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Abstract
Some applications of service robots within domestic and working environments are envisaged to be a significant part of our
lives in the not too distant future. They are developed to autonomously accomplish different tasks either on behalf of or in
collaboration with a human being. Robots can perceive and interpret data from the external environment, so they also collect
personal information and habits; they can plan, navigate, and manipulate objects, eventually intruding in our personal space
and disturbing us in the current activities. Indeed, such capabilities need to be socially enhanced to ensure their effective
deployment and to favour a significant social impact. The modelling and evaluation of a service robot’s behaviour, while not
interacting with a human, have only been marginally considered in the last few years. But these can be expected to play a
key role in developing socially acceptable robotic applications that can be used widely. To explore this research direction, we
present research objectives related to the effective development of socially-aware service robots that are not involved in tasks
that require explicit interaction with a person. Such discussion aims at highlighting some of the future challenges that will be
posed for the social robotics community in the next years.

Keywords Service robots · Robot acceptance · Robot etiquette · Non-interactive tasks · Socially acceptable behaviour

1 Introduction

Service robots are typically pictured as machines able to
coexist with people to provide cooperation and assistance
appropriately [27]. However, in the last decade, when dealing
with possible social effects of robots’ behaviours, in terms of
their impact on privacy, acceptance, trust and social bound,
the mainstream of research focuses on the development and
evaluation of robots’ capabilities in the context of direct,
face-to-face, interactionswith humanbeings [94]. This is par-
ticularly relevant in the case of social robots that are directly
intended as entities capable of engaging users in meaningful
interactions but also co-existing and performing tasks in the
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presence of other members of the community in a natural and
socially acceptable way [104].

In this context, the key domains are environments and
possible application areas that can be defined as “social”
[87], such as private homes, shops, public places, hospitals,
care homes, andworking environments. Nevertheless, within
these environments a service robot’s taskmay not necessarily
require direct interaction with people.

We can easily imagine scenarios in which a robot is
involved in some tasks while the user is busy doing his/her
activities. For example, a vacuum cleaner robot operating in
a private house while the user is watching TV, or a logistic
robot moving packages in a human-populated working envi-
ronment (see Fig. 1 for some examples). Such robots have
occasional encounters with people, although this is not their
primary task. To give another example, a home companion
robot assisting an older person will socially interact with the
person to provide cognitive, physical, social, or health-related
assistance, but might also have other tasks, such as monitor-
ing the environment. Even in situations when the robot has
no particular task to perform at a given time, it will share
the space with people. Thus, its behaviour during those peri-
ods may influence people’s perception and attitude towards
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the robot. In particular, sharing human personal spaces raises
new issues concerning privacy, and how this might be vio-
lated. This is not only by the possible share of sensitive
information but also by the intrusion in their personal life
and private space. Indeed, a violation of privacy could involve
information (e.g., personal information), physical (e.g., per-
sonal space,modesty), psychological (e.g., thoughts, values),
and social (e.g., intimacy) [102]. To perform their tasks, ser-
vice robotsmight need to acquire awide range of information
about the people they share the environment with [25,109].
Theymight also need to store information of the home spaces
and housekeeping styles to move autonomously in the house
[107]. However, people’s awareness of using robots that have
sensing capabilities able to create an accurate picture of the
private environment and life (e.g. with cameras and micro-
phones) negatively affect their acceptance of robots [101].

The ability of a robot to adapt its behaviour according
to social expectations [30], specific cultural norms [14], and
possible individual preferences [57], will determine the suc-
cess and large scale use of such service robotics application
[93], and also social robots.

Moreover, in complex collaborative environments
(whether humans and robots share tasks, or just the same
space and resources), indirect multi-modal communication
has a key role in enhancing the effectiveness of human–
robot interaction (HRI). Indeed, the possibility of different
communication modes might differently affect people’s per-
ception of a robot and their cognitive workload [1]. In the
past few years, these aspects have been mainly considered
while planning robots’ trajectories and paths. However, any
action and behaviour of a robot, whether in an interactive
or non-interactive situation, should always be perceived as
socially acceptable by human users or other non-users inhab-
iting the same environment. According to the definition of a
robot companion provided in [27], a robot should not just per-
form a task correctly and efficiently. Since people and robots
share the same physical environment, the robot should per-
form such tasks in a manner that is believable, legible, and
acceptable to people. This is also true in the case of non-
interactive tasks that will constitute the majority of a service
robot’s actions in the case of a fully day-to-day human–robot

coexistence. Therefore, we argue that the social robotics
community has to provide a relevant contribution to model
and design robots’ socially acceptable behaviours even in sit-
uations when a robot is not directly interacting with people.
This will allow the development of service robotics applica-
tions that can be fully deployed in everyday life.

