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Abstract

The great diversity of end-user tasks ranging from manufacturing environments to personal homes makes pre-programming
robots for general purpose applications extremely challenging. In fact, teaching robots new actions from scratch that can be
reused for previously unseen tasks remains a difficult challenge and is generally left up to robotics experts. In this work, we
present iRoPro, an interactive Robot Programming framework that allows end-users with little to no technical background
to teach a robot new reusable actions. We combine Programming by Demonstration and Automated Planning techniques to
allow the user to construct the robot’s knowledge base by teaching new actions by kinesthetic demonstration. The actions are
generalised and reused with a task planner to solve previously unseen problems defined by the user. We implement iRoPro
as an end-to-end system on a Baxter Research Robot to simultaneously teach low- and high-level actions by demonstration
that the user can customise via a Graphical User Interface to adapt to their specific use case. To evaluate the feasibility of our
approach, we first conducted pre-design experiments to better understand the user’s adoption of involved concepts and the
proposed robot programming process. We compare results with post-design experiments, where we conducted a user study to
validate the usability of our approach with real end-users. Overall, we showed that users with different programming levels
and educational backgrounds can easily learn and use iRoPro and its robot programming process.

Keywords End-User robot programming - Programming by demonstration - Automated planning - Human-Robot interaction

1 Introduction robots an action sequence to achieve a certain goal. If the

goal changes, the user has to teach the robot a new sequence.

Despite the ongoing advances in Robotics and A.L, it
is extremely challenging to pre-program robots for spe-
cific end-user applications. Instead of developing robots for
domain-specific tasks, a more flexible solution is to have
them learn new actions directly from end-users who can
customise the robot for their specific application. Program-
ming by Demonstration (PbD) [8] is a popular approach for
end-users to teach robots actions in an intuitive way by tak-
ing demonstrations as input and inferring a policy for the
task. However, PbD solutions usually require users to teach
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Consider the Tower of Hanoi, a puzzle consisting of three
pegs and a number of differently-sized disks, stacked on one
peg in descending order, with the largest peg at the bottom.
The goal is to move the entire stack from one peg to another,
by moving one disk at a time and only to a larger disk or an
empty peg. The solution is different depending on the given
number of disks. If we want to teach a robot to solve this
problem, it would be infeasible to demonstrate the solution
each time. A more efficient approach would be to teach the
robot the primitive action of moving a disk, associate rules
or conditions to this action (e.g., smaller disks can only be
placed on top of larger ones), and have the robot generate an
optimal solution.

Different approaches to generate robot actions have been
proposed [11]. The reactive approach is characterised by
independent and concurrent basic behaviours that generate
the robot global behaviour. The robot sensors are the input of
the basic behaviours that, in turn, activate/inhibit the robot
end effectors. This approach is effective but predicting the
robot global behaviour is difficult since no explicit action
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model is used. The deliberative approach consists of three
steps: perception of the world state, plan making and action
execution in order to change the world state. Plan making also
known as Automated Planning [18], is based on an explicit
action model encoded in a symbolic planning language. This
action model is used by a task planner to compute action
sequences achieving the expected robot behaviours.

Our research argues for teaching robots primitive actions,
instead of entire action sequences, and delegating the logical
reasoning process of finding a solution to a task planner. To
this end, we present iRoPro, an interactive Robot Program-
ming framework that allows efficient programming of both
how an action is performed (low-level action representation)
and when it can be applied (high-level), while generalising
both aspects to new scenarios. The low-level representation
allows the robot to execute the motion trajectory, while the
high-level representation allows it to be used with a task plan-
ner.

We implement the framework on a Baxter robot and
develop an intuitive graphical interface that allows users to
teach new actions by demonstration and customise them to
be reused for new problems that can be solved with a task
planner. The developed end-to-end system involves solutions
in perception (e.g., object identification), motion planning
(e.g., manipulation, navigation, safety), cognitive robotics
(e.g., action learning, task planning) and human-robot inter-
action (e.g., multi-modal interaction and teacher feedback).
Even though task planners are generally used by domain-
experts, we show that users with little to no programming
experience can easily learn and use their main concepts.
We conduct pre-design experiments, where we simulate the
framework with the Wizard-of-Oz technique to evaluate the
usability of the programming process. We compare these
results with post-design experiments and empirically inves-
tigate our system’s usability with a user study (N=21) where
real end-users programmed a Baxter robot directly with our
end-to-end system.

In Sect. 2 we give a brief overview of PbD and Automated
Planning, the two underlying techniques of the framework,
and discuss related work in Sect. 3. In Sect. 4 we present iRo-
Pro, the interactive Robot Programming framework and its
main components. Then in Sect. 5 we provide details of the
system implemented on a Baxter robot and the user program-
ming process. Section 6 presents the experimental evaluation
of our approach, where we compare pre-design experiments
with post-design experiments. Finally, in Sect. 7, we con-
clude by discussing limitations and possible extensions to
further increase the system’s generalisability Sect. 9.
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2 Background

Traditional robot programming processes have task-specific
definitions, are generally robot-dependent and require pro-
gramming expertise. In the past few decades, different
techniques have been developed to facilitate the robot pro-
gramming process. Biggs et al. [7] defined two main cate-
gories, manual and automatic programming, distinguishing
between systems where users can or cannot directly control
the robot’s executed behaviour.

In manual programming, the user encodes the robot’s
behaviour via text-based systems using procedural languages
such as python, C++, java or graphical systems that use a
graph, flow-chart or diagram [14,25,31]. For automatic pro-
gramming techniques, robots generate their behaviour from
data provided as input to the system. We differentiate between
Deep Learning (DL) [42], where the robot is provided a large
amount of labelled or unlabelled data, Reinforcement Learn-
ing [19,22], where the robot gathers the data by exploring
the environment, and Programming by Demonstration (PbD)
[5,8], where the robot learns from example demonstrations
provided by a human teacher. While DL approaches allow
the robot to learn skills autonomously, they often require pro-
gramming and domain experts to prepare the system input
(e.g., label or preprocess data, define policy and reward func-
tions). Similarly, reinforcement learning generally requires
long training times to gather enough data to learn a skill.

In contrast, PbD provides a more intuitive low-effort
solution, where the teacher’s main task involves providing
demonstrations to the robot. Since PbD solutions allow the
robot to learn from a sparse set of examples, the data and
time required to learn a skill is moderately low. Thus, our
work uses PbD to allow end-users to program robots. In the
following sections we will give a brief overview of PbD and
Automated Planning, the two main concepts used in our pro-
posed framework.

