International Journal of Social Robotics (2022) 14:73-83
https://doi.org/10.1007/s12369-021-00768-8

DSD - Dynamic Stack Decider

®

Check for
updates

A Lightweight Decision Making Framework for Robots and Software Agents

1

Martin Poppinga'® - Marc Bestmann

Accepted: 18 February 2021 / Published online: 18 March 2021
© The Author(s) 2021

Abstract

We present the Dynamic Stack Decider (DSD), a lightweight open-source control architecture. It combines different well-
known approaches and is inspired by behavior trees as well as hierarchical state machines. The DSD allows to design and
structure complex behavior of robots as well as software agents while providing easy maintainability. Challenges that often
occur in robotics, i.e., a dynamic environment and situation uncertainty, remain well-manageable. Furthermore, it allows
fast modifications of the control flow, while providing the state-fullness of a state machine. The approach allows developing
software using a simple Domain Specific Language (DSL) which defines the control flow and two types of elements that
contain the programmed parts. The framework takes care of executing the demanded portions of the code and gives, due to
its stack-like internal representation, the ability to verify preconditions while maintaining a clear structure. The presented
software was used in different robotic scenarios and showed great performance in terms of flexibility and structuredness.

Keywords Control architecture - Framework - Behavior - Robots - Agents

1 Introduction

A variety of challenges needs to be tackled in robotics to cre-
ate software that can produce a complex behavior. A control
architecture helps to fulfill these tasks. While some co-
routines like the image processing or the walk engine perform
scenario-specific, well-defined tasks, high-level planning has
to solve more abstract tasks in complex environments. This
logical layer, which decides what action needs to be per-
formed, is called the behavior in the following.

In earlier years, complex behavior on a high level was
often limited, as most systems were designated for a specific
task, e.g., cleaning the floor of a room. Due to advancements
in robotics, decision-making processes are becoming more
complex, especially because in real-world robotic scenarios
most often no closed world assumption can be made. For
example, in competitive environments with multiple agents

B<I Martin Poppinga
poppinga@informatik.uni-hamburg.de

Marc Bestmann
bestmann @informatik.uni-hamburg.de

Department of Informatics, Universitdt Hamburg,
Vogt-KolIn-Strale 30, 22527 Hamburg, Germany

or, in the case of human-robot interaction, different roles and
strategies need to be specified, and switched on-demand, as
the environment changes quickly and the behavior needs to
be adapted to new situations. Similar is true for software
agents who deal in uncertain environments, for example,
when humans or other agents are involved.

The presented approach consists of two parts. First, the
programmed modules of the behavior, which decide and the
act, and second, a simple Domain Specific Language (DSL)
which connects these modules and defines the control flow.
This DSL allows fast adaptions in the robot behavior without
altering the source code of the modules.

This framework was initially designed for challenges in
the RoboCup competition [11] and was developed in the
Humanoid Soccer League and used for example on the
humanoid robot platform Wolfgang [3] (see Fig. 1). How-
ever, it was adapted for other areas of robotics and showed its
benefits outside of the RoboCup competition, too. The DSD
proved its advantages in several competitions since 2015 and
was improved several times, including a clearer formalism in
early 2017 under the name Active Self Deciding Stack and the
addition of the Domain Specific Language in late 2018. We

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s12369-021-00768-8&domain=pdf
http://orcid.org/0000-0001-8529-8376
http://orcid.org/0000-0002-7857-793X

74

International Journal of Social Robotics (2022) 14:73-83

®)

Fig. 1 The humanoid robot platform Wolfgang (a) and a game in the
RoboCup competition (b) in which the DSD has proven itself

use it as high-level tactics behavior' as well as an abstrac-

tion low-level abstraction mechanism [4]2. It can be used
for compact high-level control of robot behavior and other
state-machine-like situations. Furthermore, it was success-
fully applied in the scenario of a mobile robotic bartender
and won the first place in the IROS 2018 Mobile Manipula-
tion Hackathon?-4.

In the RoboCup Humanoid Soccer competition, only
human-like sensors are allowed, and thus object recognition
in larger distances provides a difficult task, and decisions are
made in an uncertain environment. This challenge increases,
as the environment holds multiple robots of which half, the
opposing team, do not provide information. Similar chal-

! https://github.com/bit-bots/bitbots_behavior.
2 https://github.com/bit-bots/bitbots_motion.
3 http://iros18-mmh.pal-robotics.com/.

4 https://github.com/TAMS-Group/tiago_bartender/tree/master/
tiago_bartender_stackmachine.

@ Springer

lenges occur in other examples as sensor information is often
imperfect and external changes require quick changes in
the programming routine. Aside from higher-level decision
making, other parts in the robot software require state-full
decision making and easily maintainable frameworks for an
efficient development process, too.