This article does not intend to provide a systematic
state-of-the-art review of approaches regarding the imple-
mentation of socially acceptable behaviours. Instead, it aims
to discuss the main research objectives related to the effec-
tive development of robots’ social abilities in tasks that do not
involve direct interaction with a person. Any roboticist who
wants to develop and test social applications that go beyond
a remote-controlled mode, Wizard of OZ (WoZ), is aware
that these require capabilities to perceive more complex sit-
uations. HRI and Social Robotics investigations are strongly
influenced by different disciplines such as machine learn-
ing, distributed sensing, and software engineering. However,
the role that social robotics, as a discipline, will play in
the near future towards the effective development of service
robots is still to be concreted. In this work, we will briefly
introduce what has already been accomplished to effectively
support the design of socially acceptable behaviours during
non-interactive tasks in the past ten years. We will highlight
some of the related challenges that will be addressed in the
next ten years, and how the social robotics community can
play a leading role.

Firstly, either in working environments or in private
houses, robots have to be aware of their inhabitants and of the
social context of the environments they are acting in. Some
human inhabitants might be ‘users’, but the robot may also
have encounters with other people whomight only be present
during short periods while just sharing the same environ-
ment. Such context awareness is typically defined in terms of
cultural norms [20], social signals [113], and individual pref-
erences of its inhabitants [94]. The presence of human beings
makes the context extremely dynamic and mainly shaped by
human activities. In Sect. 2,we introduce the current perspec-
tives concerning the necessity to obtain the proper Human
and Context-Awareness. Moreover, since socially enhanced
robot behaviours require us to consider the human’s prefer-

Fig. 1 Example of non-interactive tasks: (a) vacuum cleaning; (b) remote monitoring; (c) pick and place of objects/delivery; (d) navigation in
public spaces
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ences and to incorporate situation assessment into the robot’s
decision-making process [38], in Sect. 3, Socially Acceptable
Decision-Making is discussed. Such decision-making activ-
ity is presented in terms of a planning process. It focuses
on the proper selection of actions required to achieve a goal
efficiently but also on the characteristics of plans that are per-
ceived as socially acceptable. Finally, in Sect. 4, we discuss
issues related to indirect Information Exchange, since, even
in the case of a non-interactive task, the robot’s behaviours
may cause a sort of indirect communication towards peo-
ple. This has an impact on the legibility and predictability of
such behaviours and on the acceptance of a robot itself. In
Sect. 5, we summarise the key aspects to design social robot’s
behaviours and point out the remaining challenges that are
posed for the social robotics community.

2 Human and Context Awareness

To effectively exploit autonomous capabilities that are
socially enhanced, a robot is required to sense its environment
but also to understand what happens within it [28]. Situa-
tion or context awareness is an established concept linked
to research in Ubiquitous Computing (UB). In UB, devices
are distributed in the environment to sense and interpret the
current activities of its inhabitants. Many service robot appli-
cations have been developed relying on such data [17,21,35].
As an example, in public spaces robots may require to know
the humans’ positions to track or to avoid them [42]. Hence,
a robot should have the ability to sense and elaborate infor-
mation regarding contexts to decide what to do, to predict
future situations, and to adapt its behaviour. Koay et al. [61]
identified different levels of situation awareness for a robot
as mediated by the ubiquitous devices: Physical Context—
related to physical properties of the environment and that can
be directly measured from sensors; User Context—in terms
of activities, locations, andpreferences; andRobotContext—
related to the activities of the robot itself. In the case of
non-interactive tasks, physical and robot context are com-
monly required to properly plan and act to achieve its goals.
User context, in terms of human and situational awareness, is
the one required to interact with a person, but also to socially
enhance the robot’s behaviour while not interacting.

2.1 Human Awareness

Robots that operate in human environments require the abil-
ity to sense people and recognise their activities during
both interactive and non-interactive tasks. In applications
of human–robot interaction, the robot’s perception capabil-
ities depend on the proximity of the interactions. In remote
interactions, a user is typically expected to remotely control
a robot (even in shared autonomy configurations). Hence,

they potentially share a common awareness of the external
environment. In a proximate interaction, close human–robot
distances help in providing reliable images and data to be
analysed by the robot to obtain situational awareness. How-
ever, the human and the robot’s points of view can differ
significantly during non-interactive tasks. The human may
not be in the field of view of the robot. The robot may be
acting in a different context to the person’s one. Robots and
humans might not even be in the same room. Indeed, while
datasets used in typical HRI studies are recorded assum-
ing a face-to-face interaction [120], the robot may not be
aware of the person’s location in non-interactive tasks. This
poses significant challenges to be addressed to obtain the
proper situation-awareness, and, especially, in the absence
of external sensors that could potentially enhance a robot’s
perceptual abilities (e.g., in a smart home context).

People detection and tracking are well-covered research
areas. However, in this case, the most common approach
is to install a variety of sensors in the home environment
to track the person [42]. In the literature, few approaches
are presented for searching the human relying only on a
robotic device with onboard-only sensors [82]. Algorithms
for human tracking are deployed to detect and track people
that are already in the proximity of the robot. They do not
consider that their relative movements and limited field of
view can make the person easily lost [99].

