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Abstract

For some years now, the use of social, anthropomorphic robots in various situations has been on the rise. These are robots
developed to interact with humans and are equipped with corresponding extremities. They already support human users in
various industries, such as retail, gastronomy, hotels, education and healthcare. During such Human-Robot Interaction (HRT)
scenarios, physical touch plays a central role in the various applications of social robots as interactive non-verbal behaviour
is a key factor in making the interaction more natural. Shaking hands is a simple, natural interaction used commonly in many
social contexts and is seen as a symbol of greeting, farewell and congratulations. In this paper, we take a look at the existing
state of Human-Robot Handshaking research, categorise the works based on their focus areas, draw out the major findings of
these areas while analysing their pitfalls. We mainly see that some form of synchronisation exists during the different phases
of the interaction. In addition to this, we also find that additional factors like gaze, voice facial expressions etc. can affect the
perception of a robotic handshake and that internal factors like personality and mood can affect the way in which handshaking
behaviours are executed by humans. Based on the findings and insights, we finally discuss possible ways forward for research

on such physically interactive behaviours.

Keywords Handshaking - Physical HRI - Social robotics

1 Introduction

In the context of Social Robots and Human-Robot Interaction
(HRI), there has been an increase in the use of anthropomor-
phic robots in social settings, and they already support human
users in various industries, such as retail, gastronomy, hotels,
education, and healthcare services [23,27,31,75,76,92]. In
HRI, physical presence plays an important role as it can influ-
ence the image of a robot as compared to a virtual presence
[44]. According to the Computer-As-Social-Actor (CASA)
paradigm [55], physical presence is also an important pre-
dictor of the mindless social response to robots by which
humans put a robot in the same category as humans. These
responses are supposedly triggered by social human-like cues
as well, such as voice [57], face [54], and language style [56].
Additionally, the appearance of the robot, as opposed to just
the physical presence, can also have an impact on the per-
ception of robots. As the Uncanny Valley [50] hypotheses,
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uncanny feelings are triggered by highly human-like robots
(androids) but not as realistic as a human being as compared
torobots that are less human-like in appearance (humanoids).
These uncanny feelings are hypothesised to get exaggerated
even more in the case of movements. The affinity, of both
appearance and movement, rises again only when the human-
likeness becomes very close to that of a human being.

In the context of HRI, physical contact plays a central
role in the various applications of social robots. One of the
key reasons for this being that non-verbal behaviour, espe-
cially touch, can be used to convey information about the
emotional state of a person [28,59,90]. This enables a spe-
cial kind of emotional connection to human users during the
interaction [27,74]. If, for example, one considers a future
scenario in which an accompanying robot shares the habitat
with humans, a key requirement for the robot would be its
ability to physically interact with humans [84]. In such a case,
it would be advantageous that humans feel more welcoming
and be willing to interact and help a social robot with its task
like they would help other humans. Among such interactions,
handshaking is a common natural physical interaction and an
important social behaviour between two people [72], that is
used in different social contexts [16,26,73]. The importance
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of touch in HRI and the prolonged nature of the contact addi-
tionally make handshaking a more important interaction as
compared to other interactions, like high fives or other Asian
greeting behaviours which do not involve physical contact.
Handshaking can, therefore, represent an important social
cue according to the CASA paradigm for several reasons:

— It is one of the first and foremost non-verbal interactions
which takes place and should, therefore, be part of the
repertoire of a social robot.

— It plays an important role in shaping the impressions of
others [11,16,73], which is used to develop an initial per-
sonality judgement of a person [4,5].

— The shaking of hands is seen as a symbol of greeting,
farewell, agreement, or congratulation. Socially, it sym-
bolises acceptance and respect for another person [65].
The most common of these settings is “greeting” in which
it is usually the first non-verbal interaction taking place
in a social context.

— The shaking of hands may help set the tone of any inter-
action, especially since the sense of touch can convey
distinct emotions [28].

— A good robot handshake may lead to future cooperation
and coexistence [65].

This can also be further enriched, such as in the possible sce-
nario wherein a robot can monitor the biological attributes of
a person (such as stress levels form blood flow) and thereby
infer social information about a person from just a single
handshake [21]. Having human-like body movements plays
an important role in the acceptance of HRI wherein humans
tend to look at robots more as social interaction partners
[43,77]. In the case of humanoid robots, having realistic
motions enable similar responses as humans [15]. Thus,
having a good handshake can not only widen the expres-
sive abilities of a social robot but also provide a strong first
impression for further interactions to take place. Robot hand-
shaking can additionally help improve the perception of the
robot and enable humans to be more willing to help a robot
[6] allowing for better integration of the robot into human
spaces. To perform proper handshaking motions, a social
robot should be able to detect and predict movements of
the human and react naturally. Therefore, for better accep-
tance and improved expressiveness, effective handshaking
behaviours need to be present to make social robots feel more
acceptable. This importance can be seen in Fig. 2, in the rising
trend of works on Human-Robot Handshaking.

Now that the importance of handshaking from a robotic
standpoint has been established, we propose the following
framework for categorising the different works, shown in Fig.
1. We first discuss works that aim to model handshakes from
human-human interactions. Along with that, we discuss the
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evaluation criteria used for analysing participants’ feedback
in experiments with humans interacting with the robot. This
can be seen in Sect. 2. Following this, we go through each
of the stages of handshaking, as depicted in [45,83], namely
reaching (Sect. 3), grasping (Sect. 4) and shaking (Sect. 5).
We then explore more into the responses of participants to dif-
ferent handshaking methods along with various factors, such
as their acceptability, their degree of preference, how exter-
nal factors like voice and gaze affect the perception of robot
handshakes and so on in Sect. 6. Finally, we discuss some of
the shortcomings of existing works and propose some areas
for future research in Sect. 7 and present our concluding
remarks in Sect. 8. This was done as a broad categorisation of
the works obtained after a search of digital libraries, Google
Scholar, IEEE Xplore and ACM Digital Library using key-
words that included “Human-Robot Handshaking”, “robotic
handshaking” and* handshaking AND human-robot interac-
tion / HRI” followed by a depth-first search-styled approach
among the references and citations of the papers found. Of
these, we included all the articles that were published in
conferences or journals. We build upon our previous work
[68] where we talked about the different works that model
human handshaking interactions, and the works in the dif-
ferent stages of the handshaking exchange and some social
responses of participants. In this paper, we dig deeper into
these aspects and provide key findings and insights of the
different areas of work in regards to Human-Robot Hand-
shaking. In the end, we propose some ways forward based
on aspects that still need to be worked on in order to realise
a social robot that can truly capture the intricacies of such a
physically interactive action.