To enable a feature-rich implementation to handle this
complexity in decision making as well as for the developers
to adapt and maintain the source code, we extracted several
aspects for the here presented framework that need to be
considered:

— States: For debugging and development it is necessary
that developers can easily evaluate in which state the
agent currently is. Furthermore, some sub-tasks may have
a time component which requires them to stay with their
former decision during execution.

— Reevaluation of previous decisions: In a dynamic envi-
ronment preconditions can change rapidly. It is required
to reevaluate all such conditions and change the behav-
ior accordingly promptly without getting stuck in an
unwanted state.

— Divisibility: For structured testing and fast debugging the
ability to launch all sub-parts of the behavior separately
is beneficial.

— Maintainability: Changing or adding parts to the behav-
ior has to be possible at all times without the need for a
general restructuring.

— Code Reuse: As many routines can occur in completely
different states, a mechanism to prevent code duplica-
tion is preferable. The means to avoid rewriting specific
behavior steps as well as requiring to perform the same
check in various modules.

— Scalability: The logic needs to express complex behavior
for autonomous systems while staying clear and under-
standable.

This paper is structured as followed. In Section 2 the
related work and existing approaches and frameworks for
high-level behavior are presented. Our approach is presented
in Section 3 and some insight into the implementation is given
in Section 4. In Section 5 we evaluate the proposed approach
and give a more complex example in Section 6. Finally, in
Section 7 we conclude.

While the framework was originally designed for the
use in robotics using the ROS Middleware’, the presented
approach and the published software are also suitable for
other use-cases outside of robotics. In the following, the term
agent refers to robots as well as software agents.

5 https://ros.org

https://github.com/bit-bots/bitbots_behavior
https://github.com/bit-bots/bitbots_motion
http://iros18-mmh.pal-robotics.com/
https://github.com/TAMS-Group/tiago_bartender/tree/master/tiago_bartender_stackmachine
https://github.com/TAMS-Group/tiago_bartender/tree/master/tiago_bartender_stackmachine
https://ros.org

International Journal of Social Robotics (2022) 14:73-83

75

Fig.2 Simplified example of
the direct acyclic graph (DAG)
which is defined by the DSL
using the output of the DEs. A
chosen path (blue) is displayed.
The agent decided on being an
attacker and going to the ball.
These taken decisions and the
current action can be seen in the

Goalie

\

Start

N

Role Decision

Field Player

BallPositionAvailable

stack (cp. Fig. 3). Since there
are multiple ways to reach the

\ N

GoToBallDirect action, it is
necessary to have a history on
the stack to retrace the agent’s
decisions

KickBall

2 Related Work

Due to the importance of control architectures in many fields,
several approaches were developed.

Some of them, e.g., finite state machines (FSM) [9], exist
for a long time. Others, like behavior trees [6], are more
recent and mostly used in the domain of video games. These
have already proven to be suitable for complex behaviors, but
they are not always ideally suited for the uncertain environ-
ments of robotics or in for the use in competitions, where the
software needs to adapt constantly. Robot behaviour, while
in many scenarios is used for navigation purposes [1], vari-
ous tasks can be solved using these different approaches [2].
In the following section, the advantages and disadvantages
of the most popular approaches are discussed. They are com-
pared with our approach in Fig. 2.

2.1 State Machines

FSM

The finite state machine (FSM) [9] is a commonly used
approach based on a finite set of discrete states of the agent.
Transitions are defined between the states. Typically, actions
are performed while entering and leaving a state as well as
while the state is active. While this approach is inherently
stateful and straightforward to understand, its scalability and

Yes
[-.]
DefendAttackDecision Defend
|
Attack
BalllnOwnHalf
<Yes—

ClosestPlayerToBall 4\

j No No

(Yes

InKickDistance

YesANo
\V

f/ GoToBallDirect

maintainability are bad due to the high number of transitions.
Furthermore, testing is complicated due to bad divisibility.

HFSM Hierarchical finite state machines (HSMs) [10] are
an extension of the FSM. Here, the states are organized in a
hierarchical structure. States can be substates of other states
which enables the inheritance of behavior from superstates.
This way, each substate only needs to focus on its designated
tasks and events while its ancestors can handle more general
events. This prevents state explosion and code duplication in
complex systems.

Still, HFSMs are hard to maintain since adding or remov-
ing states requires the programmer to reevaluate a large
number of transitions [6].

2.2 Planning

For planning sequences of actions and executing them, multi-
ple approaches exist that follow a traditional Sense-Plan-Act
manner. The most prominent example is STRIPS [8]. In
recent years this area was also influenced by the gam-
ing industry and new approaches arose, e.g., Goal-Oriented
Action Planning [12].

