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Abstract
Autonomous and semi-autonomous robots have been increasingly proposed as social and therapy assistants for neurorehabili-
tation after traumatic and non-traumatic brain injury. Unfortunately, current robot-patient interactions do not accurately model
therapist-patient interactions in task-oriented stroke rehabilitation and therefore may fall short of being clinically effective.
In this study, we coded and analyzed 8 videos each showing an occupational therapist interacting with a stroke patient in
common activities of daily living settings. We propose that a model of the interaction between a patient and a therapist can
be overlaid on a stimulus-response paradigm where the therapist and the patient take on a set of acting states or roles and are
motivated to move from one role to another when certain physical or verbal stimuli or cues are sensed and received.We discuss
how observed roles and cues can be mapped to current and future examples of robot-patient interactions and implications if
such a robot was realized.

Keywords Human-robot interaction · Human-human interaction · Stroke rehabilitation · Rehabilitation robotics · Socially
assistive robots · Therapy robots

1 Introduction

By 2030 about 10.8 million older adults in the USA will
be living with disability due to a stroke [77]. Providing a
good quality of life for these older adults requires maxi-
mizing independent functioning after a stroke. This implies
that in the future, more stroke rehabilitation may need to
occur outside the traditional clinical setting and in more
community-based settings such as adult daycare centers,
independent living and assisted living centers [43]. Luker and
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colleagues [60] indicated that stroke survivors are already
asking for more exercise opportunities in the community.
Their study shows that many stroke survivors value physi-
cal activity, are willing to engage in more physical activity
outside of formal therapy sessions, actively ask to partici-
pate in setting their goals for rehabilitation, and desire for
their patient-therapist interactions during rehabilitation to
empower them to reclaim autonomy through the recovery
of functional abilities.

Some have responded to the increasing need to provide
more rehabilitation and healthcare in the community by call-
ing for increases in the human labor force in healthcare
in several ways: (1) by training local healthcare advocates
and caregivers to provide community-based rehabilitation to
their own family and community, (2) by creating pathways
for lower education entry into the healthcare workforce and
(3) by providing pathways for persons wishing to change
careers mid-stream, or even students of other disciplines
wishing to become health professionals [106,107]. Others
have responded by considering the increasing use of mobile
health and robotics technology [35,61].

Evidence supports the use of active, repetitive practice
of functional and purposeful activities to restore motor con-
trol and gain the capacity to complete important daily life

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12369-022-00881-2&domain=pdf
http://orcid.org/0000-0002-7964-0304
https://orcid.org/0000-0002-0732-4476
https://orcid.org/0000-0002-7706-2133


1528 International Journal of Social Robotics (2022) 14:1527–1546

roles [4,52,81]. Task-oriented stroke rehabilitation training
is not without challenges. For example, functional activities
often referred to as Activities of Daily Living (ADL) tasks
can be quite complex and diverse. The large variety of ADL
tasks often makes it challenging for clinicians to appropri-
ately grade them tomatch patients upper limb capacity, goals,
interests and cognitive level [52]. Lang and colleagues sug-
gest that although this is true, most ADL tasks require the
same key action skills to complete such as reaching, grasp-
ing, manipulation, and release, and thus strategies to match
clients’ motor capabilities, goals, and interests to specific,
challenging tasks can be taught [52,53,81].

Robots can play a unique role in supporting stroke reha-
bilitation and independent living in non-traditional settings
[14,22,54,56,59,64,65,71,76,101]. Robots can demonstrate a
task, invite patients to engage in therapeutic exercise, guide
the exercise activity with behaviors designed to make exer-
cise more enjoyable, monitor the patients’ movements, and
act as social agents [9,20,25,30,67].However, enabling effec-
tive robot-assisted task-oriented therapy can be challenging.
Typically robotic therapy systems are not able to support
complex real-world ADL tasks which often include reach-
ing, grasping, release and intricate manipulation [71]. The
diversity of ADL tasks requires the robot to observe cues
and adjust roles appropriately. For example, the robot may
need to be capable of not only identifying the ADL tasks
being performed, how they are being performed and with
what objects [12], but also identify when to provide assis-
tance to the client.

Our long-term goal is to develop robots that are advanced
systems to be used under the therapist’s direction as a
tool that implements repetitive and labor-intensive thera-
pies [32,71,101]. In one scenario, clinical decisions could be
managed by the rehabilitation team and when appropriate,
planned and executed on the robot by the therapist. Ideally,
we envision scenarioswhere the therapist demonstrates train-
ing tasks to the robot and teaches the robot how to function in
a session. In subsequent encounters with a patient, the robot
learns how to best perform the task(s) with the patient and
provide autonomous or semi-autonomous therapy while the
therapist provides supervisory oversight of the robot-patient
interaction.

In this paper,we present our process of developing amodel
of patient-therapist interactions during task-oriented stroke
therapy that can guide robot-patient interactions. From qual-
itative analyses of videos illustrating a therapist and a stroke
patient interacting in a therapy session focused on upper limb
training [38], we suggest that a stimulus-response paradigm
can model aspects of observed patient-therapist interactions.
In this model, the therapist and the patient take on a set of act-
ing states or roles and are motivated to move from one role
to another when certain physical or verbal stimuli or cues
are sensed and received. We develop this model and exam-

Fig. 1 The kinematic, haptic and intent components are needed to
describe human-human physical interactions. The patient-therapist
interaction is just one specific type of interaction

ine how it applies across 8 different activities of daily living
tasks in task-oriented stroke therapy sessions captured in 8
videos and determine how often these roles and cues occur
and which were most often used. We discuss how observed
roles and cues may be mapped to current and future exam-
ples of robot-patient interactions. We discuss limitations and
implications of designing a robot able to fulfill the rolesmod-
eled.

2 Human-Human Interactions

Developing a physical, social and therapy agent for rehabil-
itation requires an in-depth understanding of human-human
interactions as seen in therapist-patient dyads during stroke
therapy. There are three major components of human-human
interactions that need to be modeled to realize human-
robot interactions in therapy: the kinematics, the haptics and
the intent of the interaction from the therapist perspective
[45,57,73,85]. Figure 1 illustrates these critical components
that define an interaction. Specifically, the movements of the
therapist and patient during a therapy session can be cap-
tured in order to model the kinematics of the motion. The
forces involved in the physical contact between the therapist
and patient during a therapy session define the haptics of the
interaction. Lastly, the intentions of the therapist communi-
cated throughphysical andverbal cuing actions communicate
the reason an action was performed.

There have been studies conducted to understand the
kinematics of human-human physical interactions or human-
robot agents. Figures 2 and 3 illustrate some kinematic
capture methods we have used for close human-human
interactions. Marker-based and markerless motion capture
methods as well as wearable inertial sensors can be used to
quantify therapist and patient movements a therapy session
[42,51,73,87]. Methods using visual motion capture can be
limited by frequent occlusion that results from close human-
human interactions either due to marker drop out or failure
of the kinematic algorithm to separate kinematics when one
subject touches another [42]. More recent use of machine
learning and deep neural networks to characterizemulti-body
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Fig. 2 Example of collecting kinematic data with wearable intertial
sensors

interactions are promising new solutions to these problems
[87,109].