2 Insights and Evaluation of Handshakes

Before going into robotic handshakes, we first discuss a
few works that draw insights from human handshakes and
some evaluation mechanisms used to measure the param-
eters related to human acceptance of robotic handshakes.
Regarding the insights drawn, the main parameters looked
at include trajectory profiles (mainly acceleration, velocity,
contact forces) between participants when they shake hands
and the mutual synchronisation of their movements while
doing so. Regarding the evaluation criteria, they mainly relate
to how human-like the handshake is and how the handshakes
are perceived by humans who interact with the robot.

2.1 Insights from Human-Human Handshake
Interactions

A group of researchers from Okayama Prefectural Univer-
sity, Japan conducted a series of studies [32-38,62,63,89] to
study handshaking interactions between humans and analyse
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Fig.1 Conceptual framework
for categorising works on
Human-Robot Handshaking

Literature Stream 1
(Section 2)

Literature Stream 2
(Section 3)

Literature Stream 3
(Section 4)

Literature Stream 4
(Section 5)

Literature Stream 5
(Section 6)

how participants respond to different behaviours applied on a
custom robotic arm. They use a VICON motion capture sys-
tem to track markers placed on both shoulders, right elbow
wrists and hands of both participants. Initially, Jindai et al.
[38] observed that the motion of the responder was seen to
be similar to that of the requester with a lag between their
velocity profiles, which was found to be similar to a mini-
mum jerk trajectory profile. Hence they applied a lag-based
transfer function for generating the robot’s reaching trajec-
tory based on the human’s reaching motion. It was previously
shown that this type of “motion transfer” was emotionally
acceptable to humans in an object-handover scenario [88].
Subsequently, the oscillatory motion profiles of the observed

Insights and Evaluation of

e
Handshakes
Handshake Phases
Reaching

Precisely moving the robot hand to reach the
human hand's predicted/true location

Grasping

Accurately gripping the human's hand and

o
applying the correct amount of contact
force/pressure.

Shaking

5| |Executing a timely shaking motion, such that it

is synchronised with the motion of the

interaction partner.

Experimental validation via Human
Responses

shaking behaviours were modelled as a spring and damper
system [35,89]. Following this, the interactiveness was stud-
ied by modelling the requester [32,37] and responder [62,63]
behaviours with respect to delays in the motions and auxiliary
behaviours like gaze and speech. The result of applying the
key findings from the above works on their robot is explored
in Sect. 6. Their main findings of the modelling can be sum-
marised as follows.

— The reaching trajectories of the requestor and responder
are similar in their trajectory profiles, which follow a
minimum jerk trajectory model in [37], and the motion
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Fig.2 Publications on Human-Robot Handshaking

of one can be used to mimic the other, such as by using
a transfer function [38].

— As expected, the shaking behaviour and the transition
from reaching to shaking is modelled as a spring-damper
system, given the oscillatory nature of the behaviour [89].

— Leading handshake behaviours were preferred over a
non-leading one [89] and a small delay (0.2-0.4 s)
between responding to a handshake request was better
perceived.

— Interms of auxiliary behaviours, using voice with a small
or no delay was preferred and having the gaze shift
steadily from the hand to the face was well perceived.

A group of researchers from the University of Lorraine,
France explicitly study the mutual synchronisation (MS in
short) between participants while shaking hands along with
the forces exerted on the palms [45,47-49,79]. They firstly
study the hand motions by having the participants wear a
glove with an Inertial Measurement Unit (IMU) and 6 force
sensors placed around the palm [48]. Tagne et al. [79] further
investigate the joint motions as well (elbow and shoulder)
with IMUs placed at each joint. The influences of a few
different social settings, such as greeting, congratulating or
sympathy, are then explored as well [47,79]. The MS between
participants is analysed using the Fourier analysis of the input
signals (mainly accelerations). However, wavelet transforms
are shown to qualitatively estimate the different stages of a
handshake interaction as well [49].

Initially, the MS between participants was explored in a
context-less setting along with the contact strength of the
interaction [45]. The mean duration of a handshake was
around 2.67 &£ 0.87 s during which the average duration of
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grasping was similar across pairs (0.5 s) whereas the dura-
tion of shaking had a larger variation, from just below 1 s to
almost 2.5 s. The frequency of shaking during MS peaked
around 4 Hz. The average strength of the contact, which
is the average of the forces measured by the sensors was
2.5 N (no standard deviation was reported). This framework
was extended to analyse differences in a few social contexts
[47,79] and gender-based differences [47]. Tagne et al. [79]
observe the differences between 3 scenarios namely greet-
ing, sympathy and congratulating. Melnyk and Hénaff [47]
analyse similar social settings, namely greeting and conso-
lation, and additionally analyse the trends across different
gender-based pairings.

As seen in Table 1, a shorter duration was observed in
greeting contexts. The duration in cases of sympathy and
congratulations were similar. The grip strength shows contra-
dictory results. Tagne et al. [79] saw the lowest grip strength
in case of sympathy, followed by greeting and then, congrat-
ulations. Melnyk and Hénaff [47] found that it was slightly
higher in consolation case although not significantly. In terms
of gender-based pairings, it is seen that MM pairs shook for a
lesser duration as compared to mixed pairings. Female pairs
shook hands the longest. This is consistent with another study
[60] as well. No conclusive correlations were found between
gender and grip strength, contrary to previous studies [16,60].

Unlike the above works that explicitly measure the stiff-
ness and forces of the interactions, Dai et al. [19] indirectly
model the stiffness of the elbow joint as a spring-damper
system, like few other works described in Sect. 5. They mea-
sure the expansion/contractions of the muscles in the upper
arm and forearm using EMG signals and thereby estimate the
stiffness of the elbow using the biceps and triceps and use
the forearm muscle measurements to observe indications of
the grasping forces. Data was collected from 10 handshakes
of which 5 were weak and 5 were strong. It was very evi-
dently seen that muscle activation in the case of the strong
handshake was higher than the weak condition.