Finally, human awareness not only concerns the acknowl-
edgement of the person’s position and pose within the
environment but also the opportunity to understand the activ-
ity that the person is currently performing. For example,
robotic personal assistance may be required to recognise the
user’s Activities of Daily Living (eating, drinking, cooking,
watching TV, using a mobile phone, etc.) or emergencies,
such as fall detection [43]. Also for this case, approaches
in the literature either consider the availability of external
sensors [100] or assume a closed position of the robot with
respect to the user [63].

2.2 Social and Non-verbal Signals

Service robots’ applications are typically deployed to execute
autonomous behaviours. They are controlled by AI without
needing instruction or human help [9]. They behave always
in the same way, regardless of humans’ reactions [53]. On
the contrary, the importance of interpreting and recognis-
ing social and non-verbal signals during the interaction is
generally well recognised within the social robotics com-
munity [40,77]. These play a fundamental role also during
non-interactive tasks. For example, the interpretation of non-
verbal cues, such as gaze, posture, and back-channels, can be
used in the recognition of the person’s engagement during an
interaction, the same could be used to evaluate the person’s
discomfort or the disengagement from the current activity
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caused by the robot’s behaviour in the shared environment
[96]. A robot not interacting with a person, but performing
other tasks autonomously, or just charging its batteries in a
dedicated charging area, might influence people’s activities
and their attitudes towards the robot: e.g., people might find
the robot’s behaviours ‘distracting’, ‘annoying’, or ‘boring’.

Non-verbal cuesmay also be used to identify possible con-
flicting goals between a person and a robot, e.g., the human
maybe busy andmaynot bewilling to interactwhile the robot
may be seeking interaction, e.g. to offer assistance, and vice
versa [46,105]. It is important to detect if a person is willing
to interact with the robot or not [47]. Moreover, the proper
evaluation of the person’s “interruptability” affects the per-
son’s performance in his/her current activity, as well as the
performance of the robot’s task itself (for example in terms of
time spent waiting for the person to be ready to interact), and
it will influence the robot’s acceptance [6]. In this last case,
one may assume a closer and frontal position of the person
with respect to the robot, e.g. the person is within a “partic-
ipation” or interaction zone [111]. For example, in the case
of a bartender robot engaging with people to sell drinks [47],
the problem is to infer the person’s disposition to interact
from social cues, typically gaze and pose. In other cases, the
difficulties of getting data on such cues can be significant.
While robot and person may be moving around, distances
may prohibit the correct identification of such features.

Moreover, the proper recognition of a social human–
human interaction setting is also a key property in shaping
the behaviour of a robot. People that are already in a social
state may be more willing to be interrupted by a robot [46].

2.3 Intention Recognition and Situational
Assessment

The recognition of situational context relies on the percep-
tion of the physical and the social environment in terms of
observable behaviours and social events [87]. The simple
recognition of whether or not a person is willing to interact
with a robot is a type of intention recognition [85]. Indeed,
the recognition of complex activities and intentions requires
the ability to track a temporal pattern of actions and infer
the final goal. That is typically achieved by deploying prob-
abilistic models [79] or symbolic reasoning [81]. Therefore,
the intent and situational recognition rely strongly on the
availability of distributed and complex perception abilities.

The correct recognition of a person’s activity is also
fundamental for anticipation [62] and to achieve proactive
behaviour. The ability to infer the person’s goal, from the
observation of his/her actions, allows the robot to proac-
tively act to help (if needed) or to avoid to intrude. Beyond
pro-activity, the possibility of a correct interpretation of the
person’s intentions also allows to properly put constraints on

the future robot’s actions and to aid in the definition of the
proper context for decision-making.

2.4 Open Challenges

For social robots to be fully integrated into human environ-
ments, unique perceptual challenges are arising. The new
development of sensors, as well as the reliability of powerful
machine learning techniques to analyse data, have facilitated
substantial advances inmachine perception in the last decade.
However, the automatic interpretation of human non-verbal
cues, characterising the person’s state, is still very challeng-
ing since it involves the simultaneous analysis of different
elements from human observation [94]. Indeed, non-verbal
cues are the most used channel of communication. They can
also be used by a robot to infer intentions and to assess the
acceptability, comfort, and likeability of the human–robot
co-existence. To be able to interpret such signals, models
of how such cues relate to each other and contribute to the
multi-modal recognition of social signals, as, for example,
the willingness of a person to interact with it, are necessary.
Moreover, it is not only the ability to recognise such cues but,
more importantly, in the case of non-interactive tasks, to be
able to recognise the absence of such cues. For example, the
absence of the specific cue could represent a lack of interest
of the person toward the robot [46].

When tackling challenging problems in robot perception,
considering the static properties of the context can constitute
an advantage by reducing the current space of possibilities
[20]. For example, in the absence of robust detectors for a
person’s state, context awareness may play a fundamental
role [6]. Moreover, the concept of ubiquitous robots may
help overcome the current limitation in standalone robot per-
ception. It can provide the possibility of integration of the
robot data with the information provided by different ser-
vices running in the smart environment [21]. The Internet of
Robotic Things is in the direction of the seamless integration
of a robotic device within ambient intelligence. However, it
requires a substantial effort in abstracting the robot function-
alities, and in designing and providing them as plug and play
applications for interoperability [35] while relying only on
widely used common middle-ware, e.g. the Robot Operating
System1.