While these approaches can be used to create sophisticated
behaviors, their reactiveness is low, and they often rely on
the closed world assumption, making them not applicable in
many real-world scenarios.

@ Springer

76

International Journal of Social Robotics (2022) 14:73-83

2.3 Subsumption

The Subsumption Architecture (SA) [S] was introduced as
a solution to the low reactiveness of classical planning
approaches. It divides the task into subtasks that can run in
parallel but have a hierarchical order. More important parts
can subsume others in the control of the robot’s actuators.
While this approach has a high reactiveness, it is not state-
ful and therefore very limited, especially in finding optimal
solutions or making decisions based on previous actions.

2.4 Decision Trees

Decision trees (DTs) [13] are a simple concept of connect-
ing multiple conditions into a tree-like structure. They are,
among others, applied in the area of artificial intelligence for
solving classification problems, but also for decision making.
While simple to implement and intuitively understandable,
they are stateless. During each iteration, all decisions have
to be reevaluated which is expensive. Since the result is only
based on a single iteration, it can lead to jumping back and
forth between two different results, especially when using
noisy sensor data. This makes it challenging to implement
non-instantaneous actions. For example, a collision avoid-
ance decision tree might outputs alternating steer left and
steer right when presented with an obstacle right in front.
The noise of the sensor will sometimes put it more to the left
and sometimes more to the right, maybe resulting in a crash.

2.5 Behavior Trees

Behavior trees (BTs) [7] create ahierarchical tree structure of
control elements that result in actions or conditions as leafs.
It is possible to define composite tasks which are performed
sequentially or in parallel. Due to the possible parallelism
and looped conditions, there is not only one point of activity
in the tree, but distant parts can be active at the same time.
This makes it difficult to see the current state of a tree at
a glance. Furthermore, the decision path through the tree is
less clear than it is in a decision tree because the conditions
are leaf nodes and not internal nodes. This makes a differ-
entiation between actions and conditions more difficult. The
implementation of a BT engine is complex since parallelism
has to be considered [6]. Since BTs are tick driven, rather
than event-driven like most approaches, it requires a change
of paradigm [6]. In larger closed-loop systems, many con-
ditions may have to be checked, leading to a high execution
time [6].

@ Springer

3 The Dynamic Stack Decider

Our approach combines the simplicity and statefulness of an
FSM with the flexibility and scalability of a behavior tree to
achieve a light-weighted control architecture that can han-
dle the dynamic and uncertain environment in robotics. The
Dynamic Stack Decider (DSD) consists in its central part of
a stack-like structure that orders the currently loaded parts
of the behavior. Similar to many control systems, the DSD is
expected to be called periodically to evaluate its current state
and to take actions. A Domain Specific Language (DSL) is
specified that defines which elements are pushed on top of
the stack depending on the output of the currently executed
element and the current position in the tree-like structure.
The DSL defines all possible execution paths and creates a
directed acyclic graph (DAG).

Using this DSL, further parameters can be passed to the
elements. The elements on the stack are divided into decision
and action elements. The stack holds the active components
in the current state as well as the history which lead to the
current state. This concept is explained in more detail in the
following.

3.1 The Elements

Decision Elements

Each decision element (DE) capsules one logical decision
and has a finite set of possible outputs. It does not control its
actors or is in any kind altering the environment. Decisions
can be as complex as needed, using if-else clauses for simple
cases or, in a more complex situation, for example, neural
networks. One example in the RoboCup Soccer domain is the
decision whether the agent has sufficient knowledge about
the current ball position in its world model. This decision
element could be followed by an action to search for the ball
or a decision whether the agent should walk towards the ball.

DEs are used in two ways. If they are on top of the stack,
the following element is put on top (pushed) and this element
is executed next. If a DE is inside the stack, it can specify
if it wants to be reevaluated. When a DE is reevaluated, the
outcome of the production is compared to the outcome of the
same element in the previous iteration. If it is identical, the
stack remains unaltered. When the outcome differs, the stack
above the reevaluated DE is discarded, and the new sub-tree
is put on top. This method is crucial for validating precondi-
tions, e.g., having sufficient knowledge of the ball location
is necessary to be able to go towards it. This mechanism is
further explained in 3.3.

Action Elements

The second type of element is the action element (AE). An
AE is similar to a state of an FSM, in the meaning that the
system stays in this state and executes its logic as long as the

—
OO X I N AW =

DD — = s e
[«=>EN=RRLREN B N N N S

International Journal of Social Robotics (2022) 14:73-83

77

AE is on top of the stack. This is in contrast to a DE which
is evaluated instantaneously. An exemplary AE is a kick or
a stand-up animation that stays on top of the stack until the
animation has finished playing. An AE could also handle
going to the ball. In this case, the AE remains on top of the
stack until the ball is reached. The AE only makes decisions
that are necessary for its own purpose, e.g., some adjustments
to the kicking movement. AEs do not push further elements
on the stack but control actions on lower-level modules like
joint goals. If the AE has finished, it can remove itself from
the stack by performing a pop command or otherwise remains
active until a precondition becomes invalid.