There have been studies conducted to understand the hap-
tics of human-human physical interactions or human-robot
agents. Inertial and force sensors are often used to detect
haptic interactions of touch and assistance. For example,
Galvez et al. attached a sensorized orthosis to the legs of
patients with spinal cord injury and measured shank kine-
matics and forces exerted by different trainers during several
training sessions [28]. Fitter et. al. used inertial data to quan-
tify hand-clapping movements which can then be mapped
onto a robot [24]. They further created a social robot that
can dynamically adjust tempo while playing hand clapping
games with a human user [23]. Sawers et. al. used custom
force sensors to quantify and investigate the interactive forces
during a gait training task [84]. They measured the direction
and magnitude of the interaction forces between 2 human
partner dancers to determine how those forces are used to
communicate movement goals [84,85]. They were able to
quantify these interactions forces used during dancing. They
observed that these forces were small and seem to act pri-
marily as guiding cues about movement goals and did not
provide physical assistance [84]. It is important to note that
the measurement and characterization of the therapist’s con-
tact with the patient during a human-human or human-robot
task does not have to be conveyed or quantified via forces, but
could also be conveyed or quantified via sound, electromyo-
graphy, vibration, position, velocity etc. For example, Wallis
and colleagues demonstrate that sonification of movement
can impart important information about the therapist’s move-
ment to the user [103]. Losey and colleagues reviewed the
variety of ways human physical intention can be measured
and interpreted while he or she is coupled to a robot [57].

To our knowledge there are few studies looking at thera-
peutic intent during trainingof functional tasks for upper limb
stroke therapy. Experiments to understand the intent behind
therapist physical and verbal behaviors are not as common.

Fig. 3 Example of collecting kinematic data with markerless motion
capture using Microsoft Kinect

Stanton and colleagues [90] observed forty unique patient-
therapist dyads during 30 min of actual practice of everyday
activities during a stroke rehabilitation session. This study
focused on the examining feedback received by patients dur-
ing rehabilitation and not on the roles themselves. During
therapy, therapists often use physical and verbal behaviors
to cue and direct patients. It is not always clear how these
cues relate to therapist and patient behaviors. Some studies
indicate that physical cuing behaviors usually precede or are
followed by verbal cuing behaviors. It is suggested that com-
binations of cuing behaviors form the basis of implicit and
explicit motor learning strategies used by therapists to elicit
motor re-learning after a stroke [50,90,91].

Effective motor learning often involves giving patients
goal-oriented exercises that effectively balance challenge,
problem solving, and functional ability supplemented by
appropriate physical and verbal prompts by the therapist
[6,78]. Some studies suggest that feedback addressing motor
impairments (e.g., quality of arm movement) compared with
feedback addressing movement outcome (e.g., how the task
was done) may bemore beneficial for stroke patients [13,48].
Verbal and auditory cuing during therapy have been found
to improve rehabilitation functional outcomes; additionally,
physical cues such as guidance, assistance and resistance
have been shown to be beneficial in improvingmotor learning
and task specific outcomes during rehabilitation [49,63,90].

Ideally, any robot assistant should maximize motor learn-
ing during stroke therapy and perform both physical and
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verbal cuing during close human-robot interactions. Given
this requirement a better understanding of therapists’ behav-
iors and the intent behind their behaviors during task-oriented
therapy would shed light on how we can better tune existing
and future patient-robot interactions. This increased under-
standing will allowmore accurate modelling and mapping of
therapist behaviors onto a therapy robot.

3 Human-Robot Interactions

Modern technology has created a myriad of novel techniques
for stroke rehabilitation ranging from interactivemedia [103]
to therapy robots [105]. It has been observed that users tend to
prefer embodied agents for both physical exercise [18] and
cognitive therapy [96]. Embodied agents can also provide
physical assistance to users with higher impairment levels
where as interactive media is more suitable for those with
lower impairment. Robots are primarily used to interact with
patients during upper limb stroke rehabilitation in two main
ways: as a therapy robot [6] or as a socially assistive robot
[21].

Therapy robots are typically connected to the impaired
limb of the human across the joint or at the end-effector
and are designed to provide haptic assistance to directly
aid the limbs to move. They provide therapeutic exercise
for the impaired limb in a variety of ways and are gener-
ally thought to improve muscle strength, motor control, and
reduce spasticity [71,101]. For example, the user’s limb is
always physically connected to Inmotion robot [10,56,62]
which provides active or assist-as-needed guidance to the
upper limb during planar tasks. Lo et al. showed that the
Inmotion robot system can train the upper limb of stroke sur-
vivors and significantly improves motor control in the limb
[56]. Others show that therapy robots can provide assistance
in a reaching and grasping task such as drinking [11,58,71].
For most therapy robots, we expect the human-robot interac-
tion to mimic patient-therapist interactions where a therapist
takes on the role as a helper that physically guides the
patient’s limb movements.

The framework introduced by Jarrassé et al. [40] examines
interactions of two human agents who are always physi-
cally coupled and the relationship between joint tasks can be
defined as cooperative, collaborative or antagonistic tasks.
They argue that during therapy, the therapist-patient interac-
tion should be modelled as a cooperative one in which the
patient is learning from the therapist to build their own capac-
ity while the therapist assists in the process. They use a cost
function to define the interaction goal of each human or robot
agent in the dyadwhich is tominimize error and effort during
an interaction. In this relationship, they hypothesize that the
cost function of the teacher should minimize the student’s
error and its own effort.

Socially assistive robots, whether mobile or non-mobile,
humanoid or animaloid, are designed to engage the patient in
primarily non-contact social and exercise interactions. They
often act as social agents that can demo a task, invite patients
to engage in therapeutic exercise, guide the exercise activity
with behaviors designed to make exercise more enjoyable
and monitor the patients’ movements [20,67]. For exam-
ple, Fasola and Matarić successfully created a non-contact
social and therapy agent for older adults that provided not
only, active guidance, feedback and task monitoring, but
also instructed and steered the task [20,65]. For example, a
social robot can be taught to demonstrate a task for a patient
[23,47] as well as how to monitor a patient’s whole-body
or limb movements [104]. For social robots, we expect the
human-robot interaction to mimic patient-therapist interac-
tions where a therapist takes on the role as demonstrator
and/or observer and provides non-contact guidance and/or
feedback for the patient’s whole body or limb movements.
We would expect that these robots would work to minimize
the patient’s error and maximize the patient’s effort.

It is important to define what is meant by the terms “error”
and “effort” [57]. These terms can take on many meanings
and often depend on the task being performed. The term
“error” is not meant to judge the patient and ascribe fault but
is intended to delineate the deviations from a target or move-
ment pattern and its measurement is intended to quantify
progress towards the most effective movement pattern sug-
gested for the patient by the therapist. For example, “error”
may refer to the difference between the patient’s position
and a desired target position defined by the therapist and
“effort” maybe the difference between a patient’s muscle
activity level and a desired muscle target level. We assume
that error and effort are individually defined for patients by
their therapists and are always metered with respect to what
the patient can reasonably do to maximize success and min-
imize frustration.

Clearly, the evidence shows that a variety of human-robot
interactions exist in neurorehabilitation. However, very few
of these interactions involve therapeutic and/or socially assis-
tive robots that can dynamically and independently move
from being a physically coupled robot helper to one that can
end the contact and assume the role as demonstrator and/or
observer. The ability to transition freely between helping
roles, demonstrating roles and observing roles often char-
acterizes real patient-therapist interactions during a typical
occupational therapy session.

