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Abstract

Trust miscalibration issues, represented by undertrust and overtrust, hinder the interaction between drivers and self-driving
vehicles. A modern challenge for automotive engineers is to avoid these trust miscalibration issues through the development
of techniques for measuring drivers’ trust in the automated driving system during real-time applications execution. One
possible approach for measuring trust is through modeling its dynamics and subsequently applying classical state estimation
methods. This paper proposes a framework for modeling the dynamics of drivers’ trust in automated driving systems and
also for estimating these varying trust levels. The estimation method integrates sensed behaviors (from the driver) through a
Kalman filter-based approach. The sensed behaviors include eye-tracking signals, the usage time of the system, and drivers’
performance on a non-driving-related task. We conducted a study (n = 80) with a simulated SAE level 3 automated driving
system, and analyzed the factors that impacted drivers’ trust in the system. Data from the user study were also used for
the identification of the trust model parameters. Results show that the proposed approach was successful in computing trust
estimates over successive interactions between the driver and the automated driving system. These results encourage the use
of strategies for modeling and estimating trust in automated driving systems. Such trust measurement technique paves a path
for the design of trust-aware automated driving systems capable of changing their behaviors to control drivers’ trust levels to
mitigate both undertrust and overtrust.
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on subjective ratings. For example, individuals are asked
to rate their degree of trust on a scale ranging from 1 to 7
[7,16,31]. Although self-reports are a direct way to measure
trust, they also have several limitations. First, self-reporting
is affected by peoples’ individual biases, which makes a pre-
cise trust quantification hard to achieve [33]. Second, it is
difficult to obtain repeated and updated measures of trust
over time without stopping or at least interrupting the task or
activity someone is engaged in [10,52]. Specifically, it is not
reasonable to expect ADSs to repeatedly interrupt drivers and
ask them to complete a trust survey. As such, self-reported
measures of trust are not an approach that can be relied on to
assess drivers’ trust in real-time.

An alternative approach to measuring drivers’ trust through
Likert scale surveys is real-time estimation, done through
observing drivers’ actions and behaviors. However, there is
still much to learn about real-time trust estimation techniques
as the current approaches have various limitations. Current
approaches fail to provide trust measurements in scales tradi-
tionally used for trust in automation [ 1], or require prohibitive
sophisticated sensing and perception methods [1,26]. These
sophisticated methods include the processing of psychophys-
iological signals (e.g.: galvanic skin response), that are not
practical for the vehicular environments, where driver-ADS
interactions are likely to take place.

Considering the potential implications for ADS and
the far-reaching importance of trust estimation to HRI
researchers, our lack of knowledge in this area is a significant
gap. For example, given the difficulties involved in measuring
real-time trust in the HRI area, such techniques could prove
to be valuable across a wide range of robotic interactions
with humans. In the case of self-driving vehicles, the ability
to indirectly measure trust would open several design possi-
bilities, especially for adaptive ADSs capable of conforming
to drivers’ trust levels and modifying their own behaviors
accordingly. Trust estimations could be used in solutions
for issues related to trust miscalibration—i.e., when drivers’
trust in the ADS is not aligned with system’s actual capabili-
ties or reliability levels [11,24,31]. In a simplified approach,
trust can be inferred with only the identification and pro-
cessing of observable variables that may be measured and
processed to indicate trust levels. These observation vari-
ables essentially represent the behavioral cues present in
interactions between drivers and ADSs. However, because of
the uncertainty involved in humans’ behaviors and actions,
a successful trust estimation method must be robust to the
uncertainty present in measurements of these observation
variables. Predictive models for the variable to be estimated
can be used for the development of estimation methods that
are robust to uncertainty. Thus, there is a fundamental need
for trust dynamic models, describing: (i) how drivers’ trust
in the ADS changes over time and (ii) the factors that induce
changes in drivers’ trust in the ADS. This need highlights
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the importance of developing descriptive models for trust
dynamics over the events that occur within driver-ADS inter-
actions. Ultimately, these trust dynamic models are useful for
the development of reliable trust estimation techniques.

To address this gap, this paper proposes a framework
for the estimation of drivers’ trust in ADSs in real-time.
The framework is based on observable measures of drivers’
behaviors and trust dynamic models. Although different trust
estimation approaches have been previously reported in the
literature [1,26], our method is simpler to implement. Those
previous approaches represented trust as conditional prob-
abilities. Our trust estimates, instead, are represented in a
continuous numerical scale, which is more consistent with
Muir’s scale [32] and, therefore, also more consistent with
the theoretical background on trust in automation. More-
over, our estimation framework relies on a discrete, linear
time-invariant (LTI) state-space dynamic model and on a
Kalman filter-based estimation algorithm. This formulation
makes our trust estimation framework appropriate for treat-
ing the unpredictability that characterizes drivers’ behaviors
and for the design of innovative trust controllers. The trust
dynamic model is derived from experimental data obtained
in a user experiment with a self-driving vehicle simulator.
The estimation algorithm processes observation variables
that are suitable for the driver-ADS interaction conditions.
This trust estimator is intended to provide a means for the
self-driving vehicle’s ADS to track drivers’ trust levels over
time. It enables tracking drivers’ trust levels without the need
for directly demanding drivers to provide self-reports, which
can be disruptive and impractical [25].

The remainder of this paper is organized as follows: Sect. 2
discusses relevant literature. Sections 3 and 4 establish the
theoretical basis for the development of our model and esti-
mation solution. Section 5 presents details about the user
experiment. Section 6 presents the analysis of factors that
impact trust and the procedure for trust estimation. Sections 7
and 8 discusses the results and concludes the paper.

2 Related Work
2.1 Trust in Automation and Trust in Robots

Trust in automation has been discussed by researchers since
it was first identified as a vital factor in supervisory con-
trol systems [40]. Formal definitions of trust in machines
came from interpersonal trust theories [3,34] and were estab-
lished by Muir in the late eighties [31]. Muir identified the
need to avoid miscalibrations of trust in decision aids “so
that [the user] neither underestimates nor overestimates its
capabilities” [31]. Her work was then extended by Lee and
Moray, who used an autoregressive moving average vector
form (ARMAV) analysis to derive a transfer function for trust
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in a simulated semi-automatic pasteurization plant [21]. The
inputs for this model were system performance (based on the
plant’s efficiency) and faults. They later focused on function
allocation problems, and found that the difference between
trust and self-confidence is crucial for users to define their
allocation strategies [23].