The above works mainly study human-human handshak-
ing to gain insights into the motion and forces involved in
handshaking. However, works looking into how well robotic
interfaces are suited for such haptic-heavy interactions are
limited in number. In this regard, Knoop et al. [42] perform
experiments to understand the contact area, contact pressure
and grasping forces exerted by participants during hand-
shaking and test out how a few robotic hands and custom
finger designs comply with their observations from human-
human handshaking interactions. Participants were asked to
perform 3 handshakes of different strengths, namely, weak,
normal and strong. A large variation was seen in the final
contact positions of the fingers at the back of the hand. In
the front, there is little variation across different handshakes
as almost the whole palm is held during the contact. This
would imply that there is possibly no fixed grasping location
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Table 1 Summary of results of

[45.47.79] Study Setting Z;lration (\j’\l/l;ll;tgf;ejlqsugr_llcz))l (CI}\;;p strength
Melnyk et al. [45] None 2.67 £ 0.86 4.20 +1.00 2.50
Tagne et al. [79] Greeting 0.90 +0.26 2.43+0.62 437+£2.4
Sympathy 1.30 £ 0.49 2.44 £ 0.69 3.12£2.1
Congratulation 1.24 £0.40 2.66 +0.72 5.88+3.2
Melnyk and Hénaff [47] Greeting MM 0.73 £0.08 3.6 (median 3.5) 6.02 +£0.99
MF 1.48 +0.40 5.68+0.8
FF 1.95+0.26 553 £1.17
Consolation MM 2.40 +£0.23 3.7 (median 3.5) 6.08 £1.04
MF 2.54 +0.42 6.18 £0.97
FF 4.05+0.53 6.29 £0.85

M male, F Female. Values are reported as mean =+ standard deviation and only mean is reported when standard

deviation is not available)

for a handshake, and that the palms should be sufficiently
covered. during the interaction. A positive correlation was
found between contact pressure and grasping force, which is
a straightforward implication since the contact area doesn’t
vary during the interaction. They test out how a few robotic
hands and custom finger designs compare with a human hand
and argue that this study is useful for optimising robotic hand
designs at a coarse level.

Major Findings Handshaking is inherently a synchronous
process, which is observed in the reaching motions by [34,38]
and the shaking by [45,47,79]. This would imply that both
parties involved in a handshake try to achieve a common
motion during the action. This kind of inherent similarity in
the motions and the subsequent synchronisation can therefore
be treated as an important aspect of making a handshaking
behaviour more acceptable. The context of a handshake along
with additional factors, like speech and gaze, play a role in
the interaction as well. The factors studied and the measure-
ments obtained (in terms of duration, frequency, relative grip
strength etc.) can further be used to explicitly model robotic
handshake behaviours to give them a “personality” of sorts or
provide appropriate responses based on detected interaction
contexts improving the social understanding of the robot.

2.2 Handshake Evaluation Methods

Given the differences in hardware and the evaluation criteria
used by different works, it is difficult to converge on a sin-
gle metric or scale for the task at hand. Moreover, different
works evaluate different aspects of handshaking, using differ-
ent robots. It is therefore difficult to come up with a common
comparison baseline, although some studies evaluate their
methods similarly. To this end, we collate some of the com-
mon evaluation metrics and methods used among different
works in Table 2 and broadly categorise some of the different
robotic interfaces in Table 3. Some common aspects are the

aim to rate the acceptability of the handshaking interactions
and the human-likeness or the naturalness of the handshak-
ing. Moreover, most of the works that use a human-like end
effector mainly have an inactive one, which could cause the
interaction to seem more unnatural. For example, in the works
of Wang et al. [85] and Giannopoulos et al. [25] who use a
rod-like end-effector, the case when the robot arm is operated
by a human, the handshake gets an average human-likeness
rating of only 6.8/10 which is far from the maximum score.

The common metrics used, like in most psychological and
human studies, are the seven-point or the five-point Likert
scales, which is a bipolar scale that has a negative valued
sentiment on one end and a positive valued one on the other,
which allows for a nice representation, especially when aver-
aging over the data. For example, an overall negative average
indicates an inclination towards the negative sentiment and
a positive average indicates an inclination towards the pos-
itive sentiment. This, in contrast to comparing an absolute
score (rating out of ten for example), can help indicate the
sentiments of the participants better.

To use a more traditional test of computational intelli-
gence, Karniel et al. [40] propose a Turing test for motor
intelligence and come up with a metric called as the Modern
Human Likeness Grade (MHLG) which is used to indicate
the human-likeness of different shaking behaviours in this
kind of a mechanical Turing Test. This is based on the per-
ceived probability by a participant of the model being a
human shaking the stylus or the algorithm. Nisky et al. [58]
propose different ways to perform this Turing test for motor
intelligence. There are described in further detail in Sect. 5.3.

3 Reaching Phase of Handshaking

We have already described the work of Jindai et al. [32,37,38]
and Ota et al. [62,63] above. To the best of our knowledge,

@ Springer



282

International Journal of Social Robotics (2022) 14:277-293

Table 2 Methods and parameters used by different works to evaluate robotic handshaking

Evaluation method

Works

Evaluation parameters

Bradley Terry
Model

Seven point scale

Five point scale

Score (out of 10)

Model Human
Likeness Grade

Jindai et al. [32-38], Ota et al.
[62,63], Yamato et al. [89]

Kasuga and Hashimoto [41]

Jindai et al. [32-38], Ota et al.
[62,63], Yamato et al. [89]

Avelino et al. [6]

Mura et al. [51], Vigni et al. [82]

Ammi et al. [1], Tsamalal et al.
[80]

Arns et al. [2]
Christen et al. [17]

Wang et al. [86,87], Giannopoulos
et al. [25]

Dai et al. [19]

Avraham et al. [9], Karniel et al.
[40], Nisky et al. [58]

Participant’s preferences of handshakes

Flexibility, naturalness, kindness, affinity

Handshake motion, Security,
Velocity/comfort, politeness/Vitality

RoSaS (Warmth, competence, discomfort),
Godspeed (anthropomorphism, animacy,
likeability), closeness, willingness to help
robot

Quality, human-likeness, responsiveness,
perceived leader, personality

Valence, Arousal, Dominance of Visual,
haptic and visuohaptic interactions

Compliance, force feedback, overall haptics

Naturalness of video of different simulated
interactions

Human likeness rating of Robot handshakes

Naturalness

Human likeness of proposed handshake
models

Table 3 Different types of robot end effectors used for Human-Robot Handshaking

Without force feedback

Campbell et al. [14], Jindai et al. [32-38],
Kasuga and Hasimoto [41], Knoop et al.
[42], Melnyk and Henaff [46], Nakanishi et
al. [53], Orefice et al. [61], Ota et al. [62,63],
Stock-Homburg et al. [78], Vanello [81],
Vinayavekhin et al. [83], Yamato et al. [§9]

Arns et al. [2], Beaudoin et al. [10], Ouchi and
Hashimoto [64], Pedemonte et al. [66,67]

Avelino et al. [6,8], Ammi et al. [1], Christen
et al. [17]*, Mura et al. [51], Tsamalal et al.