2.1 Programming by Demonstration

PbD, also referred to as Learning from Demonstration, is
an end-user programming technique for teaching a robot
new skills by demonstrating them, without writing code [8].
It has become a central topic in research areas, with the
aim to move from purely pre-programmed robots to flexible
user-based interfaces for training robots. PbD is traditionally
used to learn low-level actions from trajectory demonstra-
tions using Gaussian Mixture Models [8,10] or Dynamic
Movement Primitives [36]. They can also be learned from
keyframe-based demonstrations (kfPbD), where the user
kinesthetically manipulates the robot’s arm to record a series
of end-effector poses, referred to as keyframes [3]. While
demonstrations can be provided in different ways (e.g., by
observing a human teacher), users prefer to control the robot
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directly [46]. In kfPbD, actions are represented as a sparse
sequence of gripper states (open/close) and end-effector
poses relative to perceived objects or to the robot’s coordi-
nate frame. Alexandrova et al. [4] implemented an end-user
robot programming system to teach generalisable actions
from a single demonstration where keyframes are automati-
cally inferred and actions can be modified retrospectively via
a graphical interface.

2.2 Automated Planning

Automated Planning, also known as Al Planning, is a
research field that focuses on the development of task plan-
ners consisting of efficient search algorithms to generate
solutions to problems [18]. Given a planning domain, i.e., a
description of the state of the world and a set of actions, and
a planning problem, i.e., an initial state (Fig. 1a) and a goal
(Fig. 1d), the task planner generates a sequence of actions
(Fig. 1c), which guarantees the transition from initial states
to the goal states. To allow a correct transition between dif-
ferent world states, high-level actions are defined in terms of
preconditions and effects, which represent states before and
after the action execution respectively (Fig. 2). An action is
represented as a tuple a = (param(a), pre(a), eff(a)), whose
elements are:

param(a): set of parameters that a applies to

pre(a): set of predicates that must be true to apply a

— eff(a)™: set of predicates that are false after applying a
eff(a)™: set of predicates that are true after applying a

(a) Initial state:
(at obj1 A)
(at obj2 B)
(empty C)

AV

(b) Obhiects — tvnes:
objl - cube
obj2 - cube
A, B, C — position

(c) Actions:
1. (move obj2, B, C)
2. (move objl, A, B)
3. (move obj2, C, A)

A3-£3%

(d) Goal state:
(at obj1 B)
(at obj2 A)

A=

A3,
¥ 00,

Fig. 1 Definition of a planning problem a properties describing the
initial world state b object names and their types ¢ instantiated actions

d properties describing the goal [27]

Preconditions:
(at cube A)
(empty B)

(move cube A B)

Effects:
(at cube B)
(empty A)

"‘A!I/

Fig.2 Action model representation to move a cube from position A to

B in terms of preconditions and effects [27]

Fig. 3 Experimental setup of the user study. Users programmed the
Baxter robot via a graphical interface in order to manipulate objects
(shown with their type hierarchies) in the task domain [29]

where eff(a) = eff(a)™ U eff(a)™. Action parameters
are associated with a rype (Fig. 1b) and a potential type
hierarchy. For example, a type hierarchy, consisting of a
general type ELEMENT, can be divided into POSITION
and OBJECT, which further divides into BASE, CUBE, and
ROOF (Fig. 3). Predicates are defined in first-order logic
and used to describe world states and relations between their
elements (e.g., (at objl A)).Planning algorithms use a
symbolic planning language as their standard encoding lan-
guage, such as STRIPS [13] or PDDL [18]. An example of
a planning domain in PDDL can be seen in Fig. 4.

The Tower of Hanoi problem could be defined in terms of a
planning problem, where the domain consists of 3 pegs and a
number of disks. The action is defined as moving a disk from
one peg to another, with associated rules as preconditions and
effects. A planner can then be used to generate a solution to
the problem for any number of disks.

From now on, the word “action” will refer to an action
as defined in automated planning. It is worth noting that the
predicates used in the planning domains are freely defined
by the persons encoding those domains. However, maintain-
ing a standard based on a common vocabulary, with clear
and concise definitions is a basic requirement for knowl-
edge representation and reasoning in autonomous robotics
to allow the interoperability of robotic systems and commu-
nication between robots and humans. The IEEE Standard
Association’s Robotics and Automation Society recognised
this need, and a set of ontologies have been developed [34].

3 Related Work

End-user robot programming has been addressed previously
for industrial robots to be programmed by non-robotics
domain experts, where users specify and modify existing
plans for robots to adapt to new scenarios [37,38,45]. For
example, Paxton et al. [37] use Behaviour Trees to represent
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(define (domain iRoPro)
(:requirements :strips :typing)
(:types
element
position - element
object - element
cube - object
base - object
roof - object )
(:predicates
(clear 7e - element)
(thin 70 - object)
(flat 7e - element)
(on 7o - object 7e - element)
(stackable 70 - object 7e - element)
(:action move
:parameters (7o - object 7A - position ?B - position)
:precondition (and (on 7o 7A) (clear 7o) (clear ?B)
:effect (and (on 7o 7B) (clear 7A)
not(on 7o 7A) not(clear 7B))

)

Fig.4 Example of a planning domain in PDDL

task plans that are explicitly defined by the user and can be
modified to adapt to new tasks. In our work we argue for the
use of task planners to automatically generate plans for new
scenarios, rather than have the user manually modify them.

Previous work has addressed knowledge engineering tools
for constructing planning domains but usually require PDDL
experts (PDDL Studio [39]), or common knowledge in soft-
ware engineering (GIPO [44], itSIMPLE [48]). There has
been work on integrating task planning with robotic systems
[12,24], learning high-level actions through natural language
instructions [43] or learning preconditions and effects of
actions to be used in planning [21,23,47]. However, in all
of these cases, the robot is provided with a fixed set of low-
level motor skills. In our approach, we do not provide the
robot with any predefined actions but enable users to teach
both low- and high-level actions from scratch.

PbD has been commonly applied to allow end-users to
teach robots new actions by demonstration. Alexandrova et
al. [4] created an end-user programming framework with an
interactive action visualisation allowing the user to teach new
actions from single demonstrations but do not reuse them
with a task planner. Most closely related to our approach
is the work by Abdo et al. [1] where manipulation actions
are learned from kinesthetic demonstrations and reused with
task planners. However, the approach requires 5-10 demon-
strations to learn action conditions which becomes tedious
and impractical if several actions need to be taught. In this
work we argue for having the user act as the expert by letting
them correct inferred action conditions, thus allowing a new
action to be learned from a single demonstration. We further
provide a graphical interface that allows users to create new
actions and address previously unseen problems that can be
solved with task planners.

