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Abstract
Socially assistive robots are a promising technology for supporting residential care facilities to provide stimulating recrea-
tional activities to residents in group settings. In order for caregivers to teach robots customized recreational activities for 
residents in their facilities, these robots need to be able to learn such activities from non-experts. In this work, we present 
a novel learning from demonstration system that allows socially assistive robots to learn customized group recreational 
activities from caregivers and facilitate these activities with users. We validate the usability and effectiveness of the pro-
posed system by conducting a robot teaching study with caregivers and the Tangy robot at a local residential care facility. 
The caregivers found the learning system easy to use, experienced moderately low perceived workload, and were able to 
successfully teach Tangy the game of Bingo. Once Tangy learned the game, it autonomously facilitated Bingo games with 
elderly residents. The residents found the robot behaviors, personalized by the caregivers, both helpful and entertaining. 
Furthermore, they enjoyed playing Bingo with Tangy and would participate in future games.

Keywords Socially assistive robots · Learning from demonstration · Non-expert robot teachers · Group-based activities · 
Caregivers and older adults

1 Introduction

Socially assistive robots (SARs) are being integrated into 
residential care settings to assist in engaging older adults in 
group-based recreational activities [1, 2]. Such stimulating 
activities have the potential to maintain or improve older 
adult health by reducing the risk of cognitive and physi-
cal decline, heart conditions, and depression [3]. However, 
current robots are limited to the activities pre-programmed 
on the robots by roboticists. Non-expert robot teachers (i.e. 
caregivers) cannot customize activities based on user needs. 
This limits the efficacy of robots as older adults have a 
diverse set of recreational needs due to differences in physi-
cal and cognitive health, functional capabilities, and activity 

preferences [4]. Caregivers frequently adapt activities from 
their traditional counterparts to account for the capabili-
ties of older adults [4]. Such customization of activities can 
improve activity engagement and the overall moods of older 
adults [5].

Our research focuses on developing SARs that can auton-
omously facilitate recreational activities with older adults 
in residential care settings to provide both cognitive and 
social stimulation. Our current efforts are towards develop-
ing robots that are capable of learning customized group 
recreational activities from non-experts (i.e. caregivers) in 
residential care settings and implementing these activities 
with older adults. Such customization capabilities will allow 
caregivers to improve engagement of older adults in these 
activities by adapting them to the needs and preferences for 
their facilities.

In this paper, we present the development and implemen-
tation of a unique learning from demonstration (LfD) system 
for SARs to learn customized group recreational activities 
from non-expert demonstrations. Herein, we define non-
expert teachers as individuals inexperienced with program-
ming robots. The main contributions of this work are: (1) 
the development of a LfD system architecture capable of 
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learning the structure of non-sequential multi-step social 
activities without requiring explicit activity rules from 
teachers and a model of demonstrators’ non-deterministic 
activity facilitation behavior; (2) a robot teaching study with 
caregivers using the proposed LfD architecture to teach a 
social robot a cognitively stimulating recreational activ-
ity in order to investigate usability, workload and overall 
user experience; and (3) a human–robot interaction (HRI) 
study with older adults using the learned activity and robot 
behaviors to determine if the robot’s personalized activity 
behaviors were helpful and engaging.

2  Robot Task Learning from Demonstration

LfD approaches can be categorized into: action-level learn-
ing—low-level manipulation tasks, and task-level learning—
using low-level actions to perform high-level complex tasks 
[6]. Our research focuses on task-level learning, which is 
achieved by learning state-action policies by mapping world 
states to primitive robot actions. Namely, a world state refers 
to all the states (e.g. robot state, object state, person state) 
relevant to a given task. Compared to end-user programming 
approaches such as those presented in [7], LfD approaches 
do not require any understanding of programming concepts 
(e.g. loops, functions, conditional statements, etc.) by the 
non-expert teachers. Instead the challenge of designing the 
programming logic for a task is addressed solely by the 
learning system.

In general, task-level learning using LfD has mainly 
focused on teaching robots to perform physical tasks such as 
assembling a table [8] or rotating car tires [9]. These physi-
cal tasks can be accomplished sequentially as the world is 
often static, only behaviors of the robot modify the world 
state, and human demonstrated behaviors are often determin-
istic with one behavior always being executed in the specific 
state [10].