3 Socially Acceptable Decision-Making

A robot’s goals should be achieved by following models of
socially acceptable behaviours. For example, a robot that
wants to get into an elevator, where there are already peo-
ple inside, should firstly wait for people to exit the elevator.

1 https://www.ros.org.
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Once the people left the elevator, the robot should proceed to
enter [13]. As already discussed in Sect. 2, the robot should
be able to infer the activities and goals of people in addition
to merely detecting their presence. In the same way, humans
should also be able to understand robots’ actions and to infer
their goals (see Sect. 4). Studies showed that robot actions
are perceived similarly to human actions [124], by affecting
the way such actions are performed and planned.

Hence, when planning a sequence of actions in a shared
environment, the robot should consider that its own goal
could interfere or be in conflict with the humans’ goals [13].
For example, the person may not want to be interrupted and
distracted while involved in cognitively demanding tasks,
or when she would not want to hear the robot’s movement
noise once relaxing. A socially intelligent vacuum cleaner
should effectively plan its cleaning tasks taking into account
the person’s habits [36] in order not to cause discomfort. It
is important to take into account human activities even in the
case that such activities are not related to the robot’s ones.

3.1 Socially-Aware Navigation

In the literature, different approaches have dealt with human-
aware adaptation in planning by mainly considering the
robot’s trajectories and paths. In a human-populated envi-
ronment, a navigation task should not only be achieved
considering the efficiency, but rather reaching a trade-off
between efficiency or performance and human acceptance
[78,91]. This has a strong impact when planning trajecto-
ries in such shared spaces. For example, in a user monitoring
task, the robot should keep the proper distances and approach
direction to have good recognition performance. Moreover,
it has to pay attention not to disturb people who are involved
in other activities [91]. Hence, people’s comfort, in terms of
distances, speed, direction, and social rules, has to be con-
sidered while planning the trajectory to accomplish a goal
[66,93].

In this field, approaches typically differentiate between
path planning in the case of people freelywalking around or a
robot navigating in a space that is statically populated by peo-
ple. In the latter case, a typical example would be navigation
in a public space where there can be some possible conflict
between the robot and people moving [10]. In this case, reac-
tive strategies are deployed to modify the robot’s trajectory
with respect to the people, so that the moving people are not
treated simply as moving obstacles, but as human and social
beings. This requires a robot able to plan socially acceptable
behaviours so as to maintain social distances [110]. Predic-
tion strategies are also integrated into the planning activity
allowing the robot to perceive the intention and to predict
the behaviour of people moving around [10,68]. Moreover,
social rules, such as walking on the right/left side of a corri-
dor, are considered in the robot path generation [58]. In the

case of people with a static pose, the robot path planning
is conducted by considering sophisticated cost functions or
potential fields that take into account the person’s comfort
[19]. In these cases, strategies to minimise the probability
of encounters with people are developed using affordance
maps. These model the temporal behaviour of the people in
the environment, again by using a cost model [36].

3.2 Human Aware Task Planning

Concerning path planning, socially-aware action and task
planners require that the actions and the activities of other
cohabitants (humans or robots) are taken into account [23].
It also involves reasoning carefully about human-aware capa-
bilities, the mental, and physical states of the human partners
[69].

Human-aware task planning is mainly developed in the
context of planning a course of action for a robot that has to
collaborate with a human being [34], taking into account the
human mental state characteristics, such as possible beliefs
and plans, and the inattention states [33]. The capability of
inferring and recognising the individuals’ intentions, desires,
and beliefs, as well as their internal states, personality, and
emotions, is often referred to as Theory ofMind (ToM). ToM
refers to being able to acknowledge and understand the men-
tal states of other people. Moreover, it requires to use the
judgement of their mental state to predict their behaviour and
accordingly adapt their own decision-making process. In the
context of perspective-taking approaches [84], the robots’
reasoning process focused on recognising what the human
partner can perceive or not. Consequently, it is used to con-
struct a world model for the planning process from the point
of view of the user to reason and decide the current actions.
Indeed, these approaches are mainly considered in the case
of human–robot explicit interaction and collaborations,while
they could also play a fundamental role in planning for non-
interactive tasks.

The relationship between task planner and motion plan-
ners is commonly defined only in terms of re-planning once
the motion planner fails to achieve its goal. Some approaches
explicitly combine task and motion planning, recognising
that social awareness requires to take into account the task
planner. In detail, it is important to consider how the planned
actions affect the social context [87], for example, in the case
of non-interactive or collaborative tasks, bearing in mind
not to interrupt or distract the human. In this context, it is
fundamental to take into consideration the necessity of not
violating the social expectations of people [87], but also to
forecast the possibility of considering the human inferences
(e.g., possible goals and actions) in the robot planning so to
provide legible and predictable motions [37].