@ Springer

4 iRoPro-Interactive Robot Programming

In our previous work [28] we proposed iRoPro, an interac-
tive Robot Programming framework that allows end-users to
teach robots new actions that can be reused with task plan-
ners. The framework consists of the following three aspects
(Fig. 5):

A. Programming by Demonstration: The user teaches the
robot primitive actions by demonstration. The robot cre-
ates an action model that the user can modify and validate.

B. Automated Planning: The user defines a new planning
problem with a goal to achieve. The robot reuses the
taught actions with a planner to generate solutions for
new problems.

C. Retro-active Loop: The user observes the robot execution
and refines taught actions via the graphical interface.

The user is provided with a GUI that abstracts from the under-
lying modelling language used for Automated Planning. For
each step, the user interacts with the GUI to navigate between
the components to teach new actions by demonstration, mod-
ify inferred action conditions, define new planning problems
for the robot to solve and execute generated plans. In the
following sections, we give a brief description of each com-
ponent. We refer the reader to our previous work [27,28] for
more details.

4.1 Programming by Demonstration: Teach Actions

Teaching primitive actions consists of learning both how and
when an action should be applied, i.e., learning the low-level
action trajectory as in PbD and the high-level representation
with preconditions and effects as used in Automated Plan-
ning. We consider an action that consists of both low- and
high-level representations an action model. The high-level
representation can be entered directly by the user or inferred
from observing the world state before and after the action
demonstration. In our work, we first infer the preconditions
and effects which the user can subsequently modify on the
GUI. We rely on the user’s logical reasoning and understand-
ing of what they want to teach the robot and allow them to
directly program and correct inferred action models. Thus,
the robot can learn a new action from a single demonstration
with the user acting as the expert to correct inferred condi-
tions. The user validates the learned action model or provides
additional demonstrations to refine the low- or high-level
representations. The user repeats this process and creates an
action model for each primitive action (see Fig. 5a).
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Fig.5 Overview of the main
components of iRoPro: A. the
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B. Automated Planning
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4.2 Automated Planning: Reuse Actions

In the PbD step, the robot learned action models that include
the high-level representation used in Automated Planning.
The Automated Planning step consists of creating a planning
problem and defining a goal for which the integrated task
planner can generate a solution (Fig. 5b). Given a description
of a planning domain, we can define a planning problem with
an initial state and a desired goal state to achieve. Depend-
ing on the robot architecture and perception system, a partial
PDDL domain can be predefined in the system that includes
a set of object types and predicates that the robot can recog-
nise. The action models created in the PbD step complete the
partial PDDL domain. Similar as before, the robot can infer
initial world states for the planning problem and the user
can modify and correct them via the GUI. Given the user-
defined goal, the task planner generates a plan consisting of
an ordered action sequence for the robot to execute. The user
can verify the generated plan and have the robot execute it in
real life. If no plan is generated or if the plan seems incorrect,
the user can modify the taught action models, as well as the
initial and goal states and relaunch the planner.

4.3 Retro-Active Loop: Refine Actions

The retro-active loop allows the user to revisit and correct
created action models (see Fig. 5c). It is likely that the ini-
tially generated plan would not achieve the specified goal,
especially if the context of the planning problem is differ-
ent to that of the initial demonstration (e.g., different object
types or positions). Programmed action models can be gener-
alised and reused, especially if the low-level action remains
the same. Instead of creating new action models for each new
problem, the user can simply modify the action parameters,
preconditions or effects. This minimises the user’s program-
ming effort and the number of demonstrations required. Thus,
the application to a new context is an important step to test
the generalisability of action models.

There are several possible causes why the planner might
generate incorrect or non-existent solutions:

execution

Action parameters this restricts or generalises the appli-
cation of the action as they dictate what types an action
can be applied to. An action is not considered by the
planner, if the types do not match those in the initial state
of the planning problem (e.g., pick-and-place was only
defined for cube objects but not for other types).

— Preconditions similar to action parameters, they define
when an action can be applied, but in terms of predicates
describing the initial world state. All stated preconditions
must hold in a world state in order to apply the action
(e.g., pick-and-place of an object only if it is clear).

— Effects they define how the world state is updated after
the action execution and help the robot to keep track of
changes. If they are not defined correctly, there can be
a mismatch of the robot’s assumed world state and the
actual world state (e.g., a position is still considered free
when it is occupied).

— Initial states they describe the existing world state to the
robot. If the initial states are incorrect or missing the
planner may consider certain actions as invalid or not find
aplan to achieve the goal (e.g., an object is not mentioned
in the initial states at all).

— Goal the user defines the set of predicates for the robot

to achieve. This should not include intermediate steps to

achieve the goal nor contradicting states (e.g., ‘object is
on A’ and ‘A is clear’ are both stated as goal states).

Knowledge engineering tools can facilitate this process
of modifying action models. They often provide useful
functionalities for dynamic testing, model checking and visu-
alisation [44], but most tools require expertise in Automated
Planning or Software Engineering. In our work we argue that
the proposed robot programming process does not require
this expertise and can be learned easily by users with differ-
ent educational backgrounds.

@ Springer
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Low-level PbD .
action complete olve using
Human Action PDDL domain_|  Problem planner Action Robot
demonstration generalisation “|  creation "] sequence execution
A High—level A

action Inference of
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troubleshoot / create new|task

GUI interaction [€

Fig. 6 Overview of iRoPro that allows users to teach low- and high-level actions by demonstration. The user interacts with the GUI to run the
demonstration, modify inferred action conditions, create new planning problems for the robot to solve and execute

5 System Implementation

We implemented iRoPro on a Baxter robot with two arms
(one claw and one suction gripper), both with 7-DoF and a
load capacity of 2.2kg. For the object perception we mounted
a Kinect Xbox 360 depth camera on the robot. We developed
a user interface as a web application that can be accessed via
a browser on a PC, tablet or smartphone. The source code for
iRoPro is developed in ROS [40] and available online! The
action is learned by demonstration using the open-source
system Rapid PbD? The integration of the task planner is
implemented using the ROS package PDDL planner® In our
implementation, we define landmarks as either predefined
table positions or objects that are detected from Kinect point
cloud clusters using an open-source tabletop segmentation
library4. An object o = (x,y,z, width,length, height)
is represented by its detected location and bounding box
diemensions, which are used to infer its type and related
predicates. The user completes the partial PDDL domain via
the GUI by creating new action models by demonstration.
Then they create planning problems that can be solved with
the integrated task planner. Figure 6 shows an overview of
the programming process.” In the following sections we will
give a brief overview of the system implementation. Further
details can be found in our previous work [29].