With force feedback
Human-like hand Inactive Dai et al. [20]
(4/5 finger
model)
Passively
controlled
Actively
controlled
[80], Vigni et al. [82]
Gripper

Rod-like end-effector

Bevan and Fraser [12], Falahi et al. [22],
Jouaiti et al. [39]*, Sato et al. [71]*

Avraham et al. [9], Giannopoulos et al. [25],
Karniel et al. [40], Nisky et al. [58],

Papageorgiou and Doulgeri [65], Wang et
al. [85,86]

*Simulated robot

these were the first works to model the hand reaching aspect
and deploy it on a robot. As mentioned above they propose
two models. One with a transfer function based on the human
hand’s trajectory with a lag element and the other is a min-
imum jerk trajectory model, which fits the velocity profiles
and provides smooth trajectories by definition. These mod-
elling choices imply that a smooth motion similar to the
interaction partner is preferred with a small amount of delay
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between them. However, they do not have any study showing
how these two models compare with each other.

More recent works model reaching using machine learn-
ing. Campbell et al. [14] use imitation learning to learn a joint
distribution over the actions of the human and the robot. Dur-
ing testing time, the posterior distribution is inferred from the
human’s initial motion from which the robot’s trajectory is
sampled. Their framework estimates the speed of the interac-
tion as well, to match the speed of the human. Christen et al.
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[17] use Deep Reinforcement Learning (RL) to learn phys-
ical interactions from human-human interactions. They use
an imitation reward which helps in learning the intricacies of
the interaction. Falahi et al. [22] use one-shot imitation learn-
ing to kinesthetically teach reaching and shaking behaviours
based on gender and familiarity detected using facial recog-
nition. However, it cannot be generalised due to the extremely
low sample size. Vinayavekhin et al. [§3] model hand reach-
ing with an LSTM trained using skeleton data. They predict
the human hand’s final pose and devise a simple controller
for the robot arm to reach the predicted location. In terms
of smoothness, timeliness and efficiency, their method per-
forms better than following the intermediate hand locations.
However, it performs worse than using the true final pose due
to inaccuracies in the prediction.

Major Findings Modelling of reaching behaviours draws
heavily on learning from human interactions, unlike other
robotic grasping/manipulation tasks, where a lot of it can
be learnt from scratch. This provides a strong prior to help
make the motions more human-like and can also be used to
initialise [14] or guide [17] the learning.

4 Controlling Hand Grasps in Handshaking

One of the first remote handshaking systems, proposed by
Ouchi and Hashimoto [64], was aimed at two people per-
forming a handshake while on a telephone call with each
other using a custom-made silicone-rubber based robotic soft
hand. They measured the pressure exerted on the hand using
a pneumatic force sensor which relays the force information
over to the other user, who has a robotic hand as well. With
this type of active haptic mechanism, they show that users
better perceive the partner’s existence during the call and that
they were able to shake hands without feeling any transmis-
sion delay. This shows the effect that such haptic interactions
have on the perception of the interaction partner.
Pedemonte et al. [66] design an anthropomorphic haptic
interface for handshaking. It is an under-actuated robot hand
with a passive thumb that is controlled based on the amount
of force that is applied on it. It is a sensor-less model with
a deformable palm that controls the closure of the fingers.
A variable admittance controller is used to set the reference
position for fingers based on the degree deformation of the
palm. Therefore the amount of force exerted by the robot
hand on the human hand depends on the force exerted by
the human, leading to a partial synchronisation in the grasp-
ing. It takes approximately 0.6 s to close the fingers. Arns
et al. [2] build upon this design using lower gear ratios and
more powerful actuators to obtain a stronger grasping force
and a faster interaction speed. They argue that the use of
impedance control as opposed to admittance control helps
improve responsiveness as well. A similar synchronisation

is observed as in the previous work as the mechanisms are
the same, in theory. The main difference is the speed of the
interaction which is almost instantaneous in this case (less
than 0.05 s), making the interaction more realtime and natu-
ral.

Avelino et al. [7,8] propose two models to develop a
pleasant grasp for handshaking. This is extended to three
different grasping models with different degrees of hand
closure, corresponding to a strong, medium strength and a
weak handshake [7]. Force sensors present on the robots fin-
ger joints measure the interaction forces during grasping. It
was found that female participants mainly preferred strong
handshakes (85.7%). There was a larger variability among
male participants. Since a simple position based control is
employed, the force perceived depends on the hand sizes
of the participants, which could be the cause of the vari-
ability. This is addressed in [8], where an initial study is
carried out where participants have to adjust their hand and
the robot’s grip until a preferable grasp is reached. This is
done to find a suitable reference force distribution among
the sensors on the robot hand. The finger joint positions are
recorded as well. With this distribution, they compare a fixed
handshake to a force control method. The force control is
done with a PID controller whose set points are the average
of the forces per sensor on each finger obtained from the
previous data. Moreover, they combine this with a shaking
motion presented in [87] that is described in Sect. 5. Partici-
pants had to rate the two handshakes based on various factors
like scariness, arousal (boring/interesting), meaningfulness,
excitement, strength/firmness, and the perceived enjoyment
and safety, all on 7-point scales for each variable. Although
both handshakes were evaluated positively overall, no sig-
nificant differences were observed between them.

Vigni et al. [82] model the force exerted by the robot hand
during handshaking based on the force exerted by the human,
measured using force-sensitive resistors on the robot hand.
The robot force is approximated from the degree of hand
closure using a calibration experiment where participants
are asked to mimic the force felt on their hand by a few
open-loop handshakes of the robot. The human force is esti-
mated by fitting a cubic polynomial to the sum of forces
applied on the individual sensors. This is also done with
a calibration experiment where participants were made to
grasp a sensorised palm fitted with a load cell to measure
the exerted force. They compare three different controllers
based on the relationships between the exerted forces of the
human and the robot namely linear, constant and combined
(constant+linear). The latter two are used with two values
of the constant force, weak and strong. Since humans have a
small delay in reaction time, a controller delay of 120 ms was
observed to be more natural and was added to the behaviour.