In general, the robot’s plan should be created by consider-
ing the human’s activities and plans to achieve a given goal
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without violating possible constraints generated by people’s
activities [23]. Hence, the temporal properties of a sequence
of actions have to be planned according to human’s current or
expected activities [17,35]. This could be achieved by relying
on the seamless integration of the robot’s planner with data
from distributed sensors and services assessing the context.
Social norms can also be defined explicitly and considered
during the planningprocess, thus generating social plans inte-
grating domain descriptions and norms [16]. The same also
holds in the case of culture-based norms that can influence
the generation of plans [15]. Gender and other individual dif-
ferences are additional variables to consider in this process.
Nevertheless, such norms are typically deployed in applica-
tions requiring direct human–robot interaction with little or
no consideration of non-interactive situations.

3.3 Cognitive Architectures for Robot Control

Beyond planning capabilities, the general ideas of Cognitive
Architectures include the possibility of deploying different
capabilities for robot control. These are, for example, mech-
anisms for perception, attention, action selection, memory,
learning, and meta-cognition.

For being able to exploit correct reasoning on perceptual
data, some authors argue that machine learning techniques,
alone, may not be sufficiently adequate to support personal-
isation and adaptation. Such characteristics are required to
improve robot acceptance, especially in the case of assistive
scenarios. An effective assistive system with a high degree
of user acceptance should be based on the knowledge of the
potential users, as well as on contextual and environmen-
tal information. This is essential to automatically generate
assistive plans and actions tailored to the specific user to be
executed by the robot [35]. Furthermore, these approaches
would entail a lack of control and explainability especially
when unexpected or not predictable behaviours occur. In this
direction, cognitive architecture could take advantage of rea-
soning on a symbolic knowledge of the human users and
the current situation as extracted from complex sensor data
[35,118]. According to [74], direct and explicit integration of
cognition is a compulsory step to enable human–robots inter-
action in semantic-rich human environments like houses.
The necessity of having a semantic representation to rea-
son about tasks and the environment was also highlighted in
[118]. In particular, this is necessary for multi-modal seman-
tic information exchange (see Sect. 4) involving verbal, body
movements, and graphical communication forms [50]. How-
ever, the extensive formalisation of a semantic system to be
used in a complex multi-modal setting remains an open chal-
lenge [24].

Finally, meta-cognition is necessary for social cognition
[64]. Aswe already said in Sect. 3.2, as robots needs to recog-
nise humanbehaviour and intentions, they should also be able

to use such knowledge in the decision-making process. Very
few architectures support this ability [64].

3.4 Open Challenges

Navigating into an environment populatedbyhumans requires
to take into account a complex system that goes beyond
the modelling of human–robot proximity, and that combines
obstacle avoidance and natural motion with the possibil-
ity of not causing discomfort. Works on human-aware path
planning capabilities still mainly focus on safety and avoid-
ance behaviours. While different path planning models are
proposed in the literature for dealing with personal spaces,
less attention has been given to scenarios involving mul-
tiple people [5,116]. Typically concepts of O-Space and
F-formations are used to detect groups of people involved in
a joint activity/conversation [26], but the dynamics of mutual
relationships obtained through social signal processing may
allow reasoning on more complex behavioural patterns.
Moreover, the development of proper strategies for path plan-
ning has to take into account that the person might be already
engaged in an activity, and needs to consider his/her personal
spaces [61]. Rios-Martinez [93] highlighted that the con-
cepts of activity and affordance spaces, dynamically defined
by the activity the person is performing, have to be consid-
ered. Shaping a robot’s task in this manner requires complex
situation-awareness capabilities to be effective when in the
presence of a person.

Indeed, during a navigation task, a robot needs to consider
human activities, plans and goals, preferences, groups, and
their interaction with the objects in the environment. These
considerations gobeyondgeneral path planning since also the
planning of the robots’ actions need to take into account the
user state, with ToM approaches, or his/her current goal and
activities. This goes in the direction of reasoning on possible
social norms and preferences to deploy socially-aware plan-
ners. Socially enhanced planning abilities will require more
and more integration of planning with contextual informa-
tion, but also the ability to integrate a human’s feedback into
the planning loop. Moreover, the perception of the person’s
nonverbal behaviour may provide useful feedback to evalu-
ate the possible discomfort caused by the robot [96]. In this
direction, online learning strategies exploiting the implicit
human feedback may provide a way to adapt the naviga-
tion to the social characteristics of the environment [4,91].
However, such approaches do not include the possibility of
reasoning about specific social norms because they may fail
in the provision of the person’s explicit preferences and lack
a mechanism for easy explainability of the robot’s behaviour
to people (see Sect. 4).

Finally, studies that aim to evaluate the person’s comfort
during human-aware path planning are either conducted in a
Wizard of Oz (WoZ) mode [96], or require complete knowl-

123



International Journal of Social Robotics (2020) 12:1265–1278 1271

edge of the environment and the position of the persons [75].
To be fully deployed, these methods need the support of
additional sensors to provide such knowledge, that are not
always effective due to the limited perceptual capabilities of
the robot’s field of view. To increase social autonomy in the
robot’s behaviour, robots need an effective augmentation of
their perceptual and reasoning abilities in a smart environ-
ment.

