robot to try and estimate a model of the
effect of its actions, or for a model-free (MF) RL one,
when it does not seem feasible [64]. Overall, a wide vari-
ety of algorithmic solutions exist (some being value-based,
other being policy-based), each being more appropriate to
specific experimental scenarios [39]. While recent hybrid
MB/MF robot learning methods have been proposed [5,8],
it is not clear if they could cope on-the-fly with the high
degree of variability and non-stationarity of human–robot
interaction (HRI), and at the same time minimize compu-
tational cost. To our knowledge, no generic solution exists
that enable robots to automatically choose the most effi-
cient and least costly learning algorithm in a variety of
contexts depending on the characteristics of the task at
hand.

In contrast, humans, and more generally mammals, are
endowed with behavioral flexibility which enable them to
adapt to a variety of contexts and situations. One of the key
ingredients of this behavioral flexibility is thought to be a cer-
tain degree of modularity within their cognitive architecture,
so that learning and decision-making processes rely on the
alternation and sometimes combination of different learning
strategies [10–12,27,33,34,47,61]. In other words, humans
havedifferent cognitive toolswithin theirmental toolbox, and
can reuse the tools they think are appropriate in newsituations
while minimizing cognitive effort [58,66]. More precisely, it
has been shown that humans rely on a mixture of MB and
MF RL processes when facing contexts requiring repeated
decisions [9,41,62]. They are moreover able to recognize the
degrees of stability and familiarity of a given task to decide
when to shift between these two behavioral modes. Impor-
tantly, these human cognitive abilities have recently been
modeled with the deep reinforcement learning framework
[63]. However, these approaches still rely on task-specific
parameterization and computationally heavy pretraining, and
do not explicitly address genericity nor cost reduction.

The idea of taking inspiration from how the brain coordi-
nates multiple learning systems to enable more flexibility in
robots has received increased attention in the robotics com-
munity during the last couple of decades [3,5,21,43,45,65].
Furthermore, robot cognitive architectures combining both
MB and MF learning processes have started to be studied in
recent years [5,7,24,25,29,42,44,51,53,55,57]. Among these
proposals, we have previously proposed a way to implement
these principles within a classical three-layered robot cogni-
tive architecture, to facilitate integration with other sensing
and control components, as well as to permit future trans-

fer to different robotic platforms [54]. Nevertheless, to our
knowledge, none of these recent projects have studied (1)
the extent to which combining MB and MF RL can provide
behavioral flexibility and simultaneously reduce computa-
tional cost, by enabling robots to autonomously determine
when to avoid the high cost of MB planning when an
MF strategy is considered sufficient; and (2) the extent to
which such a multi-strategy architecture is effective in a
variety of tasks, including social and non-social ones, and
thus can be generalized to different scenarios and situa-
tions.

Here, we present a novel robot reinforcement learning
architecture which display behavioral flexibility by dynami-
cally shifting betweenMBandMFRL through the arbitration
of a trade-off between performance and computation cost.
We test the new algorithm during simulated and real robot
experiments, and test its generalizability without parame-
ter re-tuning in three different scenarios: a navigation task
involving paths of different lengths to the goal, dead-ends,
and non-stationarity; a human–robot interaction task where
the robot learns to put objects in the rights containers
under human teaching signals; a human–robot coopera-
tion task where both human and robot have to hand-over
some objects to the other agent in order to put them in
their respective containers. We find that the proposed archi-
tecture flexibly and consistently switches to MB control
after environmental changes in any of the three scenarios.
It moreover efficiently switches to MF control when the
task is recognized as stationary. Overall, the robot achieves
the same performance as optimal MB control in the three
scenarios, while dividing computation time by more than
two.

Part of the results in the navigation scenario (Experi-
ment 1), those with change in reward location, but not those
with change in the wall configuration, have been published
in a conference paper [16]. Part of the results in the HRI
scenario (Experiment 2) have been published in a second
conference paper [15]. We present new unpublished results
in both experiments, new extended analyses of the proper-
ties of the robotic architecture which explain these results,
and a thorougher description of the methods. Experiment 3
is completely new.

In summary, we propose an original and efficient human-
inspired mechanism for the coordination of robot learning
systems in a variety of scenarios. To our knowledge, this is the
first robotic implementation of a hybrid MB/MF algorithm
that efficiently reduces computation cost while maintaining
performance, and which can cope with human behavioral
variability during HRI. This feature can be a key advantage
from an ecological point of view and for robots that can
only rely only on their limited internal computational and
energetic resources to achieve their objectives.
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2 Material andMethods

2.1 Markov Decision Problem

In the three scenarios considered in this work, we system-
atically consider the robot as an RL agent facing a Markov
decision problem (MDP) [60]. This means that the robot will
experience a series of discrete states s ∈ S, choosing what
to do at each iteration t (i.e., timestep) within a finite set of
discrete actions a ∈ A, with the goal of maximizing the sum
of cumulative reward r ∈ R over a potentially infinite hori-
zon (the robot does not know in advance how long the task
will last): f (t) = ∑∞

t=0 γ t rt with 0 ≤ γ ≤ 1.
TheMDP can be described by the n-uplet (S, A, T , R, γ )

where T : (S,A) → S is the transition function, which
represents the probability P(s′|s, a) of arriving in state s′
after executing action a in state s, and R : S → R is the
reward function, which represents the scalar reward r that
the robot can get after reaching state s′.

It is important to note that using a discrete state space
does not necessarily mean that the human designer always
has to pre-define in advance the decomposition of the task
into discrete states. As we will see in the navigation scenario
(Experiment 1), we propose a method for the autonomous
decomposition of states from the data acquired through a
Simultaneous Localization andMappingAlgorithm (SLAM,
[23]) by the real robot during initial randomnavigationwithin
the environment. In that case, the states will represent unique
locations in space, and the actions allowed to the robot rep-
resent moves in eight cardinal directions: north, north-east,
east, etc. In the Human–Robot Interaction (HRI) scenarios
(Experiments 2 and 3), the states will represent the config-
uration of cubes on a table and the possible actions will
be: pick a cube, place a cube in a container, hand-over a
cube to the human, take the cube that the human is handing
over. Moreover, we will present our method for the robot to
autonomously learn a world model from the data it collects
during initial exploration, this model consisting in the esti-
mations T̂ and R̂ of the transition and reward functions T and
R, respectively. The robot will then use this learned world
model to perform mental simulations through Dynamic Pro-
gramming [60], and hence bootstrap learning within a few
hundreds of iterations, thanks to such an MB strategy.

The rationale here for using discrete state and action
spaces, and addressing them with a hybrid MB/MF learning
strategy, is to test in a robot the performance, computational
cost and generalizability of a human-inspired model. We
thus want to evaluate to which extent it enables robot fast
adaptation and quick (in the order of thousands of iterations)
reaching of an optimal performance at a low computational
cost, inspired by human ability to quickly adapt in new sit-
uations. This human ability is currently thought to rely on
the combination of MB and MF RL applied to such discrete

representations of the task at hand [9,41,62]. In contrast, cur-
rent deep RLmethods are computationally heavy and cannot
achieve an optimal performance in these simple tasks within
a few thousands of iterations (we will even show cases of
adaptations to task changes within a few hundreds of itera-
tions), but rather require millions of iterations [64]. We will
illustrate in the navigation scenario that at the end of the
experiment, after the robot has performed 6400 actions, that
a Deep Q-Network (DQN) [46] barely had time to slightly
improve its performance, compared to the other tested algo-
rithms.

2.2 A Robot Cognitive Architecture with a Dual
Decision-Making Process

The present work implements a classical three-layer robot
cognitive architecture [1,20] composed of a decision, an
executive and a functional layer. The decision layer of the
proposed architecture (Fig. 1) is composed of two compet-
ing experts which generate action propositions, each with
its own method and with its own advantages and disadvan-
tages. These two experts are directly inspired by current
computational neuroscience models which combineMB and
MF RL strategies for navigation [33], and more generally
for decision-making tasks [9,10]. Hereafter, we follow the
decomposition of the computations of each expert into three
processes, namely learning, inference and decision [6], in
order to more clearly identify what is the respective compu-
tational cost of each of these processes.

The decision layer is also equipped with a meta-controller
(MC) in charge of arbitrating between experts. TheMCdeter-
mineswhich expert will perform inference and decision steps
in the current state, according to an arbitration criterion.After
that, the decision layer sends the chosen action to the exec-
utive layer, who ensures its accomplishment by recruiting
robot’s skills from the functional layer. The latter consists
of a set of reactive sensorimotor loops that control actuators
during interaction with the environment. The robot reaches a
new state and obtains or not a reward. The two experts use the
new state and the reward information to update their knowl-
edge about the executed action. This allows MB and MF
experts to cooperate by learning from each others’ decision.

Compared to our previous architecture [53], several
changes have been made: The overall organization of the
decision-making layer and the prioritization of communica-
tion between modules have been changed; The MF expert is
no longer built as a neural network but as a tabular algorithm;
The MC chooses which expert is the most suitable at a given
time and in a given state, and no longer simply at a given
time; And above all, we have defined a novel arbitration cri-
terion that not only compares experts’ performance, but also
their estimated computational cost.
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Action(t1) Send data to Meta-Controller to arbitrate
between Model-Free and Model-Based Experts

(t2) Send the signal to execute inference and
decision processes according to arbitration

(t3) IF the decision process is executed, send the
proposed action to the Meta-Controller

(t4) Send the chosen action to the Executive Layer
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Fig. 1 General structure of the architecture. Two experts having differ-
ent properties are computing the next action to do in the current state s.
They each sendmonitoring data to the meta-controller (MC) about their
learning status and inference process (t1). The MC chooses an expert
according to a criterion that uses this data and authorizes it to carry out
its inference and decision processes (t2). After the decision, the chosen
expert sends its proposition to the MC (t3), which sends the action to

the Executive Layer (t4). The effect of the executed action generates
a new perception, transformed into an abstract Markovian state, and
eventually a non null reward r , that are sent to the experts. Each expert
learns according to the action chosen by the MC, the new state reached
and the reward. Figure by Dromnelle, Renaudo, Khamassi and Girard
(2022); available under a CC-BY4.0 licence (https://doi.org/10.6084/
m9.figshare.21031723)

2.3 The Decision Layer

2.3.1 Model-Based (MB) Expert

The MB expert learns a transition model T and a reward
model R of the problem, and uses them to compute the values
of actions in each state. These models allow to simulate over
several steps the consequences of following a given behavior
and to look for desirable states to reach. Consequently, when

the task changes, the robot can use this knowledge to find
the new relevant behavior with little actual interactions with
the world. However, this search process is costly in terms
of computation time as it needs to simulate several value
iterations [60] in each state to find the correct solution.
Learning process The learning process of the MB consists in
updating the reward and the transition models by interacting
with the world. The transition model T is learnt by counting
occurrences of transitions (s, a, s′). A pretraining phase can
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take place to improve the robot’s transition model before
the beginning of task. Nevertheless, the transition model is
updated all along the experiment, so that the robot can adapt
to task changes.