3.2 DSD Description Language

For easy maintainability and visualization, the possible
execution flows are described in a designated description lan-
guage an overview of the symbols is shown in Table 1. This
representation is parsed while initialization of the DSD. The
DSL determines which return value of a decision element
leads to which element executed in the following.

In Listing 1 an example behavior is given, creating the
DAG as shown in Fig. 2.

#Kick

$InKickDistance + kick_threshhold:0.1
"Yes" —> @KickBall
"No" —> @GoToBallDirect

#Attack
$ClosestPlayerToBall
"Yes" = #Kick
"No" — @Wait

—>SampleBehavior
$RoleDecision
"FieldPlayer" —> $BallPositionAvailable
"No" —> [...]
"Yes" —> $DefendAttackDecision
"Defend" —> $BalllnOwnHalf
"No" —> @Wait
"Yes" —> #attack
"Goalie" —> [...]
[...] — #Kick

Listing 1 Example of the used DSL. With Kick and Attack, two subtrees
are defined. SampleBehavior defines the starting point. Depending on
the output of the $RoleDecision different paths are executed in the
control flow which leads to the corresponding actions.

This structure allows fast changes of connections as well
as parameters (e.g., thresholds, speeds) in one place, giving
a good overview without the requirement of searching in
long lists of parameters or directly in the code. Due to the
semantic naming of decision results, transition changes can
be performed locally.

Table 1 These symbols are used in the DSL. They assemble the DAG
as shown in Fig. 2

$ $Name

Name of a decision element

@ @Name

Name of an action element
”ReturnValue” — — > $, @QName
Defining the following element

#Name

Defining or using a sub-tree

+ {$, @} Name + param : p_value

Gives initial parameters to the element

Action
(Persistent until done or
preconditions are violated)

A

GoToBallDirect)

InKickDistance

ClosestPlayerToBall

DefendAttackDecision (can be reevaluated)

BallPositionAvailable

Root Decision

Role Decision (stays on stack)

Decisions '

Fig.3 Example of a stack for a field player after taking the decisions as
displayed in Fig. 2. Each time step all DEs which should be re-evaluated
are called from bottom to top. If no precondition changed, the AE on
top of the stack is executed

3.3 Call Stack

The built stack follows a similar logic as call stacks in var-
ious programming environments (e.g., Python, Java, .NET),
providing the current call stack as a path to the finally exe-
cuted module. However, in this architecture, each element on
the stack can remain active.

The control workflow of the DSD is sketched in Fig. 4
and described in the following: The DSD is initialized with
one decision on the stack (Fig. 3) as the root decision. This
can be any node in the DAG, allowing simple execution of
subgraphs / sub-behaviors. Each iteration, all DEs on the
stack can be reevaluated from bottom to top to see if any
preconditions have changed. For this, each DE is checked if
itrequires to be reevaluated. If it has to be reevaluated, the DE
is re-performed, and the outcome is compared to the output
of the previous iteration. If it has changed, the stack above
the current DE is cleared, and the new outcome is pushed.
Otherwise, the next element is checked to be reevaluated.
After every element has been reevaluated, or after the first
different outcome, the reevaluation phase is finished. Then,
the topmost element is executed. If the topmost element is

@ Springer

78 International Journal of Social Robotics (2022) 14:73-83
Fig.4 The control flow of the DSD
DSD initial start
> |nitialize Stack with
> Root Element
interrupt
Reevaluation phase
no
reevaluation end of
v iteration
call for each Check each Element on
iteration

Stack (Bottom to Top)

reevaluation all elements

requested evaluated

same
v result Perform Topmost
Element
Execute Element A
other result
push or pop
Drop all Elements while execution
Above push new element

a DE, it is executed, and its outcome defines, according to
the DSL, which element or elements is or are pushed next
on the stack. If an element pushes one or multiple elements
on the stack, the topmost it is directly executed, enabling the
evaluation of multiple DEs in one cycle. If the topmost is an
AE, the AE is executed. If the AE pops itself from the stack,
the new topmost element is executed. If the topmost element
is an AE and performs no pop, it stays on top of the stack,
and the DSD has finished its iteration.

This way the AE is executed each iteration until either a
precondition changes (as checked in reevaluation) or the AE
pops itself after completion. At any time an external interrupt
can clear the stack and start again with the root element.

By using this stack-like structure, it is always traceable
which action the agent tries to perform and which decisions
were made.