4 Information Exchange

Any verbal or non-verbal behaviour of the robot, even when
not directly interacting with a person, can be considered a
form of interaction [66]. Indeed, if the robot’s behaviour
creates discomfort, distraction, or has any impact on the
person’s behaviour and the acceptance of the robot, it can
be considered as a form of interaction. People are able to
communicate and interpret communication signals that go
beyond natural language and may involve gesture, pose,
and body language. In addition to those, they might engage
other humans with a bidirectional and mutual understanding
[108] that enables them to anticipate and read implicit inten-
tions and behaviours. Moreover, such indirect information
exchange can be influenced by human social conventions,
i.e., simple habits of social interaction, expectations, and per-
ception of robots.

Multi-modal cues are perceived by people as a better com-
munication mode [54], and they improve the effectiveness of
the information exchange [121]. This applies to robots both
with and without facial features. In the first case, several
models proposed the integration of head and eye-gaze move-
ments based on prosodic features extracted from speech [71]
aiming to more intuitive and natural communications. In the
second, speech and co-speech gestures (e.g. hand gesture,
pointing) have been used to direct people’s attention to spe-
cific objects in the surrounding environment [39]. The main
limitations in the currently developed systems are related to
the simulation of the human naturalness in a robot’s move-
ments, due to a lack of fine control over motors, and the lack
of deep knowledge of how humans produce and comprehend
multi-modal language [50].

4.1 Modelling Social Behaviour

Kruse et al. [66] distinguished between explicit and implicit
interaction. Explicit interaction is when the robot’s actions
are directly planned to induce a reaction in the human.
Implicit interaction is when such a reaction is not intended,
but it is a side-effect of the robot’s behaviour that is indeed
planned to take into account the person’s presence. Never-
theless, certain robots’ properties drive humans to anthropo-
morphise its behaviours, motions, and tasks [41,126]. For

example, a robot might be perceived as confident and to
have natural movements, whether or not it was planned to
express personality traits and natural behaviours. Moreover,
several studies have shown that modelling the timing and
velocity of a robot’s motion might change people’s percep-
tion of the robot [125]. For example, changes in the velocity
of the robot’s motion can elicit emotions [103], intent [48],
arousal and dominance [103].

Different robot non-verbal behaviours, when it is not
engaged in any interaction, were studied to evaluate if the
person would notice changes in nonverbal cues and whether
the robot’s behaviour would change the participant’s per-
ception of the robot itself [73]. Here, a robot watched a
humanperforming a task and synchronised its behaviourwith
the human’s behaviour in either positive or negative direc-
tions, through expressing gaze behaviour. Although gaze
patterns are often used to achieve a collaborative human–
robot interaction [55], these also play a fundamental role
during non-interactive tasks. Indeed, it has been observed
that people respond to a situation where a companion robot
is following the person’s actions using head gaze [73]. The
robot’s behaviour, compared to a non-moving robot, created
a positive disposition towards the robot.

4.2 Transparency, Legibility, and Predictability

Communication within social environments is usually bi-
directional; therefore, it is important that both robots and
people are able to understand and predict behaviours during
their interactions. In particular, a robot’s behaviour is defined
as legible if humans can understand the robot’s intentions
and if it meets their expectations [18]. A robot’s behaviour
is predictable when people are able to predict its actions,
motion trajectories and goals [12,44]. Since the legibility and
predictability of the robot’s behaviours are both essential in
building people’s trust in robots and, consequently, improv-
ing the quality of the interaction, they could be interpreted
as necessary to improve transparency [2]. On the contrary, a
robot that is not able to communicate its own statemay create
anxiety in humans [88] and may negatively affect human–
robot co-existence [2].

Moreover, the perception of the usefulness of a robot’s
capabilities affects people’s trust in robots [52]. Trust has
a key role in any people’s acceptance of a robot and their
willingness to use them [80]. Several studies [3,98] suggested
that greater shared awareness among the agents involved,
their activities, and situations occurring between humans and
robots enhances individuals’ trust in robots. Indeed, trust is
also affected by other factors [22,95], such as failure rates
and transparency.
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4.2.1 Transparency in Robot’s Motion

Transparency of the robot’s intention and behaviours facili-
tates communication, both direct and indirect, and provides
humans with the opportunity to understand the potential
implications, risks, and benefits of using service robots [8].

When moving around in an environment, the ability to
create natural motion has been shown to increase the robot’s
acceptability and its perceived safety [76]. A motion that
is more similar to human expectations is more legible and,
thus, easier to be interpreted by the human being observing
the robot’s behaviour [67,117]. The naturalness of move-
ments, modelled varying a robot’s velocity and orientation,
contributes to the perceived autonomy of the robot [89].