The transition model T is updated using the number of
visits VN (s, a) of state s and action a. VN (s, a) has a maxi-
mum value of N and VN (s, a, s′) is the number of visits of
the transition (s, a, s′) in the last N visits of (s, a). The tran-
sition probability T (s, a, s′) is defined in Eq. 1. This leads
to an estimation of the probability to the closest multiple of
1/N :

T (s, a, s′) = VN (s, a, s′)
VN (s, a)

(1)

The reward model R stores the most recent reward value
rt received for performing action a in state s and reaching the
current state s′, multiplied by the probability of the transition
(s,a,s’).
Inference process Performing the process of inference con-
sists in planning using a tabular Value Iteration algorithm
[60]:

Q(s, a) ←
∑

s′
T (s, a, s′)

[
R(s′) + γmaxk∈AQ(s′, k)

]
(2)

Q(s, a) is the action-value estimated by the agent for per-
forming the action a in the state s, R(s′) the probabilistic
reward of the reward model R associated with the state (s′)
and γ the decay rate of future rewards.
Decision process Performing the decision process consists in
converting the estimation of action-values into a distribution
of action probabilities using a Boltzmann softmax function,
and drawing the action proposal from this distribution. We
moreover introduce the possibility of human interventions
under the form of a bias QH (s, a) representing the human’s
preferences for action (these will be used for HRI tasks in
Experiments 2 and 3, but not in the navigation task of Exper-
iment 1):

P(a|s) = exp((Q(s, a) + αH ∗ QH (s, a))/τ)
∑

b∈A exp((Q(s, b) + αH ∗ QH (s, b))/τ)
(3)

where τ is the exploration/exploitation trade-off parameter,
and where the human-predicted preference (bias) QH (s, a)

equals 1 if the human praised the robot the last time it per-
formed the action a in state s, and 0 otherwise. For the sake
of parsimony, the weight of the human bias αH is identical
to the learning rate of the robot α.

2.3.2 Model-Free (MF) Expert

The MF algorithm does not use models of the problem to
decide which action to do in each state, but directly learns the

state-action associations by caching in each state the earned
rewards in the value of each action (action-values). Because
updating the action-values is local to the visited state, the
learning process is slow and the robot cannot learn the topo-
logical relationships between states. Consequently, when the
task changes, the robot takes many actions to adopt the new
relevant behavior. On the other hand, this method is less
expensive in terms of inference duration.
Learning process Performing the learning process consists
in estimating the action-value Q(s, a) using a tabular Q-
learning algorithm:

Q(s, a) ← Q(s, a) + α[R(s) + γ max
k

Q(s′, k) − Q(s, a)] (4)

whereα is the learning rate, R(s) is the scalar reward received
for reaching the state s, γ is the decay rate of future rewards
(same as γ used by MB in Eq. 2), and s′ is the state reached
after executing a.
Inference process Since theMF expert does not use planning,
its inference process consists only in reading from the table
that contains all the action-values the one that corresponds
to performing the action a in the state s.
Decision process The decision process is the same as for the
MB expert (Eq. 3).

2.3.3 Meta-controller and Arbitration Method

The MC is in charge of selecting which expert will generate
the behavior. For each state s, it computes the entropy of
the action probability distribution H(s, E) of expert E [62],
which is close to the notion of trust in [56]:

H(s, E, t) = −
|A|∑

a=0

g(P(a|s, E, t)) · log2 (g(P(a|s, E, t))) (5)

where g(P(a|s, E, t)) is a low-pass filtered action probabil-
ity distribution, estimated from the past inferences performed
by expert E, with time constant τ = 0.67, which has previ-
ously been found to reflect the quality of learning in humans
[62]. The lower the entropy, the lower the uncertainty of the
agent about the action to choose. So the lower the entropy,
the higher the quality of learning. The action selection prob-
abilities used to compute the entropy are averaged over time,
per state, using an exponential moving average.

For each state, theMC also computes the low-pass filtered
duration of the previous inference processes CT (s, E, t) of
expert E , measured in actual simulation time. The novel arbi-
tration criterion that we propose here is a trade-off between
the quality of learning and the cost of inference. By using
it, the MC can decide between favouring the most certain
expert (the most efficient) and the cheapest expert in terms
of computations. Note that the inference process of an expert
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Fig. 2 Selection of the value of the κ parameter in simulations of the
navigation task (Experiment 1). A. Indoor arena used for the nav-
igation task with the real robot. State 18 depicts the initial reward
location. The robot learned a discrete map of the environment which
was then used for parameter optimization in simulation.B. Shape of the
exp(−κH(s, E, t)) function for various values of the κ parameter. C,
D. Cumulated reward and cumulated computational cost obtained with
various values of κ (Eq. 6) in the MC-EC architecture (purple), ver-

sus the MF-only (red), MB-only (blue) and MC-Rnd (green) controls.
The dashed line represents 0.99% of the maximal cumulated reward
measured. The analysis was performed on data collected in the two non-
stationary navigation scenarios (top: displace reward scenario; bottom:
added wall scenario). Figure by Dromnelle, Renaudo, Khamassi and
Girard (2022); available under a CC-BY4.0 licence (https://doi.org/10.
6084/m9.figshare.21031723)

does need to be run before the meta-controller’s arbitration
since it relies on a low-pass filtered memory of the past costs
of each expert in each state. The meta-controller computes
the expert-value Q(s, E) for each expert as following:

Q(s, E, t) = − [
H(s, E, t) + exp(−κH(s, MF, t))CT (s, E, t)

]
(6)

where the term exp(−κH(s, MF, t)) allows to weight the
impact of computation costs in the criterion: The lower the
entropy of the MF distribution of action probabilities, the
more the computation cost of the inference process weights
in the equation. We have chosen the value (here κ = 7) of
the weighting of −H(s, MF, t) according to a Pareto front
analysis [49] (Fig. 2, left). We were looking for a κ that min-
imizes the cost of inference, while maximizing the agent’s
ability to accumulate reward over time (here we tried to loose
less than 1% of the maximum, dashed line on fig. 2, left), in
the two non-stationary navigation tasks detailed in the next
section. Figure 2, right, illustrates this process by showing

the way exp(−κH(s, MF, t)) evolves as a function of the
value of the entropy H(s, MF, t) and parameter κ .

Finally, the MC converts the estimation of expert-values
Q(s, E) into a distribution of expert probabilities using a
softmax function (Eq. 3), and samples the activated expert
from this distribution. The inference process of the unchosen
expert is inhibited, which thus allows the system to save the
corresponding computation time.

2.4 World-Model Building

In this work, we alternate experiments in simulation and
with the real robot. This is to enable the robot to learn a
world model of the task in reality, then use this world model
for simulations permitting to tune the parameters and eval-
uate the proposed robot cognitive architecture. And finally
perform the learning experiments with the real robot under
various conditions: Change in the reward function R of the
MDP, change in the transition function T of the MDP.
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Fig. 3 Thedifferent phases of themethodused forworldmodel building
and offline usage. We illustrate the method with a navigation scenario,
easy to conceptualize and visualize, but themethod is generic and can be

used in other scenarios, such as MDPs for HRI. Figure by Dromnelle,
Renaudo, Khamassi and Girard (2022); available under a CC-BY4.0
licence (https://doi.org/10.6084/m9.figshare.21031723)

Figure 3 illustrates the method. The robot first learns a
world model from real data collected during initial explo-
ration. Then the world model is used as a new approximate
but realistic MDP to perform offline simulations. These sim-
ulations serve to evaluate the robot cognitive architecture,
measure its performance and cost in different conditions, and
optimize its parameters in simulation, thusmore quickly than
with a real robot. Finally, the parameterized architecture can
be tested again on the real robot,whereMBandMFRLstrate-
gies can learn in parallel the new task conditions imposed to
the robot.

The method is here illustrated with a navigation scenario,
easy to conceptualize and visualize. But it is a genericmethod
which can be used in other scenarios, such as MDPs for HRI
with humans.

2.5 General Information

Similarly to the Rmax algorithm [60], we initialized the
action values to non-zero values so to help exploration of

non-previously selected actions, since the action values are
updated according to the previous ones. Thus, in any non-
rewarded states, having previously selected at least one action
results in a non-flat action probability distribution, and thus
more chances to select another one (exploration). More pre-
cisely, the initial action values are set to 1 for both experts.

For the MF expert, we conducted a grid search to find
the best parameter-set, i.e., parameters maximizing the total
accumulated reward over a fixed duration of 1600 timesteps
(which is the duration of the first phase of the navigation
phase, before task changes occur). As this expert is very slow
to learn compared to the MB expert, it is important to ensure
that it can display a beginning of performance improvement
within this duration. We found α = 0.6, γ = 0.9 and τ =
0.02. For the MB expert, we chose γ = 0.95. For the MB
expert and the MC, we chose the same value of τ as the MF
expert. Finally, for the MC, we choose a gating parameter κ

= 7.
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Fig. 4 Configurations of the navigation task.A Starting condition: The
rewarding state is state #18 (red), the departure states are #0 and #32
(blue), all other states are in green. B Goal-location change condition
(after 1600 actions) used in [16]: The reward location is moved to state
#34. The inset figure shows the eight actions available to the robot.

