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Abstract
Facial expressions are an ideal means of communicating one’s emotions or intentions to others. This overview will focus on
human facial expression recognition as well as robotic facial expression generation. In the case of human facial expression
recognition, both facial expression recognition on predefined datasets as well as in real-time will be covered. For robotic facial
expression generation, hand-coded and automated methods i.e., facial expressions of a robot are generated by moving the
features (eyes, mouth) of the robot by hand-coding or automatically using machine learning techniques, will also be covered.
There are already plenty of studies that achieve high accuracy for emotion expression recognition on predefined datasets,
but the accuracy for facial expression recognition in real-time is comparatively lower. In the case of expression generation
in robots, while most of the robots are capable of making basic facial expressions, there are not many studies that enable
robots to do so automatically. In this overview, state-of-the-art research in facial emotion expressions during human–robot
interaction has been discussed leading to several possible directions for future research.

Keywords Facial emotion recognition · Facial emotion expressions · Human–robot interaction · Survey · Overview

1 Introduction

Robots are no longer just machines being used in factories
and industries. There is a growing need and demand towards
robots sharing space with humans as collaborative robotics
or assistive robotics [35,63]. Robots are, now, increasingly
being deployed in a variety of domains as receptionists [120],
educational tutors [49,59], household supporters [111] and
caretakers [25,49,67,125]. Thus, there is a need for these
social robots to effectively interact with humans, both ver-
bally and non-verbally. Facial expressions are non-verbal
signals that can be used to indicate one’s current status in
a conversation, e.g., via backchanneling or rapport [3,31].

Perceived sociability is an important aspect in human–
robot interaction (HRI) and users want robots to behave in a
friendly and emotionally intelligent manner [28,48,99,105].
For social robots to be more anthropomorphic and for
human–robot interaction to bemore like human-human inter-
action (HHI), robots need to be able to understand human
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emotions and appropriately respond to those human emo-
tions. Stock and Merkle show that emotional expressions
of anthropomorphic robots become increasingly important
in business settings as well [118,121]. The authors of [119]
emphasize that robotic emotions are particularly important
for the acceptance of a robot by the user. Thus, emotions are
pivotal for HRI [122]. In any interaction, 7% of the affective
information is conveyed through words, 38% is conveyed
through tone, and 55% is conveyed through facial expres-
sions [92]. This makes facial expressions an indispensable
mode of affective communication. Accordingly, numerous
studies have examined facial expressions of emotions during
HRI [e.g.2,8,15,17–19,33,38,50,81,81,91,91,110,116].

In any HHI, human beings first infer the emotional state of
the other person and then accordingly generate facial expres-
sions in response to their peer. The generated emotion could
be a result of parallel empathy (generating the same emo-
tion as the peer) or reactive empathy (generating emotion in
response to the peer’s emotion) [26]. Similarly, in the case of
HRI, we would like to study robots recognizing human emo-
tion as well as robots generating their emotion as a response
to human emotion.

There has been a growth in the number of papers on
facial expressions in HRI in the last decade. Between 2000
and 2020 (see Fig. 1), there has been a gradual increase in
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Fig. 1 Publications on emotion recognition of human faces during HRI and generation of facial expressions of robots

the number of publications. Thus, the overarching research
question is: What has been done so far on facial emotion
expressions in human–robot interaction, and what still needs
to be done?

In Sect. 2 the framework of the overview is outlined,
followed by the method of selection of studies in Sect. 3.
Recognition of human facial expressions and generation of
facial expressions by robots are covered in Sects. 4 and 5.
The current state of the art and future research are discussed
in Sect. 6 with the conclusion in Sect. 7.

2 Framework of the Overview

This overview focuses on two aspects: (1) recognition of
human facial expressions and (2) generation of facial expres-
sions by robots. The review framework (Fig. 3) is based
on these two streams. (1) Recognition of human facial
expressions is further subdivided depending on whether the
recognition takes place on (a) a predefined dataset or in (b)
real-time. (2) Generation of facial expressions by robots is
also subdivided depending on whether the facial generation
is (a) hand-coded or (b) automated, i.e., facial expressions of
a robot are generated by moving the features (eyes, mouth)
of the robot by hand-coding or automatically using machine
learning techniques.