The mean duration of handshakes was 2.2 s with 24.8 N as
the mean sum of forces measured on the robot hand exerted
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Table 4 Division of works studying the shaking motion

Central pattern generators and related models

Harmonic oscillator systems

Miscellaneous shaking systems

Beaudoin et al. [10]

Jouaiti et al. [39]

Kasuga and Hashimoto [41]

Melnyk et al. [3], Melnyk and Henaff [46]
Papageorgio and Doulgeri [65]

Sato et al. [71]

Chua et al. [18]
Dai et al. [19]
Mura et al. [51]
Wang et al. [86,87]
Yamato et al. [89]

Avraham et al. [9]
Karniel et al. [40]
Nisky et al. [58]
Pedemonte et al. [67]

Zeng et al. [91]

by the humans. The participants (n = 15) filled out a survey
after interacting, rating the quality, human-likeness, respon-
siveness, perceived leader, and the perceived personality of
the robot on a 7 point scale. The combined controllers were
perceived better than the constant ones in terms of quality,
human-likeness and responsiveness, with a significant dif-
ference between the weak variants. There was no significant
effect in terms of who the perceived leader or follower was.
However, it was observed that in the constant force cases,
humans would adjust their force based on the robot’s, show-
ing that humans tend to follow the force exerted on their
hand. These findings further emphasise the effect of mutual
synchronisation in handshaking. In terms of personality, the
stronger variants of the constant and combined controllers
were perceived as more confident/extroverted, with a sig-
nificant effect seen between the variants of the constant
controller.

Major Findings The main commonality among the above-
mentioned works is that a force feedback mechanism
is necessary to ensure good grasping since it enables a
mutual synchronisation between the participants. To this end,
although there is no force sensing mechanism as such in the
hand designed by Pedemonte et al. [66] and Arns et al. [2],
they still passively control the closure of the hand based on
the deformation, thereby producing a similar synchronous
behaviour. Vigni et al. [82] observed that the grip strength
had an effect on the perception of the robot’s personality,
which is consistent with the findings of Orefice et al. [60],
from human-human handshakes. This can help in crafting
behaviours to explicitly yield a personality to the robot, rather
than observing such a personality passively. Additionally,
encoding different types of such explicit behaviours can help
the robot switch to adapt to the human interaction partner if
necessary.
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5 Shaking Motions and Synchronisation
between Partners

In terms of shaking, one can easily say that there is a synchro-
nisation which takes place between the participants while
shaking. This is observed by the studies mentioned above in
Sect. 2 as well and is one of the aims of most works that study
the shaking aspect. They also look at reducing the interaction
forces between the robot end-effector and the human hand,
which is modelled using impedance/admittance control by
some works.

We divide the works into 3 main categories: Central
Pattern Generator (CPG) and Related Models, Harmonic
Oscillator Systems and Miscellaneous Shaking Systems, as
shown below in Table 4.

5.1 Central Pattern Generators (CPGs) and Related
Models

Central Pattern Generators (CPGs) [29] are biologically
inspired neuronal circuits that generate rhythmic output sig-
nals. One of the first works to develop an algorithm for the
shaking phase proposed the idea of using a CPG-like neu-
ral oscillator to model the motion of the shoulder and elbow
joints of a robot. They use the torque exerted on the joints
as input and generate an oscillatory trajectory, that can be
tuned by adjusting gains to amplify the input signal to go
from active (high gain) to passive (low gain) [41].

One drawback of this method, as pointed out by Sato et
al. [71] is that there are quite a few hand-tuned parameters.
Therefore, they propose a polynomial approximation for the
attractor model of the CPG and subsequently, a model for
updating these parameters in an online fashion. A similar
on-the-fly parameter update of the oscillator is done by Papa-
georgiou and Doulgeri [65], who use an impedance model
to help tune the parameters of an internal motion genera-
tor modelled as a Hopf Oscillator [30]. Although this is not
a CPG model, it shows similar synchronisation properties
to produce rhythmic outputs like a CPG. The output of the
impedance model and oscillators are used to update the oscil-
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lator parameters using Direct Least Squares in each iteration
using n previous samples of the trajectory. This is unlike pre-
vious approaches where the adaptability of the CPG was an
inherent trait.

In contrast, some works directly learn the CPG frequen-
cies to enable a more online real-time approach. Melnyk
et al. [3] build the CPG around an online learning mecha-
nism that helps it sync with the human’s motions directly.
Their method dynamically adjusts to changes in the human’s
shaking frequency and synchronise with the human. Like the
above-mentioned works, they too use the joint forces as an
input to generate the motions. However, they only work on
controlling a single degree of freedom. A similar model is
proposed again by Melnyk and Henaff [46] using two differ-
ent modes, joint positions and accelerations respectively as
the inputs. Like their previous work, they control only one
degree of freedom. Along similar lines, Jouaiti et al. [39] use
a similar CPG model and incorporate dynamic plasticity [70]
in it, making it easier to synchronise with the handshaking
frequency. Moreover, they also propose learning the ampli-
tude of the oscillations along with the frequency, thereby
being more adaptive than previous approaches.

Major Findings Overall, CPGs and oscillatory mecha-
nisms synchronise well with the human’s motion especially
those that are dynamically learnt. They can also fare better
than a conventional impedance control approach in terms of
flexibility, naturalness, affinity and kindness of the perceived
handshake [41]. Additionally, Jouaiti et al. [39] observed that
incorporating plasticity in the CPG can help decrease the
energy spent by the robot as well. One major drawback is the
ability of such oscillatory mechanisms to converge quickly
to the required frequency, taking more than a few seconds
even in the fastest cases. This would lead to unnatural hand-
shaking behaviours that take too long to synchronise. Further
research is required to increase the convergence speed of such
mechanisms.

5.2 Harmonic Oscillator Systems

Harmonic oscillator models are those that employ harmonic
systems, like spring-damper systems [20,51,89] or simpler
sinusoidal motions [10,86,87,91] to model the motion during
shaking. Some works use both types of harmonic oscillator
models in a two-step predictive and reactive system [18,91].
Most works that employ harmonic oscillator models use them
as reference motions for an impedance controller used to
control the joint motions.

Beaudoin et al. [10] incorporate an impedance controller
with different stiffness values using a sinusoidal reference
trajectory with different frequencies and amplitudes along
with the grasping model proposed by Arns et al. [2]. Dai et
al. [20] develop a controller for a custom-made hand that
controls the stiffness, viscosity and joint angles indepen-

dently. Mura et al. [51] explore different shaking strategies
w.r.t. robotic arm stiffness and their synchronisation with the
human during handshaking. The parameters of the oscilla-
tions are estimated quickly in an online fashion using an
Extended Kalman Filter from a fixed number of preced-
ing frames. They compare three models of varying stiffness,
namely high, low and variable based on the pressure exerted
by the human, similar to Vigni et al. [82].