In a navigation task, motions of the robot may indicate
a goal direction and the robot can visibly acknowledge the
presence and status of obstacles and humans [67]. While
autonomous cars and some proposed robot applications [7]
use lights and LEDs to signal change of directions and
motion to people, more natural approaches include head
movements and body orientation to express the intention
of the action [83]. Such approaches enhance the percep-
tions of the naturalness of the robot’s behaviour. Moreover,
higher acceptance and sense of comfort of robots navigat-
ing in human-populated environments can be obtained not
only by introducing social concepts, such as social distance
or proxemics. It can be obtained also by using other social
conventions, such as directly addressing the people to solve
the encountered issue [97]. For example, in an environment
cluttered by people, a robot behaviour that slows down and
asks people politely to make room for the robot to pass might
be perceived positively [97].

Intention recognition from the robot motion is also crucial
in applications different from the navigation. For example,
movements such as gaze and hand gestures could be fun-
damental for helping a human in recognising the objects of
interest for the robot and, consequently, its goal. [119,122].
Moreover, animal-inspired movements and cues can also be
used to communicate the robot’s behaviours in the case of
different embodiment features [70].

4.3 Open Challenges

People’s prior experiences and learned associations affect
their perception of robots. However, the general popula-
tion’s experiences with robots are often limited to fictional
movies and stories. People are also beginning to get used
to interact with virtual interactive conversational systems,
such as the Amazon Alexa series2. The familiaritywith these
technologies might affect their expectations while sharing
environments with robots. Nevertheless, the current state of

2 https://developer.amazon.com/alexa.

robotics research is still far away from robots portrayed in
science fiction [65], and anthropomorphic robots do not yet
fully meet people’s expectations.

People’s expectations may also vary according to the role
of the robot (e.g. supervisor, subordinate, peer) and the rela-
tionship in the interaction with people, which also shapes
their expectations when not interacting with robots. For
example, people might be more willing to accept and trust a
robotwhen it plays an authority figure, such as a food delivery
robot compared to an anonymous robot [11]. However, since
the type and length of the relationships, i.e. long-term rela-
tionships, between humans affect their trust and acceptance
[106], we expect that the social dynamics between robots
and humansmight similarly be impacted by repeated interac-
tions. Relationships can also change over time, for example,
due to a breach of trust, and it is also important to consider
correct and incorrect actions/behaviours of the robot and the
humans, and how these impact on their relationships.

It is important to consider what kind of robot’s communi-
cation modes and feedback is more useful, clear, and better
accepted by individuals to be legible. Assuming that natural
language and gestures are the most common way of com-
munication used by humans, it is not clear how to deal with
this issue during the non-interactive tasks. This also needs to
consider that humans can identify different implicit commu-
nication signals, as, for example, dog-inspired ones [60,115].
Moreover, it is not yet clear how a robot should acknowledge
that a person’s intention has been recognised and taken into
account in its actions, and how to model uncertainty in the
understanding of the human’s actions without direct com-
munication. Similarly, the robot should be confident that the
human understands and predicts its intentions correctly. The
key for successful coexistence between people and robots
should consider a robotic system that can perform legible
motion and intent recognition autonomously and in real-time
during interaction with people.

Moreover, group dynamics can change humans’ percep-
tion and robot acceptance, in cases where multiple robots
and/or multiple humans are present. Social interactions in
the presence of groups are still not sufficiently explored in
HRI.

5 Discussion and Conclusions

In the last decade, the service robotics community focused on
developing skills and capabilities to make robots
autonomously performing tasks on behalf of the user and
to simulate human-like intelligence in machines [31,86,90,
112]. Nowadays, robots are able to plan, navigate, manip-
ulate objects, and reason on the properties of environment.
However, all these functionalities are efficiently deployed in
static and dynamic non-social environments. Few consider-
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Fig. 2 From service robots to social entities: main research objectives as identified in this paper for effectively deploying a service robot that can
perform tasks that do not require a direct interaction with a person

ations have been made concerning the humans and workers
that, even if not directly interacting with the robots, may
be sharing the same space with them. In these environments,
humanbeings aremainly considered to guarantee their safety.
The presence of human beings is considered only in the case
of a direct, face-to-face interaction. HRI studies aim at mak-
ing this interaction as natural as possible, also considering
the social aspects of the communication. However, service
robotics applications are expected to accomplish many dif-
ferent tasks that do not require interaction with or receiving
instruction by the user. These are typically achieved without
taking into account the possible reactions of human beings.
In this context, even for a vacuum cleaner, we claim that
the development of socially-aware behaviours and actions is
deemed important.

In this work, we identified some of the principal avenues
that can contribute toward this research direction. These are
summarised in Fig. 2 where we show how they constitute a
path leading to improved user acceptance and, consequently,
the market for social robots. First, a robot, to be able to
autonomously run in real environments, has to be able to
understand the person’s social needs. This can be done by
taking into account the users’ profiles and enhancing the
robots’ perceptual capabilities using external devices, aug-
menting the perception possibilities, but also by external
services for faster and reliable integrated computation. As the
perceptual requirements need more of a software engineer-
ing approach to be fully realised, the possibility of obtaining
a situational assessment from the indirect observation of the
person’s behaviour is of fundamental importance.Moremod-
els combining the consideration of the presence and absence
of different multi-modal features are required to properly
assess the social context. Non-verbal cues and social signals
are defining the social situational context of the environment
the robot is operating in. With respect to a close interaction,
the proper perception and recognition of such signals (or their
absence) require the augmentation of the robot’s perceptual

capabilities with ambient services providing such informa-
tion. Moreover, to obtain the properties that describe such
models, more observational studies are required.