The theoretical background on trust in automation has
formed the basis for the development of more specific trust in
robots measurement scales. Schaefer developed a scale that
relies on the assessment of forty trust items, related to the
human, the robot and the environment where they operate
[39]. Yagoda [51] created a measurement scale consider-
ing military applications and defining a list of HRI-related
dimensions suggested by experts with extensive experience
in the field. Charalambous et al. gathered qualitative trust-
related questions focusing on the industrial human-robot
collaboration (HRC) niche, and developed a trust measure-
ment scale for that specific context [6].

In this paper, we consider the widely accepted definition
of trust as “the attitude that an agent will help achieve an indi-
vidual’s goals in a situation characterized by uncertainty and
vulnerability” [24]. This definition aligns with Muir’s stan-
dard questionnaire for trust self-reporting, which we used
for trust quantification. Trust in automation is distinct from
reliance on automation. Trust is an attitude that influences
human’s reliance behavior, characterized by engaging in
automation usage. Trust miscalibrations are likely to induce
inappropriate reliance, such as automation misuse or disuse
[24].

2.2 Dynamics of Trust and Trust Estimation

Castelfranchi and Falcone [5] define the main aspects of
trust dynamics as: how do the experiences of the trustor
agent (both positive and negative experiences) influence trust
changes; and how the instantaneous level of trust influences
its subsequent change. These aspects are especially impor-
tant when a human agent (in this case, the trustor) interacts
with a machine (i.e., the frustee). As in a dynamic system,
trust evolution is assumed to depend on the trust condition
at a time instance and on the following inputs represented
by the trustor’s experiences with the trustee [21]. Several
works have considered these basic assumptions and pre-
sented different approaches for trust dynamics modeling. The
argument-based probabilistic trust (APT) model establishes
the representation of trust as the probability of a reliable
action, given the situation and system features [9]. In the
reliance model, reliance is considered a behavior that is
influenced by trust [24]. The three-layer hierarchical model
describes trust as a result of dispositional, situational and
learned factors involved in the human—automation interac-
tion [16].

A relevant approach for modeling the dynamics of trust
is that of Hu et al. [17], who developed a linear state-
space model for the probability of trust responses within two
possible choices: trust or distrust in a virtual obstacle detec-
tion system. In addition to developing trust-related dynamic
models, researchers have tried to use different psychophys-
iological signals to estimate trust. For instance, extending
Hu’s work [17], Akash et al. [1] proposed schemes for
controlling users’ trust levels, applying electroencephalog-
raphy and galvanic skin response measurements for trust
estimation. However, psychophysiology-based methods suf-
fer from at least two drawbacks. First and foremost, when
using the reported psychophysiological methods, trust is
not directly measured. Rather, the results of that method
are conditional probabilities of achieving two states (trust
or distrust), given prior signal patterns. Although this is a
reasonable approach, previous research suggests that trust
should be directly measured and represented in a continu-
ous scale [6,19,32,39]. Second, the sensor apparatus applied
in psychophysiology-based methods is intrusive and can
influence users’ performance negatively, bringing practical
implementation issues in applications such as self-driving
vehicles.

The work presented in this paper differs from previous
research in two ways. First, we propose a model that has
trust as a continuous state variable, defined in a numerical
scale consistent with Muir’s subjective scale [32]. Second,
we propose a simpler trust sensing method that relies only on
eye-tracking as a direct measure of drivers’ behavior. Other
variables that are used for sensing are intrinsic to the integra-
tion between ADS and the non-driving-related task (NDRT)
executed by the driver.

2.3 System Malfunctions and Trust

When not working properly, machines that are used to iden-
tify and diagnose hazardous situations—which might trigger
human intervention—can present two distinct malfunction
types: false alarms and misses [43]. False alarms occur when
the system wrongfully diagnoses nonexistent hazards. On
the other hand, when the system does not identify the exis-
tence of a hazard and no alarm is raised, a miss occurs.
These different error types influence system users differently
[2,27,28,54], and also have distinct impacts on trust. The
influence of false alarms and misses on operators’ behaviors
was investigated by Dixon et al. [13], who has established
a relationship with users compliance and reliance behaviors.
After being exposed to false alarms, users reduced their com-
pliance behavior, delaying their response to or even ignoring
alerts from the system (the “cry wolf” effect). On the con-
trary, after misses, users allocated more attention to the task
environment [12,47,48].
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It is clear that false alarms and misses represent expe-
riences that influence drivers’ trust in ADSs. As systems
that are designed to switch vehicle control with the driver
in specific situations, ADSs rely on collision sensors that
monitor the environment to make the decision to request
drivers’ intervention. Therefore, while other performance-
related factors—such as the ADS’s driving styles [4] or
failures on different components of the ADS—could affect
drivers’ trust, we consider that those collision sensors were
the most relevant and safety critical elements in SAE level 3
ADSs. In our study, we introduce system malfunctions only
in the form of false alarms and misses on the simulated vehi-
cle’s collision warning system, while keeping other factors
such as the vehicles driving style and other failure types
unchanged and generally acceptable: the vehicle followed
the standard speed of the road, and no other type of system
failure occurred.

3 Problem Statement

Our problem is to estimate drivers’ trustin ADS from drivers’
behaviors and actions in real-time, while they operate a vehi-
cle equipped with a SAE Level 3 ADS and concurrently
perform a visually demanding NDRT. Our method must
provide continuous trust estimates that can vary over time,
capturing the dynamic nature of drivers’ trust in the ADS.
The estimation method must avoid the impractical process
of repeatedly asking drivers their levels of trust in the ADS,
and be as unobtrusive as possible for sensing drivers’ behav-
iors and actions.