Wang et al. [87] propose an impedance control mechanism
to model the handshaking mechanism and show how this can
be learnt from human handshakes using least-squares min-
imisation. The reference trajectory for the model is generated
using an amplitude of 10cm and mixed frequency compo-
nents from O to 25 Hz. Based on the human’s response, the
model parameters are fine-tuned when the human is being
passive. When the human is being active, the model is used
to estimate the interaction forces between the human and the
robot and carry out the handshake while being passive. This
low-level controller is expanded on in [86] where a high-
level controller is used to generate reference trajectories for
it. They first propose a new method using recursive least
squares for a fast online estimation of the impedance param-
eters which are fed into an HMM that predicts the intention
of the human i.e. active or passive from haptic data. The
impedance parameters are used, rather than raw force inputs,
since they convey the state of the system.

Major Findings The use of active impedance control was
found to be more compliant to human motions as compared to
simple position-based control [87]. Such active behaviours
were rated better in terms of responsiveness than passive
ones which also had a significant effect on the perceived
synchronisation [51]. Additionally, it was observed that the
human partners would adapt their handshake to the robot’s
behaviour, even when a change was not explicitly mentioned
[20]. This further shows the inherent synchronisation that
takes place during handshaking, and that we as humans infer
it from the interaction itself. There are still no studies that
compare the perception of CPG-based shaking motions with
harmonic oscillator motions. For a fair comparison, user stud-
ies with the same interface would be needed to analyse the
perceptual differences between these methods.

5.3 Miscellaneous Shaking Systems

Karniel et al. [40] describe an experimental framework for
a Turing test of motor intelligence for shaking behaviours.
They do so on a 1D force-controlled haptic stylus, that is
presented to a participant. In their test, the forces driving the
participant’s stylus is a linear combination of forces exerted
by an experimenter and different proposed models. They
develop a Model Human-Likeness Grade (MHLG) which
measure how human-like the motions are from the partici-
pants’ feedback. Nisky et al. [58] extend this to three different
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versions of the test. The first is a computer vs human test,
where the participant is presented wither with a purely algo-
rithmic handshake or a purely human handshake. However,
this was not sensitive enough as the participants could almost
always guess correctly when a human was shaking their hand.
The second version is where the participants have to compare
an algorithmic handshake with a noisy human one. The third
is the weighted linear combination test proposed by Karniel
et al. [40]. Unlike the “pure” test, the authors claim that the
latter two variants are said to be better suited for this purpose.

Avraham et al. [9] make use of this “noise”-based Tur-
ing Test to compare 3 different shaking behaviours. The first
being a tit-for-tat model that initially records the human’s
motion passively and then keeps replaying the same motion,
assuming that the human’s motion stays the same again. The
second is a biologically inspired model that simulates a move-
ment that could be generated by extensor and flexor muscles
to ensure a low amount of overall interaction force. The final
is a simple machine learning model that uses linear regres-
sion to learn the parameters of a linear combination of state
variables with corresponding Gaussian kernels. It was found
that the tit-for-tat model and the machine learning model
fare similar to each other. They both fare much better than
the biologically inspired model, which the authors argue can
be improved by tuning the hyperparameters. While the pro-
posed Handshaking Turing tests work for shaking a simple
1D stylus, it still needs to be seen how well these tests would
fare on more complex robotic hardware.

Pedemonte et al. [67] introduce a mechanism for remote
handshaking using the hand developed in [66]. They develop
a vertical rail mechanism that the hand is mounted on to sup-
port a vertical shaking motion that is passively controlled.
The same mechanism is used by both the participants. This
shaking motion along with the forces exerted on the hand is
relayed to the opponent’s hand and rail mechanism to allow
a bilateral handshake to take place remotely. They show that
their mechanism allows for realistic haptic interaction to take
place remotely where the participants can adequately per-
ceive each other’s motions and forces.

6 Human Responses to Social Aspects of
Robotic Handshaking

In previous sections, we have already talked about how some
of the different works were perceived in HRI experiments.
In this section, we expand further along similar lines and
discuss works whose main aim was analysing the responses
in such HRI experiments.
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6.1 External Factors in Handshaking

While the sense of touch can convey emotional information,
there are additional factors that enhance the perception of
these feelings and the acceptance of the interaction. Below,
we discuss some works that explore different external factors
and present their findings to show the importance of fine-
tuning these external factors, which although are subtle, have
an impact on the way a handshake is perceived.

Ammi et al. [1] and Tsalamlal et al. [80] performed stud-
ies to explore how touch influences the perception of facial
emotions. They used two haptic behaviours (strong and soft)
combined with three visual behaviours namely happy (smil-
ing), neutral and sad (frowning) which were displayed by the
robot’s lips. They test the interactions in three conditions,
haptic-only, visual-only and visuo-haptic. The combination
of visual expressions with a strong handshake showed higher
arousal and dominance over all visual expressions, show-
ing that a sense of touch can enhance robotic expressions.
The majority of the comparisons between visuo-haptic and
haptic-only cases were insignificant, which the authors argue
could be due to the simplistic nature of the facial expres-
sion rendering. Vanello et al. [81] explore similar correlations
between participant’s perceptions while shaking hands with
an artificial hand made of a plastic material while being pre-
sented with a visual stimulus of either a human or arobot face.
While their experimental design to use fMRI data to under-
stand such correlations is a useful one, their results cannot be
deemed as conclusive since only three participants take part
in their study.

Nakanishi et al. [53] explore social telepresence with a
video screen equipped with a robot hand below it. They try
out different visibility settings of the participant’s hand in
the frame and a robotic hand and compare a one-way and a
two-way teleoperated handshake settings. They build a hand
that resembles a human hand using a soft sponge and gel-like
covering and an artificial skin layer to make the appearance
more human-like. It is also equipped with resistive wires that
heat the fingers. The closure of the fingers is controlled from
an external motor with wires connected to the fingertip that
are pulled to extend or close the fingers. First, they look at dif-
ferent hand settings of the presenter where their hand would
either be visible or out of the video frame (invisible) while
shaking. They find that in the invisible case, the interaction
was perceived better. Participants not only strongly felt that
the presenter was in the same room but also had a strong
feeling that they were shaking hands with the presenter in
real life. The authors argue that though the visibility of syn-
chronisation might be perceived as better, the visibility of
the presenter’s hand led to this effect getting cancelled out,
which some subjects reported was due to the duplication of
the hand i.e. seeing two hands at the same time, both the pre-
senter’s and the robot hand. After establishing the results of
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one-way handshaking, they tested out how participants felt
when the presented had a robot hand that was controlled by
the participants (two-way handshake). This was tested in two
settings where the presenter’s interaction was either visible
or invisible to the participants. It was seen that the same feel-
ings of physical closeness to the presenter and of shaking
hands in real life were rated higher for the invisible two-
way case, where participants knew that their handshake was
being felt by the presenter. This could possibly be attributed
to a perceived synchronisation of sorts which arises from the
participant knowing that their actions are being perceived by
their partner rather than the interaction being just in a one-
way direction.