C&D.Wall configuration change conditions (after 1600actions):Obsta-
cles are added that forbid the transitions between state #16 and states
#15 and #37 (C&D), and either between states #20 and #21 (C) or states
#6 and #7 (D)

3 Experiment 1: Navigation Task

The work described in this section presents extended analy-
ses of the results of [16], plus unpublished results in a new
condition of the task (changes in wall configuration). Finally,
we also provide more details about the world model build-
ing method, because it will also be used in Experiments 2
and 3. We will refer to [16] for previously published results,
which can be accessed from: https://hal.archives-ouvertes.
fr/hal-02883717v3/document.

3.1 Methods

We first evaluated our cognitive architecture in a navigation
task. Since running 1600 actions on the robot takes about
6 h, we have created a simulation of the task where the
probabilities of transitions are derived from a world model
learned by the real robot during a 13 h exploration of the real
arena (Sect. 2.4). This simulation allowed us to quickly test
multiple coordination criteria and parameterizations, before
evaluating them on a real robot.

We used a 2.6 m × 9.5 m arena containing obstacles (Fig
2A), and a turtlebot. The computer uses ROS [50] to process
the signals from its sensors, controls the mobile base and
interfaces with our architecture. A Kinect-1 sensor returns
an estimate of distance to obstacles in its field of view, com-
pleted by contact sensors at the front and sides of the mobile
base. The robot localizes itself using the gmapping Simulta-
neous Localization and Mapping Algorithm (SLAM, [23]).
During a preliminary environmental exploration phase, the

robot incrementally builds a discretized map by creating a
new nodes every time its minimal distance with all existing
nodes is larger than 35 cm, and thus autonomously creating
new Markovian states (Fig. 4). The current state (of the cor-
responding MDP) is the closest node from the robot when
its previous action is completed and it evaluates the conse-
quences. We chose to build this map beforehand and to reuse
it for each of the learning experiments, so as to reduce the
sources of behavioral variability. However, note that with the
present method the system could start with an empty map
and build it incrementally, and that a new map could be used
for each experiment.

In this experiment, the robot must learn to reach a specific
state of the environment (state 18—see Fig. 2A).When it suc-
ceeds, it receives a unitary reward and is randomly returned
to one of the two initial positions, located in the extremities of
the arena (states 0 and 32), to start over. The goal of the robot
is first to reach state 18. Thus the reward used here could
represent the energy that the robot gets when it reaches its
battery recharging station, or it could represent the success
for achieving the instruction given by a human to the robot
to go to its home base.

Performing an action consists ofmoving in a certain direc-
tion and changing state. The robot can move along 8 equally
distributed allocentric directions (Fig. 4). When the contact
sensors are activated, the robot moves back 0.15 meters.
Finally, according to the exact position in which the robot
is located within a state, the arrival state will not necessarily
be identical for the same action performed. The environment
is therefore probabilistic, which multiplies the possibilities
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for the robot. For the MB expert, this specificity implies that
the transitions T (s, a, s′) and the rewards R(s, a) are stored
respectively in the model of transition T and the model of
reward R as probability distributions.

The experiment involves a stable period during which the
environment and reward do not change (Fig. 4A). Then, after
the 1600th action a task change is imposed where the reward
is moved from state 18 to state 34 (Fig. 4B). We also made
a second series of experiments where the reward is fixed but
some wall configurations are changed in the environment,
either in the lower corridor (Fig. 4C) or in the middle cor-
ridor (Fig. 4D) depending which of these is preferentially
used by the robot, when starting from state 0, so as to max-
imize the induced perturbation. We chose this duration of
1600 actions (in the order of a few hours with the real robot,
as mentioned above), so as to represent a realistic scenario in
the context of HRI. In this situation, the human’s instructions
to the robot may change during the day: the robot may have
to complete a task with a specific configuration of the envi-
ronment in the morning, and then in the afternoon it has to
learn a new goal location, or the configuration of the environ-
ment changes (e.g., one of the corridors is obstructed while
a human is repairing a light in the ceiling). Under these con-
ditions, we cannot afford to use a learning algorithm which
requires millions of actions before converging.

To evaluate the performance of the virtual robot, we stud-
ied four combinations of experts : (1) a MF-only robot using
only the MF expert to decide, (2) an MB-only robot using
only the MB expert to decide, (3) a random coordination
robot which coordinates the two experts randomly and (4) an
Entropy and Cost robot which coordinates the two experts
using the model of arbitration presented in 2.3.3. In [16], we
also compared our algorithm to a reference learning algo-
rithm in the literature, a DQN deep neural network [46], to
show that our method outperforms it in terms of cumulated
reward with very limited computational cost.

We define the “optimal behaviour” as the behaviour that
allows the robot to accumulate the most reward over time.

The navigation task does not involve any human inter-
vention, in contrast to the HRI tasks of Experiments 2 and
3. Thus, all the results of Experiment 1 were obtained with
αH = 0 in the robot’s decision-making equation through
softmax (Eq. 3).

3.2 Results

Overall, the navigation experiment (Experiment 1) consists
of two conditions:

• Condition 1 (simulation + real robot): initial learning fol-
lowed by changes in goal location (published in [16]).

• Condition 2 (simulation + real robot): initial learning fol-
lowed by changes in wall configuration (unpublished).

We mainly focus on the presentation of the new results in
Condition 2, while referring to [16] and to the supplemen-
tary material to show that the global pattern of the results
is similar between the two conditions. We moreover show
replications of the simulated results in the real environment
with a Turtlebot.

3.2.1 Trade-Off Between Learning Flexibility and
Computational Cost

The first important result that we illustrate here with the
wall configuration change condition (Fig. 5A, B) is that the
MB and MF expert show complementarity in the trade-off
between learning flexibility and computational cost:

• TheMF-only robot (red) takes longer to reach the optimal
behaviour during initial learning, is even slower to adapt
to the task change after the 1600th action (Fig. 5A), but
achieves this performance at a negligible computational
cost (Fig. 5B). This is because its inference process sim-
ply consists in reading from the table that contains all the
actions-values.

• In contrast, the MB-only robot (blue) has the best per-
formance (Fig. 5A), but also the highest computational
cost due to the planning process (about 1000 times higher
than the MF-only robot) (Fig. 5B).

The Entropy and Cost (EC) robot (purple), which com-
bines MB and MF experts through the meta-controller
proposed in the present cognitive architecture (Fig. 1), man-
ages to reach a non-significantly different performance from
the MB-only robot (Mann–Whitney test, df = 1, p = 0.171),
showing that our coordination method does not penalize the
robot in terms of cumulated reward. This good performance
is obtained despite the fact that the EC robot chooses the MF
strategy more than 50% of the time after the 800th action
(Fig. 5C). This means that the MF strategy in the EC robot
has learned faster than in the MF-only robot, taking advan-
tage of the demonstrations provided by the MB expert. The
activation of the MB expert is thus limited, which drastically
reduces the computation cost (more than two times smaller
than theMB-only robot at the end of the experiment, Fig. 5B).
In addition, the EC robot performs better than the random
coordination robot (green) suggesting that our coordination
method is more efficient than randomly alternating between
MB and MF control.

Thus in this task, the proposed architecture enables to ben-
efit from the high learning flexibility of the MB-RL expert,
with a limited computational cost thanks to the cheapMF-RL
expert. These results replicate what we previously obtained
in the change in goal location condition [16], and show simi-
lar properties when tested in the real robot (Online Resource
Suppl. Fig. S4).
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Fig. 5 Simulation results of the wall configuration change condition
of the navigation experiment: A Mean performance for 100 simulated
runs of the task. The performance is measured as the cumulative reward
obtained over the duration of the experiment. The duration is repre-
sented as the number of actions performed by the robot.We use standard
deviation as dispersion indicator. At the 1600th action, new walls are
introduced in the arena, as illustrated in Fig. 4C-D. B Mean computa-
tional cost for 100 simulated runs of the task. The computational cost
is measured as the cumulative time of the inference process over the

duration of the experiment in seconds. The duration is represented as
the number of actions performed by the robot. C Mean probabilities
of selection of experts by the MC using the Entropy and Cost criterion
for 100 simulated runs of the task. These probabilities are defined by
the softmax function of each expert. The duration is represented as the
number of actions performed by the robot. We use standard deviation
as dispersion indicator. DMean probabilities of selection of experts by
the MC-EC robot for 10 runs of the wall configuration change task with
the real robot

3.2.2 Emergent Temporal Pattern of Expert Selection

The second important result is the consistent temporal pattern
of expert selection that emerges from the meta-controller’s
expert selection rule (Eq. 6). This pattern was observed (1)
in the change in goal location condition [16], (2) in the sim-
ulated version of the change in wall configuration condition
(Fig. 5C), and (3) in the version with the real robot (Fig. 5D),
thus showing the robustness of the pattern. This pattern con-
sists in:

• The MF exploring phase (1 on Fig. 5C): Before the
discovery of the position of the reward, the robot uses
mainly the MF expert. This is due to the difference in
the method for updating action-values between the two
experts.With the same initial values and the set of param-
eters we have defined, the action-values of the MF expert

decrease slightlymore than those of theMBexpert,which
drives a more pronounced decrease of the entropy of the
action probability distribution. In addition, since we do
not have an expert specialized in exploration, it makes
sense to use the computationally cheapest expert until
the position of the reward has been discovered.

• TheMB driving phase (2 on Fig. 5C):After finding the
first reward theMB expert progressively takes the lead on
the decisions because its inference process needs only to
find the reward once to spread action-values to all states
of the environment thanks to its transition model. It can
thus find the reward more easily than the MF expert, and
so, its performance increases.

• The MF driving phase (3 on Fig. 5C): The MF expert
learns by demonstration from the MB expert, and thus
spreads action-values from state to state and eventually,
towards the 800th action, it reaches the performance of
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Fig. 6 Evolution of the expert spatial preferences in the wall configu-
ration change condition of the navigation experiment. Expert selection
maps of the MC-EC robot for one of the hundred simulations: in red,
states where the MF was the last chosen expert, in blue, where the MB
was last chosen. after 1600 actions, new walls are introduced that, here,

forbid the transitions between states between state #16 and states #16
and #37, and between states #20 and #21. The MF driving phase and
the MB driving phase correspond to the behavioral phases identified in
Fig. 5C

the MB expert. Because the MF expert is less expensive,
the arbitration criterion (Eq. 6) gives it the lead over deci-
sions.