Learning social tasks from demonstration is a new emerg-
ing research area. It is unique as the world is usually dynamic 
due also to the ability of the behaviors of the users engaged 
in the interactions to alter the world state. In a social task, 
these user behaviors are often due to changes in the user’s 
intent, affect and/or needs. Therefore, the robot must be able 
to adapt in real-time to these different behaviors. Further-
more, the behaviors demonstrated by caregivers are often 
non-deterministic when facilitating social activities. For 
example, the caregivers in residential care facilities spon-
taneously provide encouragements, jokes, or instructions 
during a social activity with older adults to promote social 
engagement or encourage participation in the stimulating 
activity [11]. Hence, a robot learning to facilitate social tasks 
will need to model such non-deterministic behavior.

To-date, a handful of work has focused on addressing 
some of the challenges associated with robots learning social 
tasks from human demonstrations. These include: (1) our 
previous work on using LfD to have a robot learn group rec-
reational activities from demonstrations conducted in simu-
lation by non-expert teachers [12], (2) an interface designed 
for non-experts to develop policies for a service robot in 
a smart home [13], and (3) a methodology for a robot to 
learn social affordances from interactions to accomplish a 
physical task in collaboration with a human partner [14]. In 
our previous work, the social robot Tangy learned the group 
recreational activity Bingo from teleoperation-based dem-
onstrations performed in simulation by university students. 
A teacher demonstrated a task by controlling the robot’s 
pre-determined behaviors during a Bingo game simulation. 
The prior system was not capable of learning the individual 
behavior motion trajectories or speech from human demon-
strations and could not learn a model of the non-determin-
istic activity facilitation behaviors of a demonstrator. In the 
present work we have extended the system architecture to 
enable non-expert teachers to demonstrate new individual 
behaviors to the robot and learn non-deterministic activity 
facilitation behaviors from their demonstrations. We also 
focused on evaluating the system at a residential care facility 
with non-expert caregivers, who are the targeted user group 
for our LfD system. Namely, we evaluated their perceptions 
on the usability, user experience, and workload of the pro-
posed learning from demonstration system. Furthermore, we 
evaluated the performance of the LfD system for autono-
mously facilitating an activity with older adult residents after 
it has learned the activity from caregiver demonstrations.

In [13], non-expert teachers developed task policies for 
the Care-O-bot 3 through a GUI to have the robot perform 
simple single step assistive tasks such as providing remind-
ers to older adults in a smart home. Each teacher used the 
GUI to generate a task policy by providing explicit rules for 
the task. These inputs were then used to model a task using 
IF–THEN rules. The robot teaching system was evaluated 
with young and old teachers. Participants thought the system 
was both useful and usable. The approach presented in [13] 
requires teachers to provide explicit rules, which places the 
challenge of creating accurate task policies in the hands of 
the non-expert teachers. This can be an especially complex 
process for non-sequential multi-step tasks as teachers would 
need to have an expert understanding of how a task is mod-
eled and learned by the robot [6]. Furthermore, the afore-
mentioned system is deterministic in that teachers can only 
assign one behavior to each world state, and therefore the 
execution of multiple different behaviors in a single world 
state is not possible.

In [14], the iCub robot learned social affordances from 
human interactions to enable it to socially interact with a 
human to accomplish an object placement task. Namely, a 
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study was conducted where the iCub robot utilized social 
affordances, such as socially requesting for human assistance 
with a set of verbal behaviors (e.g. “pass me”, “push left”, 
“sit down”), and participants physically responded to the 
robot’s requests. During the interaction the robot observed 
the effects verbal requests had on objects (e.g. change in 
location) and the participant (e.g. change in body orienta-
tion). SVMs were then trained from the observations to pre-
dict the effects of verbal behaviors on objects or a human. 
The learned SVMs were then used to plan the set of robot 
object manipulation and verbal behaviors to accomplish an 
object placement task in collaboration with a human. How-
ever, this approach requires a distinct one-to-one relation-
ship between a robot behavior and a world state, namely a 
deterministic relationship. This limits its applicability to our 
assistive application because behaviors demonstrated by car-
egivers are often non-deterministic when facilitating social 
activities. Furthermore, each behavior in [14] is assumed 
to only have a single possible state transition but during a 
group recreational activity the execution of a behavior can 
have multiple potential state transitions.

In this work, we present a novel approach for robots to 
learn a policy for a non-sequential multi-step social task, 
such as a group recreational activity, from a teacher’s dem-
onstrations without requiring a teacher to provide explicit 
rules. Namely, a dataset of world state-behavior pairs is 
captured during a teacher’s demonstration to learn a clas-
sifier where the world states are the features being classi-
fied and the behaviors are the class labels. The observed 
dataset is used to infer the relevant states for an activity and 
the order in which individual states are evaluated to deter-
mine the behavior a robot should execute during an activity. 
Furthermore, the system is capable of learning a policy to 
handle non-deterministic demonstrations by a single teacher. 
Namely, our system learns a policy that models the prob-
ability at which each behavior is executed in that world state, 
allowing the system to handle non-deterministic interactions 
with users while autonomously facilitating an activity when 
there are multiple appropriate behaviors that can be used in 
any given world state.