3 Method

Studies with the keywords “facial expression recognition
AND human–robot interaction / HRI”, ”facial expression

recognition” and ”facial expression generationANDhuman–
robot interaction / HRI” between 2000 and 2020 were
reviewed on Google Scholar.

In this overview, studies that use voice or body gestures
as a modality for emotional expression but do not involve
facial expressions are not included. Studies that involve HRI
with humans havingmental disorders like autism are also not
included. Furthermore, studies that work on single emotion
such as recognition of smile or facial expression generation
of anger are not included. In total, 175 studies of 276 were
rejected (Fig. 2).

In Table 3, various studies on facial expression recog-
nition are listed. Here, studies with an accuracy of greater
than 90% for facial expression recognition on predefined
datasets are selected. For real-time facial expression recog-
nition, all studies that perform facial expression recognition
in a human–robot interaction scenario are listed.

4 Recognition of Human Facial Expressions

Earlier, facial expression recognition (FER) consisted of the
following steps: detection of face, image pre-processing,
extraction of important features and classification of expres-
sion (Fig. 4). As deep learning algorithms have become
popular, the pre-processed image is directly fed into deep
networks (like CNN, RNN etc.) to predict an output [71]
(Fig. 5).

In the machine learning algorithms, Viola Jones algo-
rithm and OpenCV were popular choices for face detection.
However, dlib face detector and ADABOOST algorithm
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Fig. 2 Flowchart of the literature screening process

Fig. 3 Framework of the overview
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Fig. 4 Process of facial expression recognition in machine learning (adapted from Canedo and Neves [13])

Fig. 5 Process of facial expression recognition in deep leaning (adapted from Li and Deng [71])

were also used. To pre-process the images, greyscale con-
version, image normalization, image augmentation (such as
flip, zoom, rotate etc.) were usually applied. Further, some
studies extract the important regions in faces like eyebrows,
eyes, nose andmouth (also known as the acting units or AUs)
that play an important role in FER. Others use local binary
pattern (LBP) or histogram of oriented gradients (HOG) to
extract the featural information. Finally, the classification is
performed. Most of the studies perform classification for the
six universally known emotions (happy, sad, disgust, anger,
fear and surprise) and sometimes include a neutral expres-
sion. For final classification, k-Nearest Neighbor (KNN),
Hidden Markov Model (HMM), Recurrent Neural Network
(RNN), Convolutional Neural Network (CNN), Support Vec-
tor Machine (SVM) and Long Short-TermMemory (LSTM)
are used.

In the deep learning algorithms, the input images are first
pre-processed by performing face alignment, data augmen-
tation and normalization. Then the images are directly fed
into deep networks like CNN, RNN etc. which predict the
emotion of the images. The most commonly used classifica-
tion methods are explained in more detail below. They are
arranged in the order in which they were invented.

KNN: Nearest neighbor based classifier was first invented
in the 1950s [37]. In KNN [57], given the training instances
and the class labels, the class label of an unknown instance is
predicted. KNN is based on a distance function that measures
the difference between two instances. While the Euclidean
distance formula is mostly used, there are also other distance
formulae such as Hamming distance which can be used.

HMM: An HMM [104] was introduced in the late 1960s.
It is a doubly embedded stochastic process, bearing a hid-
den stochastic process (a Markov chain) that is only visible
through another stochastic process, producing a sequence of
observations. The state sequence can be learned usingViterbi
algorithm or Expectation-Modification (EM) algorithm.

RNN: RNN [78] was introduced in the 1980s. RNN is
a feed-forward neural network that has an edge over adja-
cent time steps, introducing a notion of time. Hence, RNN
is mainly used for a dynamic data input that has a temporal
sequence. In RNN, a state depends upon the current input
as well as the state of the network at the previous time step,
making it possible to contain information from a long time
window.

CNN:ConvolutionalNetworks [70]were invented in 1989
[69]. CNNs are trainable multistage architectures composed
of multiple stages. The input and output of each stage are
sets of arrays called feature maps. Each stage of CNN is
composed of three layers- a filter bank layer, a non-linearity
layer and a feature pooling layer. The network is trained using
the backpropagation method. They are used for end-to-end
recognition wherein given the input image, the output is pre-
dicted by CNNs. They are even used as feature extractors
which are further connected with neural networks layers like
LSTM or RNN for the prediction.

SVM: SVMwas invented byVapnik [128]. In SVM [129],
the training data can be separated by a hyperplane.