To our knowledge there are few studies looking at thera-
peutic intent during trainingof functional tasks for upper limb
stroke therapy. This paper describes the proposed stimulus-
response model [45] we used to examine patient-therapist
interactions during task-based stroke therapy and thus sup-
plement the limited research done in observing and analyzing
the intent behind such interaction. In doing so, we provide
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insights into the patient and therapist roles, physical and ver-
bal cuing behaviors and how those cues are used with respect
to the roles.

4 Modelling Patient-Therapist Interactions
Using A Stimulus-ResponseModel

Human-human interactions often involve humans taking on
different roles during the interaction. For example, Reed and
Peshkin [80] reported that when working together in a cou-
pled 1 DOF task where two humans were focused on rotating
the same crank arm, the humans assumed different roles to
accomplish the task such as one taking the leader role and the
other, the follower role. Different roles are also observed in
patient-therapist interactions on therapy tasks [90]. However,
the patient and therapist may not remain in constant contact
with each other. How best to model complex human-human
interactions to guide human-robot interactions is still an
ongoingproblem.A typicalmethod in artificial intelligence is
tomake robotsmodel human actions using stimulus-response
methods implemented as state-based control. A stimulus-
response paradigm [2] is the change in the state of a system
based on a cue or stimulus sensed by the system resulting
in a response which may entail changing from or remaining
in each state. Behavior-based robotics, a complex solution
for modeling social robots [66], is a form of “functional
modeling which attempts to synthesize biologically inspired
behavior.”This type of perception-actionmodel is commonly
used in psychology to model how animal or human organ-
isms make decisions and act on the environment in response
to stimuli from the environment. How the stimuli are pro-
cessed cognitively to provide appropriate physical and verbal
responses form the basis for developing verbal or non-verbal
human-robot interactive robots that are effective, more socia-
ble and acceptable to humans [2,7,69,89,97].

Other engineering human-robot models are based on the
physical interaction model and assumes constant contact and
some level of shared control. Losey et al. [57] note that
the division of roles in shared control during these situa-
tions as well as in those reviewed by Jarrassé and colleagues
[40,41] can be seen as an act of “arbitration,” which can also
be viewed as two agents negotiating their level of auton-
omy. Their framework proposes the modeling of user intent,
feedback from robot to human and arbitration. Jarrassé and
colleagues [41] describe a general type of physical inter-
action as one involving a sensorimotor exchange with the
environment, a robot or a humanas “motor interaction.”Their
interaction model considers the energy needed for both sys-
tems to physically perform the task and the information used
by both systems to inform each about the ongoing action.

Weoverlay a simplified stimulus-responsebehaviormodel
on upper limb therapy sessions for patientswith stroke,where

Fig. 4 Stimulus-response model for patient-therapist interactions. The
therapist and patient engage in three complementary roles and the
changing of roles are triggered by physical or verbal cues that act as
stimuli to cause behavior or role changes. [45]

contact and non-contact task guidance is provided by a ther-
apist. Figure 4 shows the stimulus-response model that we
have developed to describe observed interactions during an
occupational therapy session. Here, the therapist can take on
three roles: demonstrator, helper and observer. The corre-
sponding roles for the patient are observer, performer with
assistance and performer (Fig. 4). A scenario may flow as
follows: the therapist is in a demonstrator role when explain-
ing the task or clarifying any task-related queries that the
patient may have. The patient remains in an observer role
during that period. Once the demonstration is completed, the
patient begins to perform the task while the therapist moves
into an observer role. If the patient is (1) observed to have
difficulties in performing the task such as their impaired arm
deviated from a desired motion during task execution or their
impaired hand grasp slipped or asks (2) for help, the therapist
moves into a helper role and enables the patient to perform
the task with assistance. The term “helper” is used because it
preserves the action of helping when it is the therapist only,
but acknowledges that when a robot is the helper, the robot’s
actions provide assistance to the patient and to the therapist.

A change from a role may occur due to one or more phys-
ical or verbal or cue(s) shown in Table 1. We defined a set
of commonly used physical cues and verbal cues used by
patients and therapists.We assume that during a session these
cues will be provided either by the therapist or by the patient.
The chosen codes for the cues are based on the Occupa-
tional TherapyRater InteractionAnalysis System (OT-RIAS)
[102], a method for quantifying patient-therapist interactions
from a behavioral perspective rather than a robotics approach
like ours and the occupational therapy practice framework-3
[1].
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Table 1 Physical and Verbal
cues [45]

Physical cues Verbal cues
Therapist Patient Therapist Patient

Reaches Does not reach Supports/
Expresses
Agreement
Understanding
or Willingness

Supports

Grips Does not grip Requests/ Asks Requests/ Asks

Moves Does not coordinate Commands Complains/ Disagrees

Lifts Does not move States Describes/ Explains/ States

Transports Does not lift Corrects

Stabilizes Does not transport Stops/ Prevents

Guides Does not stabilize

Points Does not initiate

Touches Points

Manipulates

We acknowledge that the proposed model will not capture
the full complexity and richness of patient-therapist inter-
actions during stroke therapy sessions, but we believe this
model is a starting framework that captures the varying roles
found within a patient-therapist dyad. We also acknowledge
that other engineering models maybe needed to describe the
physical/motor interactions [40,57] within the helper role
when contact is made.

5 Methods

Eight video examples of occupational therapy sessions for
various activities of daily living (ADLs) were used (Fig. 5).
These videos depicted an expert occupational therapist with
a patient with stroke in various ADLs obtained from the
International Clinical Educators Inc. (ICE) video library [38]
with permission. ICE videos are used in occupational therapy
education programs internationally to demonstrate and teach
rehabilitation techniques to occupational therapy students.
Videos included shoe shining, cleaning dishes, making iced
tea, making a sandwich, arranging flowers, washing a car,
sweeping a sidewalk and shaving.

There is an absence of literature that describes explicitly
how therapists and patients take on roles during therapeutic
interactions with patients. The key roles and patient-therapist
dyads were developed based on observations of occupa-
tional therapy sessions–particularly sessions supporting task
performance involving objects–and discussions with expert
therapists. During a therapeutic interaction, the distinctive
roles a therapist can take on include helper, demonstrator or
observer, while the patient can be an observer, performer, or
performer with assistance. Once the roles were developed,
and we attempted to identify them during therapy observa-

tions, we observed that the roles occurred in patient-therapist
role dyads, which we attempt to validate in this study.

The cues were developed using two tools: the OT-RIAS
(Occupational Therapy Roter Interaction Analysis System)
[102] and the Occupational Therapy Practice Framework
(OTPF-3)—3rd Edition [1]. The OT-RIAS system is a
quantitative approach to study occupational therapy verbal
interaction with 45 categories. We analyzed these categories
to obtain a condensed list of 7 codes that could be reliably
coded. For example, in theOT-RIAS system “asks” is catego-
rized in twelve different categories, however, for the purposes
of our model, we had only one “ask” category, since our pur-
pose was to determine the type of interaction and not the
specific type of information requested. For our physical cues,
we used the OTPF-3, specifically the motor skills section of
the document. We analyzed this section to determine a con-
densed set of physical cues that could be reliably coded. The
OTPF-3 includes 16 motor skills, and we condensed them
into 10 physical cues. The cues that were not included are
aligns, positions, bends, coordinates,walks, calibrates, flows,
and endures. In addition, we added two cues to the therapist
physical cue list including guides and touches which are typ-
ical physical interactions when a therapist assists a patient
with task completion. Using the model presented in Fig. 4
and cues identified in Table 1, two therapists independently
coded the set of 8 videos usingMultimedia Video Task Anal-
ysis (MVTA) software [27]. The coder assigned a role to the
patient and therapist and identified the timing and type of cue
used as well as cue that acted as a stimulus for a change in
role. Figure 6 shows a sample video coded using MVTA.