3  Proposed Robot Learning 
from Demonstration System Architecture

The objective of our LfD system architecture is to allow non-
expert teachers from residential care facilities to easily teach 
and customize a multi-step activity and its corresponding 
behaviors to SARs. Towards this aim, we have developed 
a system that uses both teleoperation-based LfD for learn-
ing the activity structure and external observation based 
LfD for learning the activity behaviors. Herein, a behavior 
refers to the specific speech and motion trajectories a robot 

implements to achieve a desired effect during an activity. 
For example, a greeting behavior would include the speech 
“hello” and a waving hand motion with the desired effect of 
starting the activity with a group of users. An activity then 
refers to the high-level social task (e.g. Bingo, Trivia) which 
requires decisions on what behavior a robot needs to imple-
ment to accomplish the task. Namely, we model an activ-
ity as a set of rules which defines the appropriate behavior 
to implement in a given world state. These definitions are 
described in detail in Sect. 3.1.2.

The proposed system architecture consists of two sub-
systems, Fig. 1: ① the demonstration sub-system, and ② 
the interaction sub-system. The demonstration sub-system 
allows a teacher to demonstrate the facilitation of an activity. 
A keyboard, mouse, and 3D sensor are used as ③ demon-
stration inputs from the teachers. The inputs are used with 
the ④ demonstration GUI to demonstrate to the robot the 
behaviors and structure of an activity. The demonstrated 
activity trajectory is then used by ⑤ the activity learning 
module to learn an activity policy which defines the mapping 
of world states to behaviors. Behavior demonstrations are 
used by ⑥ the behavior learning module to learn individual 
behavior policies which define the motion trajectory for the 
robot’s two arms and its speech for a behavior. The interac-
tion sub-system then utilizes the learned activity policy and 
the learned behavior policies to autonomously facilitate an 
activity. Namely, ⑦ sensory information is used to perceive 
the world during an activity, which is then classified by ⑧ the 
identification of world state parameters module into distinct 

Fig. 1  LfD system architecture for robot activity learning
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world states. The identification of world state parameters 
module identifies individual users, user activity states, help 
states, and the robot’s state. Based on the world state, ⑨ 
the behavior deliberation module determines an appropri-
ate robot behavior to execute, which is sent to the hardware 
controllers and navigation sub-modules to execute using the 
robot ⑩ actuators and output devices.

3.1  Demonstration Sub‑system ①

The demonstration sub-system consists of three main 
modules:

3.1.1  Demonstration GUI ④

The demonstration GUI is utilized by a teacher to demon-
strate an activity and consists of two components: (1) the 
behavior demonstration sub-interface, and (2) the activity 
demonstration sub-interface.

A teacher demonstrates the activity by setting up activity 
scenarios expected to occur during the facilitation of the 
activity. Herein, we refer to these activity scenarios as world 
states. The teacher then uses the activity demonstration sub-
interface to choose the appropriate robot behavior to execute 
according to these scenarios. During an activity demonstra-
tion, the robot identifies the world states using its sensory 
information and the robot behaviors chosen by a teacher. 
The observed sequence of demonstrated world states and 
behaviors, referred to as the activity trajectory, is input into 
the activity learning module.

The behavior demonstration sub-interface is utilized by a 
teacher to demonstrate the gestures and speech for a behav-
ior. Each behavior demonstration begins with a teacher clas-
sifying the behavior he/she is demonstrating. The teacher 
then inputs the desired speech for the behavior. Then he/she 
performs the desired gesture for the behavior, so that the 
robot can mimic him/her. The 3D sensor mounted on the 
robot is used to capture skeleton joint positions as the teacher 
performs a gesture. We refer to the sequence of observed 
teacher poses as the motion trajectory. The input speech and 
the motion trajectory demonstrated by the teacher are uti-
lized in the behavior learning module.

3.1.2  Activity Learning ⑤

The activity learning module learns the world state to robot 
behavior mapping for an activity using the demonstrated 
activity trajectory.

World Model We model the world as a set, W, that con-
sists of a specific instance, z, of the robot (R), user (U), 
and activity (A) states: Wz = {Rz, Uz, Az}. We have previ-
ously determined that these states generalize across group 
activities and are significant for determining the facilitator’s 

behavior based on our focus group study in [15] as well as 
preliminary observations of various recreational activities 
(e.g. Trivia, Bingo) being facilitated by the caregivers.