LSTM: LSTM [39] was invented by Hochreiter and
Schmidhuber [47]. It also has recurrent connections but
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unlike RNN, it is capable of learning long-term dependen-
cies.

Table 1 summarizes the major purpose, application areas,
advantages, disadvantages and frequency of use for com-
monly used algorithms. For the frequency of use, only the
number of papers that implement facial expression recog-
nition during HRI or in real-time scenarios were counted.
AlthoughRNNhas not been used for facial expression recog-
nition duringHRI or in real-time, some studies perform facial
expression recognition on predefined datasets using RNN.

27 studies on facial expression recognition during HRI
were reviewed. Some of the studies have not been per-
formed on a robot platform. These studies perform emotion
recognition in real-time and mention HRI as their intended
application. The studies are summarized in Table 2. Here,
studies that perform facial expression recognition on pre-
defined datasets or studies that perform facial expression
recognition but not in real-time were not included.

4.1 FER on Predefined Dataset

Although the goal of this study is to perform FER in
real-time and during HRI, the studies on real-time FER are
compared with FER on predefined datasets. FER has been
carried out on static human images as well as on dynamic
human video clips.While some studies, perform facial recog-
nition on still images, others perform facial recognition on
videos. In Datcu and Rothkrantz [24], they show that there
is an advantage in using data from video frames over still
images. This is because videos contain temporal information
that is absent in still images.

Results of studies with above 90% accuracy in FER on
still images are summarized in Table 3a and on videos are
summarized in Table 3b. Table 3a, b are for comparison with
Table 3c. Studies are arranged according to their accuracy
level. It should be noted that these studies are carried out on
predefined datasets consisting of human images and videos
and do not involve robots. There are a considerable number
of studies that achieve accuracy greater than 90% on CK+,
Jaffe andOulu-Casia datasets on both still images and videos.

4.2 FER in Real-Time

It is easier to achieve high accuracy while performing emo-
tion recognition on predefined datasets as they are recorded
under controlled environmental conditions. On the other
hand, it is difficult to achieve the same level of accuracy
when performing emotion recognition in real-time when the
movements are spontaneous. It should be noted that studies
that perform facial expression recognition in real-time were
carried out under controlled laboratory conditions with little
variation in lighting conditions and head poses.

As this study is about facial expressions inHRI, for a robot
to be able to recognize emotion, emotion recognition has to
be performed in real-time. Table 3c provides studies with
facial expression recognition in real-time for HRI. Here, the
accuracies are comparatively lower than the accuracies for
predefined datasets. As can be seen in Table 3c, only two
studies have an accuracy greater than 90%. The robots that
are used in the studies are either robotic heads or humanoid
robots such as Pepper, Nao, iCub etc. Many studies that per-
form facial expression recognition in real-time use CNNs,
making it a popular choice for facial expression recognition
[2,2,8,15,133]. However, the highest accuracy is achieved by
Bayesian and Artificial Neural Network (ANN) methods for
facial expression recognition in real-time.

5 Facial Emotion Expression by Robots

For robots to be empathic, it is necessary that the robots not
only be able to recognize human emotions but also be able to
generate emotions using facial expressions. Several studies
enable robots to generate facial expressions either in a hand-
coded or an automated manner (Fig. 6). By hand-coded, we
mean that the facial expressions are coded bymoving the eyes
andmouth of the robot in a desirousmanner, and automated is
when the emotions are learned automatically using machine
learning techniques.

16 studies on facial emotion expression in robots were
reviewed. These studies are summarized in Table 4.

5.1 Facial Expression Generation is Hand-Coded

Earlier studies started by hand-coding the facial expressions
in robots. There is a static as well as dynamic generation of
facial expressions on robots.

Among the static methods, there is a humanoid social
robot “Alice” that imitates human facial expressions in real-
time [91]. Kim et al. [61] introduced an artificial facial
expression imitation system using a robot head, Ulkni. As
Ulkni is composed of 12 RC servos, with four Degrees of
Freedom (DoFs) to control its gaze direction, two DoFs for
its neck, and six DoFs for its eyelids and lips, it is capa-
ble of making the basic facial expressions after the position
commands for actuators are sent from the PC. Bennett and
Sabanovic [7] identified minimal features, i.e. movement of
eyes, eyebrows,mouth and neck, which are sufficient to iden-
tify the facial expression.