4 Methods
4.1 Scope

To define the scope of our problem, we make the following
assumptions about the ADS and the driving situation:

(1) the ADS explicitly interacts with the driver in events
that occur during vehicle operation, and provides auto-
mated lane keeping, cruise speed control and collision
avoidance capabilities to the vehicle;

(i1) the NDRT device is integrated with the ADS, allowing
the ADS to monitor drivers’ NDRT performance. The
ADS can also track driver’s head and eyes orientations;

(iii) drivers can alternate between using and not using the
driving automation functions (i.e., the vehicle’s self-
driving capabilities) at any time during the operation;

(iv) when not using the driving automation functions,
drivers have to perform the driving task, and therefore
operate the vehicle in regular (non-automated) mode;
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(v) using the capabilities provided by the ADS, the vehicle
autonomously drives itself when the road is free but it is
not able to maneuver around obstacles (i.e., abandoned
vehicles) on the road. Instead, the ADS warns the driver
whenever an obstacle is detected by the forward colli-
sion alarm system, at a fair reaction distance. In these
situations, drivers must take over driving control from
the ADS and maneuver around the obstacle manually
to avoid a collision; and

(vi) the forward collision alarm system is not perfectly reli-
able, meaning that both false alarms and misses can
occur, and the ADS acknowledges when these errors
occur. These false alarms and misses lead to interactions
that are likely to decrease drivers’ trust in the ADS. As
mentioned in Sect. 2.3, no other system malfunctions
were implemented in the simulation.

4.2 Solution Approach

Assuming that the variations of trust caused by the inter-
actions between the driver and the ADS can be quantified,
we decide to apply a classical Kalman filter-based continuous
state estimation approach for trust. There are three reasons for
applying a Kalman filter-based approach: (i) the fact that the
continuous output measures of the estimator could be useful
for the design of controllers and decision making algorithms
in future applications; (ii) the aforementioned well accepted
practice of using continuous numerical estimates for trust
in automated systems; and (iii) the difficulties related to the
stochasticity of drivers’ behaviors, which can be mitigated by
the Kalman filter with recurring measurements. Therefore, to
represent trust as a state variable, we need the mathematical
derivation of a state-space model that represents the dynam-
ics of trust. We assume that the dynamics of trust is influenced
by the trustor agents’ instantaneous level of trust and their
experiences over time [5].

The implementation of a Kalman filter requires the def-
inition of observation variables that can be measured and
processed in real-time. These observation variables must be
related to the variable to be estimated. Therefore, to satisfy
the ease of implementation requirements stated in Sect. 3,
we select a set of variables that were easy to sense and
suitable for being used in a vehicular spatial configuration.
The variables are: (i) the amount of time drivers spent using
the autonomous capabilities provided by the ADS, i.e., ADS
usage time ratio; (i) the relative amount of time drivers spent
focusing on a secondary task (the NDRT), measured with an
eye-tracker device, i.e., focus time ratio [25]; and (iii) drivers’
performance on that same NDRT, i.e., NDRT performance.
The focus time ratio obtained with the eye tracker is chosen
because it is conveniently easy to be measured in a vehicle,
and has been shown to be successfully representative of trust
metrics [25]. The other variables are chosen because they are
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assumed to be proportional to trust: the more a driver trusts
an ADS, the more s/he will use it; the more a driver trusts the
ADS, the better s/he will perform on her/his NDRT.

Finally, to identify the parameters of a model for drivers
trust in ADS, we need to obtain a training dataset contain-
ing both inputs and their corresponding outputs. The outputs
must be represented by drivers’ true levels of trust in the
ADS, which we can obtain by collecting their self-reports in
a controlled user experiment. Therefore, only for the purpose
of obtaining this training dataset, we establish a procedure
for asking drivers their levels of trust in the ADS.

4.3 Definitions

To implement our solution methodology, we must firstly
define the terms that will be used in our formulation.

Definition 1 (Trial)

A trial is concluded each time the driver operates the vehicle
and reaches the end of a predefined route.

Trials are characterized by their time intervals, limited by
the instants they start and end. Denoting these by #p and 7,
fo < ty, the time interval of a trial is given by [#g, 1] € RT.

Definition 2 (Event)

An event, indexed by a k € N\ {0}, is characterized each
time the ADS warns or fails to warn the driver about an
obstacle on the road. Events occur at specific time instances
t corresponding to k, g < - - - < tr, when the
ADS:

(i) correctly identifies an obstacle on the road and alerts
the driver to take over control;
(ii) provides a false alarm to the driver; or
(iii) misses an existent obstacle and does not warn the driver
about it.

Definition 3 (Event Signals)
The event signals are booleans L(t), F(t;) and M (t;) cor-

responding to the event k that indicates whether the event
was:

(1) atruealarm, forwhich L(t;) = land F(tx) = M(t;) =

0;
(i1) a false alarm, for which F(f;) = 1 and L(;) =
M(ty) = 0; or

(iii) a miss, for which M (#;) = 1 and L(#x) = F () = 0.

Definition 4 (Instantaneous Trust in ADS)

Drivers’ instantaneous trust in ADS at the time instance 7,
fo <t <ty is a scalar quantity, denoted by T'(z).

T (t) is computed from trust variation self-reports and
from questionnaires answered by the driver, adapted from
the work by Muir and Moray [32]. We re-scale the numer-
ical range of the survey responses to constrain 7(t) €
[Tin, Tmax], and arbitrarily choose Ty, = 0 and Ty, =
100. We also assume that 7' (¢) is immutable between two
events, i.e., for ty <t < t;41. We consider T (¢) to be our
basis for the development of the proposed trust estimator.

Definition 5 (Instantaneous Estimate of Trust in ADS)

The estimate of trustin ADS at the time instance ¢,f) <t <ty
is the output of the trust estimator to be proposed, and is
represented by 7 (¢). Its associated covariance is denoted by

X7 (1).

Definition 6 (Focus)

Drivers’ focus on the NDRT, represented by ¢(#x), is the
percentage of time the driver spends looking at the NDRT
screen during the interval [, tx41).

Definition 7 (ADS Usage)

Drivers” ADS usage, represented by v(f), is defined by the
percentage of time the driver spends using the ADS self-
driving capabilities during the interval [fy, fx+1).

Definition 8 (NDRT Performance)

Drivers’ NDRT performance, represented by m(f), is the
total points obtained by the driver in the NDRT during the
interval [#g, tx+1) divided by Aty = tr4+1 — t.