Jindai et al. [38] analyse various handshake motions gen-
erated by their model in two ways. They first fit a Bradley
Terry Model [13] on paired comparisons of their interactions.
Following that, they use a 7 point bipolar scale to test the par-
ticipant’s preferences w.r.t. the handshaking motion, velocity,
relief, easiness, politeness and security. They additionally see
how participants respond to voice [34] and gaze behaviours
[37]. The study showed that a delay of 0.1 s between the
voice and handshake motion of the robot was found accept-
able. It was found that the most preferred behaviour was
when the gaze shifts steadily from the hand while reach-
ing out to the face after contact is established. The response
models [62,63] ware tested based on the delay between the
request and response motions and it was seen that starting the
response a fraction of a second (0.2-0.4 s) after the response
was preferred. However, a larger delay of 0.6s was less prefer-
able. The request model in [32] was additionally tried out
with a human approaching the robot from a distance. They
experimented with starting the request at different distances
of the human from the robot. Apart from this, both the request
and response models were combined with a similar transfer
function as in [38] such that the robot requests a motion if the
human doesn’t. This type of behaviour was well perceived
by humans as well (positive feedback on a 7-point bipolar
scale).

6.2 Influence on the Perceived Image of the Robot

As mentioned in the introduction (Sect. 1), handshaking can
impact first impressions. Therefore in the context of HRI, this
can possibly help strengthen the perception of a robot for fur-
ther interactions that take place. This is explored by the works
described below, wherein the effect of robotic handshaking
is studied on the specific tasks that a robot has to accomplish.

Avelino et al. [6] use their previously proposed handshak-
ing model [7] to see how a handshake affects a subsequent
interaction wherein the robot needs to perform a naviga-
tion task during which, it would need some assistance by
the human. They found that participants who shook hands
with the robot found it to be warmer and more likeable and

were more willing to help the robot for its task. However,
they argue that if the robot had an extremely human-like
handshake, participants would not anticipate it to get stuck
in a simple navigational task due to a mismatch between the
behaviour during the experiment and the perceived behaviour
according to the handshake.

Bevan and Fraser [12] perform an experiment to see the
effect of handshaking on negotiations between participants,
where one participant interacts with the other via telepres-
ence on a Nao robot. It was seen that handshaking improved
mutual cooperation, leading to a more favourable negotiation
result for both parties. A haptic feedback for the telepresent
negotiator didn’t have a significant impact. They also found
that handshaking did not affect the degree to which negotia-
tors considered their opponent trustworthy, which they argue
is possibly due to the childlike nature of the Nao robot.

6.3 Distinguishing Ability of Handshakes

In Sect. 2, it was shown that there were observable differences
of gender and context on handshaking. In this section, we
discuss some works aim to model the certain aspects of the
participant, like their gender, personality and mood based on
handshakes.

Orefice et al. [60] propose a model for making distinc-
tions along the lines of gender and personality (introver-
sion/extroversion), using a set of 20 parameters relating to
acceleration, velocity, duration, pressure etc. They find that
in male-male pairs, more pressure is applied than in male-
female ones. Moreover, they found that female pairs have
a longer duration and a lower frequency but the maximum
speed of the oscillations is higher. They argue that some
results could also be due to the hand sizes rather than gen-
der since most of the females in their study had smaller
hands. Coming to personality, they found that introverts
reached a higher speed while shaking hands and extroverts
would exert more pressure. Though they performed simi-
lar experiments in a Human-Robot Handshaking scenario
as well, the small number of participants (n = 8) makes
their results in this aspect inconclusive. Garg et al. [24] sim-
ilarly aimed to classify people’s personality into weak and
dominant. They use similar information extracted using a
custom-made glove to measure accelerations, Euler angles
and polar orientations. The features are ranked based on the
Mutual Information followed by classification using K Near-
est Neighbours, achieving a 75% accuracy. Orefice et al. [61]
perform another longitudinal study with 11 participants over
16 non-consecutive days, that looks at how pressure varia-
tions while shaking hands reflect the mood of the participants.
They use a custom-made glove with various pressure sensors
and an accelerometer worn by both the participant and a Pep-
per robot. Before shaking hands, participants had to declare
which mood (Calm, Relaxed, Cheerful, Excited, Tense, Irri-
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tated, Sad, and Bored) best described their current mood. A
consistency in the mood was seen when participants shook
hands with a human subject and with pepper, which was
unexpected as one would expect an interaction with a robot to
seem unrealistic or not as human-like. Overall, no significant
results were found for most positive moods, except between
“Calm” and “Cheerful” where the former had less pressure
observed. In the case of negative moods, “Bored” handshakes
had lower pressure than “Excited” and “Tense”, which have
more arousal than “Bored”. In general, lower pressures were
found with moods with lower arousal. This shows how hand-
shaking can be used as an affective interaction to further
increase the emotional understanding of robots.

6.4 Human-Likeness of Robotic Handshakes

In the introduction (Sect. 1), we mentioned the importance of
having human-like body movements, which plays an impor-
tant role in HRI acceptance [15,43,50]. Therefore we analyse
works that look at the human-likeness of robotic handshakes
and draw insights that can help shape future experiments.
The social responses to the shaking models proposed by
Wang et al. [86,87] were analysed further in [25,85]. Both
studies perform their experiment on a robot with a rod as its
end effector, in a bar like setting wherein participants have
noise-cancelling headphones playing bar music and having
ambient conversations. In both studies, participants had to
perform around 6—7 handshakes in each of the three different
handshake settings. First was the basic algorithm proposed in
[87], the second was the interactive model proposed in [86]
and third was a human operating the robot. After the hand-
shakes, participants had to rate the human-likeness of the
handshake from 1 (resembling a robotic handshake) and 10
(resembling a human handshake). In neither of the studies did
the participants see the robot. In the study by Giannopoulos et
al. [25], participants were first blindfolded and led to the robot
whereas, in the study by Wang et al. [85], participants had a
VR headset on which had a graphical rendering of a bar with
a human model rendered for the robot, who would walk up
and request for a handshake with the virtual hand in the same
position as the robot end effector in the real world. In both the
studies, the human-operated handshake was rated the high-
est (6.8/10 in both), followed by the HMM-based handshake
(5.9/10 in [25] and 5.3/10 in [87]). The least was the basic
handshake proposed in [87] which was rated much lower than
the other 2 alternatives (3.3/10 in [25] and 3.0/10 in [87]).
Although the HMM-based handshake was rated closely as
the human-operated one, they both were far from the maxi-
mum human-likeness score (10/10), which could be due to
the rod-like end effector used. Having a similar experiment
with a more sophisticated robot hand could yield the results
to be more human-like. However, their studies conclude that
having an adaptive handshake that matches the behaviour
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of the human ends up being perceived closer to a human
behaviour.