5.1 Low-level Action Representation

We represent low-level actions as proposed in previous work
using keyframe-based PbD [4], where the action is repre-
sented as a sparse sequence of gripper states (open/close)
and end-effector poses relative to perceived objects or to the
robot’s coordinate frame. During the action demonstration,
the user guides the robot arm using kinesthetic manipulation
and saves poses that they find relevant for the action. For
example, the pick-and-place action of an object to a marked

! https://github.com/ysl208/iRoPro

2 https://github.com/jstnhuang/rapid_pbd

3 http://docs.ros.org/indigo/api/pddl_planner

4 https://github.com/jstnhuang/surface_perception

> Video can be seen at https://youtu.be/NgaTPG8dZwg

@ Springer

position could be represented as poses relative to the object
(for the pick action), poses relative to the target position
(for the place action), and corresponding open/close gripper
states. Action executions are performed by first detecting the
landmarks in the environment, calculating the end-effector
poses relative to the observed landmarks, and interpolating
between the poses. While these actions can be learned from
multiple demonstrations [33], we take the approach that only
requires a single demonstration by heuristically assigning
poses and letting the user correct them if needed [4]. Thus,
the first demonstrated action is already an executable action.
The user can teach multiple manipulation actions and dis-
criminate between them by associating different conditions
that specify when the robot should use them (e.g., different
conditions for actions using claw or suction grippers).

5.2 High-level Action Representation

We implemented a partial PDDL domain with predefined
types and predicates that the robot can automatically detect
using its sensors. We defined five predicates commonly used
for object manipulation tasks and included two (flat and thin)
to describe further object properties:

— ELEMENT is clear: an element has nothing on top of it
OBJECT is on ELEMENT: an object is on an element
OBJECT is stackable on ELEMENT: an object can be
placed on an element

OBJECT is flat: an object has a flat top

OBJECT is thin: an object can be grasped with the claw

gripper

In our definition, CUBE and BASE objects are flat, while
CUBE and ROQOF objects are thin enough for the robot to
grasp. The set of inferred types and predicates could be
extended for more complex tasks (e.g., object colour or ori-
entation [26]) but was beyond the scope of this work.

5.3 Action Inference from Demonstration

Instead of manually defining action parameters, precondi-
tions and effects, we accelerate the programming process
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by inferring them from the observed sensor data during the
teaching phase. Object types are inferred based on their
detected bounding boxes. Object positions are determined
by the proximity of the object to given positions. If the near-
est position p to the object o is within a certain threshold
d, then the predicates ‘o is on p’ and ‘p is not clear’ are
added to the detected world state. To infer action conditions,
the robot perceives the initial world state before and after
the action demonstration as seen in similar work for learn-
ing object manipulation tasks [2]. Let O1 = {¢1, ¢, ...} be
the set of predicates observed before the action demonstra-
tion and O> = {1, ¥, ...} after. The action inference is the
heuristic deduction of predicates that have changed between
O; and Oy, i.e.,

pre(a) = (01 — 01N 02) = {Pilpi € O1 N i & Oz},
eff(a) = (02 — 01N 02) = {Yilhi ¢ O1 A Vi € O2},

where eff(a) includes positive and negative effects (Fig. 7).
A predicate ¢ has variables var(¢) = {v1, v, ...}, where
each v; has a type. Therefore, action parameters are the set
of variables that appear in either preconditions or effects, i.e.,

param(a) = {v;| 3¢ € pre(a) s.t. v; € var(¢)

Vv Iy € eff(a) s.t. v; € var(¥)}.

Note that conditions could be learned from multiple
demonstrations [1,23]. Our work argues for accelerating the
teaching phase by learning from a single demonstration and
letting the user act as the expert to correct wrongly inferred
conditions.

5.4 Action Generalisation

The low-level action representation (Sect. 5.1) generalises
motion trajectories by re-calculating poses based on detected
landmarks from the demonstrated to the new environment.
The high-level representation (Sect. 5.2) specifies when an
action can be applied, therefore allows taught low-level
motion trajectories to be reused for other objects (e.g., use
suction gripper for all objects, regardless of their type) or
to be restricted for certain types (e.g., only BASE objects).
By combining these two representation levels, taught actions
can be generalised for new environments that are different to
the demonstrated one, allowing the user to customise them
for their specific use case.

5.5 Interactive Robot Programming

The user interacts with the GUI that visualises the robot and
detected objects (Fig. 8). During the programming process,
the GUI allows them to create new actions, run the kines-
thetic teaching by demonstration, modify inferred types and

Before (01)
objison A
A is not clear
obj is noton B

move(obj, A, B)

After (02)
objis on B
B is not clear
obj is not on A

A is not clear
obj is not on B
is clear

B @s clear A @s clear
1 S e 1
A B C A B A B C
| move(OBJECT, POSITION, POSITION) |
Preconditions Effects
objison A objison B

B is not clear
obj is not on A
A is clear

Fig.7 Example of a high-level action for moving an object from a to b.
Conditions are inferred from the observed predicates before (O) and
after (O;) the demonstration [29]

HOME ACTIONS

PROBLEMS

Bsave X

move-suction (]

1. PERCEPTION || 2. DEMONSTRATION | | 3. CONDITIONS

[\ DETECT PRECONDITIONS

base is on position
position is not clear

base (o] is not on position («
position (to! is clear

Element 1 O not Predicate Element2 ~ ADD

—Effect:

[R) DETECT EFFECTS

base is on position (1o
position is not clear

base is not on position
position is clear

Element2 v AOD

Element1 v O not Predicate ~

Fig.8 The iRoPro interface showing the action condition menu and an
interactive visualisation of the Baxter robot and detected objects

predicates and to create and solve new problems with the task
planner. The interactive robot programming cycle consists of
creating and modifying actions and problems:

Actions. New actions are taught by kinesthetically moving
the robot’s arms using kfPbD [3], where both low-level and
high-level actions are learned and generalised (Sect. 5.4). The
user can have the robot re-execute the taught action immedi-
ately in order to validate it. The user can modify the action
properties if the inference was not correct. To teach more
actions, the user can either create a new one or copy a previ-
ously taught action and modify it.