We also call ¢(t;), v(#), and 7 (#;) our observation vari-
ables.

Figure 1 shows a timeline scale that represents events
within a trial. The NDRT and its score policies are explained
in Sect. 5.

4.4 Trust Dynamics Model

To translate Castelfranchi’s and Falcone’s main aspects of
trust dynamics [5] into mathematical terms, we must rep-
resent the experiences of the trustor agent, the subsequent
change in trust, and relate those variables. Describing the
user experiences with the passing time and the event signals

@ Springer
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True Alarm Lte) = I _ F T
L) =1 Flty) =1 (te41) =0 ADS 7 DRIVER
\lk—-1) = 7 — /]
Fltio) =0 M(ty) =0 Fltis) =0
\[(;,‘7]):() Mltitr) =
R el v| 7w
I | - e
to trp—1 ty trt1 ty . .
T (and X
Before events Stopped vehicle ahead! Before event k + L: ES%];PASTTOR ( T)
k — land k: ‘ll?apke control now! ADS does not warn 27!
the driver about the
stopped vehicle ahead

Fig. 1 Timeline example for the stated problem. The event k — 1 is a
true alarm (there is an obstacle car and the ADS warns the driver about
it); the event k is a false alarm (there is no car but the ADS also warns
the driver); and the event k 4+ 1 is a miss (there is an obstacle car and
the ADS does not warn the driver about it)

while also considering their discrete nature, we can expect a
general relationship with the form represented by Equation

D,
T(try1) = [, T (), L(n), F(tx), M (1)) , ey

where [ : [10, t7] X [Tin, Tiax] X {0, 13> = [Tins Tnax].

Additionally, we can expect the relationship between
observations and trust to take the form represented by Equa-
tion (2),

()
v(t)
(k)

= h(t, T (), L(t), F (1), M (1)) @

where & : [to, 171 X [Tiins Tnax] x {0, 17 — [0, 11> x R.
For simplicity, we assume the functions f and h to be
linear, time-invariant, with additional random terms repre-
senting drivers’ individual biases. Moreover, we model trust
and the observation variables as Gaussian variables, and con-
sider the observations to be independent of the event signals
and within each other, representing the dynamics of trust in
the ADS with the LTI system state-space model in Equations

3,

L(t)
T(ter1) = AT (M) +B | F(te) | +ulte);
M (1) 3)
o(t)
v(tr) | = CT (%) + w(t) ,
7 (k)

where A = [a1] € R, B = [by) b1z bi3] € RS,

C= [611 21 C31]T e R¥> u(t) ~ N(O, 0142) and w(ty) ~
N, ).
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Fig.2 Block diagram representing the trust estimation framework. The
event signals L, F' and M indicate the occurrence of a true alarm, a false
alarm or a miss. The observations ¢, v and 7 represent the drivers’
behaviors. T is drivers’ trust in ADS while 7 and f)T are the estimates
of trust in ADS and the covariance of this estimate. A delay of one event
is represented by the z~! block

4.5 Trust Estimator Design

The state-space structure permits the application of Kalman
filter-based techniques for the estimator design. We then pro-
pose the procedure presented in Algorithm 1. Figure 2 shows
a block diagram representation of this framework, highlight-
ing the trust estimator role in the interaction between the
driver and the ADS.

Algorithm 1 Trust Estimator

1: procedure TRUST_ESTIMATION(T (1), 7 (1),
L(te), F(t), M), o (i), v(te), w ()
2: if £k = 0 then

A @(to)
3: T(t9) < (CTC)~'CT | v(1g)
7 (1)
4: fIT(to) «~ 1 > Initializes trust estimate and co-variance
5:  else
6: K < ﬁT(tk)CT(CXAIT(tk)CT +3=,)7! > Measurement
update starting with Kalman gain computation
P(t) .
7: O(ty) | < CT (t)
7 (1)
o (t) P(1) ]
8: v v | — |0 > Innovation
7 (1) 7 (1) |
9: T() < T()+Kv
10: X7 (tk) < Zr () — KCZr ()
. L(1)
11: T (txv1) < AT (tx) +B | F(t) > Time Update
| M (1)
12: 37 (te1) < ASr (AT + 0,
13:  endif

14:  return f"(lk+1), fJT(tk_H)
15: end procedure
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5 User Study and Data Collection

We reproduced the situation characterized in Sect. 4 with
the use of an ADS simulator. A total of 80 participants were
recruited (aged 18-51, M = 25.0, SD = 5.7, 52 male,
26 female and 2 who preferred not to specify their gen-
ders). Participants were recruited via email and printed poster
advertising. All regulatory ethical precautions were taken.
The research was reviewed and approved by the University
of Michigan’s Institutional Review Board (IRB).

5.1 Experiment and Data Collection
5.1.1 Study Design

We employed a 4 (ADS error types) x 2 (road shapes) mixed
user experimental design. Each participant experienced 2 tri-
als, and each trial had 12 events. These 2 trials had the same
ADS error type (between-subjects condition) and 2 differ-
ent road shapes (within-subjects condition). The ADS error
types that varied between subjects corresponded to 4 dif-
ferent conditions: control, for which all 12 events were true
alarms; false alarms only, for which the 2nd, 3rd, 5th, and 8th
events were false alarms; misses only, for which the 2nd, 3rd,
5th, and 8th events were misses; and false alarms and misses
combined condition, for which the 2nd and 5th events were
false alarms, while the 3rd and 8th events were misses. The
ADS error type was assigned according to the participants’
sequential identification number. The road shapes were rep-
resented by straight and curvy roads, and were assigned in
alternating order to minimize learning and ordering effects.

5.1.2 Tasks

We used a driving simulation designed and implemented with
the Autonomous Navigation Virtual Environment Laboratory
(ANVEL) simulator [14]. The NDRT was an adapted ver-
sion of the Surrogate Reference Task [18], implemented with
the Psychology Experiment Building Language (PEBL) [30].
Figure 3a shows the experimental setup with the tasks per-
formed by the driver.

In the driving task, participants operated a simulated vehi-
cle equipped with an ADS that provided it automatic lane
keeping, cruise control, and collision avoidance features. Par-
ticipants were able to activate the ADS (starting autonomous
driving mode) by pressing a button on the steering wheel,
and to take back control by braking or by steering. Figure 3b
shows the driving task interface with the driver.