The MVTA software generated multiple reports based on
the codes for each video. The breakpoint report gave the
sequential start and stop times for every code. The duration
report provided the time spent in each role. Thus, there were
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Fig. 5 Analyzed videos [38]. The videos shown from left to right: (top)
shoe shining, cleaning dishes, making iced tea, making a sandwich;
(bottom) arranging flowers, washing a car, sweeping a sidewalk, and
shaving

Fig. 6 The code categories and time lines determine when an event
happened. The therapist and the patient are always in one of the three
roles

6 breakpoint reports and 6 duration reports per video for ther-
apist roles, physical cues, and verbal cues; and patient roles,
physical cues and verbal cues. These reports were processed

by a custom MATLAB script which extracted coded roles
and cues and identified the frequency of occurrence of each
cue and role along with duration of occurrence within each
video and then across all videos. We also examined role-role
and role-cue relationships to determine how one role related
to another andwhich cues resulted in role changes.We exam-
ined if the therapist spent time in all roles across all videos
and if role changes in all videos were caused by a physical
or verbal cue initiated by either the patient or therapist.

Role-changing cues were considered to be those cues
which occurred within 3 s of the occurrence of a role change
or within half of the total duration of the role if the dura-
tion of the role is less than 3 s. These 3-second buffers were
chosen based on observation to account for minor errors in
coding. For example, these buffers when implemented in our
automated analysis procedure served to minimize the chance
that a cue that caused a role change would be classified incor-
rectly.

Using the results of the analysis, we developed a pictorial
representation for the cues that caused a role change which
can be seen in Fig. 7 known as the interaction sequence dia-
gram. This representation has been derived from the software
engineering concept of sequence diagrams [26]. Sequence
diagrams detail when and how the objects of a system inter-
act with each other. The therapist and the patient are the
“actors” who go through a sequence of roles or behaviors
which are like the “objects of the classes”. The parallel ver-
tical lines represent the “lifelines” which retain the temporal

Fig. 7 Structure of an Interaction Sequence Diagram. The actors in
our diagram are the therapist and the patient (client). Each actor has
a lifeline. The three roles for the therapist and the patient become the

object behaviors that have lifelines of their own. The rectangles on the
lifelines represent the time span for which a specific role is active. The
transitions between the roles are represented by cues
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Table 2 Inter-rater agreement through Cronbach’s Alpha

Subject Frequency Duration
Role changes Roles Physical cues Verbal cues Roles Physical cues Verbal cues

Client 0.997 0.996 0.993 1 0.99 0.971 0.99

Therapist 0.997 0.996 0.966 0.981 0.989 1 0.99

Fig. 8 Frequency of occurrence of roles and time spent in each role by
therapist and patient

information of the video data. The cues are the “messages”
that cause a change in role.

Coder agreement for roles and cueswere determined using
Cronbach’s Alpha (α) [15] (Eq. 1). There are K components
in test set X = Y1 + Y2 + ... + YK :

α = K

K − 1

(
1−

∑i=1
K σ 2

Yi

σ 2
x

)
(1)

We calculated the Cronbach Alpha values for the duration
and frequency of physical cues, verbal cues and roles.

6 Results

The coders were consistent in identifying roles and cues.
Table 2 reports the frequency and duration correlation results
for roles, cues, role changes. Cronbach alpha values for roles,
physical cues and, verbal cues were consistently greater than
α = 0.96 indicating a robust agreement across coders.

6.1 Therapist and Patient Roles

Figure 8 summarizes the percentage duration and frequency
of the roles for therapists and patients across all videos.
Both the therapist and the patient spent time in all three
roles: 6 times as demonstrator/patient observer, 34 times as

observer/patient performer, and 34 times as helper/patient
performer with assistance. The frequency and duration of the
therapist and patient roles correlated suggesting that treating
the dyad as a unit is accurate. Therapists spent more time in
the helper role (53.41%). Correspondingly, the patient spent
51.75% of the time being helped. If the patient was able to
complete tasksmore autonomously (41.63%), then the thera-
pist was in the observer role (40.18%). The therapist spent the
least amount of time in the demonstrator role (6.41%) and
the patient spent least amount of time in the observer role
(6.63%). The therapist demonstrated the task in the begin-
ning of the session or if a clarification was required. The
demonstrator role was the least used and this may have been
because some of the videos were taken after the therapist had
already explained the task.

6.2 Therapist and Patient Cues

Tables 3 and 4 show the duration and frequency of physical
and verbal cues across all videos. The therapist performed a
total of 195 physical cues across all sessions. Most of these
cues provided physical assistance to the patient. There were a
total of 25 patient physical cues, which were triggered when
the patient made an error in the task or was unable to perform
the task satisfactorily. The therapist performed a total of 199
verbal cues across all sessions.Most of these verbal cues pro-
vided indirect instructions for guidance or encouragement.
The patient performed a total of 15 verbal cues across all
sessions, which were frequently a request for assistance or
clarification from the therapist.

Out of the 10 possible therapy physical cues, the reaches,
lifts, and stabilizes cues were the ones that caused therapist
to change roles. Reaches, lifts and stabilizes had a mean fre-
quency of 36, 24 and 41 respectively. The cue, stabilizes,
was used when patients required physical support to perform
the task. The remaining physical cues are those that can be
considered patient errors that required therapist intervention
and led to role changes. The supports/expresses agreement
understanding or willingness, requests/asks, commands and
states verbal cues had high frequencies of 54, 39, 30 and
56 respectively. The cue stateswas typically statements (e.g.
“try another way”) that told the patient to initiate, continue
or complete a task without giving specific instructions. The
supports cue was used for encouragement. Of the 4 possible
verbal cues by the patient, describes/explains/states occurred
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Table 3 Percentage time and
frequency of physical cues. (*)
represents most frequent
physical cues

Patient/client Therapist
Cue Duration (%) Frequency Cue Duration (%) Frequency

Does not reach* 13.40 5 Reaches 3.34 36

Does not grip* 13.40 3 Grips 2.18 24

Does not coordinate 10.30 4 Moves 3.83 12

Does not move 6.18 1 Lifts* 17.06 37

Does not lift* 12.37 6 Transports 0.59 1

Does not transport 6.18 1 Stabilizes* 50.97 41

Does not stabilize 2.06 1 Guides 15.35 23

Does not initiate 6.18 3 Points 0.57 6

Points* 29.89 1 Touches 1.23 6

Manipulates 4.83 13

Table 4 Percentage time and frequency of verbal cues. (*) represent most frequent verbal cues

Patient/client Therapist
Cue Duration (%) Frequency Cue Duration (%) Frequency

Supports 7.65 4 Supports/
expresses
agreement
understanding
or willingness*

12.66 54

Requests/ asks 6.63 2 Requests/asks* 12.62 39

Complains/ disagrees 7.65 1 Commands 15.90 30

Describes/ explains/ states* 78.06 8 States* 47.87 56

Corrects 7.05 9

Stops/ prevents 3.87 11

78.06% of the time. These cues occurred when patients were
clarifying the task or explaining their actions and understand-
ing of task. In general, a patient’s verbal requests or physical
inability to perform an action completely, correctly, or accu-
rately led the therapist to switch into helper role.