• Interestingly, when a change in the task occurs (At the
1600th action on Fig. 5C), the sequence of three phases
appears again.

The large standard deviation shown in the figures is explained
by the fact that for each experiment, the robot’s strategy and
behaviour can be very different, notably due to the large num-
ber of states and possible actions, but also to the probabilistic
nature of the environment.As a result, the timeof the switches
from one phase to another varied a lot from one individual to
another. Nevertheless the individual behavior of each run is
consistent with the average behavior presented here (Online
Resource Suppl. Fig. S1B). Importantly, experiments with
the real robot replicated the expert selection pattern obtained
in simulation (Fig. 5D).

3.2.3 Spatial Pattern of Expert Selection

The last important result is the spatial pattern of expert selec-
tion: The MB andMF selection probabilities reported earlier
were not the same in all states of the environment; The meta-
controller (MC) turned out to stably prefer the MB expert in
specific parts of the environment at different stages of learn-
ing, and preferred the MF expert in other parts or at different
stages.

Figure 6 illustrates the expert selection map by the MC
of the EC robot at different periods of the experiment.
These maps show the relative dominance of MB and MF
experts over the robot’s decisions in different parts of the
environment. They enable us to shed a different light on
the emergence of the temporal pattern of expert selection
reported in the previous subsection. During the MB driving
phase, the map is mainly colored in blue, indicating a domi-
nance of MB decisions, while during the MF driving phase,
it is the opposite and the states are mostly colored in red.
Interestingly, we can see with these maps how a spatial coor-
dination pattern of MB and MF experts evolves with time:
during the MF driving phase, paths composed of mostly red
states start to appear. These paths approximately end up con-
necting the departure states to the rewarding state, although
the states at the extremities of this path (states 0, 1, 2 and
32) are still preferentially controlled by the MB expert at
the 1250th iteration in the example shown in Fig. 6. After
the 1600th action, where a change in the wall configuration
along the south corridor occurs in the example shown in the
figure, the extremities of the red path vanish progressively,
before re-forming themselves along the central corridor. This
illustrates the new preference of the robot for the central cor-
ridor instead of the south one, because it is now the optimal
path to the reward.

This leads to the distinction between two types of states:
(1) states located on the optimal path, where the MF expert
is well trained, and where the robot often goes; (2) states
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located at the border of the optimal path, where the MF
expert received little training, and thus where the MB expert
remains dominant. Because the robot does not often go out-
side the optimal paths after learning, the MF expert remains
the most often selected. Nevertheless, when occasionally the
robot gets outside the optimal path, the MC reacts by giv-
ing the lead to the MB expert which will bring the robot
back on track. This illustrates another important aspect of
the behavioral flexibility produced by the architecture, which
could contribute in explaining flexibility in humans, while
neuroscience experiments usually cannot tell whether the
biological “MB expert” is completely deactivated after learn-
ing or whether it remains potentially reactive to similar
situations. This leads to a model-driven prediction which
could be tested with future human experiments: An MB pro-
cess should guide humans back to their familiar sequence of
states and actions, after they got out of their optimal path in
a given task.

Similar results were obtained in the change in goal loca-
tion condition of the task (Online Resource Suppl. Fig. S2).
Finally, Online Resource Suppl. Figures S5 and S6 show that
the same pattern of spatial coordination of experts that we
observed previously in simulation, also emerged over time
with the real robot in the two types of experiments. However,
one can note that the red paths are less complete than they
were in the simulation results. This is a sign of a reality gap
[40], meaning that the experiments with the real robot were
more difficult, which impacted the robot’s ability to achieve
the task.

Another interesting prediction for neuroscience from
these results is that a situation with more difficulty, more
volatility and uncertainty, could involve a more intertwined
contribution of both MB and MF experts, even after a long
training. In such cases, rather than observing a continuous
activation, from departure until reward, of a putative MF
expert in the brain, one would expect to observe intermit-
tent activations of a putative MB expert along the robot’s
trajectory.

Overall, the important thing to note is that the proposed
robot architecture enables to adapt to different situations
(different types of task changes), with different degrees of
difficulty and uncertainty (simulation versus reality), with the
sameprinciple for expert coordination by themeta-controller.
This enables to achieve a performance in these simple nav-
igation tasks which is not different from optimality, at a
drastically reduced computational cost.

4 Experiment 2: Human–Robot Interaction
with Human as Teacher

In this section, we evaluate our robotic architecture and coor-
dination system in a human–robot interaction task. First,

we present the simulated task, consisting in putting colored
cubes in colored containers on a table. Then we present the
two types of simulated humans that we defined to interact
with the robot. In the second part, we present the results
obtained and show how our coordination system allows the
robot, in a task with more states, and without major change
in our architecture, to maintain again a high level of per-
formance while decreasing greatly its computational cost,
but also to deal with the volatility of human behavior. The
work presented in this section is an extended version of
the publication [15], to which we will refer when mention-
ing previously published results. The pdf of the publication
can be accessed from: https://hal.archives-ouvertes.fr/hal-
02899767v2/document.

4.1 Material andMethods

4.2 Simulated Environment and Robot

Unlike Experiment 1, this experiment was performed only in
simulation. Here, a robot having at least one mobile arm, a
visual sensor and a sound sensor faces a table. On the table,
three containers and three cubes of different colors are placed.
The robot is able to distinguish the colors of cubes and con-
tainers, and tomanipulate each of the cubes. On the other side
of the table, a human can interact verbally with the robot, but
can also take control of the robot’s arm. We consider that
the robot is able to interpret the very simple human mes-
sages consisting in either congratulating it, thus constituting
a reward signal for the robot, or telling it to observe human
demonstrations, thus constituting an observation of action by
the robot. Figure 7 illustrates the experiment.

As for the navigation task, we represent the environment
by a model of transitions between Markovian states. The
transition model representing the simulated environment is
not generated by a robot in the realworld, since there is no real
experience, but predefined by the experimenter. This model
is deterministic: Each action carried out in each state by the
robot leads to a single terminal state. It would undoubtedly
be more complex if it had been generated by a robot carrying
out this task in the real world, as for the navigation task of
Experiment 1 (Sect. 3). Initially, we had planned to carry out
the task with real human subjects and a Baxter robot, but
the various lockdowns and the sanitary conditions in 2020
made us abandon this project and stick to simulations [19].
Nevertheless, this HRI task model is in a sense already more
complex than the navigation environment, as we will see in
the next two subsections.

In this HRI task, the robot’s objective is to learn how to
put each of the cubes, initially placed on the table, in the
container of the corresponding color. When this is done, the
robot gets a scalar reward, and the cubes are automatically
put back on the table. Because real naive humans playing

123

https://hal.archives-ouvertes.fr/hal-02899767v2/document
https://hal.archives-ouvertes.fr/hal-02899767v2/document


International Journal of Social Robotics (2023) 15:1297–1323 1309

Fig. 7 Human–Robot
interaction task teaching signals.
A Human provides the robot
with evaluative feedback
(Human intervention type:
Congratulation). B Human
provides the robot with
demonstrations (Human
intervention type: Takeover).
Adapted from [15], with
permission from IEEE

with the robot could have wanted the robot to achieve any
possible configuration (i.e., not always simply to put the red
cube into the red container, and so on, as required here, but
also sometimes to put the red cube into the blue container, the
blue one into the green container, etc., or to put all cubes into
the red container), the robot will have to learn by trial and
error the configuration desired by the human. Importantly,
the robot will have to learn this quickly, and to maintain a
correct performance throughout the trials, in order to make
the duration of the experiment consistent with real human–
robot interactions, and to prevent humans from getting bored.
Thus, even if the task is simple, we want the robot to quickly
achieve an optimal performance at a low computational cost.
This is the reason why we are interested in testing whether
the same generic robot cognitive architecture can produce
human-inspired behavioral flexibility also in this HRI task.

4.3 State and Action Spaces

As for the navigation experiment, the robot state space is dis-
crete. Here, a state represents the position of the three colored
cubes: In the red container, in the green container, in the blue
container, on the table, in the robot’s hand, or in the human’s
hand. If we remove the states where the robot and the human
hold several cubes at the same time, there remains a total of
112 states, i.e., three times as many states as in the naviga-
tion experiment. These 112 states correspond to 5x5x5-13,
because the 3 cubes can be put in 5 different positions (hand,
table, red container, blue container, green container), from
which we subtract the 13 configurations corresponding to
the robot’s hand having several cubes simultaneously.

Regarding the action space, the robot can perform 7 dif-
ferent actions: Take the red cube, take the green cube, take
the blue cube, put the cube held in its hand into the red con-
tainer, into the green container, into the blue container and
onto the table.

While other ways of modeling the task would have been
possible, such as with relational RL [18], we chose this state
decomposition for several reasons: To remain in line with the
representation used in the navigation experiment; For its ease

of use; As a proof of concept of the interest of combiningMF
and MB learning strategies also in the field of human–robot
interaction.

4.4 Pre-experimental Babbling Phase

A babbling phase precedes the experiment, where the robot
can manipulate the cubes without getting rewarded. We
defined this pre-experimental phase because in this task, the
robot explores its environment much less than in the naviga-
tion task (at an equivalent exploration parameter τ ), which
may have significant repercussions on the performance of the
robot. The reasons for this less extensive exploration are as
follows:

• The environment of this HRI task is defined by approx-
imately three times as many states as in the navigation
task (112 states for the former, 38 for the latter),

• Only 6 actions must be performed from the initial state to
reach the final state (i.e., approximately 5% of the total
number of states), against 9 in the navigation task (i.e.,
approximately 24% of the total).

• The environment is not probabilistic, each action per-
formed by the robot in each state of this task leads to
a single terminal state. If the probabilistic environment
in the navigation task made it more complicated for the
robot to traverse, it also allowed it to discover unexplored
states by chance.