With the ADS activated (i.e., with the vehicle in self-
driving mode), participants were expected to execute the
visual search NDRT. They were not allowed to engage in
both driving and executing the NDRT simultaneously, and
the experimenters would stop the test if they did so. Par-

ticipants were informed that the vehicle could request their
intervention if they identified obstacles on the road, as it is
expected for Level 3 ADSs [36]. They needed to find a “Q”
character among several other “O” characters, and obtained
1 point for each correctly chosen “Q”. Figure 3c shows the
NDRT interface with the driver.

Participants could not focus only on the NDRT, because
the ADS demanded them to occasionally take control of the
driving task. They were asked to be ready to take control
upon intervention requests from the ADS, as some obstacles
occasionally appeared on the road. At that point, the ADS
identified the obstacles and asked the driver to take control,
as the vehicle was not able to autonomously change lanes
and maneuver around them. If drivers did not take control,
the emergency brake was triggered when the vehicle got too
close to an obstacle, and then drivers lost points on their
ongoing NDRT score. In that situation, they still needed to
take control of the driving task, maneuver around the obstacle
and re-engage the autonomous driving mode. They lost 5
points each time the emergency brake was triggered.

With the events characterized by true alarms or misses,
drivers had to take control and pass the obstacle. Subse-
quently, they were asked about their “trust change”. When
asked, they had to stop the vehicle to answer the question
on a separate touchscreen. They reported their trust change
in the events characterized by true alarms, false alarms, and
misses. They had 5 choices, varying from “Decreased Sig-
nificantly” to “Increased Significantly”, as shown in Fig. 3d.
These choices were then used as indicators of the differences
ATkQ e {—2,—1,0, 1, 2} (we use the superscript Q to indi-
cate that the differences were quantized).

5.1.3 Procedure

Upon arrival, participants were asked to complete a con-
sent form as well as a pre-experiment survey related to
their personal information, experience with ADS, mood and
propensity to trust the ADS. After the survey, the tasks were
explained and the experimenter gave details about the exper-
iment and the simulated vehicle control. Participants then
completed a training session before the actual experiment
began and, in sequence, completed their two trials. After each
trial, participants were asked to complete post-trial surveys
related to their trust in the ADS. These surveys were admin-
istered electronically. Each trial took approximately 10 to 15
minutes, and the whole experiment lasted approximately 60
minutes.

A basic fixed level of cash compensation of $15.00 was
granted for the participants. However, they also had the pos-
sibility of receiving a performance bonus. The bonus was
calculated according to their best final NDRT score, consid-
ering both trials experienced by the participant. Those who
made up to 199 points in the NDRT did not receive a bonus.
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Please indicate the degree that your trust changed after this encounter.

Decreased Decreased Increased Increased
Significantly Slightly No Change Slightly Significantly
-2 -1 0 1 2

Fig. 3 Experimental design (a), composed of the driving task (b), the
NDRT (c¢) and the trust change self-report question (d). The trust change
self-report question popped up after every event within the trials (there
were 12 events per trial), including true alarms, false alarms, and misses

@ Springer

However, bonuses of $5.00 were granted for those who made
between 200 and 229 points; $15.00 for those who made
between 230 and 249 points; and $35.00 for those who made
250 points or more. From the total of 80 participants, 28 got
$ 5.00 bonuses, 6 participants got $ 15.00 bonuses, and no
participant got the $ 35.00 bonus.

5.1.4 Apparatus

Asillustrated in Fig. 3a, the simulator setup was composed of
three LCD monitors integrated with a Logitech G-27 driving
kit. Two other smaller touchscreen monitors positioned to the
right hand of the participants were used for the NDRT and
for the trust change self-report questions. The console was
placed to face the central monitoring screen so as to create a
driving experience as close as possible to that of a real car. In
addition, we used Pupil Lab’s Pupil Core eye tracker mobile
headset, equipped with a fixed “world camera” to measure
participants’ gaze positional data.

5.1.5 Measured Variables

Measured variables included participants’ subjective
responses, behavioral responses and performance. Observa-
tion variables ¢(tx), v(fx) and m(f;) were also measured
and averaged for the intervals (#, fx+1). Subjective data
was gathered through surveys before and after each trial,
including trust perception, risk perception, and workload per-
ception. We used questionnaires adapted from [32] and [35]
to measure post-trial trust and risk perception, respectively.
Eye-tracking data included eyes’ positions and orientations,
as well as videos of the participants’ fields of view.

T (tx) was computed from the post-trial trust perception
self-reports 7' (¢7) and the within trial trust change self-

reports ATQ, as in Eq. (4),

T(t12) =T(5);
12
4
T() =T —a Y ATZ, “
i=k+1

where k € {0, 1,2, ..., 11}, and o = 3. Therefore, the trust
measures T (#;) were back-computed for the events within a
trial. The « value was chosen to characterize noticeable vari-
ations in 7 (#), but also avoiding 7 (#;) values falling outside
the interval [Ty,i5, Tnax 1. Positive values for a between 1 and
3 were tested and provided results similar to those reported
in Sect. 6.

5.2 Model Parameters

Considering the formulation presented in Sect. 4 and the data
obtained in the user study, we turn to the identification of
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Table 1 Trust in ADS state-space model parameters

Parameter Value estimate S.E.M?

ar 0.9809 4.0 x 1073
b 3.36 0.29

b —0.61 0.32

b3 —1.30 0.31

i 6.87 x 1073 33 x 1074
1 9.10 x 1073 1.0 x 1074
31 438 x 1073 1.0 x 1074
o2 1.24 -

S diag(1.0, 1.6, 1.8) x 1073 -

48.E.M Standard error of the mean

parameters for the trust model and the design of the trust
estimator. We found the best fit parameters for the short-
term (i.e., with respect to events) trust dynamics represented
by the state-space model in Eq. (3). From the 80 participants,
we selected 4 from the dataset—each one chosen randomly
within each of the 4 possible ADS error type conditions—
and used the data from the remaining 76 to compute the
parameters, which are presented in Table 1. We used the data
from the 4 selected participants for validation. The param-
eters of the state-space model from Eq. (3) were identified
with maximum likelihood estimation through linear mixed-
effects models. Our models included a random offset per
participant to capture their individual biases and mitigate the
effects of these biases in the results, and to represent normally
distributed random noises.