In this study, the main program called functions that spec-
ified facial expressions according to the direction (used to
make or undo an expression) and degree (strength of the
expression–i.e. smaller vs. larger). The facial expression
functions would in turn call lower functions that moved
specific facial components given a direction and degree, fol-
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Table 3 Studies on FER; Note: Studies listed according to accuracy level

Study Dataset Algorithm Classes Accuracy

(a) With accuracy greater than 90% on static input i.e., human images

Mistry et al. [95] CK+/MMI SVM 7 100%/94.66%

Kotsia and Pitas [66] CK SVM 6 99.7%

Hossain et al. [51] Jaffe/CK GMM 7 99.8%/99.7%

Kar et al. [60] CK+ BPNN 6 99.51%

Mliki et al. [45] CK/Jaffe SVM 7 99.24%/96.50%

Chen et al. [16] CK+/Jaffe CNN 7 99.1597%/87.7350%

Zhang et al. [146] CK+ CNN 6 98.9%

Mayya et al. [89] Jaffe/CK+ CNN 7 98.12%/96.02%

Minaee and Abdolrashidi [94] CK+/Jaffe CNN 7 98.0%/92.8%

Nwosu et al. [101] Jaffe/CK+ CNN 7 97.71%/95.72%

Yang et al. [140] CK+/Oulu-Casia/Jaffe CNN 6 97.02%/92.89%/92.21%

Yang et al. [139] CK+/Oulu-Casia/Jaffe WMDNN 6 97.0%/92.3%/92.2%

Ding et al. [30] CK+/Oulu-Casia CNN 8/6 96.8%/87.71%

Gogić et al. [40] CK+/Jaffe/ MMI NN 7 96.48%/85.88%/73.73%

Kim et al. [62] CK+/Jaffe CNN 6 96.46%/91.27%

Hua et al. [52] Jaffe CNN 7 96.44%

Mannan et al. [85] CK+ SVM 7 96.36%

Ruiz-Garcia et al. [110] KDEF/CK+ CNN-SVM 7 96.26%/95.87%

Hamester et al. [44] Jaffe CNN 7 95.8%

Meng et al. [93] CK+/MMI CNN 6 95.27%/71.55%

Liliana et al. [77] CK+ SVM 7 93.93%

Ferreira et al. [36] CK+/Jaffe CNN 8/6 93.64%/89.01%

Mollahosseini et al. [97] CK+ DNN 7 93.2%

Yaddadenet al. [137] Jaffe/KDEF KNN 7 92.29%/79.69%

(b) With accuracy greater than 90% on dynamic input i.e., human videos

Liang et al. [76] CK+/Oulu-Casia/MMI CNN-BiLSTM 6 99.6%/91.07%/80.71%

Carcagnì et al. [14] CK+ SVM 7 98.5%

Wu et al. [135] CK+ HMM 7 98.54%

Zhang et al. [145] CK+/Oulu-Casia/MMI CNN-RNN 6 98.5%/86.25%/81.18%

Kotsia et al. [65] CK SVM 6 98.2%

Uddin et al. [126] Depth DBN 6 96.67%

Zhao et al. [147] CK+/Oulu-Casia/MMI SVM 7 95.8%/74.37%/71.92%

Elaiwat et al. [32] CK+/MMI RBM 7 95.66%/81.63%

Uddin et al. [127] CK CNN 6 95.42%

Sikka et al. [115] CK+/Oulu-Csia HMM 7 94.60%/75.62%

Kabir et al. [58] Depth HMM 6 94.17%

Study Robot Sensor Algorithm Classes Accuracy

(c) FER in real-time i.e., on dynamic input during HRI

Cid et al. [18] Muecas camera Bayesian 5 94%

Meghdari et al. [91] Alice Kinect ANN 6 92.52%

Simul et al. [116] Ribo Webcam SVM 5 86%

Bera et al. [8] Pepper Camera CNN 4 85.33%

Liu et al. [81] Mobile robot Kinect ELM 7 Above 80%
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Table 3 continued