First, we evaluated the performances of the robot in the HRI
task after several babbling durations, using our arbitration
criterion (MC-EC) and without human intervention (Fig. 8).
We found an optimal babbling duration of 1200 iterations.
Beyond that, babbling no longer improved the performance
of the robot. Of course, we could also choose to give the
robot a more or less complete transition model before the
start of the experiment. We consider here the case where the
robot has no a priori knowledge about the environment, apart
from predefined state and action spaces. In the same way, we
could very well imagine that the transition model built by
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Fig. 8 Results in the HRI teaching task. A Average performance of
the MC-EC robot for different babbling durations. For each duration,
50 simulated experiments were performed. Performance is defined as
the robot’s ability to accumulate reward over the duration of the exper-
iment that follows the babbling phase. The duration is represented by
the number of actions performed by the robot. B Costs of the inference

processes accumulated at the 10,000th iteration by the different robots
and for the different types of intervention. The colored dots represent
the unit performances of the different experiments and the black dots
the average performances for all the experiments and all durations of
interventions combined, that is to say 600 experiments per type of robot

the robot before the first experiment could be reused for all
the following experiments. This would be particularly useful
in the case of real experiments, where pretraining the robot
can accelerate its performance for the next interactions with
human participants. Nevertheless, in the present simulations,
including a babbling phase enables to estimate how many
iterations are required by the robot to learn a correct transition
model.

4.5 Simulated Humans

A simulated human able to interact with the robot faces the
table. We have defined two ways for the robot to learn from
humans, drawing inspiration from the concepts of learning
by evaluative feedback and learning by demonstration [22,
30,36]. We name respectively the two types of underlying
interventions: Intervention of the type congratulation and
intervention of the type takeover. More precisely:

• In the case of the congratulation type intervention, the
human can congratulate the robot after it has put a cube in
the correct container, for example the red cube in the red
container (Fig. 7A). The effect of the intervention will
be effective the next time the robot is again in the same
situation (when it holds the red cube again). [37] have
previously shown that the more human praise directly
affects the robot’s action selection process, the better
the robot. Conversely, the more human praise affects the
update of state-action values for each experienced tran-
sition, the worse it is. Thus, in our work, we model the
human’s congratulation, and therefore his/her preference,
as a positive bias (a bonus) of an state-action value valid

only during the decision process, rather than as a direct
modification direct of state-action values. Concretely, we
are inspired by the policy shapingmethod named Action
Biasing [37], and thus use a non-null parameter αH to
weight the human-predicted preference (bias) QH (s, a)

in the softmax function (Eq. 3).
• In the case of the takeover type intervention, the human
can override the choice of the robot, when a cube is
held by it, by choosing the place where it will be placed
(Fig. 7B). As for the congratulation, the demonstration
of the human is associated with a single state-action pair
(s0, a0). Note that compared to the congratulation, the
demonstration has an instantaneous effect on the robot.
And even if it cannot act during these moments, the
robot still learns from observing the consequences of the
actions chosen by the human.

We note that in both cases, no human interventionmemoriza-
tion process was modeled. By interacting with the robot to
influence its decisions, the human biases the updating of its
action-state values. Therefore, the consequence of the inter-
vention is incorporated into the robot’s state-action value
model, which illustrates both the robot’s choices and the
human’s preference, even if it is not possible to separate them.

4.6 Expert Parameters

In order to show the generic and task-independent nature of
our learning and meta-control system, we reused the same
set of parameters as the one used in the navigation task for
each of the experts and for the meta-controller (Table 1).
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Table 1 Chosen values of
experts and meta-controller
parameters in the cube ordering
task

Param MB MF MC

α n.a. 0.6 n.a.

τ 0.02 0.02 0.02

γ 0.9 0.9 n.a.

κ n.a. n.a. 7.0

In contrast to the navigation task, the state-action values
of the experts are not initialized to a positive value, and are
worth 0.0 at the start of the experiment.

4.7 Results of the ExperimentsWithout Human
Intervention

Toevaluate the performance of the simulated robots,we reuse
the color code of the navigation experiment: Red for theMF-
only robot, blue for theMB-only robot, green for the random
coordination robot (MC-Rnd) and purple for the robot that
coordinates the two experts using the arbitration criterion that
we have proposed (MC-EC).

The interest of this experiment is to evaluate the contribu-
tion of meta-control in a task where a robot can interact with
a human. We will start by evaluating the performance of the
robots without human intervention, then with the two types
of human intervention defined above.

In [15] we studied the evolution of the average perfor-
mance of the different robots when the human does not
interact with them. As in the navigation experiments, the
MF-only robotwas the onewith theworst performance. Inter-
estingly and in contrast with the navigation experiment, we
had observed that the maximum performance was achieved
by robots doing meta-control (MC-EC and MC-Rnd) rather
than by the MB-only robot. Importantly, the MC-EC robot
displayed a much lower computational cost than that of the
MC-Rnd robot. Finally, we found that these properties where
obtained through a different temporal pattern of expert selec-
tion: We observed a very short guidance phase by the MB
expert, followed by the guidance phase of the MF expert.
Because the state-action values were initialized to 0.0 at
the beginning of the experiment, we did not observe the
exploratory phase of the MF expert that we observed dur-
ing the navigation experiment.

These results thus constituted a first step of validation of
the genericity of the proposedmethod in a simpleHRI task. In
such a case, when the robot has to learn on its own without
human intervention, it can be useful to combine MB and
MF RL to get an optimal performance while minimizing the
computational cost.

4.8 Meta-control Provides Robustness to Errors in
Humans’Teaching Signals

Next, we evaluate the architecture when the human inter-
venes in the form of two possible types of teaching signals:
Congratulations or Takeover. The main messages from the
analyses that will be presented hereafter are that:

• The meta-controller of MC-EC robots enables them to
get a robust performance in the task independent from
whether the human intervenes or not. Only MF-only
robots require human intervention to bootstrap their
learning performance in this task, while all robots with
an MB expert can already learn fast (but note that human
interventions are still beneficial in the Takeover case, see
Fig. S10).

• The meta-controller of MC-EC robots provides them
with robustness with respect to errors that humans can
make during their interventions (Fig. 9): We tested dif-
ferent percentages of errors made by the humans when
congratulating the robot or when taking-over to show the
robot was is the right action to perform; We also tested
different omission rates in human’s teaching signals. The
deterioration of performance caused by omitted (Fig. 9C)
or misleading (Fig. 9B) interventions was mostly penal-
izing the MF-only robot, while being mitigated in the
MB-only,MC-Rnd andMC-EC robots, thanks to theMB
expert.

• The meta-controller of MC-EC robots minimizes com-
putational cost: Its cost was more than four times lower
that of the MC-Rnd, and ten times lower than the one of
the MB-only. (Fig. 8B).

• Finally, overall the takeover human interventions were
more efficient than the congratulation ones (compare
Online Resource Suppl. Fig. S10 with Online Resource
Suppl. Fig. S8), as they allowed to reach larger cumulated
reward levels for all the configurations of the architec-
ture (MF-only, MB-only, MC-Rnd and MC-EC). This
required 300 iterations in the worse case (MF-only) but
was faster for robots incorporating a MB expert (150
interactions). Quite naturally, increasing the number of
such interventions increased the cumulated reward up to
a ceiling value (Online Resource Suppl. Fig. S10).

In the next subsections, we present more detailed analy-
ses of these results to illustrate the task-independent nature
of our coordination model, its generalization to an environ-
ment composed of about three times more states than for the
navigation task (Sect. 3), as well as its ability to cope with
the volatility of human behavior. Despite these many differ-
ences, we reused the same parameters that were optimized
for the navigation task, in order to show the generic and task-
independent nature of our learning and meta-control system.
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Fig. 9 Reward accumulation results in the HRI teaching task. A Case
where humans provide erroneous congratulation feedbackwith increas-
ing error rates. B Case where humans provide erroneous takeover
feedback with increasing error rates. C Case where humans omit to

provide takeover feedback with increasing omission rates. Dots report
the accumulated after 10,000 simulation timesteps, for 50 simulations.
First row (red): MF-only robot; second row (blue) MB-only robot; third
row (green): MC-Rnd robot; fourth row (purple): MC-EC robot

4.8.1 Results with Human Intervention of the
Congratulation Type

Cumulative reward In Online Resource Suppl. Fig. S8, we
can visualize the performance of the different robots at the
last iteration (the 10,000th) for different durations of human
interventions of Congratulation type. The human begins to
intervene directly after the end of the babbling period. We
notice that only the MF-only robot seems to be strongly
impacted by human intervention. The other robots have their
performance slightly improved for long human interventions,
but not for null and short human interventions. A Krustal-
Wallis test determined that, for the MB-only and MC-Rnd
robots, at least some performances for different intervention
durations were significantly different (Kruskal–Wallis test,
p value MB-only = 5.66 × 10−5 and p value MC-Rnd =
0.002). In order to identify which performances were sig-
nificantly different from the others, we performed multiple
comparison procedures through theDunn test [17] with Bon-
ferroni corrections (Online Resource Suppl. Fig. S7). If four
performance comparison tests for theMB-only andMC-Rnd
robots indeed had a p value below the significance threshold
of 0.05, we note that the effect seems above all to be due to
the variability of the data. This is evidenced by the proximity
of these p values to the threshold of 0.05 compared to those
of the MF-only robot. For example, for the MB-only robot,
the performance relative to the duration of 10 interventions

stands out, for no specific reason. Conversely, the effect of
the Congratulation type intervention on the performance of
the MF-only robot had an effect proportional to the duration
of the intervention, which makes sense.

We then compared the performance between MF-only,
MB-only,MC-EC andMC-Rnd robots. AKrustal-Wallis test
between the performances of the four robots for an interven-
tion duration of 500 iterations confirms that at least one of the
performances was significantly different from the others (p
value = 2.99×10−7). Finally, aDunn test allows us to see that
the performance of the MC-EC robot at an intervention time
of 500 iterations was significantly different from the perfor-
mance of the MC-Rnd robots (p value = 0.0408), MB-only
(p value = 9× 10−5) and MF-only (p value = 3.94× 10−7)
at the same duration of intervention. The performance of the
MC-Rnd robot was also significantly different from the per-
formance of the MF-only robot (p value = 0.042) while the
MF-only and MB-only robots had indistinguishable perfor-
mances (p value = 1.0).