3.4 Extended Features

A few additional features are added to the base structure to
facilitate the use of the DSD:

Interrupts

An interrupt is an event from outside of the structure,
which clears the complete stack to reset the behavior as dis-
played in Fig. 4. In the particular case of RoboCup, we use
it when the game state changes, for example, if a goal was
scored. However, it can also be used, for example, if the

@ Springer

agent is kidnapped or paused. After the interrupt, the stack
is recreated, starting at the root element.

Reevaluate

Each decision element may define a reevaluate criteria.
If the corresponding method returns true, the element will
be executed during the reevaluation phase even if it is in the
middle of the stack. This way a precondition can be checked
constantly or periodically. As an example, every iteration it
could be checked if the ball position is known to the agent
with a given certainty. If the now pushed element is differ-
ent from the element which is currently above in the stack,
meaning that the decision changed, the whole stack above
will be dropped and the newly selected element executed.
Additionally, actions can specify setado_not_reevaluate flag
which prevents all decision elements from being reevaluated.
Semantically, this allows to specify actions that can not be
interrupted, e.g. stopping a dynamic motion animation on a
bipedal robot would lead to a fall.

Passing arguments

It is possible to pass arguments to decision and action
elements directly in the DSL. This improves the generaliza-
tion of stack elements and allows to use the same elements
in multiple parts of the DAG. For example, it is possible
to implement a Move Action that takes an argument on the
direction to move rather than implementing MoveForward
and MoveBackwards. An example of how this is specified in
the DSL is shown in Listing 1.

(O N

— O 0 03

—_—

International Journal of Social Robotics (2022) 14:73-83

79

Actions Sequences

It is possible to perform a sequence of actions. For this, a
DE can push multiple AEs at once on top of the stack. In this
case, at first, only the topmost AE is executed.

If the element is popped from the stack, the next action is
directly executed. This way for example movement patterns
can be executed over multiple iterations unless any precon-
ditions change. Alternatively, an AE can be pushed, which
does only one task for a single iteration, e.g. sending a mes-
sage to other agents and then popping itself, followed by a
movement in the second AE.

4 Implementation

The reference implementation is written in Python. Using
Python [14] allows fast development due to its well readable
syntax and the absence of the need to recompile the code
on changes. Further, feature rich libraries, like scipy or ten-
sorflow can be used if needed. As decision making in the
presented context is not crucial to milliseconds, the reduced
performance in contrast to an optimized C++ variant is negli-
gible. However, the same patterns of a DSD would also apply
to runtime-sensitive languages, as i.e. C++.

Listing 2 shows an example of a simple decision element.
Each element inherits from an abstract class.

from DSD import DecisionElement

class InKickDistance(DecisionElement) :
def perform(self, data, param):
if data.world_model. get_ball_dist() <
< param["kick_threshhold"]:
return "Yes"
else:
return "No"

def get_reevaluate(self):
return True

Listing 2 An example of a simple decision element. It checks every
iteration whether the ball is currently close to the agent.

Data Exchange

Each stack element holds its instance variables as long
it is in the stack. The data is discarded when the element
is removed from the stack. If persistent data is required, it
can be written to a shared blackboard. Data required by the
elements is structured in different scopes, which encapsulate
different parts of the agent’s knowledge. For example, infor-
mation coming from the vision is handled separately from
the information of the inter-agent communication. This data
can be stored locally or published to other processes. For this
purpose, a data handler in the form of a python object can be
passed to the framework at startup.

The getter may define default values if no data is exist-
ing. Setters are only existing where it is necessary to publish
information. In most cases, the decisions use the getters to
obtain information from other parts of the system, and only
the actions publish commands and data using the setters for
external modules.

Running Multiple Instances

If two or more independent behaviors are required, it
is possible to create multiple independent behavior stacks.
For example, in robot soccer, the behavior of the head is
often controlled semi-independently from the body behav-
ior. There, the head, equipped with a camera, collects data
while the body may request to obtain certain information.
As these are independent processes, no common blackboard
is accessible for communication between the different DSD
instances. In this case, for example, communication is han-
dled by ROS messages.

Reusing Modules

In some cases, it is required to use the stack elements sev-
eral times but with modified decisions or other outcomes. In
these cases, a module can be reused and given a different path
in the description file and other parameters can be passed.

Visualization

When integrated into ROS it is possible to create a real-
time view of the active action and elements on the stack, cp.
Fig. 5. As well as alternative paths in the DAG.

Future Work on Implementation

We plan to further improve the usability of our implemen-
tation by providing a GUI to create DSDs, which are then
saved in the DSL. This improves the overview and lowers
the entry barrier. Furthermore, we want to introduce auto-
matic sanity checks, that verify, for example, if all elements
are part of the same graph and if all outcomes of a DE lead
to another element.