Study Robot Sensor Algorithm Classes Accuracy

Yu and Tapus [142] Pepper camera RF 4 78.125%

Webb et al. [133] Nao Camera CNN 8 79.75%

Chen et al. [15] XiaoBao Camera CNN 7 79%

Barros et al. [2] iCub RGB camera CNN 3 74.2%

Ruiz-Garcia et al. [110] Nao Built-in camera CNN-SVM 7 68.75%

Wimmer et al. [134] B21 robot Camera Binary decision tree 6 67%

CK Cohn–Kanade, Jaffe Japanese Female Facial Expression, GAN Generative Adversarial Network, KNN k-Nearest Neighbor, HMM Hidden
Markov Model, RNN Recurrent Neural Network, CNN Convolutional Neural Network, SVM Support Vector Machine, LSTM Long Short-Term
Memory, WMDNN Weighted Mixture Deep Neural Network, NN Neural Network, ANN Artificial Neural Network, ELM Extreme Learning
Machine, BPNN Back Propagation Neural Network, DBN Deep Belief Network, RF Random Forests

Fig. 6 Facial expression generation techniques

lowing the movement related to specific AUs in the facial
acting coding system (FACS).

Breazeal’s [9] robot Kismet generated emotions using an
interpolation-based technique over a 3-D space, where the
three dimensions correspond to valence, arousal and stance.
The expressions become intense as the affect state moves to
extreme values in the affect space. Park et al. [102] made
diverse facial expressions by changing their dynamics and
increased the lifelikeness of a robot by adding secondary
actions such as physiological movements (eye blinking and
sinusoidal motions concerning respiration). A second-order
differential equation based on the linear affect-expressions
space model is used to achieve the dynamic motion for
expressions. Prajapati et al. [103] used a dynamic emotion
generation model to convert the facial expressions derived
from the human face into a more natural form before render-
ing them on the robotic face. The model is provided with the
facial expression of the person interacting with the system
and corresponding synthetic emotions generated are fed to
the robotic face.

Summary of findings The robot faces are capable of mak-
ing basic facial expressions as they contain enough DoFs in

the eyes andmouth. They are able to generate static emotions
[7,61,91]. Additionally, the robot faces are able to generate
dynamic emotions [9,102,103].

5.2 Facial Expression Generation is Automated

Some of the studies automatically generate facial expres-
sions on robots. Unlike hand-coded techniques where the
commands for the position of features like eyes and mouth
are sent from the computer, here, the facial expressions are
generated using machine learning techniques such as neural
networks and RL.

Breazeal et al. [10] presented a robot Leonardo that can
imitate human facial expressions. They use neural networks
to learn the direct mapping of a human’s facial expressions
onto Leonardo’s own joint space. InHorii et al. [50], the robot
does not directly imitate the human but estimates the correct
emotion and generates the estimated emotion using RBM.
RBM[46] is a generativemodel that represents the generative
process of data distribution and latent representation, and can
generate data from latent signals [98,117,123].
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Li andHashimoto [73] developed aKANSEI communica-
tion system based on emotional synchronization. KANSEI is
a Japanese term that means emotions, feeling, sensitivity etc.
The KANSEI communication system first recognizes human
emotion and maps the recognized emotion to the emotion
generation space. Finally, the robot expresses its emotion
synchronized with the human’s emotion in the emotion gen-
eration space. When the human changes his/her emotion, the
robot also synchronizes its emotion with the human’s emo-
tion, establishing a continuous communication between the
human and the robot. It was found that the subjects became
more comfortable with the robot and communicated more
with the robot when there was emotional synchronization.

In Churamani et al. [17], the robot Nico learned the cor-
rect combination of eyebrow and mouth wavelet parameters
to express itsmoodusingRL.The learned expressions looked
slightly distorted but were sufficient to distinguish between
various expressions. The robot could also generate expres-
sions that were not limited to the basic five expressions that
were learned. For amixed emotional state (for example, anger
mixed with sadness), the model was able to generate novel
expression representations representing the mixed state of
the mood.

Summary of findings In all of the above studies, the
robots learn to generate facial expressions automatically
using machine learning techniques. While Breazeal [10], Li
and Hashimoto [73] used direct mapping of human facial
expressions,Horii et al. [50] generated the estimated human’s
emotion on the robot. In Churamani et al. [17], the robot was
able to associate the learned expressions with the context of
the conversation.

6 Discussion

6.1 Summary of the State of the Art

There are already studies having high accuracy (greater than
90%) in facial expression recognition on CK+, Jaffe and
Oulu-Casia datasets. (see Table 3a, b). The accuracies on
CK+, Jaffe and Oulu-Casia datasets have been as high as
100%, 99.8%and 92.89% respectively. In comparison to this,
the accuracy for facial expression recognition in real-time is
not as high.