Table 5 lists the frequency of the physical and verbal cues
seen within each of the patient/therapy dyad as outlined in
Fig. 4. The next sections report the cues within each role
along with how the therapist role changes were triggered and
its implication for a robot agent.

6.3 Therapist Demonstrator to Robot Demonstrator

For the demonstrator role, the therapist was often seen
describing the task to be done as well as providing ver-
bal and physical instructions for performing the task. This
role typically ended when the demonstration of the task
was completed and an invitation was given to the patient to
begin. Correspondingly, the patient listened and observed the
therapist actions. In the demonstrator role, the reaches cue
(frequency=3)was themost commonphysical cue and states
(frequency = 5) was the most common verbal cue used by the
therapist. This observation confirms that the therapist spent

most of the time providing instructions to subject. When
switching from demonstrator to observer roles, the therapist
performed the supports/expresses agreement understanding
orwillingness cuemost frequently. The patient did not trigger
any cues when switching from the observer role to a per-
former role which implies that a therapist cue caused a role
change in the patient. When switching from demonstrator to
helper roles, commands and reaches were the frequent cues.
The patient in the observer role triggered only 2 cues across
all videos which was the does not initiate and the supports
cue. This finding shows that a change from the demonstrator
into any other role often happens at the discretion of the ther-
apist. From these observations, identify some abilities that a
demonstrator robot should have:

– Performs a set of tasks and exercises for the patient.
– Able to reach, grip, stabilize, guide and manipulate the
patient’s limb.

– Provides clear instructions and directions for the patient.
– Communicates with subject to clarify actions demon-
strated.

– Transitions to either the helper role or the observer role
at the end of the demonstration.
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Table 5 Frequency of physical
and verbal cues used within
each therapist/patient dyad (*)
represent most frequent cues

Patient observer Therapist demonstrator
Physical cue Frequency Physical cue Frequency

Does not initiate 1 reaches 3*

Grips 1

Stabilizes 1

Guides 2

Manipulates 1

Verbal cue Frequency Verbal cue Frequency

Supports 1 commands 2

states 5*

Patient performer Therapist observer

Physical Cue Frequency Physical Cue Frequency

Does not reach 5* reaches 7*

Does not grip 2 grips 2

Does not coordinate 4 moves 1

Does not move 1 lifts 4

Does not lift 5* stabilizes 11*

Does not transport 1 guides 1

Does not stabilize 1 points 3

Does not initiate 2

Points 1

Verbal Cue Frequency Verbal Cue Frequency

Supports 2 supports/expresses agreement 30

Requests/asks 2 understanding or willingness

Describes/explains/states 6 requests/asks 20

commands 3

states 21

stops/prevents 2

Patient performer with assistance Therapist helper
Physical Cue Frequency Physical Cue Frequency

Does not grip 1 reaches 26*

Does not lift 1 grips 21*

moves 11

lifts 33*

transports 1

stabilizes 29*

guides 20*

points 3

touches 2

manipulates 12
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Table 5 continued Patient performer with assistance Therapist helper
Physical Cue Frequency Physical Cue Frequency

Verbal Cues Frequency Verbal Cues Frequency

Supports 1 supports/expresses agreement 24*

Complains/disagrees 1 understanding or willingness

Describes/explains/states 2 requests/asks 19*

commands 25*

states 30*

corrects 9

stops/prevents 9

– Learns new tasks autonomously or an interface with
which it can be easily taught new tasks

Robots have been used in a demonstrator role quite
frequently [16,19,33,36,68,70,75]. For example, the robot
developed by Fasola et al. [19] instructs users (demonstrator
role) to perform simple physical exercise through a series of
personalized exercise games. This robot is capable of mon-
itoring user performance (an observer role) and switching
through various behaviour modules to avoid user boredom.
Further, their users preferred the physical robot over a virtual
agent. Another example of a robot demonstrator is TAIZO
[68], a small humanoid that demonstrates physical exercises
along with a human partner. This robot is able to verbally
interact with the human demonstrator and is used as a means
to capture the attention of inattentive people in crowds.ANao
robot is used by Görer et al. [33] to demonstrate exercises
and can provide verbal instructions to users. The robot learns
these movements from motion retargeted from a human.
They further provide a taxonomy of exercises that can be
used with such a robot. Robots such as the Nao have been
significantly used in pediatric therapy as well. Nguyen et al.
[75] uses a Poppy robotwhich also learns itsmovements from
a human user. The Poppy robot has also been used in cases
where the exercise movements are pre-programmed [16]. A
Nao robot is used to demonstrate lower limb exercises in [70]
and upper limb exercises in [36]. Most of the above robots
are able to transition from a demonstrator to an observer role.
In addition, they are able to provide verbal assistance but not
physical assistance.

6.4 Therapist Observer to Robot Observer

The therapist within the observer role was often seen to
monitor the user’s performance on the task. In general,
the observations are done without direct contact with the
patients and help with body movements and limb perfor-
mance is provided verbally. The therapist often focuses on

encouraging the patient as well. Specifically, stabilizes (fre-
quency = 11) and reaches (frequency = 7) were the most
frequent physical cues. The most common verbal cues were
supports/expresses agreement understanding or willingness
(frequency = 30) followed by states (frequency = 21) and
requests/asks(frequency = 20). The patient was correspond-
ingly in the performer role and frequently triggered the
describes/explains/states and does not lift cues.

In an observer role, the therapist provides encourage-
ment and support to the subject. The three verbal cues,
supports/expresses agreement understanding or willingness,
states and corrects triggered a change from observer to
demonstrator roles. No physical cues were triggered by the
therapist during this role change. The patient did not trig-
ger any cues in this scenario. This could imply that this
change is a result of the end of the task being performed
or the therapist stopping the task to provide further instruc-
tions or clarifications. The therapist frequently triggered
the supports/expresses agreement understanding or willing-
ness (frequency = 20), requests/asks (frequency = 20) and
states (frequency = 21) verbal cues when changing from the
observer role to the helper role. Reaches (frequency = 7) and
lifts (frequency = 4)were the common therapist physical cues
that led to the this role change. The patient often triggered
the describes/explains/states (frequency = 6), does not lift
(frequency = 5), does not coordinate (frequency = 4) and
does not reach (frequency = 5) cues during this role change.
This change seems to be frequently triggered by the client
being unable to perform a particular action or the therapist
attempting to correct an incorrect action performed by the
client. From this we identify some abilities that a observer
robot should have:

– Monitors users’ body and/or limb movements
– Assesses users’ performance with respect to known per-
formance criteria

– Adapts the therapy behaviours to match users’ perfor-
mance.
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– Able to reach, grip, lift, stabilize, move point in order to
transition.

– Communicates with patient by providing corrective feed-
back, suggestions for better performance, clarifications
on tasks.

– Transitions to either the helper role or the demonstrator
role at the end of the demonstration.

– Learns new tasks autonomously and the error tolerance
permitted for each movements per patient.