5 Evaluation

In the following, we evaluate different aspects of the DSD
compared to other frameworks, especially to behavior trees.
An overview can be seen in Table 2.

Hierarchical organization

The DSD allows clear hierarchical ordering of importance
based on the decision element’s position on the stack. During
the reevaluation phase, DEs which are closer to the bottom
of the stack are performed earlier and are therefore more
important. This is also visible in the DSL description of the
DSD since elements specified earlier will end up lower on the
stack. The ordering of importance is thereby clearly visible
and changeable before and during run time.

@ Springer

80

International Journal of Social Robotics (2022) 14:73-83

Default - rqt X

File Plugins Running Perspectives Help
®Stackmachine Viz

‘ [v| Highlight v! Fit E | U0 Freeze

RoleDecider
|

Fig.5 Live visualization of an exemplary stack DAG inside rgt

Table2 Comparison of different control architectures. Partly following
[6, Chapter 2]

FSM HSM SA DT BT DSD

Hierarchical org. - + ++ + +
Code reuse - o o + ++
Maintainability - o - - + +
Human readable - o - + ° ++
Stateful + + - - +
Scalability - o - o ++
Concept compre. + + o ++ - -

The other frameworks perform mostly similar in this
regard, with the exception of the FSM, which does not allow
such an ordering.

Code reuse

Reusing existing code parts, inside one behavior and from
previous ones, can significantly decrease development time.
The DSD performs especially well in this regard, due to the
clear separation of decision and action elements. Further-

@ Springer

BallKickArea

DE® - 0%
Body Behavior ~|[5][Z (&
L

RoleDecider

| GameStateDecider
‘ Localization
BallSeen
BallClose

GoalSeen

BallKickArea

Sequence: Stop, KickBall

RIGHT
v

Sequence: Stop, KickBall

more, the used DSL allows simple and fast creation of a
behavior when reusing existing decision and action elements.

In behavior trees, there is only separation between actions
and conditions. The decisions are encoded by a combination
of conditions and control flow nodes. Therefore it is often
necessary to take subtrees when reusing code. Furthermore,
a simple reordering with a DSL is there not possible.

Maintainability

Changes that are introduced after the initial implementa-
tion should only require modifications to the corresponding
part. The DSD performs well on this as each element can be
modified without the need to touch others. Furthermore, the
introduction of a new element into the DAG is simple and
only requires a local change in the DSL description file.

Behavior trees perform similar well in this regard. In com-
parison, in an FSM the introduction of a new state may require
adding transitions to all other states.

The Dynamic Stack Decider allows to explicitly define
the required behavior and enables fast replacements of code
parts. Since the root decision can be defined at the start, it is

O R S

— O O 00 ~J N

—_—

International Journal of Social Robotics (2022) 14:73-83

81

easy to run only a part of the behavior or even just a single
action.

Human readable

While programming and debugging it is necessary to have
a clearly arranged graphical representation that is easy to
understand by the developer. The DSD performs well in this
regard due to the clear separation between actions and deci-
sions, the semantic labeling of decision outcomes, and its
tree-like structure.

While behavior trees do also provide a clear graphical
representation, they are more difficult to read since different
parts can be active at the same time and the transitions have
no semantic labeling. A typical negative example is the FSM
where the high number of transitions for complex systems
results in cluttered graphs.

Stateful

The state of a DSD is defined by all elements on its stack.
The current active action element is clearly visible since it is
the top-most element in the stack. The remaining elements on
the stack provide information on the previously taken deci-
sions but are also part of the state since they influence how
the DSD will act in the future, e.g., by reevaluation.

Inabehavior tree, the state is defined by its currently active
nodes. Naturally, the reactive approaches SA and DT have
no defined state.

Scalability

While the DSD does generally scale well to complex prob-
lems, it has no concept of parallel execution and is therefore
limited in this regard. It is possible to get around it by running
multiple DSDs concurrently, but this only works well if they
are mostly independent of each other.

Behavior trees scale better since they can handle paral-
lelism easily with their tick concept.

—>Waiter
$CustomersWaiting
"None" —> $ContinousRoomCheck
"Clean" —> @CleanFloor
"Check" —> @CheckRoom + room: 1, @CheckRoom +
<~ room:2, @CheckRoom + room:3
"AtLeastOne" —> $CustomerDistance
"Far" —> @GoToCustomer
"Near" —> $SpeakWithCustomer
"WantsToOrder" —> @TakeOrder
"BringBill" —> @BringBill
"Complains" —> @FetchManager

Listing 3 Corresponding DSL for the example DSD displayed in Figure
6.

Concept comprehensibility

The amount of time which is spent to understand how a
framework works should be as low as possible to keep the
development time to a minimum. Some concepts, i.e. BT and

DSD, need more time to understand, as they are more com-
plex and less intuitive. Other more simplistic frameworks,
for example, ones based on Decisions Trees, are faster to
understand but tend to not have the same usability for larger
projects.