Zhang et al. [146] used a deep convolutional network
(DCN) that had an accuracy of 98.9% on CK+ dataset and
55.27% on Static Facial Expressions in the Wild (SFEW)
dataset. Here, the same network produced very different
results for two different datasets. SFEW [29] consists of
close to a real-world environment extracted from movies.
The database covers unconstrained facial expressions, varied
head poses, large age range, occlusions, varied focus, differ-
ent resolution of faces, and close to real-world illumination.

In Zhang et al. [146] the accuracy for ”in the wild” settings
was considerably lower than on CK+ dataset, implying that
the expression recognition algorithms can still not handle
the variations in environment, head poses etc. in real-world
settings.

Table 5 provides possible categories for facial recog-
nition in the wild. It contains the basic emotional facial
expressions, situation-specific face occlusions, permanent
face features, facemovements, situation-specific expressions
and side activities during facial expressions.

Most of the current research in facial expression recog-
nition relates to the first category of basic emotional facial
expression. Survey articles on facial expression recognition
have been cited in the Table 5 [11,13,21,42,43,71,88,109,
112]. For more details on individual studies, refer to Table
3. Facial expression recognition in the presence of situation-
specific face occlusions like a mouth–nose mask, glasses,
hand in front of face etc. has also been studied [74,75,131].
Pose invariant facial expression recognition when the face is
moving or turned sideways has also been partially studied
[96,113,143,144].

For the facial expression generation, robots can make cer-
tain basic facial expressions by moving their eyes, mouth
and neck.However, they cannotmake asmany expressions as
human beings due to the limited number of DoFs present in a
robot’s face. There are relatively fewer studies for automated
facial expression generation in robots [10,17,50,73]. While
the robots are capable of displaying their facial expressions
by manually coding the movement of the eyes and mouth,
there are fewer studies that would make a robot learn to dis-
play its facial expressions automatically.

Most of the studies on facial expression generation have
been carried out on robotic heads or humanoid robots like
iCub and Nico [e.g.9,10,17,50]. In Becker-Asano and Ishig-
uro [5], Geminoid F’s facial actuators are tuned such that the
readability of its facial expressions is comparable to a real
person’s static display of emotional expression. It was found
that the android’s emotional expressions were more ambigu-
ous than that of a real person and ’fear’ was often confused
with ’surprise’.

An advantage of automated facial expression generation
over hand-coded facial expression generation is that in auto-
mated facial expression generation, a robot could learnmixed
expressions than simply the learned expressions. Unlike in
hand-coded facial expression generation, where a robot can
only express the emotions that it has learned, in Churamani
et al. [17], the robot could express complex emotions that
were made up of a combination of emotions.

6.2 Future Research

Although facial expression recognition under specific set-
tings has high accuracy and robots can express basic emotions
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through facial expressions, there are several possible direc-
tions for future research in this area.

Suggestion 1: Performing facial expression recognition in
the wild needs to be emphasized upon.
To efficiently recognize facial expressions in real-time and in
a real-world environment, the robot should be able to perform
facial expression recognition with varied head poses, varied
focus, presence of occlusions, different resolutions of the face
and varied illumination conditions. The studies that perform
facial expression recognition in real-time are limited to a
laboratory environment which is far different from a real-
world scenario. A good study would be the one where facial
expression recognition in the wild is performed.

Some studies perform facial expression recognition in the
wild, but their accuracy is much less than the accuracy on
predefined datasets like CK+, Jaffe, MMI etc. To increase
the efficiency of facial expression recognition in real-world
scenarios, the performance of facial expression recognition
in the wild needs to be improved. This can also be used to
recognize facial expressions in real-time. Based on this, a
direct adaptation of emotions would make HRI smoother.

Suggestion 2: Facial expressions during activities like
talking, nodding etc. need to be studied.
Situation-specific expressions (nodding, yawning, blinking,
looking down) and side activities during facial expressions
(talking, eating, drinking, sneezing) in Table 5 have not been
studied. To understand vivid expressions, it is required to
be able to recognize facial expressions for all categories.
Humans also express emotions while interacting with some-
one verbally, such as smiling while speaking when they are
happy. In this case, it should be possible to recognize a smile
during speech.