In future, we will see more and more robotic appli-
cations that will rely on the concept of the Internet of
Robotic Things. This will also allow the research com-
munity in deploying more “in the wild” experimentation.
Robotic applications, in research, are usually developed and
tested in laboratories or controlled environments (where such
extended perception is already available). The technological
progress and advancements do not yet allow deployment for
real-world applications and long-term use of such systems.
There are already examples of long-term fully autonomous
co-existences of robots and humans that exceed a few weeks
(of interaction tasks) [29,56]. Long-term experiments lead
to observations of human behaviours that go beyond the
initial novelty effect and that have to be considered in the
design process.Wemay see protection of the robot, mimicry,
social comparison, and even jealousy [72] and that will heav-
ily depend on the robot’s social awareness and behaviours.
For example, over many weeks, people may form a closer
relationship, a sort of alliance [59]. In contrast, the disen-
chantment, end of the novelty, the robots’ restrictions and
errors, and lack of realistic expectations can induce people to
stop using a robot and instead replacing it with other devices
[32].

In the scenario of long-term cooperation with no interven-
tion from technical personnel, robots need to observe their
users and other people sharing the same environment, but
also learn from, and adapt to them. Individuals’ differences
are crucially important when designing ad-hoc long-lasting
HRIs. In particular, a robot’s self-adaptation should sat-
isfy people’s needs, in terms of cognition, personality and
emotional characteristics, preferences, and habits. To ensure
the social acceptance of a robot, several factors that affect
humans’ perception of robots will require further consider-
ation [30]. A robot’s decision-making process that has both
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reactive andpredictive strategies taking into account humans’
activities and intentions, but also their indirect feedback,
plays a key role in supporting viable long-term human–robot
interaction. In this direction, the human-aware path planning
research area has already started to take into account that
human acceptance of the robot’s behaviour (while moving
around in the environment) is a fundamental step, even when
it might come at the cost of performance reduction. Such
considerations have to be also extended to task planning. Per-
ception, reasoning, and planning have to take into account
also social and cultural norms and the possible dynamics
among multiple interacting people.

Adaptation to preferences can be achieved by the use of
cognitive architectures for the robot control that include ToM
(Theory of Mind) models and meta-cognition capabilities to
reason about social norms and acceptable behaviours. When
planning the course of action, a robot should consider the
current state of the human beings populating the environ-
ment. This has an impact on the selection of the proper
actions but also on the way such actions have to be exe-
cuted. The combination of machine learning techniques, to
identify the relevant contextual characteristics and possible
user’s reactions, with the reasoning capabilities will foster
also the possibility of achieving explainable behaviour.

In the same way, a robot’s actions provide indirect infor-
mation to the surrounding people expressed through its
behaviour and social cues. The social attitude in robots’
behaviours and actions influence the person’s expectations
and perception of privacy, safety, and reliability of a robot.
Although legibility and predictability of a robot’s behaviours
influence positively the interaction between humans and
robots, the development of mechanisms for legible commu-
nication of the robot’s intentions and the interpretation of
humans’ actions are not easy tasks. In the end, since the legi-
bility and predictability of the behaviour are both essential in
building people’s trust in robots, these are fundamental issues
to properly address the market demand for social robots.

To evaluate the impact of all these features on the user’s
acceptance, proper metrics have to be defined. In the litera-
ture, a set of task-specific metrics [114] (e.g., for navigation
andmanipulation), as well as metrics related to human–robot
collaboration and interaction [123], or safety perception
[45,92] are considered. The same holds in the case of shared
autonomy [49]. Moreover, when evaluating user perception
of changes in robot behaviour, most studies exclusively rely
on the use of questionnaires. Only a few studies attempted
to reflect users’ emotional responses to the robot’s motions
using some physiological measures [51]. Indeed, the same
social cues required to achieve human and situational aware-
ness could be used for defining indirect measurements of the
service robot’s acceptance. However, there is no clear con-
sensus on evaluation metrics to be used in the development

of socially-aware service robotics, since they also require a
trade-off between performance and acceptance.

In general terms, we conclude that socially-aware ser-
vice robotic systems should catch the focus of researchers to
build a fruitful and successful co-existence between humans
and people. The concept of a possible trade-off between the
robot’s performance in accomplishing its goals, and the con-
sideration of the social environments, in terms of humans’
safety, acceptability, comfort, and trust, will play a central
role for the mature development of service and personal
robots. Consequently, these robots will be deployed with
greater success in various markets. In order to succeed in this
intent, the robot’s capabilities have to be socially-enhanced
even at the expense of its performance. “Social intelligence”,
beyond direct human–robot interactions, is what it is miss-
ing. Hence, the social robotics community needs to play a
central role in leading the development of such service robot
applications.
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