Robot Model A robot, R, is a physical entity that can 
interact with the world using its behaviors. Each robot 
behavior, b, refers to the high-level goal of the robot and the 
behavior policy, πb, which is a specification of the low-level 
actuation, speech, and location of the robot to accomplish 
this goal. For example, a robot behavior could be “Greet-
ing a User” and the behavior policy specifies that the robot 
should wave its right arm and say “Hi” for this behavior. 
Herein, we define the robot’s behavior policy as the speech 
the robot says (sph), the joint angles for the robot’s two arms 
(θm), and the 2D location in the environment it should navi-
gate to ( lb ): �i

b
=
{

sphi, �i
m
, li
b

}

 , where i is a particular robot 
behavior. The group of learned and default robot behaviors, 
B, define all the possible behaviors a robot can implement: 
B = {b1, b2,… , bn} where n is the total number of robot 
behaviors. The state of the robot is defined by the robot’s 
current 2D location (lr) and the current behavior it is execut-
ing (b): Rq=

{

bq, l
q
r

}

, where q is an instance of the robot 
state.

User Models Each user participating in the group recrea-
tional activity has his/her own name (ID), individual user 
activity state (sua), help state (sh), and 2D location within 
the world (lu): uj = {IDj, s

j
ua, s

j

h
, l
j
u} where j is a particular 

user. Herein, the help state is a binary state which defines 
whether a user is or is not requesting for assistance during 
the activity. The user activity state refers to activity specific 
conditions for each individual user that a facilitator needs 
to monitor during an activity. For Bingo, the user activity 
state is defined by the state of a user’s Bingo card: Occluded, 
Bingo, Incorrectly Marked, or Missing Numbers. A total of 
m users can participate in an activity: U = {u1, u2,…, um}.

Activity Model An activity, A, is defined by the multiple 
distinct states that it can be in: A = {a1, a2,…,ao} where o 
is the total number of activity states for a particular activ-
ity. Namely, an activity state can be defined as a function 
of the users’ states (U), robot state (R), and time step k: 
ac = f (kc,Uc,Rc) , where c is a particular activity state.

Activity Trajectory The activity trajectory is the sequence 
of observed world state-behavior pairs during a teacher’s 
demonstration of the activity. Namely, an activity trajec-
tory is modelled as: T = {b1, W1} → {b2, W2} → …{bp,Wp}, 
where p is the total number of world states and behaviors 
observed. The activity trajectory is used as input into our 
activity learning algorithm to train a supervised learning 
classifier where each individual world state-behavior pair, 
{bk, Wk}, in the observed trajectory is utilized as a training 
sample.

Activity Learning Algorithm In order to learn the activity, 
we take a supervised learning approach to train a classifier 
with the activity trajectory T demonstrated by the teachers. 
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Since we expect the demonstrations by the non-expert teach-
ers will be non-deterministic, we utilized a classifier which 
can provide posterior probabilities for multiple robot behav-
iors for a given input world state. Namely, the input to the 
Random Forest classifier is the current world state instance 
(Wz) which includes the current robot state (Rz), user state 
(Uz), and activity state (Az). The final output of our classi-
fier provides posterior probabilities for each of the possible 
behaviors (B) that the robot can implement in the next world 
state. In this system, we utilize a random forest classifier 
because it has been shown to be the most accurate general-
purpose classifier among the aforementioned classifiers and 
can learn with minimal training data in high-dimensional 
feature spaces [16–18]. These properties of random forests 
will enable our system architecture to be scalable to differ-
ent group recreational activities with potentially larger state 
spaces and require minimal training data from the demon-
strator. Namely, individual decision trees are first learned 
by sampling a set of world state-behavior pairs from the 
activity trajectory and using a binary recursive partitioning 
procedure to determine decision rules that best predict robot 
behaviors based on world states for the sampled data. We use 
the Gini Index metric for evaluation of a rule:

where candidate rules with Gini Index values closer to 0 
provide better classification of the behaviors to the world 
states observed in the training data. Decision trees are then 
generated from these candidate rules. These learned decision 
trees are utilized to facilitate an activity and adapt the robot’s 
behaviors to the users in real-time. Namely, during the activ-
ity, the current world state, Wz, is identified via the robot’s 
sensors and used as input into the decision tree in order to 
classify the appropriate behavior bi for the robot to execute.