Problems. New planning problems can be generated if at least
one action exists. To create a problem, the robot first detects
the existing landmarks and infers their types and initial states.
The user can modify them if the inference was not correct.
Then, the user enters predicates that describe the goal states
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HOME ACTIONS PROBLEMS

problem1 c  Bsave X
1. INITIAL STATE | | 2. GOAL STATE | | 3. GENERATED PLAN

— Generated steps to

(=) baxter has found the following plan to reach your goal:

Action 1: move-suction(obj2, posM, obj1)
Action 2: move-claw(obj3, posC, obj2) L]

Obj -  From ~ To

If actions have been generated correctly,then you can EXECUTE

Q REVIEW BAXTER'S ACTION
x

E baters existing actions:

move-suction(OBJECT, ELEMENT, ELEMENT)

move-claw(ROOF, ELEMENT, ELEMENT) @

Fig. 9 The iRoPro interface showing the problems menu, the action
sequence generated by the task planner and the debug menu to review
actions

to achieve. The complete planning domain and problem are
translated into PDDL and sent to the Fast-Forward planner
[20]. If a solution is found that reaches the goal, itis displayed
on the GUI for the user to verify and execute on the robot
(Fig. 9). If no solution is found or if the generated plan is
wrong, the user can open a debug menu to review actions. It
provides a summary of the entire planning domain with hints
described in natural language to troubleshoot (e.g., ‘make
sure the action effects can achieve the goal states’). In our
post-design study (Sect. 6.4) we found that this helped users
understand how the system worked and why the generated
plan was wrong. Once the user modified actions, initial or
goal states, they can relaunch the planner to see if a correct
plan is generated. For any subsequent tasks, the user can
create a new problem or modify existing ones by re-detecting
the objects.

5.6 Plan Execution

The generated plan is a sequence of actions with parame-
ters that correspond to detected objects. For each action, the
sequence of end-effector poses are calculated relative to the
landmarks that the action is being applied to (Sect. 5.1). To
accelerate the execution, we only detect landmarks once at
the start, then save their new positions in memory for quick
reference, which we refer to as a mental model. After each
action execution, the mental model is updated with the latest
positions of the landmarks according to the action’s effects
(e.g., obj moved from position A to B). As this assumes that
actions are always executed successfully, successful execu-
tions need to be checked separately but were beyond the
scope of this work. The mental model is also used as a
workaround for our limited perception system as it does not
detect stacked objects in their initial states (as discussed in
Sect. 7).
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6 Experimental Evaluation

We first conducted two pre-design experiments to evaluate
the usability of the proposed framework. They consisted of
qualitative user studies to respond to the following questions:

Q1 How do non-expert users adopt the Automated Planning
language with its action model representation? (Sect. 6.1)

Q2 Can users teach a robot action models for Automated
Planning using the proposed framework? (Sect. 6.2)

In both experiments we particularly focused on elements
to assess the user’s understanding of action models such as
defining their preconditions and effects. Understanding this
symbolic representation is a key requirement to use iRoPro.

At the start of the experiments, the users were introduced
to the concept of action models (in terms of precondi-
tions/effects) as being the representation used by the robot.
Throughout the experiments, users had to teach new actions
and modify their associated conditions. Based on these
results, we implemented iRoPro on the Baxter robot (Sect. 5)
and subsequently conducted post-design experiments to eval-
uate the working system with real end-users (Sect. 6.4).
Furthermore, we compared results obtained from pre-design
with post-design experiments and validate the usability of our
proposed framework (Sect. 6.5). In the following sections we
give a brief overview of the experimental setup, design, mea-
surements and results. Further details on all experiments can
be found in previous work [27,29].

6.1 Acceptance of Automated Planning Concepts
In this experiment, we addressed the following question:

Q1 How do non-expert users adopt the Automated Planning
language with its action model representation?

Users (N = 10) with little to no programming experi-
ence were introduced to the symbolic language and syntax
with type structures used in Automated Planning. Users were
instructed to describe world state configurations to the robot.
The goal was to assess the user’s adoption of the planning
concepts (e.g., object types, action models) and to verify that
the symbolic planning language was appropriate for non-
expert users.

6.1.1 Experimental Design and Measurements

The experimental setup consisted of a 2x2 board (with posi-
tions Al, A2, B1, B2), 2 cubes, 1 ball, and 1 ball recipient
in the form of a bowl. The participants were given sheets
with empty tables to complete for each task. Each partic-
ipant was allocated 1 hour, but the average duration of the
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(a) Initial state:  (b) (move ball A1 B2) (c) (stackable ball cube)
(at ball Al) PreC: (at ball Al) ‘
(at cube B2) Eff: (at ball B2) S
Py
(empty B1) "

li.’_' (d) (empty B2)

a2 Bl 7
g

Fig. 10 Users were instructed to provide a description of (a) the initial
state of the world and b an initial move action model. Then they derived
additional preconditions for moving the ball from position Al to B2:
(¢) (stackable ball cube): the ball can be stacked onto the cube, and d
(empty B2): if the ball cannot be stacked, the target position should be
empty [27]

experiment was 49 minutes. Users were told that they needed
to use a symbolic planning language to describe the state of
the world and the semantic meaning of actions to the robot
(Fig. 10). At the course of the experiment, users were faced
with three different scenarios of increasing complexity. The
participants’ behaviour was observed by the experimenter
and the experiment was recorded on camera. We evaluated
their capability to learn the presented planning language and
apply it to different problem statements. At the end, partici-
pants were given a questionnaire related to their experience
and their understanding of the learned planning language and
concepts.

6.2 Acceptance of the Robot Programming Process

In this experiment, we addressed the following question:

Q2 Can users teach a robot action models for Automated
Planning using the proposed framework?

Users (N = 11)® with different programming experience
were presented a simulated implementation of iRoPro and
had to teach action models by kinesthetically manipulating a
Baxter robot. Users were instructed to teach a primitive action
by demonstration and assign preconditions and effects. The
goal was to assess the framework’s usability and the user’s
difficulties encountered during the programming process. At
the end, participants were given a questionnaire related to
their experience, their perceived understanding of the pre-
sented concepts and the usability of the framework. In the
following sections we briefly outline the experimental setup,
measurements and results of the experiment.