6 Example

To better demonstrate how the DSD works and its benefits,
we consider a robot waiter scenario. The robot works in a
three-room restaurant where it should serve customers but
also clean when possible. It may find waiting customers ran-
domly while cleaning, but to keep the waiting time low, it
should stop cleaning and search for customers in all three
rooms every three minutes. When a customer is found, the
robot needs to drive towards it, and then it should deal with
all wishes of this customer before going to another one.
An overview of the resulting DSD is displayed in Fig. 6
and the corresponding description in the DSL is shown in
Listing 3.

In the beginning, the robot is cleaning. After some
time, the ContinousRoomCheck is reevaluated and an action
sequence is pushed on the stack. It consists of three times the
same action, but with different arguments. The robot checks
the first room and the corresponding action is popped. Dur-
ing the check of the second room, two customers are found.
Therefore the root decision is reevaluated and further room
checks are aborted. The robot drives to the first customer
and sees what he wants. After bringing the bill, the customer
complains. Only after completely serving this customer the
robot drives to the second and takes its order. Afterward, it
continues cleaning.

The DSD implementation of this scenario stays small
(four decisions and six actions) and is easily readable due
to its semantic decisions. The adaptable reevaluation mecha-
nism allows constant checking for new customers on current
camera images while moving into other rooms to search for
customers is only performed periodically, as this interrupts
the cleaning process. While the robot serves a customer, it
uses DoNotReevaluate to make sure it is not interrupted. The
reevaluation mechanism allows giving a clear hierarchical
organization of the different tasks by specifying which tasks
can interrupt others.

The checking of the three rooms is utilizing the ability
to provide arguments to actions and is formed by using an
action sequence. If the robot should be expanded, e.g., by a
BringOrder action, this can be done easily by adding another
action. The current stack of the DSD provides a clear state of
the robot’s behavior, which could, for example, be used by a
human supervisor.

@ Springer

82

International Journal of Social Robotics (2022) 14:73-83

CustomersWaiting
[Reevaluate]

AtLeastOne None
K

ContinousRoomCheck

CustomerDistance [Reevaluate every 3min]

T
Far Near

Clean Check
& ¥ M
GoToCustomer SpeakWithCustomer (CleanFloor) 82“&200’“8’
eckRoom(2),
| CheckRoom(3)
WantsToOrder WantsBill ~ Complains
rd v N

TakeOrder BringBill
[DoNotReev.] [DoNotReev.]

FetchManager
[DoNotReev.]

CheckRoom(1)

(CheckRoom(2)
(CheckRoom(2)
(_ checkRoom@)) ((CheckRoom(3))
ContinousRoomCheck ContinousRoomCheck

CleanFloor

ContinousRoomCheck

CustomersWaiting CustomersWaiting
1 2 3

) (

CustomersWaiting

(BringBill FetchManager)

(GoToCustomer)

CustomerDistance

SpeakWithCustomer
CustomerDistance

SpeakWithCustomer

CustomerDistance

CustomersWaiting CustomersWaiting CustomersWaiting
4 5 6

) (TakeOrder) (

CustomerDistance

(GoToCustomer CleanFloor)

CustomerDistance ContinousRoomCheck

CustomersWaiting CustomersWaiting CustomersWaiting
7 8 9

Fig.6 Example of a DSD for a robot waiter. The DAG (left) shows the structure of the DSD with annotations displaying the reevaluation behavior.

The stacks (right) show steps in an exemplary scenario

7 Conclusion

We presented a lightweight, open-source control architec-
ture for robots and software agents. The presented approach,
called Dynamic Stack Decider (DSD), gives several benefits
over existing techniques. Most importantly, the current state
of the behavior, as well as the decisions leading to this state,
are clear at all times. Furthermore, decisions and actions are
clearly differentiated, reusable, and replaceable. The DSD
can easily be created using its own domain-specific language,
a feature no other framework provides.

In Section 5 we showed the benefits over existing
approaches, especially in readability and maintainability. Our
model focuses on more complex behaviors with high read-
ability and good maintainability. Further, it shows its benefits
in the development process, as it allows easy code reuse and
offers good human readability. For this, we made a trade-off
which limited the possibilities of parallelism and the simplic-
ity of the concept.

Finding an objective measurement for the best frame-
work is hard, if not impossible. Further, the scenario where
the system is used determines how well-suited an approach
is. However, we are confident that the proposed framework
works very well for a lot of use cases. It provides a great
approach for writing easy understandable and maintainable
software.