For the moment, we have therefore shown that human
intervention of the Congratulation type seems to be useful
only to the MF-only robot, which only embeds a model-free
expert. In contrast, only the MC-EC robot achieves maximal
performance. Importantly, the MB-only, MC-Rnd and MC-
EC robots, which all embed a model-based expert, do not
need human intervention to improve their performance. In
other words, the interest of the hybrid MB-MF architecture

123



International Journal of Social Robotics (2023) 15:1297–1323 1313

that we propose here is to be more robust to short human
teaching interventions, and thus to produce optimal perfor-
mance in this simple cube tidying task even for cases where
real human participants were bored to provide the robot with
a long supervision.
Computational cost Next, we examine the advantages of the
proposed architecture in terms of computational cost reduc-
tion. Figure 8B allows us to compare the cumulative costs of
the inference processes of the different robots at the end of
the experiment in the case where the human does not interact
with the robot, and in the case where the human congratu-
lates the robot or takes over. Overall, we can say that the help
provided by the human seems to slightly offload the robot
in computational cost. This is especially observable for the
MB-only robot (which in fact performsmore expensive com-
putations than the other robots). In any case, the displayed
cost of the MC-EC robot is again extremely low compared
to those of the MB-only and MC-Rnd robots.

Overall, we can conclude that theMC-EC robot is capable,
at minimal cost, of compensating for the absence of human
intervention. When the human is present and interacts with
the robot, the cost of the MB expert decreases, a sign that it
performs less expensive computation. When the duration of
the intervention is long, theMF-only robot is fully capable of
performing the task efficiently at a very low computational
cost. However, as soon as the duration of the intervention
decreases, its performance drops. This is when theMBexpert
behaves like a “backup expert”, which allows the robot not to
be dependent on the human. In a situation where the presence
of the human is uncertain, the MC-EC robot is therefore the
ideal robot.
Humans that make omissions In order to confirm this rea-
soning, we performed another set of simulations where the
simulated humans had a tendency to omit to congratulate the
robot from time to time. In other words, the human behavior
is now simulated with a certain degree of stochasticity, so
that the robot is rewarded by the human only a proportion
of the required feedback (from 0%, 10%, .. up to 100% of
the time). If omitting has a clear effect on the performance
of the MF-only robot (Online Resource Suppl. Fig. S9, first
row), bringing it back to the performance of non-intervention,
the other robots deal with it without much concern (Online
Resource Suppl. Fig. S9, three bottom rows). This is because,
as we have previously seen, their performance is already high
without intervention, and remains here largely unaffected by
the intermittent absence of human feedback.
Humans that make mistakes Finally, to test the adaptability
of these different robots to slightly more realistic humans,
we made a last series of simulations where humans could
make errors. Within the framework of the Congratulation
type intervention, an error consists in congratulating a bad
action of the robot (for example putting the red cube into
the green container). All the system configurations suffer a

performance degradation (Fig. 9A), the MF-only configura-
tion is the most affected one. This corroborates our previous
observations regarding the dependence of theMF-only robot,
and therefore that of the MF expert, on human interven-
tion. Again, using an MB expert is very beneficial for the
robot. In all four cases, and even if the performance degra-
dation of the other robots is minimal, we observe that at very
high human error rates, the quantity of cumulative rewards
at the end of the experiment remains lower than when the
human never makes mistakes or never interacts with the
robot. This is because during this 500 iterations period of
interventions, all the system configurations struggle to accu-
mulate the reward despite human detrimental interventions,
which therefore creates a performance delay compared to the
robots not interacting with the human or with a human not
making mistakes.

Importantly, using our arbitration criterion allows theMC-
EC robot not to be dependent on the human to achieve the
objective that has been set for it, but also to absorb its potential
errors more effectively. In other words, the proposed archi-
tecture allows the simulated robot to bemore robust to human
errors in this task.

4.8.2 Results with Human Intervention of the Takeover Type

Unlike the Congratulation type intervention, we can see in
OnlineResource Suppl. Fig. S10 that theTakeover type inter-
vention has an effect on the performance of each robot,
although the performance effect on the MF-only robot
remains larger. For the other three robots, we can see that
intervening over a period of more than 100 iterations no
longer significantly increases performance. AKrustal-Wallis
test between the performances of the four robots for an inter-
vention duration of 500 iterations confirms that at least one
of the performances is significantly different from the others
(p value = 6.10 × 10−35). A Dunn test finds that at an inter-
vention time of 500 iterations the performance of theMC-EC
robot is significantly different from the performance of the
MC-Rnd robot (p value = 5.84× 10−16), MB-only (p value
= 1.73 × 10−32) and MF-only (p value = 2.50 × 10−04).
The performance of the MC-Rnd robot is also significantly
different from the performance of the MF-only (p value =
1.53×10−04) andMB-only (p value = 1.25×10−03), which
both also have a significantly different performance (p value
= 1.44 × 10−04). These performances exceed on average
the 1200 accumulated rewards, i.e.,more than the maximum
performances obtained by the robots within the framework
of the Congratulation type intervention (Online Resource
Suppl. Fig. S8). In summary, all robots have different perfor-
mances, and again, the MC-EC robot is the best of all.

We can explain the high performance of the Takeover
type intervention by the fact that the decision of the human
replaces that of the robot in 100% of cases, whereas in the
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Fig. 10 Illustration of the Human–Robot Cooperation task. Figure by
Dromnelle, Renaudo, Khamassi and Girard (2022); available under a
CC-BY4.0 licence (https://doi.org/10.6084/m9.figshare.21031723)

case of the intervention ofCongratulation type, the decision-
making process, although biased in favor of the human, is still
subject to a probabilistic treatment through the softmax func-
tion (3), which can at times select a non-optimal action. In
addition, the Takeover type intervention acts on the behav-
ior of the robot at the iteration on which it is performed,
while the Congratulation type intervention has an influence
on the robot behavior only the next time the robot performs
the state-action combination that the human praised.

In Fig. 8B, we can see that the cumulative cost values are
as low as in the Congratulation type intervention: The more
efficient the human intervention, the less theMBexpert needs
to do expensive calculations. Finally, in [15] we observed the
same guidance phases of the two experts as for the Congrat-
ulation and No-intervention cases.

If we observed previously that the robots MB-only, MC-
Rnd and MC-EC were not impacted by humans omitting to
intervene, because the human did not provide any significant
assistance to the robots equipped with an MB expert, things
are logically different here since the intervention brings
clearer help. Indeed, we can see in Fig. 9C that at high omis-
sion rates, the performance of all the robots degrades, even if
again, the degradation of the performance of the robot MF-
only remainsmuchmore important. Of the three other robots,
the MC-EC robot seems to be the one doing the best when
faced with the oversights of its human partner.

Finally, we again put the robots in front of humansmaking
mistakes (Fig.9B). In the context of the Takeover type inter-
vention, this means that the human takes control of the robot
arm to put the cube in the wrong container, or to remove the
cubes from the containers of the right color. Here the results
are quite close to those observed in Fig. 9A: we observe an
overall degradation of the robots’ performance, again much
more intensive in the case of the MF-only robot. As before,
at a very high human error rate, the quantities of cumulative
rewards at the end of the experiment are lower than these
same quantities when the human never interacts with the

robots. This is due to the performance lag accumulated dur-
ing the 500 iterations of erroneous interventions.

With our arbitration criterion, the robot benefits from the
human performing a Takeover to even better achieve the
objective that has been assigned to it, contrarily to Congrat-
ulation interventions, that are less effective. This superiority
of Takeover over Congratulation has been observed in other
studies [38]. It is therefore to be preferred. Nevertheless, as
with the Congratulation type intervention, the combination
of MF and MB experts can absorb human errors more effec-
tively.

5 Experiment 3: Human–Robot Interaction
with Human as Cooperator

In the third experiment, we evaluate our coordination system
in a human–robot cooperation task different from the previ-
ous one: While in Experiment 2 the robot could learn with or
without human intervention, here the robot necessarily needs
help from the human. All the following results are previously
unpublished.

We first present the new version of the simulated cube
storing task, and the way in which we modeled the human
partner with whom the robot must now cooperate to achieve
its goal. In the second part, we present the results obtained
and show that in a situation where the partner can turn into
an adversary, our coordination system is no longer able to
maintain a high level of performance. To circumvent this
problem linked to a natural algorithmic asymmetry between
theMF andMB experts, and not to the human partner, who is
only the revealer, we propose an inexpensive solution, under
the form of adding a context switching detection mechanism
to the robot. With this mechanism, the robot is again able
to maintain a high level of performance while still greatly
reducing its computational cost.

5.1 Material andMethods

5.1.1 Simulated Environment and Robot

This experiment is also carried out in simulation only. The
same robot as the one presented in Experiment 2 faces a table.
This time, the table is divided into three distinct spaces: A
space accessible to the human only, a common space and
a space accessible to the robot only. The human space and
the robot space each contain a container, referred to as the
human’s container and the robot’s container. Three colored
cubes are available on the table (Fig. 10). This task is inspired
by those of [2] and [52].

Unlike in Experiment 2, here the robot’s first objective is
to learn how to put each cube in its own container. When
this is done, the robot gets a scalar reward, and the cubes
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Fig. 11 Sizing the babbling phase. A Average performance of 50 sim-
ulations of the MC-EC robot for different percentages of transitions
explored during the babbling phase and for the first combination of
objectives (tidying task). B Average performance of 50 simulations of

the MC-EC robot for different percentages of transitions explored dur-
ing the babbling phase and for the second combination of objectives
(swapping task). Performance is defined as the robot’s ability to accu-
mulate reward over the duration of the experiment (5000 actions)

are automatically returned to the human’s container. Like
in Experiment 1, we make the task non-stationary by intro-
ducing a change of objective during the experiment. More
precisely, at the 5000th iteration, the robot must now learn to
put each cube in the human’s container. When this is done,
the cubes are automatically returned to the robot’s container.

We also test a variant of this experiment with another pair
of objectives. The cubes’ position has to be swaped: first,
the red and the blue start in the robot container and have to
be put in the human container, while the green starts in the
human container and must end in the robot container; then,
the starting position is reversed (red and blue in the human
container, green in the robot container) and positions still
have to be swaped.