The experiments were conducted using a Baxter robot,
mounted with a partial implementation of the framework.
The implemented functionalities included:

6 All participants were different from the first experiment.

(a) (move redCube A B) (b) (move cube A B)
PreC: (at redCube A) PreC: (at cube A)

(c) (move cube A B)
PreC: (at cube A)

(empty B)
(at cube B)

(empty A)

Fig. 11 Continuous refinement of the move action model: a initial
action model learned by demonstration, b action model for all cubes
of any colour, ¢ action model with an additional condition, if the target
position is occupied and cubes can not be stacked

Eff: (atredCube B) Eff: (at cube B) Eff:

— ‘learn new action’: record the kinesthetic action demon-
stration,

— ‘find a coloured object’: apply the recorded action to an
object of the specified colour,

— ‘execute an action sequence’: execute a sequence of pre-
viously taught actions.

We used the Wizard-of-Oz technique to simulate the
remaining functionalities (e.g., ‘infer action preconditions
and effects’, ‘generate solution using a planner’). Each par-
ticipant was allocated 1 hour, but the average duration was
29.5 minutes. The participants’ behaviour was observed by
the experimenter and the experiment was recorded on cam-
era.

6.2.1 Experimental Design and Measurements

The experiment scenario was set in a simulated assembly
line, where objects of the same shape, but different colour
arrived consecutively at a departure position. Users had
to teach the Baxter robot the action for moving an object
from the departure position to an arrival position, where
another maintenance task would be performed later. Users
first demonstrated the action on the robot by guiding its arm
through the desired trajectory, then they were presented with
an action model that the robot had ‘learned’. At the course
of the experiment, users were faced with two different sce-
narios, where they had to suggest logical conditions for the
action model in order for the robot to apply them successfully
(Fig. 11). We evaluated the user’s capability to improve action
models and associate conditions when faced with different
situations, and assessed the framework’s overall usability.

6.3 Pre-Design Experiments Findings

In both experiments, we did not observe a significant dif-
ference in the performance between users with different
programming experience. In the first experiment, the major-
ity (9 or 90%) of the participants managed to describe the
complete world state using the correct syntax. All partici-
pants gave correct explanations for preconditions and effects
of action models, and provided correct examples. Figure 13a)
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shows the user responses to the questionnaire in the second
experiment. All 11 users were satisfied with the program-
ming process and Baxter’s ability to learn and reproduce the
demonstrated move action.

The majority of the users had issues formulating the logi-
cal properties used for preconditions and effects. In the first
experiment (Sect. 6.1), users had difficulties formulating cer-
tain conditions in the planning language (e.g., (stackable
ball cube)), but stated equivalent ones (e.g., ‘only place
the ball, if it is stackable on the cube’). Similarly, in the
second experiment (Sect. 6.2), users formulated missing pre-
conditions (e.g., ‘position B is empty’) with other equivalent
conditions (e.g., ‘do not place the object on position B, if it
is occupied’).

Some of the users made wide assumptions about the
robot’s capabilities. In the second experiment, when both
arrival and departure positions were occupied, 5 (or 50%) of
the users expected Baxter to consider the occupied position,
even though the condition was not mentioned in its action
model. This is a common problem in PbD solutions as there
is a difference between the robot’s intelligence and the one
perceived by its teacher [46]. This can be addressed by repro-
ducing the learned action in a new context and verifying the
robot’s knowledge base, as we did throughout the experi-
ment.

With these two qualitative experiments, we showed that
the Automated Planning language and its main concepts
can easily be learned by users without any programming
background. The action model representation, in terms of
preconditions and effects, seems to be intuitive for non-expert
users. These initial experiments provided us with an initial
idea of how the users might perceive the proposed robot
programming framework. We intentionally limited the set
of Automated Planning concepts (i.e., object types, predi-
cates, and actions with preconditions and effects) that are
necessary to use the framework to the bare minimum to
assess the potential usability of such a framework. Further
experiments should test scalability, address more Auto-
mated Planning concepts (e.g., object-type hierarchy, more
predicates, planning problem definition and resolution) and
potentially compare separate control groups (e.g., experts vs
non-experts) in less structured environments.

6.4 Post-Design Experiment

The second part of the evaluation was conducted using
THEDRE [32], ahuman experiment design method that com-
bines qualitative and quantitative approaches to continuously
improve and evaluate the developed system from the exper-
imental ground. The aim was to evaluate our approach with
real end-users and we were also interested in the user’s pro-
gramming strategy for using the system. We split participants
into two control groups, with and without condition inference
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(Sect. 5.3) and evaluated user performance in terms of pro-
gramming times for completing a set of benchmark tasks. We
set the following hypotheses for our experiments:

H1 Action creation: users can teach new low- and high-
level actions by demonstration

H2 Problem solving: users can solve new problems by
defining the goal states and executing the plan on Baxter
H3 Autonomous system navigation: users understand the
system and can navigate and troubleshoot on their own
H4 Condition inference (CI) - Group 1 vs 2: users without
CI will understand the system better

HS Pre-study test (PT): users that score higher in the PT
have shorter programming times

In the following we will give a brief overview of the experi-
ment setup, design, measurements and results. Further details
can be found in our previous work [29].

6.4.1 Participants

The study was conducted with 21 participants (10M, 11F)
in the range of 18-39 years (M = 24.67, SD = 6.1). We
recruited participants with different educational background
and programming levels: 6 ‘CS’ (either completed a degree
in computer science or were currently pursuing one), 7 ‘non-
CS’ (have previously taken a programming course before),
and 8 ‘no experience’ (only had experience with office pro-
ductivity software). Furthermore, 3 participants (in ‘CS’)
have programmed a robot before, out of which 1 had inter-
mediate experience with symbolic planning languages while
the remaining participants had no experience in either. One
participant in the category ‘non-CS’ failed to complete the
majority of tasks and was excluded from the result evaluation.
The two control groups included equal number of participants
in all three categories.