Studies have shown that outfitting patients with a motion
capture system (either inertial or vision based) such as Xsens
MVN [83] or a wearable exoskeleton [39] gives the robot
real-time information about the patient’s movement. Fasola
et al. [19] achieves this goal using a vision-based method
that can recognize user pose by segmenting the image and
then determining the position of the arm relative to the face.
McCarthy et al. [70] uses a Kinect to monitor its subjects.
Guneysu et al. [36] tracks users using inertial measurement
units. [16] uses Gaussian Mixture Models to estimate and
assess user movement. Tanguy et al. [94] is another example
where a similar approach is used to assess user movement.

In addition, other studies have done one or more of the
following: (1) outfitted the robot with a low-cost Kinect
camera to monitor information about the environment and
patient’s interaction with objects, (2) outfitted the robot with
tactile, accelerometry or force sensors to enable sensing of
the force of the interaction [24,85]; (3) outfitted the robot
with a touch screen interface, a natural language processor
or voice recognition system to enable interpretation of verbal
responses or receipt of commands from the patient that could
bemapped onto actions [69]; and (4) outfitted the patientwith
sensors to enable the robot to monitor patient emotional state
such as heart rate, breathing rate, galvanic skin responses to
understand emotional valence (happy, unhappy) and arousal
(excited, bored) [39,55,92,98]. Most of the systems men-
tioned are able to observe the user movements and provide
verbal feedback and communicate encouragingly. Most are
not prepared to transition to a physically helping role.

6.5 Therapist Helper to Robot Helper

The therapists in the helper role will typically provide assis-
tance according to the patient’s difficulty during the observer
role, apriori knowledge of the patient’s motor and cognitive
impairments or the patient’s requests. The patient is guided in
their movements by the therapist. The most common phys-
ical cues were lifts (frequency = 33), stabilizes (frequency
= 20), reaches (frequency = 25), guides (frequency = 20),
moves (frequency = 11) and manipulates (frequency = 12).
The therapist reached in to directly touch the patient’s limb,
lift the arm, stabilize the limb movement patient or guide
the limb. Although forces were not measured, most of the

physical encounters appeared to be small guiding forces.
Supports/expresses agreement understanding or willingness
(frequency = 24), states (frequency = 30), commands (fre-
quency = 25), and requests/asks (frequency = 19) were the
common verbal cues used. As a performer with assistance,
the patient triggered the does not lift, does not grip and
describes/explains/states cues frequently. Stateswas the only
verbal cue of the therapist during a role change from helper
to demonstrator. But, the physical cues reaches, moves, sta-
bilizes and manipulates were triggered. Supports was the
only verbal cue while does not grip and does not lift were the
physical cues triggered by the patient during this change. This
finding implies that changing from this role often occurred
when the task was completed. When moving from helper to
observer the supports/expresses agreement understanding or
willingnesswas themost frequent verbal cue and reaches and
stabilizes were the most common physical cues performed
by the therapist. Requests/asks and describes/explains/states
were the verbal cues triggered by the patient during this role
change. No physical cues were triggered by the patient in
this case. The therapist returns to an observer role once the
client is able to perform the task by themselves. From these
observations we identify some abilities that a helper robot
should have:

– Adapts the therapy helping behaviours to match users’
performance.

– Able to transition into another role by ending a phys-
ical cue such as reaching, gripping, moving, lifting,
transporting, stabilizing, guiding, pointing, touching or
manipulating the patient’s arm.

– Performs safe physical assistance in the form of touches,
lifting, guiding etc.

– Assesses user’s performance based on a given criteria.
– Provides either physical or verbal feedback based on user
performance.

– Communicates with users by providing motivational and
understanding statements.

– Transitions to either the observer role or the demonstrator
role at the end of the demonstration.

Most robots that are capable of monitoring the robot pro-
vide some form of feedback to the user. The exercise coach
built by Fasola andMatarić [19] does this task by using visual
motion capture data adapting its behaviour to be more inter-
active. Tanguy et al. [94] provides verbal feedback so that the
user can correct their motion. Liu et al. [55] demonstrated
how online affect detection could enable a robot to adapt its
behaviors to improve the therapeutic interaction with chil-
dren with autism. The robot was programmed to have three
possible states/behaviors. Using a learning algorithm driven
by state vector machines (SVM) to learn whether the child
was liking a particular behavior and a reinforcement algo-
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rithm driven by a QV reinforcement learning for rewarding
one behavior over another, the study showed that the robot
was able to adapt based on the child “liking” preference and
settle on a behavior that the child liked the best. The Inmo-
tion robot [56] and other hands-on robots that are physically
attached to the patient [101] can be considered helper robots.
Some are more transparent than others in terms of whether
they are still “felt” when they turn of the helping mode and
allow the patient to perform without assistance. Majority of
existing robotic systems are unable to fully transition to an
uncoupled hands-off state from a coupled hands-on state.

7 Discussion

This study demonstrated that aspects of the patient-therapist
interactions in task-oriented stroke therapy can be overlaid
on a stimulus-response paradigm where the therapist and the
patient take on a set of acting states or roles and aremotivated
tomove fromone role to anotherwhen certain physical or ver-
bal stimuli or cues are sensed and received.Weexamined how
the model applies across 8 activities of daily living tasks and
observed that therapist spent time in all roles. The maximum
time was spent in the helper role and equal amounts of verbal
and physical cues were given by the therapist. Role changes
were triggered by physical and/or verbal cues mainly by the
therapist. We observed that the therapist reacted most often
to physical cues from the patients that indicated the patient
was making an error and they then physically intervened to
minimize that error. They typically entered the helper role
on request from the patient or on observation of an error.
Examples of such role-changing cues include does not lift,
does not grip, and does not reach. Although the patient role
change was often driven by the therapist, there were some
instances when the patient requested clarification or help.

Two other factors could have impacted the change of roles
and use of cues. The first is the complexity of the task, which
is defined as the number of steps required to complete the
sequence of actions within the task [74]. Occupational ther-
apists typically layer actions within a task in a pedagogic
sequence to allow the patient to perform the entire task; the
sequence usually advancing from simple to complex in order
to approximate real-world conditions [74,82]. This process
is especially true for patients with both cognitive impair-
ments as well as motor impairments. Mullick and colleagues
[74] showed that the ability to learn a simple or a complex
task may be mediated by the cognitive function of a person
[74]. Given this finding we suggest that the helper role may
be used even more for patients with low cognitive function-
ing, and the physical and verbal cues would still be used in
equal amounts. However, since we could not obtain levels
of cognitive functioning of the patients from the videos, the

relationships among cognitive function, task complexity, and
time and frequency of roles and cues cannot be determined.

7.1 Implications for Clinical Effectiveness

Schweighofer et al. [86] have identified three tenets of robot-
assisted task oriented therapy. The first tenet states that a
robotmust be able to enable users to train on actual functional
tasks. Such robot systems would need to aid in identifying
ADL components, grading task complexity, and adapting
ADL instructions to the stroke patient. This behavior would
require the robot to utilize the demonstrator role to instruct
the client how to perform a task. Like therapists, the robot
in the role could utilize object affordances to determine the
task to be performed [44]. The robot will need to identify
the affordances quickly using computer vision techniques
and perform a demonstration of the desired task [12]. Social
affordances have been previously used in robotics to enable
multi-step task planning where an iCub utilizes learnt affor-
dances to perform a pick and place task in collaboration
with a human partner [99]. Awaad et al. [3] leverage the
functional affordances of objects to generate socially accept-
able behaviour for domestic robots. Here, the robot plans
and executes a tea-making task through by first generating
a domain specific planning problem which uses affordances
during plan execution. Though affordances have been stud-
ied the existing literature to some extent, they are yet to be
used for enabling social-physical interactions in the context
of therapy [72,108].