Suggestion 3: Combine facial expression recognition with
the data from other modalities such as voice, text, body
gestures and physiological data to improve the emotion
recognition rate.
Although this overview focuses on facial expression recogni-
tion, it may be possible to control one’s face and not express
the emotion one is truly experiencing. Some studies combine
facial expression recognition with audio data, body gestures
or physiological data for an improved emotion recognition
[41,53,83]. There are very few studies that combine facial
data with both audio and physiological data [106,107] and
studies that analyze all modalities (face, voice, text, body
gestures and physiological signals) have not been found.
Humans can recognize the emotion of a person quickly and
effectively by taking into account their facial expression,
body gestures, voice and words. Combining facial, audio,
text and body gestures with physiological data could lead to
a higher emotion recognition rate by machine learning algo-
rithms than by humans.

Suggestion 4: How should a robot react towards a given
human emotion?

In HHI, a human’s reaction to a given emotion is either a
result of parallel empathy or reactive empathy [26]. It should
be studied with which emotion should a robot appropriately
react to a given human emotion. Moreover, it needs to be
studied if a robot should be able to express negative emo-
tions. Most of the existing studies allow a robot to be able to
express basic emotions (anger, fear, happiness, neutral, sad-
ness, surprise). It may be reasonable for a robot to react with
a sad expression when a human being expresses anger. But,
should a robot be able to express extreme emotions such as
anger?

For facial expression generation, while robots are capa-
ble of displaying facial expressions both static and dynamic,
they are unable to generate facial expressions when they
are speaking. For example, robots could smile while talk-
ing to express their happiness or they could speak with a
frown when angry. Robots could also express their emotions
through partial facial or bodily gestures instead of showing
a full face expression. For example, tilting head down to
express sadness, frowning to express anger, eyes wide open
to express surprise and raising eyebrows.

Suggestion 5: Robots should be able to recognize and gen-
erate facial expressions with various intensities.
Emotions form a continuous range and can have various
intensities. If one is less happy, one would smile less. Simi-
larly, if someone is very happy, the smile would also be big.
It should be possible to recognize not just the emotion but
the intensity of emotion. Moreover, in most of the existing
studies, robots express their emotions with only one config-
uration per emotion. Robots should also be able to express
their emotions with different intensities. Finally, it needs to
be studied whether the intensity of emotion with which a
robot reacts to a given human emotion has any effects on the
human and whether these effects are positive or negative.

Suggestion 6: Robots should be able to express their emo-
tions through a combination of body gestures and facial
expressions.
While in this overview, we focus on robotic facial expres-
sions, there are other articles where emotional expression is
performed through the robot’s body postures [4,20,22,55,86,
90]. A potential future study could be to compare the robot’s
facial expressions with robot’s bodily expressions and also
with the combination of facial and bodily expressions to see
if there is any difference in the recognition of these.

Suggestion 7: Robots should be able to both recognize and
generate complex emotions such as that of thinking, calm and
bored states.
For both facial expression recognition and generation, there
is a need to go beyond the basic seven emotions to recog-
nizing and generating more complex emotions such as calm,
fatigued, bored etc. It might be difficult to generate complex
emotions given the hardware limitations of the robot, but if
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this is made possible, robots could express a wider range of
emotions similar to human beings.

7 Conclusion

This overview emphasizes the recognition of human facial
expressions and the generation of robotic facial expres-
sions. There are already plenty of studies having high
accuracy for facial expression recognition on pre-existing
datasets. Accuracy on facial expression recognition in the
wild is considerably lower than the experiments which have
been conducted under controlled laboratory conditions. For
human facial emotion recognition, future work would be to
improve emotion recognition for non-frontal head poses in
presence of occlusions (i.e. emotion recognition in the wild).
It should be made possible to recognize emotions during
speech as well emotions with varying intensities. In the case
of facial expression generation in robots, robots are capable
of making the basic facial expressions. Few studies perform
autonomous facial generation in robots. In the future, there
could be studies comparing robotic facial expressions with
the robot’s bodily expressions and also with a combination
of facial and bodily expressions to see if there is any differ-
ence in recognizing these. Robots should be able to express
their emotion with partial bodily or facial gestures while
speaking. They should also be express their emotions with
various intensities instead of a single configuration per emo-
tion. Lastly, there is a need to go beyond the basic seven
expressions for both facial expression recognition and gen-
eration.
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