6.4.2 Protocol

Users were first given a brief introduction to task plan-
ning concepts, the Baxter robot and the experimental set up
(Fig. 3). They were then asked to complete a pre-study test to
capture the participant’s understanding of the presented con-
cepts. Users were given 8 tasks to complete (Table 1), where
the first two were practice tasks to introduce them to the sys-
tem. The tasks were designed to address different aspects to
familiarise them with the system: create new actions (Task
6), modify parameter types (Tasks 4&7), modify action con-
ditions (Tasks 3,5,8). For each task they needed to create a
new problem, define the goal states, and launch the planner
to generate an action sequence. When the generated plan was
correct, they were executed on the robot (Fig. 12). Otherwise,
the user had to modify the existing input until the plan was
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Fig. 12 Snapshots of an example task execution for stacking CUBE objects with the claw gripper

Table 1 Benchmark tasks for # Task description

Main solution

the user study where the first
two tasks were used to introduce
participants to the system [29]

(2) move BASE object to any position

3 swap two BASE objects

4 stack CUBE on BASE

5 do not stack CUBE on ROOF
6 move ROOF object (claw grip)
7 stack ROOF on a CUBE

8 build a house (BASE, CUBE, ROOF)

(1) move BASE object (suction grip)

create new action (+demo)
create new problem

add condition (‘is clear’)
modify types (‘OBJECT”)
add condition (‘is stackable’)
create new action (+demo)
modify types (‘ELEMENT’)

navigate autonomously

correctly generated. Tasks 6-8 were similar to the previous
tasks (1-5) but use both robot grippers.

6.4.3 Metrics

We captured the following data during the experiments:

1. Qualitative data video recording of the experiment, obser-
vations during the experimental protocol.

2. Quantitative data task duration and UI activity log, pre-
study test, post-study survey.

The pre-study test included seven questions related to their
understanding of the concepts presented at the start of the
experiment, e.g., syntax (‘If move(CUBE) describes a move
action, tick all statements that are true.’), logical reasoning
(‘“Which two conditions can never be true at the same time?’),
and other concepts (‘Tick all predicates that are required as
preconditions for the given action’). The questions were mul-
tiple choice and the highest achievable score was 7.

In the post-study survey we used the System Usability
Scale (SUS) [9] where participants had to give arating on a 5-
Point Likert scale ranging from ‘Strongly agree’ to ‘Strongly
disagree’. It enabled us to measure the perceived usability of
the system with a small sample of users. As a benchmark, we
compared overall responses to the second user study, where
users were simulated a similar robot programming experi-
ence using the Wizard-of-Oz technique but had no direct
interaction with a working system (Sect. 6.2). Finally, par-
ticipants were asked which aspects they found most useful,
most difficult, and which they liked the best and the least.

6.5 Results

20 participants completed all tasks, while one ‘non-CS’ user
failed to complete the majority of tasks and did not seem
to understand the presented concepts. This participant was
excluded in the results presented below (Table 2):

(H1)-(H3) User performance

Users took between 22 and 60 minutes to complete the main
tasks (3—8), with an average of 41.2 minutes. ‘non-CS’ users
completed the tasks the fastest, followed by users with no
programming experience. ‘CS’ users took on average longer
as they were often interested in testing the system’s function-
alities that were beyond the given tasks.

Users initially had problems with different concepts that
were presented at the start of the study, in particular they con-
fused action parameters, preconditions and goal states. For
example, in Task 3, 6 (or 30%) users tried to add intermedi-
ate action steps to achieve the goal state, instead of simply
letting the planner generate the solution. In Task 4, 14 (or
70%) wanted to create a new action, even though they could
reuse the existing action by modifying the parameter types.
However, by Task 6, all users were able to use the system
autonomously to create new actions and problems and nav-
igated the system with little to no guidance. By the end of
the experiment, users programmed two manipulation actions
(one for each gripper) that were reused to complete all 8
benchmark tasks.
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B Strongly agree

Agree Neutral Disagree M Strongly disagree

It was easy to manipulate the robot’s arms

The programming process is well-adapted for workers on the assembly line
The robot’s behaviour was intelligent

I believe that I have taught the robot a new task

I can explain how the robot represented the new action
I can explain how the robot learned a new action from my demonstration
I can explain how the robot represented the preconditions and effects

I did not encounter any difficulties during the experiment
No programming experience is required to teach the robot a new task

0 2 4 6 8 100 4 8 12 16 20

(@) (b)

Fig. 13 User responses from the post-study survey comparing (a) the pre-design study (Sect. 6.2) with (b) the post-design study (Sect. 6.4)

H4) Condition Inference (Cl)

We noticed a discrepancy in the programming strategies
between the two control groups (Group 1 with CI vs. Group
2 without CI). Participants in Group 1 had the tendency to
leave the inferred conditions unmodified without adding con-
ditions that would improve the action’s generalisability to
different use cases. As participants in Group 2 had to add
action conditions manually, they considered all predicates
they deemed necessary for the action and added additional
ones that were required for later tasks. Thus, Group 2 took on
average longer to complete tasks where a new action had to
be created (Tasks 1&6), but was faster than Group 1 for sub-
sequent tasks, where conditions had to be modified (Tasks
3,5,7). Overall both groups had similar completion times for
all tasks.

H5) Pre-study Test

As expected, participants who demonstrated a better under-
standing of the introduced concepts in the pre-study test
completed the main tasks (Tasks 3-8) faster on average (P-
value< 0.05). Users scored between 4.3—6.93 out of 7 points.
‘non-CS’ users scored above average points and completed
the fastest. As an outlier we observed that the fastest partici-
pant scored only 4.7, but easily learned how to use the system
and completed the tasks in 22 minutes. Even though Group
1 performed slightly better in the pre-study test than Group
2, both completion times were on average similar.

System Usability and Learnability

There are several ways to interpret the System Usability Scale
(SUS) scores [9] obtained from the post-study survey. Using
Bangor et al. ’s categories [6], 14 (70%) users ranked iRoPro
as ‘acceptable’, 6 (30%) rated it ‘marginally acceptable’, and
no one ranked it ‘not acceptable’. Correlating this with the
Net Promoter Score [41], this corresponds to 10 (50%) par-
ticipants being ‘promoters’ (most likely to recommend the
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Table 2 User performance comparing task completion times with pre-
study test scores [29]

Main tasks (in min) Pre-score (out of 7)

AVG  STD AVG  STD
no experience  43.6 5.37 5.8 0.95
non-CS 36.6 7.46 6.2 0.55
CS 43.8 14.13 5.3 1.11
Overall 412 9.08 5.8 091
Group 1 41.0 7.89 6.1 0.77
Group 2 414 10.56 5.5 0.98

system), 5 (25%) ‘passive’, and 5 (25%) ‘detractors’ (likely
to discourage). Overall, iRoPro was rated with a good system
usability and learnability.

9 (45%) users stated ‘generate solutions to defined goals
automatically’ as the most useful feature, followed by ‘robot
learns action from my demonstration’ (4 or 20%) — two main
aspects of our approach. 4 (20%) stated the most difficult part
as ‘finding out why Baxter didn’t solve a problem correctly’,
similarly 8 (40%) stated difficulties related to ‘understand-
ing predicates and defining conditions’. 11 (55%) disliked
‘assigning action conditions’ the most, while the rest stated
different aspects. A common feedback was ‘it takes time to
understand how the system works at the start’. The most
liked parts were ‘executing the generated plan’ (8 or 40%)
and ‘demonstrating an action on Baxter’ (7 or 35%).