Unlike the task in Experiment 2, where the robot could
carry out the experiment without the help of the human, the
participation of the human is essential here, since the robot
does not have access to the human’s side of the table. For this
reason, we speak here of cooperation with humans, and no
longer just of human intervention.

5.1.2 Robot State and Action Spaces

The state space is again a discrete state space. A state always
represents the position of the three colored cubes. Each of
the cubes can be located: In the human’s container, in the
common space, in the robot’s container, in the human’s hand
and in the robot’s hand. If we remove the states where the
robot and the human are holding several cubes at the same
time, this represents a total of 99 states, which is 13 less than
the task of Experiment 2.

Concerning the action space, the robot can perform 6 clas-
sic actions: take the red cube, take the green cube, take the
blue cube, place the cube held in hand in its container, place

the cube held in hand in the common area, skip its turn. In
addition, there are 2 interactive actions, allowing the robot to
give the cube held in hand directly to the human (if his hand
is empty) or, conversely, to ask the human to give the cube
he is holding (if the robot’s hand is empty), leading to a total
of 8 actions.

As we will see in the next subsection, the human is con-
sidered in this experiment as a decision-making agent, and
therefore has its own state space equivalent to that of the
robot.

5.1.3 Simulated Human

In Experiment 2, the human could from time to time interact
with the robot. Here, its participation in the task is essential
to the success of the robot. To model human behavior, we
opted for a version of our MB-only robot with a complete
transitionmodel.We consider that if the robot must first learn
the consequences of its actions during the babbling phase, the
human already knows, for example, that when he takes the
red cube from his container, the cube is now located in his
hand.

5.2 Pre-experimental Babbling Phase

A babbling phase, where the robot and the human can
manipulate the cubes in the absence of reward precedes the
experiment. We chose to add this pre-learning phase for the
same reasons as those mentioned in Experiment 2. This time,
on the other hand, rather than evaluating the robot’s perfor-
mance using our arbitration criterion (MC-EC) at different
babbling durations, we evaluate them at different percentages
of transitions explored (Fig. 11). We choose an exploration
percentage of 80% (yellow curve) for the first pair of objec-
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Table 2 Selected values of
expert and meta-controller
parameters in the tidying task in
cooperation with a human

Param MB MF MC

α n.a. 0.6 n.a.

τ 0.02 0.02 0.02

γ 0.9 0.9 n.a.

κ n.a. n.a. 7.0

tives and an exploration percentage of 70% (orange) for the
second. These values correspond to those above which con-
tinuing to explore no longer allows the reward to accumulate
quicker over time. Again, we could choose to give the robot
a more or less complete transition model before the start of
the experiment or to reuse the transition model built by the
robot before the first experiment for all subsequent ones, in
the case of real experiences where time is not an unlimited
resource.

5.2.1 Expert Parameters

We reuse again the same set of parameters used in the navi-
gation task and the human–robot interaction task for each of
the experts and for the meta-controller (Table 2), in order to
show the robustness of our learning andmeta-control system.
The parameters of the simulated human are identical to those
of the robots.

The action-state values of the experts and the human are
again initialized to 0.0 at the start of the experiment.

5.3 Results

To evaluate the performance of simulated robots, we reuse
the color code from previous experiments: Red for the MF-
only robot, blue for theMB-only robot, green for the random
coordination robot (MC-Rnd) and purple for the robot that
coordinates the two experts using the arbitration criterion that
we have proposed (MC-EC).

The interest of this experiment is to evaluate the contribu-
tion of meta-control (expert coordination) in a task where a
robot must necessarily cooperate with a human to progress,
but also to push our architecture to its limits.

5.3.1 When the Partner Becomes an Adversary

With the first pair of objectives (tidying task) during the first
phase of the experiment, the performance of the MC-EC
robot again equals that of the MB-only robot (Fig. 12B), for
a computational cost divided by three (Fig. 12D). Unfortu-
nately, as soon as the objective changes, theMC-EC robot no
longer manages to accumulate as many rewards as the MB-
alone robot, and is even caught up by the MF-only robot,
hitherto considered to be the less efficient. We observed

exactly the same tendencies with the second pair of objec-
tives (swapping task, Online Resource Suppl. Fig. S11A, B).
In previous experiments, we had never faced such a drop in
performance of the MC-EC robot. To explain it, we need to
look at what exactly happens at the 5000th iteration.

For the robot and the human, the 5000th iteration is just
another iteration: The objective changes without them being
informed. Not knowing that the objective has changed, the
two partners will continue to pass the cubes as if nothing had
happened. When they finally manage, for example, to put all
the cubes in the robot’s container (in the case of the first pair
of objectives), no reward is issued to them and their R reward
models are thereforemodified accordingly. Following this, as
soon as the inference processes of theMB experts of theMC-
EC robot and the human are activated, the state-action values
of the MB experts get reset to 0.0 via the natural action of
the dynamic programming algorithm Value Iteration (Eq. 2).

However, before the 5000th iteration, the behavior of the
MC-EC robot is mainly directed by the MF expert (Fig. 12F
and Online Resource Suppl. Fig. S11C), which is not able
to reset its action-state values in one go. Indeed, it will take
many iterations and passages through the states leading to
the rewarded state for the action-state values to decrease fol-
lowing the absence of reward. The problem is therefore the
following: after realizing that the objective has changed, the
simulated human will go back to exploring the environment
in order to find the new rewarded state, or even try to fulfill
the new objective if he succeeds. To discover it, while the
robot MC-EC, whose behavior is directed at this moment of
the experiment mainly by its expert MF, will continue to try
to achieve the first objective, resulting in destructive interfer-
ences. The robot will, for example, ask the human to give the
currently held cube, so as to put it in the robot’s container,
before the human can put it in its own container, therefore
preventing the obtentionof reward (and thus the identification
of a new goal). On the contrary, the human may manage to
put some cubes in his own container, preventing the robot to
reach the previously rewarded state, where it would observe
the absence of reward, generating large negative reward pre-
diction errors that would start to modify the behavior of his
MF expert. Here, the partner turned adversary highlights an
algorithmic difference whose effect we had already observed
in the navigation task of Experiment 1.

Indeed, this inability of the MF expert to reset his state-
action values in the same way as the MB expert was the
cause of a “spike” in the selection probability of the MF
expert (Fig. 12C) which correlated with the very slight lag
in reward accumulation that the MC-EC robot took on the
MB-only robot (Fig. 12A). As a reminder, our arbitration
criterion is a compromise between the cost of the inference
process and the quality of the learning defined as the entropy
of the distribution of the probabilities of selection of actions.
Concretely, the closer the state-action values of a state are
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Fig. 12 Tidying task resultswith (A, C,E ) orwithout (B,D, F) a context
change detection mechanism: A, B Average performance for 50 simu-
lated experiments. C, D Average computational cost for 50 simulated

experiments. E, F Average probability of selection of experts by the
meta-controller of the MC-EC robot for 50 simulated experiments. We
use standard deviation as an indicator of dispersion in all three figures

to each other, the greater the entropy will be, and the lower
the learning quality will be. When the MB expert resets his
state-actionvalues, he also resets his learningquality. TheMF
expert not being able to do so, he will de facto become the
expert with the best learning quality, and therefore the expert
controlling the behavior of the robot, whereas the judicious
behaviorwouldbeprecisely to stopplaying thefirst objective.

In both experiments, the observation is therefore the same:
if the environmental change implies a modification of the
reward models of the MB experts, the algorithmic asymme-
try of the MF and MB experts gives rise to a period when
the MF expert directs the behavior of the robot more than
it should. If this did not prevent the robot from maintain-
ing good performance in the navigation task, the MB expert
is no longer able to regain control of the robot’s behavior
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here (Fig. 12F and Online Resource Suppl. Fig. S11C) and
therefore remains stuck in MF expert guidance phase 2.

Note that, compared to the navigation task of Experiment
1, we do not observe here the exploratory phase of the MF
expert. As a reminder, the existence of this phase was due to
the difference in learning methods of the two experts, at the
origin of the fact that the state-action values of the expert MF
decreased slightly more than those of the expert. MB expert.
Here, the state-action values of the experts being initialized
at 0.0 at the start of the experiment, and not at 1.0 as in the
browsing experiment, this effect of algorithmic asymmetry
is not observed.

5.3.2 Context Change Detection

To counter this problem, we equipped our robot with a mech-
anism allowing it to automatically detect changes in goals
by taking into account only the evolution of its action-state
value models. To do this, we relied on the cosine similar-
ity to evaluate the similarity of two n-dimensional vectors
by determining the cosine of their angle. Generally used as a
measure of similarity between two documents, we use it here
to measure the similarity between two vectors of state-action
values:

cos(θ) = A.B

‖A‖ ‖B‖ (7)

where A is the state-action value vector of the previous state
before it was updated by the MB expert and B is the state-
action value vector of the previous state after its update by
the MB expert. Note that the vector values have all been
multiplied by 100 and the null values have been replaced by
very small values to avoid division by 0. If the two vectors
are identical, θ is 1.

We already used this measure in [5], where the cosine sim-
ilarity was computed on vectors containing the Q-values of
the MB expert. Concretely, every time the MB expert carries
out its inference process, it also computes the cosine similar-
ity θ of the Q-value vectors before and after this update, and
compares it to a threshold. If θ is lower than this threshold,
the MB expert then sends an additional signal to the meta-
controller (arrow t1 in Fig. 1), whichwill take care of sending
a signal to the MF expert to request a reset of its Q-values
(arrow t2). The value of θ will necessarily decrease due to
updates of state-action values in three cases:

• When the robot first finds the reward. In this case, reset-
ting the state-action values of the MF expert is not a
problem, since all of them are already null.

• When the robot reaches the previously rewarded state
and does not obtain a reward, the moment we are most
interested in.

• When the robot first finds the new reward. In this case,
resetting the state-action values of the MF expert again is
not a problem, since they have all been reset previously.