6 Results
6.1 Participants’ Data Analysis

For each of the observation variables, we obtained 1920 mea-
surements (80 participants x 2 trials per participant x 12
events per trial). The parameters describing these distribu-
tions are presented in Table 2. The histograms for these
distributions are shown in Fig. 4; the probability density
functions corresponding to normal distributions NV (1, o(g),
N (1w, 02) and N (pir, 0.2) are also shown.

6.2 Trust Estimation Results

After obtaining the model parameters, we applied Algo-
rithm 1 to estimate the trust levels of the participants that were
excluded from the dataset. Figures 5al:a4 and 6al:a4 present
the trust estimation results for these participants (identified
as A, B, C and D). Participant A experienced the combined
ADS error type condition; participant B experienced the false

Table 2 Parameters for the Focus ¢, ADS usage v and NDRT perfor-
mance 7 measurements distributions

Parameter Distributions
7 v T

Minimum 0.02 0.17 0.00
25th percentile 0.32 0.69 0.28
50th percentile 0.47 0.74 0.33
75th percentile 0.65 0.79 0.38
Maximum 0.97 0.92 0.56
Mean p 0.49 0.73 0.32
Standard deviation o 0.20 0.08 0.08

alarms only condition; participant C experienced the control
condition; and participant D experienced the misses only
condition. The plots bring together their two trials and the
different estimate results for each trial. For participants A
and B, trial 1 was conducted on a curvy road and trial 2 on a
straight road. For participants C and D, trial 1 was conducted
on a straight road and trial 2 on a curvy road.

The accuracy of our estimates improved over time, as the
participants interacted with the ADS. Figure 5al shows that,
for participant A, trial 1, the initial trust estimate f"(t()) and
the initial observed trust 7 (fg) were close to each other (in
comparison to Fig. 5a2). This means that the estimate com-
puted from the observations taken at the beginning of the
trial, i.e., ¢ (p), v(?p), and w (#p), approximately matched the
participants self-reported trust level. Considering the Kalman
filter’s behavior, the curves remained relatively close together
over the events, as expected. Therefore the estimate followed
the participants’ trust over the trial events. This accuracy,
however, was not achieved at the beginning of the second
trial, as can be observed in Fig. 5a2. This figure shows that,
in trial 2, f"(to) and T (tp) had a greater difference, but this
difference decreased over the events as the curves converged.
A similar effect can be observed for participants B, trial 2 as
in Fig. 5a3:a4 and for participant C, as in Fig. 6al:a2.

Participants’ responses to similar inputs were not always
coherent, and varied over time or under certain conditions.
Predominantly, participants’ self-reported trust increased
after true alarms (indicated by the prevailing positive steps
at the events that are characterized by orange circles). In
addition, after false alarms and misses, they usually reported
trust decreases (indicated by the prevailing negative steps
at the events characterized by yellow diamonds and purple
triangles). However, it is noticeable that, for participant A,
trial 2, the self-reported trust was more “stable”, as indicated
by fewer steps on the red dashed curve. Two different fac-
tors could have contributed to the less frequent variations on
T (tx): as the participant was on a straight road, the perceived
risk might not have been high enough to induce drops after
false alarms; or, as it was the participant’s second trial, the
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Number of measurements
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Focus ¢

Fig. 4 Histograms for the Focus ¢, ADS usage v and NDRT per-
formance 7w measurements distributions and overlapping probability
density functions with corresponding means and standard deviations.

learning effects might have softened the self-reported trust
changes (especially after false alarms). In any case, the differ-
ence between the curve patterns in Fig. 5Sal and 5a2 suggests
a non-constancy on participant A’s characteristic behaviors.
A similar behavior was observed for participant C, trial 1
after the 8th alarm and for trial 2.

The observation variables we selected were effective in
representing drivers trusting behaviors. Figure 5b1:d4 show
the observation variables corresponding to the trust curves
in Fig. 5al:a4, while Fig. 6b1:d4 correspond to Fig. 6al:a4.
All observation variables have a positive correlation with
trust, and therefore it can be observed that some noticeable
peaks and drops in the observation variables correspond to
positive and negative variations in the estimate of trust in
ADS. This is especially true for counterintuitive behaviors of
the participants. For instance, as it can be seen in Fig. 5a3:d3,
after the 8th event—which was a false alarm—participant B
reported a drop in his/her trust level, indicating that 7' (1) <
T (t7). However, his/her behaviors did not reflect that drop:
we can notice that ¢ (13) > ¢(t7), v(f3) > v(t7) and 7 (t3) >
m(t7). As a result, the trust estimate had an increase, and
eventually we had f(tg) > f(t7). Similar counter-intuitive
situations can be identified for participants A, C and D.

The accuracy of the estimates depends on the covariance
parameters, which can be tailored for the driver. The trust
estimate bounds represented by blue bands in Figs. 5al:a4
and 6al:a4 are approximations obtained with the overlay of
several simulations (100 in total). This variability is due to
the uncertainty represented by the random noise parameters
u(t) and w(t; ), and the width of the bound bands is related to
the computed covariances ouz and X,,. Both lower values for
auz and higher values for X, entries would imply a narrower
band, meaning that the estimator would have less variability
(and therefore could be slower on tracking trust self-reports).
Meanwhile, higher auz and lower values of X, entries would
imply, respectively, a less accurate process model and on
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Each distribution had 1920 measurements (= 80 participants x 2 trials
per participant x 12 measurements per trial)

observations considered more reliable. This would charac-
terize wider bands, and thus the variations on the estimate
curves would be more pronounced.

Trust estimates may be more accurate with the individ-
ualization of the model parameters. Although we used the
average parameters presented in Table 1 for the results, a
comparison of Figs. 5a2, 6al and 6a3:a4 with Fig. 5a4, sug-
gests that the balance between ouz and X, should be adapted
to each individual driver. It can be seen that these parameters
permitted a quick convergence of 7 (#;) and f"(tk) for partic-
ipants A, C and D, but that 12 events were not enough for
the estimator to track the trust self-reports from participant
B. We also computed the root-mean-square (RMS) error of
the estimate curves resulting from the 100 simulations for
participants A, B, C and D. The RMS error distributions had
the characteristics presented in Table 3.