The second tenet states that robot should facilitate active
participation training. Repetition and active participation
from the patient are vital aspects of therapy [17]. To encour-
age active participation from the client, the robot can provide
supportive cues as needed to motivate patients to persist and
give effort. In addition, the robot can switch between the
observer and helper roles to provide assistance during a func-
tional task only when it detects the appropriate physical or
verbal cue. The robot, thus encourages the patient to com-
plete the task on their own. Additionally, the robot in the
helper role must be able to safely provide the patient with
the support that they require. Motion tracking can be used to
determine patient pose and identify how and when to provide
the required assistance. Finally, the robot should be able to
personalize the training that it provides. The robot should
be able to dynamically adjust the level of support offered
patients of various functional levels. The observer role will
thus need to be able to quantify patient progress and skill
levels and the helper role must be able to quantify client
progress. The patient skill levels determined by the observer
role can also enable the demonstrator role to customize the
task complexity.

Overall, the benefit of developing robotic systems that
can aid in task-oriented therapy comes from expanding the
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utility of robots to assist clinicians in stroke rehabilitation by
supplementing therapy sessions where repetitions and self-
practice on ADL tasks are required. The system can thus
reduce the number of sessions with a human therapist, thus
enabling them to meet with more patients. A robotic system
such as this can thus help alleviate the shortage of clinicians.

7.2 Implications for Robot Therapists

Kinematic actions of the therapist during a state can be
mimicked by the robot by providing the robot with infor-
mation about therapist kinematics before, during or after a
state. The kinematics of the therapist actions can be cap-
tured using motion capture systems such as an exo-skeletal
robot [39], a vision-based system such as the Vicon [73], or
wearable inertial sensors [34]. In Mohan et al. [73], we used
the Vicon motion capture system to monitor and quantify the
kinematics of patient-therapist interactions during collabora-
tive therapy tasks. Kinematic signatures arising from motion
capture systems can then be analyzed with corresponding
movement primitives used to support online activity recog-
nition.Guerra et al. showed that inertial sensors can be used to
capture, learn and classify upper extremity movement primi-
tives in healthy and stroke patients during functional tasks
[34]. A Hidden Markov Model along with logistic linear
regression was used to predict rest, reach, grasp and other
key components of each activity.

One requirement for implementation would be to provide
a robot the ability to identify cues and transition accurately
between states. If the robot starts in demonstrator mode, how
does it knowwhen to help? The robot could receive kinemat-
ics of user motion through a motion capture system and learn
to interpret them in order to detect a cue. Further, it would
also require a versatile end-effector with haptic feedback to
provide the required assistance. There is a requirement for a
large quantity of data about therapist intent that can be used
in conjunction with a learning algorithm in order to give
the robot these abilities. Recently, we experimented with a
possible solution that allowed a therapist to teach a Baxter
robot the reaching phase of a drinking motion [104]. The
robot then used this kinematic information to build a Gaus-
sian error tolerance around the desiredmovement kinematics.
Using data from an inertial sensor attached to the arm of a
user, the robot was able to monitor the user’s arm motion
and move from observer to helper when excessive deviation
from the desired movement was observed. New sensors are
needed to aid in transitioning from observer to helper modes.
Beckerle and colleagues [5] reviewed several new advances
that can improve the ability of the robot to perceive. Tactile
sensing and robot skins can extend robot sensing capabilities
by acquiring contact information from large-scale surfaces.
These can be conformable, cheap, and easy to manufacture.

This technology could allow the robot to make and break
contact with the user with more than just its end-effector.

Leveraging the interaction framework developed by Jar-
rassé et al. [40,41] alongwith the proposed stimulus-response
model, some of the more simpler aspects of the therapist-
patient interaction could be defined by cost functions that
modify as the therapist/patient changes state. In the helper
role, the Jarrassé framework suggests that the robot could be
governed by a cost function where the robot as teacher seeks
to constantly minimize its own effort and the patient’s error–
deviation from a defined movement target or pattern. Takagi
et al. shows how this model could be applied to control one
degree of freedom wrist flexion/extension robots used for
point-to-point reaching movements by healthy dyads [93].
In the Jarrassé framework, the human-human dyad and sub-
sequently the human-robot dyad is in constant contact, but
this is not the case in the demonstrator and observer roles
seen within therapist-patient dyads.

We observe that the contact between the patient and ther-
apists is made and broken frequently as transitions between
roles occurs. This finding then raises the question of how best
to automatically determine the states of coupled and uncou-
pled robot actions across an entire therapy task. Our model
goal is that the human-human or human-robot dyads may
move between being physically coupled and then uncoupled
states where the goal of each agent changes due to a state
change. One possibility is to first assume the cost-function
articulated above is intact during contact and non-contact
states in the therapist-patient dyads and secondly, to assume
a weak or strong elastic band connecting the therapist to the
patient [29]. Making these assumptions, we could then deter-
mine a cost function for how physical or verbal cues would
change the strength of the spring gain on the elastic band.
We acknowledge that while this would be an oversimplifi-
cation of the “teacher” or “therapist” role, it may serve as a
first attempt to capture at least the salient quality of the need
for diminishing “helping” actions as the patient progresses
frommore impaired to less impaired. Another technique was
demonstrated by Shu et al. [88] where social affordances
were used to facilitate interactions such as hand shakes and
high-fives with a Baxter robot. Here, motion tracking data
extracted from RGB-D videos collected via a Kinect were
used as input to an social affordance grammar learning algo-
rithm. This algorithm utilized a weakly supervisedmethod to
represent the grammar as a spatiotemporal AND-OR graph
which was then used in a real-time motion interference algo-
rithm to enable a Baxter robot to interact with a human agent.
An algorithm such as the one presented by Shu et al. [88] can
be used to enable to robot to switch between observer and
helper role i.e., to switch between physically coupled and
uncoupled states.

Regardless of the context for defining the physical and
social therapy robot, it is important to consider how best to
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make the interaction with the robot acceptable to patients.
The ability of the therapist to adapt their behaviors and to
respond to patients’ verbal and non-verbal cues and then
provide a situated and related response to the patients is a
critical aspect of the human-human interaction. Mavridis et
al. indicate that a critical component of user acceptance of
human-robot interaction is the robot’s ability to verbally or
non-verbally communicate in such a way as it is situated into
the here and now. To do so, one method is to establish a clear
connection between what is heard by the robot and said to
the robot and the resulting robot actions [69]. Other studies
show that changing parameters such as robot facial expres-
sion, robot personality, proximity to user, situated language,
behavior, non-verbal expressions such as eye-gazing were
important for developing an acceptable human-robot inter-
action [89]. Tapus and Matarić showed the importance of
embodying the robot with affective qualities such as chang-
ing personality, facial expression, and behavior in response
to patients’ actions [95]. Fitter et al. showed that when the
robot’s arm compliance as well as its facial expression is
changed during an interactive clapping task, the users’ per-
ception of the robot as friendly and sociable also changed
[25]. Once a social and therapy agent is developed, appro-
priate assessment and evaluation methods should be used to
critically examine the acceptability of the human-robot inter-
action. Sim et al. in a recent review suggest that evaluation
and assessmentmethodologiesmust be used to examine short
term and long-term impacts of design choices as well as per-
ceived and actual acceptance and usability of the robot as
social and therapy agent [89].