In the end, more than a mechanism allowing it to automat-
ically detect a change of objective, the cosine similarity also
allows the robot to detect the appearance of a newobjective: it
is therefore a mechanism for detecting changes of context, as
pointed out by [5]. In our algorithm,when the robot discovers
that the rewarded state no longer yields a reward, the action-
state values of its expertMF are reset. Instead,we could allow
it to store them in memory, so that we can potentially reuse
them if the formerly rewarded state becomes rewarded again
later in the experience, which is not the case here.

Of course, the functionality of the mechanism depends
on the threshold against which the value of the cosine simi-
larity θ will be compared. To define it, we looked over 200
simulations at the value of the cosine similarity at the itera-
tion following that in which the robot reaches the formerly
rewarded state for the first time. θ was in 100%cases less than
or equal to 0.611 for the first pair of objectives (100 simula-
tions), and 0.706 for the second (100 simulations). We have
chosen a common threshold of 0.7. The histograms of the
frequencies of the different values obtained from θ for an
experiment of each of the pairs of objectives (Fig. 13) reveal
that most of the time, the values of θ are worth 1.0, a sign
that during the experiments, the values of the state-action
pairs of the MB expert do not evolve much. In the tidying
task (Fig. 13A), the values of θ were lower than 0.7 four
times (3 of 0.558 and 1 of 0.611), and in the swapping task
(Fig. 13B), it happened five times (2 of 0.61 and 3 of 0.666).
In both cases, this therefore corresponds to more event than
the 3oneswe identified above as being actual context changes
(discovery of reward, discovery of the disappearance of the
reward, discovery of the new reward). This means that some-
times, the values of state-actions of the expert MB strongly
evolvewithout this being linked to a changeof context, but for
example rather to the discovery of a new unexplored state or
transition. Depending on the defined threshold, the robot can
therefore trigger false alarms, mistaking this “brutal” update
for a change of context and reset the state-action values of
the MF expert when it should not.

However, a these rare false alarms do not seem to have any
negative effect on the robot’s performance: With the context
change detection mechanism and a threshold of 0.7, the per-
formance of the MC-EC robot is now identical to that of
the MB-only robot (Fig. 12A). Just after the goal change,
the computational cost of the inference process increases
(Fig. 12C), a sign that the MB expert takes control of the
robot’s behavior to enable it to better cope with environmen-
tal change. Figure 12E confirms this with the reappearance
of the second guidance phases of theMB expert, absent from
the experiments carried out without the detectionmechanism
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Fig. 13 Values taken by the
cosine similarity θ , used to
parameterize the context change
detection threshold. Histograms
report the frequency of θ values
measured in two 10,000
iteration-long simulations,
using: in A, the first pair of
objectives; in B, the second pair
of objectives. The robot and the
human play on a turn-based
basis, so that makes a total of
5000 values of θ per experiment

context changes.Again, these resultswere replicatedwith the
second pair of objectives (swapping task, Online Resource
Suppl. Fig. S12).

5.4 Conclusion

In this last experiment,we evaluated our learning expert coor-
dination model in a simulated human–robot cooperation task
where the robot must actively cooperate with the human to
achieve its objectives. The human is no longer simply present
to help the robot improve its performance, but becomes a real
partner. Again, we reused the parameters optimized for the

navigation task, in order to show the robustness of our learn-
ing and meta-control system.

In this experiment, the robot was confronted with a prob-
lem already observed in the navigation task, but which until
now did not prevent it from progressing: the inability of the
MF expert to reset its action-state values after the change of
objective compared to the MB expert. Here, due to the pres-
ence of a human not being affected by this problem, the two
partners can become adversaries for a time, which leads to a
drastic drop in the robot’s performance. Here, the human is
not the problem, but simply its revelator. To counter this, we
have therefore added amechanism to detect context switches,
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allowing the robot to automatically reset the state-action val-
ues of its MF expert when necessary. With this mechanism,
the robot using our arbitration criterion, once again obtains
the same level of performance as that of a robot controlled
solely by amodel-based learning algorithm,while drastically
reducing its computational cost (Fig. 12B,D).

Finally, we illustrated again with this human–robot coop-
eration task the generic and task-independent nature of our
coordination model, and an efficient and inexpensive solu-
tion allowing it to circumvent a problem that can arise during
abrupt changes in the task objectives. These results further
highlight the robustness of the proposed method.

6 Discussion

We analyzed the behavior of a three-layered robot cogni-
tive architecture integrating human-inspired mechanisms for
the coordination of model-based (MB) and model-free (MF)
reinforcement learning modules. Its main novelty lies in the
use of the explicit online measure of both performance and
computational cost of each system, so as to give control to the
system with the best current trade-off between the two. The
goal of this approach is to maximize behavioral flexibility,
while enforcing computational (and thus energetic) frugality.

Behavioral flexibility was assessed in three main experi-
ments: an indoor navigation task, aHRI taskwhere the human
teaches the robot and a HRI task where the human and the
robot must cooperate. All these tasks were non-stationary, as
an unsignalled change of the goal or of the available transi-
tions, always happened in the course of learning.We kept the
parameters of the system identical from one task to another.

Heavy computations consume both time and energy,
resources that can be essential for robots: autonomous robots
that rely on their sole (and usually limited) computational
resources cannot always afford the time required by a com-
plex computation, fast reactions can be necessary in many
realistic settings, to avoid damaging the environment or
oneself; evenwhen time is not a crucial issue, heavy computa-
tions consume energy, a resource that is even more crucial to
a mobile robotic platform. Our RL module coordination sys-
tem is the first one in robotics, to our knowledge, to explicitly
take into account the actual computational costs to arbitrate
between modules. In computational neuroscience, some ear-
lier models [32,48] proposed to evaluate the value of gaining
better information from aMBmodule, versus the cost of per-
forming inference with thisMBmodule, but they were tested
in toy problems, with shallowMDPs,with deterministic tran-
sitions, and with the model already knowing the transition
function. Here we used a more empirical approach, by eval-
uating the real temporal costs induced by the use of MF and
MB learning modules.

The comparison with DQN,made in the navigation exper-
iment, showed that using end-to-end RL has a computational
cost not compatible with robotic constraints, and that thus
building and using a data representation adapted to the task
at hand reduces the burden on the RL part of the system,
allowing for low-cost on-the-fly learning. Nevertheless, the
discrete state and action spaces used here for RL may partly
limit the generality of the method, and prevent it from tack-
ling more complex high dimensional problems. Indeed, as
designers of the system, we chose a representation (dis-
cretization of the output of a SLAMalgorithm) adapted to the
problem at hand (a navigation problem).However the context
of this proposal is to build on the representation redescrip-
tion framework [13,14] to ultimately design systems that
autonomously determine the representations adapted to the
task. The modularity of the present architecture also enables
to extend it to the continuous case by replacing tabular value
functions with neural network implementations. Neverthe-
less, there is actually a trade-off between quickly learning an
efficient (even if not optimal) solution to coarsely represented
or even discretized problem, versus slowing acquiring amore
precise and optimal solution using continuous representa-
tions and deep function approximators. In particular, humans
are able to alternate between contexts in which learning a
discrete action plan is sufficient, versus contexts requiring
the slower acquisition of more fine-grained plans, especially
motor plans like riding a bicycle, learning to play a music
instrument, etc [26,27]. Thus, rather thanhaving robots tackle
any new problem with computationnally heavy deep RL
methods, a promising direction for future work could be to
addyet another expert to our architecture, composedof a deep
network, that the meta-controller will coordinate and com-
pare to the other experts. This way, when the meta-controller
detects that a simpler solution is sufficient, it could avoid
heavy computation and would both reduce learning time and
energy consumption. Moreover, because in our architecture
each expert learns from observing what the other experts are
doing, initial MB control could bootstrap initial learning and
exploration in the deep network composing the new expert.

The arbitration criterion proposed in this work allowed the
robots to autonomously determinewhen to shift between sys-
tems during learning, generating coherent temporal decision-
making patterns that alternates between strategies over time.
This promoted more flexibility than pure MF control in
response to task changes, and permitted to reach the same
level of performance than pure MB control, while drasti-
cally reducing the computational cost. TheHRI teaching task
revealed an interesting property of our system: Its ability to
compensate for the imperfections of the human feedbacks
(when they were either omitted or erroneous). This sug-
gests that our method is promising for experiments involving
interactions between robot and naive human users. In that
case, our architecture can automatically cope with human
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errors by relying more on its MB component. This enables
to avoid redesigning or retuning the robot learning parame-
ters to different situations, and thus make the approach more
realistically applicable to real-world HRI.

The meta-controller proposed here often produced a
sequence of three behavioral phases with different expert
selection patterns: Initial MF-driven exploration, MB-driven
decisions once the internal model has included reward infor-
mation, MF-driven less costly decision-making once the MF
expert has been sufficiently trained. Such a pattern is sim-
ilar to the one observed in humans in an instrumental task
[62]. In that task, humans had to learn through trial-and-
error to associate different colored stimuli (considered as
Markovian states) to different fingers of the hand (considered
as actions). After learning and stabilizing these associations
(exploitation), the task conditions were changed so that the
humans had to learn new associations. Different computa-
tional models had been fitted to human subjects’ behavior, in
order to determine the best model: An MF-only model, and
MB-only model, and different ways of coordinating MB and
MF. Not only did the authors find that an entropy-based MB-
MF coordination model best explained humans’ behavior in
this task. They also found during subsequent analysis of the
model fitted to human behavior that it displayed a sequence
of three behavioral phases: Initial quick responses by the
humans when exploring (where both MF and MB experts
contributed), then an increase in decision time due to theMB
contribution, and then a progressive reduction of decision
time as the MF increased its contribution. It is thus striking
that despite a task difference between humans and robots,
and despite the fact that the present entropy-based coordina-
tion method has been extended from [62] by adding a cost
term, we can still replicate on the robot a similar behavioral
pattern than the one experimentally observed in humans.

A system able to detect context changes was added in
the last experiment, in order to allow for re-learning when
the goal-change occurred. It was inspired by such a system
developed in our previous MF-MB coordination system [4].
Explicitly detecting task changes did not prove necessary in
the navigation nor in the teaching task, nevertheless, it should
also improve the performance in these two tasks. In future
work, we could study to which extent the context change
detector produces similar performance in these other tasks,
and whether it allows in general to cope with a wider variety
of non-stationary tasks.
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