Considering the 100-points trust range, for participant A
the error stands below 10%, while for participants B, C and D
it stands below 20%. This difference suggests that the param-
eters of the model are more suitable for participant A than
for participant B, C and D.

7 Discussion
7.1 Contributions and Implications

The goal of this paper was to propose a framework for real-
time estimation of drivers’ trust in ADS based on drivers’
behaviors and dynamic trust models. As shown by the results,
our framework successfully provides estimates of drivers’
trust in ADS that increase in accuracy over time. This
framework is based on a novel methodology that has con-
siderable advantages over previously reported approaches,
mainly related to our trust dynamics model and the simpler
methods needed for its implementation.
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Fig.5 Trust estimation results for participants A and B. Participant A

straight road. Curves in (al:a4) show the estimation rgsults, indicating

that the estimator can track the trust self-reports, i.e., T (tx) approaches
T (1) over the events. This is made possible with the processing of the
observations variables focus time ratio (¢), ADS usage time ratio (v),
and NDRT performance (;r) presented in (b1:d4)

experienced both false alarms and misses (combined ADS error type
condition) while participant B experienced false alarms only (false
alarms only condition). For both participants, the first trial was con-
ducted on a curvy road, while the second trial was conducted on a
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Fig. 6 Trust estimation results for participants C and D. Participant C
experienced only true alarms (control ADS error type condition) while
participant D experienced misses only (misses only condition). For both

First, the sensing machinery required for implementing
our methodology is as simple and as unobtrusive as possi-
ble. Considering practical aspects related to the framework
implementation, we have chosen observation variables that
are suitable for the estimation of drivers’ trust in ADS. An
eventual implementation of the proposed estimator on an
actual self-driving vehicle would depend only on the utiliza-
tion of an eye-tracking system and on the integration between
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participants, the first trial was conducted on a straight road, while the
second trial was conducted on a curvy road

the ADS and the tasks performed by the driver. Our unique
observation variable that comes from a direct instrumenta-
tion of drivers’ behavioral patterns is the eye-tracking-based
focus on the NDRT. The other observation variables (NDRT
performance and ADS usage) are indirectly measured by the
ADS. Eye-tracking-based metrics are appropriate for trust
measuring as they do not require sensory devices that would
be impractical and/or intrusive for drivers. Although we have
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Table 3 RMS error of the estimate curves from Figs. 5 and 6

Participant Trial Mean Standard deviation
A 1 4.9 2.4
A 2 10.0 2.1
B 1 14.5 2.8
B 2 19.1 1.2
C 1 14.2 0.4
C 2 2.7 0.6
D 1 20.7 2.2
D 2 13.8 3.4

used an eye tracker device that has to be directly worn by the
participant, there exist different eye-tracking systems that do
not need to get in direct contact with the driver to sense their
gaze orientations, and could be used in a real world imple-
mentation of this framework.

Second, the results of our framework show that it can
successfully estimate drivers’ trust in ADS levels, but the
estimates accuracy were different depending on the driver.
The application of the model represented by Eq. (3) in the
trust estimator algorithm required average (population-wise)
state-space model parameters. These parameters were com-
puted with a minimization problem, and they are indications
of reasonable statistics for average values conditioned to
our pool of participants. However, these parameters could
vary drastically from driver to driver. In a more sophisticated
implementation of our modeling and estimation methodol-
ogy, the values from Table 1 should serve as preliminary
parameters only. A possible way to improve our proposed
methodology would be to the integrate it with learning algo-
rithms to adapt the model parameters to individual drivers.
Moreover, as drivers become accustomed to the ADS’s opera-
tion, these parameters might also vary over time (making the
time-invariant description from Eq. (3) not useful). There-
fore, an eventual ADS featuring our framework should also
be sufficiently flexible to track the changes in individual
drivers’ model parameters over time, as proposed in [49].

Third, the paper’s framework opens paths for more
research on the development of more complex models
and estimation techniques for trust. These techniques may
encompass both the driver-ADS context and other contexts
characterized by the interaction between humans and robots.
In the case of driver-ADS contexts, the events that trigger the
propagation of the trust state do not need to be restricted to
the forward collision alarm interactions characterized by true
alarms, false alarms and misses. A wider range of experiences
could be considered in the process model represented by Eq.
(3), such as events related to the ADS driving performance
or to external risk perceived by the ADS. Drivers could be
engaged in alternative NDRTSs, as long as they are integrated

with the ADS and a continuous performance metric is defined
as observation variable. In the case of interactions between
humans and robots in different scenarios, the concepts that
were defined in Sect. 4 are easily expandable to other con-
texts. The main requirement would be the characterization
of what are the events that represent important (positive and
negative) experiences within interactions between the human
and robot. These positive and negative experiences would
generally characterize the robot’s performance, which is an
essential factor describing the basis of trust, as identified by
Lee and See [24]. Robots that execute specific tasks in goal-
oriented contexts could have their performances measured in
sequential time instances that would trigger the the transition
of the trust state. For instance, these performance measures
could be a success/failure classification, such as pick and
place task with a robotic arm [41,44,50]; or a continuous
performance evaluation, such as when a follower robot loses
track of its leader due to the accumulation of sensor error
[37,38].

Finally, the paper’s framework provides trust estimates
that are useful for the design of trust controllers to be embed-
ded in new ADSs. In our framework, trust is modeled as a
continuous state variable, which is consistent with widely
used trust scales and facilitates the processing and analysis
of trust variations over time. This trust representation permits
considering the incremental characteristics of the trust devel-
opment phenomena, which is consistent with the literature
on trust in automation and opens a path for the develop-
ment of future trust control frameworks in ADSs. Since it is
developed in the state-space form, our method for modeling
drivers’ trust in ADS enables the use of classical application-
proven techniques such as the Kalman filter-based method we
have used in Algorithm 1.