7.3 Implications of Shared Control

Losey and colleagues argue that human-robot interactions are
about shared control and that shared control can be arbitrated
[57]. Arbitration is when each partner negotiates his or her
level of autonomywith respect to each other.A shared control
scheme is presented in Fig. 9. In this example, the therapist
could program the robot to be more or less autonomous in
its support of activities with the patient. This implies that the
therapist may program the robot to be more autonomous in
one dyadic state and less in another.

The shared control scheme (Fig 9) is common in reha-
bilitation robotics and is often used to leverage therapists’
expertise to allow one therapist to oversee more than one
patient [46,100]. In studies with Inmotion robot, the reha-
bilitation robot was programmed to be autonomous in the
helper role only and applied assist-as-needed forces to the
impaired arm of the patient [56]. In this scenario, the thera-
pist could choose to oversee another patient. In another case,
the therapistmay program the robot to be autonomous in both
observer and helper roles and allow the robot to decide when
to transition across these roles. For example, in Wang et al.

Fig. 9 Stimulus Response Model for Patient-Therapist Interactions
where robot shares control with therapist

[104], the Baxter robot was taught to autonomously observe
the user’s attempts to duplicate a desired kinematic move-
ment and intervene by lifting its right arm to apply a lifting
force with its end-effector to the patient’s forearmwhen slow
progress or excessive deviation was detected with respect to
a Gaussian decision tunnel implemented around the desired
trajectory. Of course, when we ask robots to take on more
of the control, we increase the need for safety. Jarrassé and
colleagues [41] point out that in any close human-robot inter-
action the exchange of energy must be monitored and echoes
the need for safety. Such a robot should ensure that it provides
a safe common workspace, enable a human to predict the
behaviour of the robot and ensure that collisions do not result
in serious injury [37]. The robot would need sufficient infor-
mation about the subject’s motion such that it can provide
safe assistance [57]. For example, in Wang and colleagues
[104], an inertial measurement unit was used to measure the
user movement and provide feedback to the robot and the
robot was programmed to move its arm at low speeds.

7.4 Sources of Error and Limitations

The stimulus-responsemodel presented above and the shared
control extension with the robot are simplified represen-
tations of a complex and rich interaction between patient
and therapist during a therapy session. While we understand
that all the nuances of this interaction cannot be fully repre-
sented in this state-based model, the model serves as an ideal
understanding of how the patient-therapist dyad may operate
during the session and shift between states. The human-robot
interaction may need to be modeled within each dyadic state
as well [8,41,57].

Our stimulus-response model also assumes that the ther-
apist and patient remain in a state until cued or stimulated to
leave it. There may be scenarios where the roles are more
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Table 6 Proposed administrative cues for the patient and therapist

Administrative cues

Therapist Patient

Start demonstration Begin task

End demonstration End task

interdependent such as a condition where the therapist is
providing assistance or supporting the patient while demon-
strating the next task. This behavior can be implemented
using an evolutionary algorithm such as the one seen in [31]
where the existing behaviours or role can be enhanced by
combining behaviours from the initial repertoire. It was very
dependent on patient errors in terms of representing physical
cues for the patient. This interdependence could be over-
come with combining the stimulus response model with a
goal directed model as seen in [79] which shows the use of
such a model to anticipate user emotion. Another limitation
foundwas in cue definition. The cues that we defined became
insufficient in cases when role changes occurred when the
therapist finished demonstrating a task and the patient began
the task soon after. For future studies, we recommend the
introduction of a set of administrative cues that can handle
role changes that are not caused by either a physical or verbal
cue and can indicate activities such as the beginning or the
end of a task (Table 6).

Another source of limitation for our study is in the number
of videos we examined to extract the roles and cue frequency.
We examined only 8 simple and complex ADLs which are a
sub-set of tasks used during stroke therapy. There are a large
variety ofADLs that are oftenused todrive stroke therapy.We
determined the patient-therapist interactions could be gener-
alizable but it was unclear how task complexity affected the
roles and cues [74,82]. For example, one measure of com-
plexity could be the length of a task which could lead to
longer time spent in the helper role by the therapist to provide
assistance as the patient gets fatigued. Perhaps the analysis
of a larger and diverse data set can give us a clearer picture of
the effects of task complexity and how a robot should modify
its behavior depending on the complexity of functional tasks.
Another limitation is in the type of subjects represented in the
8 videos. The videos, which were of mainly low-functioning
subjects, show that we need to better understand how the
identified roles and cues would change for stroke survivors
with a large variety of physical function (low, medium, and
high). Some hint from the data suggest that the role of helper
may be extended when the subject is more low functioning
and that the robot would spend more time in a physically
coupled mode. Another limitation is in the lack of explicit
knowledge of kinematics and haptics of the actively occur-
ring interactions. In the future, it will be important to collect
a larger variety of therapy videos across patient function and

tasks and if possible simultaneous kinematic and haptic infor-
mation for both patient and therapists.

8 Conclusion and FutureWork

The stimulus-response model appears to be able to capture
some relationships observed between patient and therapist in
a variety of daily living tasks and presents a reasonablemodel
of robot-patient interactions that may closely approach real
therapy. However, there are other interactions in therapy that
this model does not capture, such as empathy and caring
or the influence of cognition and depression on behavior.
Although, the data of cues and roles presented were specific
to the tasks evaluated and the patients involved in this study,
we anticipate that given new tasks and patients, the overall
interaction scheme proposed would remain the same, but the
percentage of time spent in roles would change depending
on the level of impairment of the patient or the specific task.
The robotwould still need to dynamically switch between the
three roles based on the cues and feedback from its sensors.
We believe that this work is an initial attempt at modelling
such complex interactions and our future research will build
upon this foundation. We are in the process of building a
large database of patient-therapist interactions. We plan to
examine the generalizability of this model and determine the
situations under which the model does not hold true with
the goal of extending the model as needed. Our other goals
are to implement a computational model that is valid for
both coupled and non-coupled interactions as well as contact
and non-contact interactions and a stimulus-response-based
controller that can control the robot in changing roles and
responding to cues.
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30. Gockley R, Matarić MJ (2006) Encouraging physical therapy
compliance with a hands-off mobile robot. In: Proceedings of the
1st ACM SIGCHI/SIGART conference on Human-Robot Inter-
action

31. Gomes J, Oliveira SM, Christensen AL (2018) An approach to
evolve and exploit repertoires of general robot behaviours. Swarm
and Evolutionary Computation

32. Goodworth A Johnson MJ PM (2019) Chapter 12: physical ther-
apy and rehabilitation

33. Görer B, Salah AA, Akin HL (2013) A robotic fitness coach for
the elderly. In: International Joint Conference on Ambient Intel-
ligence, pp. 124–139. Springer

34. Guerra J, Uddin J, Nilsen D, Mclnerney J, Fadoo A, Omofuma
IB, Hughes S, Agrawal S, Allen P, Schambra HM (2017) Cap-
ture, learning, and classification of upper extremity movement
primitives in healthy controls and stroke patients. In: Proceedings
of the IEEE International Conference on Rehabilitation Robotics
(ICORR)
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