6.6 Pre- versus Post-Design Experiments

We compare post-study questionnaire responses between
pre- and post-design experiments (Fig. 13). In the first experi-
ment (Sect. 6.2), users had no direct interaction with the robot
programming system as it was simulated using the Wizard-
of-Oz technique, while in the last experiment (Sect. 6.4),
users programmed the robot using the end-to-end system
implementation. The main differences were noted regard-
ing difficulties encountered during the experiment: In the
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first study 11 (or 100%) users agreed that they encountered
no difficulties, while in the last study only 7 (or 35%) users
stated the same. However, all users in the last study claimed
to have a good understanding of the action representation and
how the robot learned new actions from their demonstrations,
while an average of 2 (18%) disagreed in the first study. Both
differences can be explained by the fact that in the last study,
users had to use an end-to-end system to program the robot,
while in the first study, users had no direct interaction with
a working system. Even though users encountered more dif-
ficulties in the last study, they got a better understanding of
the functionalities due to getting hands-on experience. This
also correlates with negative responses in our survey to the
question if ‘no programming experience was required’ where
13/20 (65%) agreed and 4 disagreed. Overall, both user stud-
ies received positive responses. While the taught concepts
seem quite intuitive to most users, some of them faced prob-
lems throughout the experiment. With these questions, we
wanted to measure how well they perceived their own under-
standing of the robot programming process.

6.7 Continuous Improvement of the System

The system underwent four phases of improvement, allowing
us to refine the system functionalities, GUI and user instruc-
tion methods:

1. Initial prototype Based on the feedback received on our
initial prototype by domain experts, we changed the flow
for introducing the system to novice users as it included a
lot of new information (e.g., PbD and Automated planning
concepts) that they were not familiar with.

2. Pre-tests with 3 users We ran pre-tests with 3 users who
have never seen the system before and further improved
the experiment flow (e.g., create an action for one object at
a time). We also made the user interface more friendly to
include Baxter icons (Fig. 14) and eyes that followed the
robot’s moving joint [17]) on the robot’s screen so that it
seemed more human-like. We noticed that troubleshoot-
ing incorrect actions seemed difficult for all users, so we
included an option to review actions and goals which pro-
vides a summary of the created input and hints to guide
the debugging steps.

3. First experimental tests with 5 users with condition infer-
ence After running the experiments with 5 users, we
noticed that the majority did not modify the inferred action
conditions. This raised an interesting HRI question of
whether users who were given automatically generated
conditions would ‘blindly trust’ them. Hence, we decided
to create two experiment groups: with and without condi-
tion inference, where the first 5 participants belonged to
the former. Participants in the latter group would need to
manually enter all conditions via the interface.

NEUTRAL

CONFUSED SAD

Fig. 14 Baxter icons used for the graphical interface [15]

4. Final experimental tests with 16 users The remaining
users were divided into the two control groups so that
we had an equal number of participants in both control
groups, while also maintaining an even distribution of
programming levels. The results of the 21 participants in
the experimental tests were used as the final evaluation of
the system as discussed in the previous sections.

7 Discussion

We demonstrated that iRoPro can be used to generalise primi-
tive actions to a range of complex manipulation tasks and that
itis easy to learn for users with or without programming expe-
rience. In our system evaluation we could have programmed
other actions, such as turning or pushing for packaging tasks
[30]. As the purpose of our evaluation was to show the gener-
alisability of primitive actions with the use of a task planner,
we decided to stick to pick-and-place actions with two dif-
ferent grippers. Limitations and interesting extensions of our
work are as follows:

1. Our object perception is limited as it does not detect
objects that are too close together (e.g., stacked objects).
An improved perception system would allow the detec-
tion of initial states with stacked objects, automatically
detecting goal states, or verifying action executions.

2. Due to the different grippers, we did not program actions
that use both arms (e.g., carrying a tray). A possible exten-
sion would be to include a better motion and task planning
system in order to allow executing both arms simultane-
ously while avoiding self-collision.

3. We only included a minimal set of predicates (Sect. 5.2)
that we deemed intuitive and useful for object manipu-
lation tasks. It could be interesting to include and learn
predicates to capture more complex domains such as
object orientation [26].

4. iRoPro can easily adapted to different kinds of robots: the
source code is available online (Sect. 5) and developed
in ROS, which is a popular framework that facilitates the
interoperability of a wide variety of robotic platforms.
PDDL is platform-independent and a standard used to
benchmark task planners. Moreover, bridging PDDL and
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IEEE Standard Ontologies for Robotics and Automation
has been studied previously [16,34].

8 Conclusion

We presented iRoPro, an interactive Robot Programming sys-
tem that allows simultaneous teaching of low- and high-level
actions by demonstration. The robot reuses the actions with a
task planner to generate solutions to tasks that go beyond the
demonstrated action. We conducted pre-design experiments
to evaluate the feasibility of the proposed framework and
involved concepts in PbD and Automated Planning. Then,
we implemented the system on a Baxter robot and showed
its generalisability on six benchmark tasks by teaching a
minimal set of primitive actions that were reused for all
tasks. We demonstrated its usability with a user study where
participants with diverse educational backgrounds and pro-
gramming levels learned how to use the system in less than
an hour. Furthermore, we compared user responses from our
pre-design experiments with our post-design evaluation and
investigate discrepancies. Both user performance and feed-
back confirmed iRoPro’s usability, with the majority ranking
it as ‘acceptable’ and half being promoters. Overall, we
demonstrated that our approach allows users with any pro-
gramming level to efficiently teach robots new actions that
can be reused for complex tasks. Thus, iRoPro enables end-
users to program robots from scratch, without writing code,
therefore maximising the generalisability of taught actions
with minimum programming effort.

9 Future Work

Future work will focus on exploring more challenging
domains to extend the system to other platforms by including
a wider range of predicates and probabilistic techniques to
improve the condition inference. The next step is to focus
on less controlled environments involving factory workers
who may ultimately use this technology as well as mobile
robots that move around between work spaces. This will
require more complex planning domains to consider plan-
ning between robots and humans, human-robot collaborative
tasks as well as solutions for multi-modal communication
involving natural cues [35].
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