In addition, a practical implication of the proposed esti-
mation framework is that it could be used in innovative
adaptive systems capable of estimating drivers’ trust levels
and reacting in accordance with the estimates, in order to
control drivers’ trust in ADS. These functionalities would
need to involve strategies to monitor not only drivers’ behav-
iors but also the reliability of the system (for example, the
acknowledgment of false alarms and misses mentioned in
Sect. 4.1, assumption (vi)). These errors could be identified
after a sequence of confirmations or contradictions of the
sensors’ states, while the vehicle gets closer to the event posi-
tion, entering the ranges of higher accuracy of those sensors.
Moreover, the system could request the driver to provide
it feedback about issued alarms to identify its own errors,
asking confirmation about identified obstacles or enabling
quick report of missed obstacles, a functionality that is cur-
rently present in GPS navigation mobile applications [45].
Although these questions could represent an inconvenient
distraction, this strategy is not as disruptive as demand-
ing drivers to provide trust self-reports, especially during
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autonomous operation. The integration between the ADS
and the NDRTs would also be needed for the assessment
of observation variables and, eventually, actions to increase
or decrease trust in ADS could be taken to avoid trust-related
issues (such as under- and over-trust). These trust control
schemes would be useful for improving driver-ADS inter-
actions, having the goal of optimizing the safety and the
performance of the team formed by the driver and the vehicle.

7.2 Limitations
7.2.1 Trust Modeling and Estimation Methodology

A limitation of our study relates to the assumptions asso-
ciated with how we derive the state-space model for trust in
the ADS. The relationships represented by Equations (1) and
(2) restrict the experiences of the trustor agent (the driver)
to the events represented by true alarms, false alarms and
misses of the forward collision alarm. In fact, other experi-
ences such as the ADS’s continuous driving performances
can characterize events that could be represented by signals
of different types other than booleans. The simplification of
the relationships represented by (1) and (2) to the LTI sys-
tem represented by (3) is useful and convenient for the system
identification process and for the trust estimator design. How-
ever, the resulting model fails to capture some phenomena
that are likely to occur during the interactions between drivers
and ADSs. These phenomena might include the variation of
model parameters over time (i.e., after a reasonable period
of drivers’ interaction with the ADS) or the possibly nonlin-
ear relationship between trust and the observation variables.
An example is the relationship between trust and NDRT per-
formance: it is unlikely that in a more rigorous modeling
approach we could consider these variables to be directly
proportional. Usually an excess of trust (overtrust) in a sys-
tem can lead to human errors, which might eventually result
in performance drops.

7.2.2 User Study

There are several other limitations that relate to our experi-
mental study. First, most participants were young students,
very experienced with video games and other similar tech-
nologies. Our results could have been biased by these
demographic characteristics.

Second, we employed a simulator in our experimental
study. The use of a simulated driving environment is a means
of testing potentially dangerous technologies. In general,
people tend to act similarly in real and simulated environ-
ments [15]. However, due to the risks involved in driving, we
acknowledge that participants might not have felt as vulner-
able as they would if this study had been conducted in a real
car.
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Finally, we employed a specific NDRT to increase the
participants’ cognitive load. The recursive visual search task
gives drivers the opportunity to switch their attention between
the driving and the NDRT very frequently. Other types of
NDRTSs could demand drivers’ attention for longer periods
of time, and this could induce a different effect on trust, risk
perception or performance. The NDRT performance metric
in this study is very specific and may or may not be general-
izable to other task types.

7.3 Future Work

Future research should focus on the use of this modeling
technique to design a trust management system composed
of the estimator and a trust controller. The trust manage-
ment system could compare the trust level estimates with the
assessed capability and reliability of the vehicle in different
situations, which would depend on the risk involved in the
operation. From the comparison, the trust calibration status
could be evaluated, and a possible mismatch between trust
and capability (or reliability) levels would indicate the need
for system reaction. This reaction would consist of actions
to manipulate trust levels, seeking to increase trust in case of
distrust (or undertrust) and to decrease it in case of overtrust.

Additional improvements to our framework may be
achieved by addressing the limitations of the reported user
study. A vehicle with autonomous capabilities can be utilized
to make the participants’ experience as similar as possible to
a realistic situation. Additionally, our methodology could be
tested in other different scenarios where the complexity of
the NDRT and of the environment are increased.

8 Conclusion

In this paper we presented a framework for the estimation
of drivers’ trust in ADSs. Our framework is applicable for
SAE level 3 ADSs, where drivers conditionally share driving
control with the system, and that system is integrated with a
visually demanding NDRT. In comparison to previous trust
estimation approaches, it has practical advantages in terms of
implementation ease and of the format of its trust estimates
outputs.

We investigated the effectiveness of the proposed frame-
work with a user study that is reported in Sect. 5. In this
user study, participants operated a simulated vehicle featur-
ing an ADS that provided self-driving capabilities for the
vehicle. Participants conducted two concurrent (driving and
non-driving) tasks, while reporting their levels of trust in the
ADS. Our goal was to establish a computational model for
drivers’ trust in ADS that permitted trust prediction during
the interactions between drivers and ADSs, considering the
behaviors of both the system and the driver. We found the
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parameters of a discrete-time, LTT state-space model for trust
in ADS. These parameters represented the average charac-
teristics of our drivers, considering the resultant experiment
dataset. With the parameters calculation it was possible to
establish a real-time trust estimator, which was able to track
the trust levels over the interactions between the drivers and
the ADS.

In summary, our results reveal that our framework was
effective for estimating drivers’ trust in ADS through the
integration of the NDRT and behavioral sensors to ADSs.
We also show, however, that a more advanced strategy for
trust estimation must take into consideration the individual
characteristics of the drivers, making systems flexible enough
to adjust their model parameters during continuous use. Our
technique opens ways for the design of smart ADSs able to
monitor and dynamically adapt their behaviors to the driver,
in order control drivers’ trust levels and improve driver-ADS
teaming. More accurate trust models can improve the per-
formance of the proposed trust estimation framework and,
therefore, are still required. However, the utilization of this
trust estimation framework can be a first step to designing
systems that can, eventually, increase safety and optimize
joint performances during the interactions between drivers
and ADSs embedded in self-driving vehicles.
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