The RoboCup context was chosen as an example, as this
provides a convenient scenario, showing a complex envi-
ronment while maintaining understandable and showing an
alternative application aside from the often shown examples
in research, as robot navigation and related behaviors.

@ Springer

We provide a reference implementation ®, which has been
used in RoboCup competitions for several years and was
further extended and improved over the years. The approach
with this implementation was also used in social domains on
mobile and non-mobile platforms (see Section 1) and will be
used for further research. The written software is provided as
aROS package and is therefore easy to integrate into existing
systems. It can utilize many tools and libraries provided by
ROS, as rqt or the logging environment. While it is ready to
work with ROS, it can still be used ROS agnostic in every
environment which supports Python.

Acknowledgements Thanks to Nils Rokita for helping to implement
the DSD, thanks to Finn-Thorben Sell for implementing the visualiza-
tion tool, thanks to Timon Engelke for cleaning up the implementation,
and thanks to the Hamburg Bit-Bots for the support.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-

© https://github.com/bit-bots/dynamic_stack_decider

https://github.com/bit-bots/dynamic_stack_decider

International Journal of Social Robotics (2022) 14:73-83

83

right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

10.

. Adouane L (2016) Autonomous vehicle navigation: from behav-

ioral to hybrid multi-controller architectures. CRC Press . 00018
Arkin RC (1998) Arkin. Behavior-Based Robotics. p 04358 MIT
press, R.C

Bestmann M, Brandt H, Engelke T, Fiedler N, Gabel A, Giildenstein
J, Hagge J, Hartfill J, Lorenz T, Heuer T, et al (2019) Hamburg bit-
bots and wf wolves team description for robocup 2019 humanoid
kidsize. In: RoboCup Symposium

Bestmann M, Zhang J (2020) Humanoid control module: An
abstraction layer for humanoid robots. In: 2020 IEEE International
Conference on Autonomous Robot Systems and Competitions
(ICARSC), pp 263-268. IEEE

Brooks R (1986) A robust layered control system for a mobile
robot. IEEE J Robot Autom 2(1):14-23

Colledanchise M, Ogren P (2017) Behavior Trees in Robotics and
AlL: An Introduction . https://doi.org/10.1201/9780429489105
Dromey G (2003). From requirements to design: formalizing the
key steps. https://doi.org/10.1109/SEFM.2003.1236202. https://
doi.org/10.1109/SEFM.2003.1236202

Fikes RE, Nilsson NJ (1971) Strips: a new approach to the
application of theorem proving to problem solving. Artif Intell 2(3—
4):189-208

Gill a introduction to the theory of finite-state machines (1962).
https://doi.org/10.1109/PROC.1963.2548

Harel D (1987) Statecharts: a visual formalism for complex sys-
tems. Sci Comput Program 8(3):231-274. https://doi.org/10.1016/
0167-6423(87)90035-9

11.

12.

13.

14.

Kitano H, Asada M, Kuniyoshi Y, Noda I, Osawa E RoboCup
The robot world cup initiative. Tech. rep. https://doi.org/10.1145/
267658.267738

Orkin J (2003) Applying goal-oriented action planning to games.
Al game programming wisdom 2 pp. 217-227 . http://alumni.
media.mit.edu/~jorkin/GOAP_draft_ AIWisdom2_2003.pdf
Quinlan JR (1986) Induction of decision trees. Mach Learn
1(1):81-106. https://doi.org/10.1007/BF00116251

Sanner MF (1999) Python: a programming language for soft-
ware integration and development. J Mole Gr Modell 17(1):57-61.
https://doi.org/10.1016/S1093-3263(99)99999-0

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1201/9780429489105
https://doi.org/10.1109/SEFM.2003.1236202
https://doi.org/10.1109/SEFM.2003.1236202
https://doi.org/10.1109/SEFM.2003.1236202
https://doi.org/10.1109/PROC.1963.2548
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1145/267658.267738
https://doi.org/10.1145/267658.267738
http://alumni.media.mit.edu/~jorkin/GOAP_draft_AIWisdom2_2003.pdf
http://alumni.media.mit.edu/~jorkin/GOAP_draft_AIWisdom2_2003.pdf
https://doi.org/10.1007/BF00116251
https://doi.org/10.1016/S1093-3263(99)99999-0

	DSD - Dynamic Stack Decider
	A Lightweight Decision Making Framework for Robots and Software Agents
	Abstract
	1 Introduction
	2 Related Work
	2.1 State Machines
	2.2 Planning
	2.3 Subsumption
	2.4 Decision Trees
	2.5 Behavior Trees

	3 The Dynamic Stack Decider
	3.1 The Elements
	3.2 DSD Description Language
	3.3 Call Stack
	3.4 Extended Features

	4 Implementation
	5 Evaluation
	6 Example
	7 Conclusion
	Acknowledgements
	References