Stock-Homburg et al. [78] study whether a realistic
android robot, that is modelled after a human, with soft sil-
icone skin and pneumatically controlled joints can pass a
hardware version of the Turing test. They have 15 partici-
pants blindfolded who have to interact with a human and the
robot with their hand stretched out twice in a random order,
leading to a total of 4 trials each. Although the robot is built
to be as realistic as possible, majority of the humans (11/15)
correctly guessed the hand in the first attempt itself and by the
last handshake, they were all able to guess the hand correctly.
However, they only test a static interaction with the robot. For
a better evaluation, comparing a handshake behaviour rather
than just a static interaction could show better insights into
the modelling of a human-like handshake.

7 Discussion

Overall, we have talked about the various works that look into
Human-Robot Handshaking, however, due to the differences
in hardware and metrics used across different studies, it is dif-
ficult to come up with acommon benchmark to evaluate these
studies. Having said that, some qualitative conclusions can be
drawn from analysing these studies. In general, over the dif-
ferent stages of handshaking, an element of synchronisation
is present. In the reaching phase, this is seen in terms of the
similarity of the requestor’s and responder’s motions, which
is why most works modelling the reaching behaviour draw
from human-human interactions. Although such behaviours
can be learnt using Reinforcement Learning, human trajecto-
ries provide a strong prior to enable the learnt motions to be
human-like. Following this, synchronisation in the grasping
phase can be observed by matching the strength of the partner
and can additionally affect the perceived personality of the
robot, which highlights the affective nature of the interaction.
Finally, the shaking phase is where the main element of syn-
chronisation can be explicitly measured with the interaction
forces between the hands. This depends directly on how well
the shaking motion adapts to the that of the partner, leading
to low levels of interaction forces as the synchronisation gets
better. Though synchronisation is a major element of hand-
shaking, in reality, it is difficult to be completely in sync,
due to differences in hand shape and size, mental states etc.
Therefore, a leader-follower situation can arise in the differ-
ent stages as well, which could reflect on various personal
attributes of the interaction partners.

Although there is a considerable amount of work on the
topic, there are still some gaps in the current state of Human-
Robot Handshaking research. Based on what we have already
discussed above and their pitfalls, we propose the following
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Fig.3 Modified conceptual framework for Human-Robot Handshaking. (The proposed suggestions are shaded in grey.)

suggestions/open areas for further research on Human-Robot
Handshaking.

Suggestion 1 From the perspective of a robotic handshake,
making use of contextual cues would be effective in having
a successful impact of the handshake. As described in Sects.
2 and 6.3, different social contexts and moods have an effect
on the handshake. Being able to detect such cues additionally
requires further research in other fields like emotion recog-
nition, intent recognition, etc. Some works try and estimate
the mood/personality via the handshake [61,86], but there
is no explicit context detection in place, say for example
by detecting it from facial expressions[69], or possibly from

physiological data, and correspondingly using the insights
from Sect. 2 for fine-tuning the handshake.

Suggestion 2 Developing better social robotic interfaces
that have a force sensing mechanism and performing closed-
loop control can be more expressive, as seen in [1,80,82].
Currently most works do not implement proper grasping con-
trol (as shown in Table 3), which is key for capturing the
expressive ability of handshakes to its maximum. Addition-
ally, the human-likeness of an interface is just as important
for it’s perception. This can be seen in [25,87] where even
though a human was controlling the robot having a rod-like
end effector, this mode of shaking only got a human-likeness
score of 6.8\ 10 by the participants. Even sophisticated mech-
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anisms, like the Android robot used in [78] which has a soft
skin-like layer and heated palms, are still easily distinguished
from a human’s hand. One workaround could be to use sens-
ing gloves, like by Orefice etal. [61], which could help bridge
the gap between a sophisticated interface and social robots.

Suggestion 3 One important, yet relatively difficult task is
that of combining the different phases. For a more human-
like perception, a proper transitioning would be required
between each of the different phases. Only a few stud-
ies [17,35,51,67,89] look into combining pairs of different
phases but still do not implement an end-to-end behaviour.
There is still work that needs to be done to achieve a complete
handshaking behaviour. Along with this, the termination of
a handshake is an equally important criterion to make the
interaction more socially acceptable. Current works neither
take a smooth separation into account nor do they analyse the
effects of it. A prolonged handshake or an untimely termina-
tion can possibly be perceived as unnatural and can affect the
subsequent interaction [52]. Therefore an end-to-end hand-
shaking behaviour should take this into account as well.

Suggestion 4 Given that one of the main use-cases of hand-
shakes in shaping first impressions is in business cases, the
effect of robotic handshaking in such cases hasn’t been prop-
erly explored. This is especially important given the use of
social robots as front-line employees [31]. Bevan and Fraser
[12] study a part in a negotiation context. They look at the
impact of robotic handshaking on the impression of the nego-
tiation partner who teleoperated the robot. Moreover, they
conduct their study with a Nao robot, which can come across
as very childlike and not be taken as seriously in such settings.

While suggestions 2 and 4 are still subjective, sugges-
tions 1 and 3 are areas that can be objectively improved
and incorporated to improve existing methods not just for
Human-Robot Handshaking but would be applicable towards
other similar physically interactive behaviours as well. With
these two suggestions, a modified framework of Human-
Robot Handshaking is shown in Fig. 3 (the suggested aspects
are shaded in grey). Here the main importance is given to con-
textual modelling, which influences parameters like strength,
speed etc. by adapting them accordingly.

8 Conclusion

Handshaking is a versatile non-verbal interaction which plays
important roles in social settings. In this paper, we first draw
insights from human-human handshaking regarding timing,
trends in the grip strength and the synchronisation of shak-
ing. We then explore the different phases of handshaking,
namely reaching, grasping and shaking, while observing a
common aspect of synchronisation between the phases. We
finally discuss how handshaking affects the way the robot is
perceived and propose some directions for future work. How-
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ever, one thing to keep in mind is that handshaking is just one
in so many physical interactions all of which vary over dif-
ferent cultures, age groups, geographic locations, contextual
settings etc. To this end, learning different physically interac-
tive behaviours, such as hand-claps/high-fives, fist bumps, or
a combination of different touch-based interactions, would
help improve the perception of the robot. Being able to distin-
guish and learn such new physically interactive behaviours
on the go, building a skill library of sorts, rather than just a
single one like handshaking, could improve the sociability of
a robot.
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