A random forest classifier for an activity consists of mul-
tiple learned decisions trees, which are used to vote on input 
world states to determine the probability distribution (ΩB) 
over the set of behaviors B. Learning the probability distri-
bution of behaviors in a given world state allows the robot 
to model when a teacher demonstrates multiple different 
behaviors in a single world state. During an activity the robot 
can then use the learned policy to probabilistically choose 
amongst the possible behaviors in a world state. Herein, the 
final learned random forest refers to the activity policy (πa): 
πa(Wz) = ΩB.

3.1.3  Behavior Learning ⑥

The behavior learning module allows teachers to teach the 
robot new behaviors as well as for them to modify default 
robot behaviors. We use external observation based LfD as 

(1)Gini Index = 1 −
∑

n

prob2
bi
, 0 ≤ Gini Index ≤ 1,

it provides a natural mode of HRI for non-experts to teach 
robot arm gestures [19]. Speech input is provided via a 
keyboard, which is also a familiar mode of interaction for 
teachers.

The input speech and motion trajectory are used by the 
behavior learning module to define the behavior policy 
(πb) for a behavior. Namely, the speech input provided by 
a teacher using the behavior demonstration sub-interface is 
used to define the behavior speech (sph). For the joint angles 
for the robot’s two arms (θm), we utilize a geometric-based 
inverse kinematics approach we developed in [20] to obtain 
the mapping of teacher joint angles to robot angles based 
on the teacher’s demonstrated motion trajectory. We use a 
bounding-volume based approach to check for robot self-
collisions when the joint angles are mapped to the robot 
due to differences in demonstrator and robot embodiment. 
Given a self-collision is detected, we optimize for a set of 
collision-free joint angles with the minimum difference to 
the demonstrated joint angles. Learned behavior policies are 
then used by the behavior selection module to define the 
appropriate speech and robot joint positions to execute when 
a behavior is implemented.

3.2  Interaction Sub‑system ②

The interaction sub-system is used to determine the world 
state using the user, environment, and robot sensors, and 
physically implement the learned activity behaviors on the 
robot according to the activity and behavior policies.

3.2.1  Identification of World State Parameters ⑧

User identities (ID) are determined utilizing the user sensors. 
User help states (sh), user activity states (sua), and user 2D 
locations (lu) are identified using the environment sensors. 
A robot’s 2D location (lr) in a room is identified using robot 
sensors. These world state parameters are used to define the 
world state instance Wz and used as inputs to the behavior 
selection sub-module in the behavior deliberation module.

3.2.2  Behavior Deliberation ⑨

The behavior deliberation module determines the appro-
priate behavior to execute during an activity and imple-
ments behaviors by sending the low-level commands to the 
robot’s actuators and output devices. Namely, it uses the 
world state instance Wz as an input in the learned activ-
ity policy function πa(Wz) to identify the mapped prob-
ability distribution (ΩB) over the set of behaviors. We 
then sample over the mapped probability distribution to 
identify the behavior to implement. The robot behavior is 
then implemented using the navigation sub-module to plan 
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the robot’s path and hardware controller sub-modules to 
implement the speech, visual information, arm trajectories, 
and wheel velocities.

4  Learning to Facilitate a Group Activity

In this work, our objective is to have non-expert caregiv-
ers from residential care facilities teach and customize a 
multi-step group recreational activity to the SAR, Tangy. 
As an example of such an activity, we selected the game 
of Bingo as it is a popular activity played at care facilities, 
which is often customized by staff to meet the needs as well 
as capabilities of residents [21]. These customizations are 
typically utilized to support residents with different cogni-
tive capabilities and/or increase residents’ engagement in 
the activity. For example, healthcare professionals working 
with a group of older adults with dementia often provide 
reminders on the rules of the game throughout the activ-
ity and occasionally check players’ cards to identify mis-
takes or potential winning conditions [21]. Similarly, social 
utterances (e.g. jokes or facts or encouragement) focusing 
on the preferences of the residents are also utilized fre-
quently throughout an activity to create a social atmos-
phere between older adults in the group and increase their 
engagement. Learning the scenarios these behaviors are 
executed in and the probability at which they are executed 
during an activity is important because if these behaviors 
are too frequent participants may become frustrated or dis-
engaged but if behaviors such as reminders aren’t provided 
frequently enough some individuals may not be capable of 
participating in the activity. Hence, the objective of our 
system is to learn both the structure of the activity and the 
non-deterministic activity facilitation behaviors that are 
unique to each facility. In [22], it was noted that at least 24 
variations of Bingo were played among only four different 
facilities. Furthermore, Bingo has been shown to provide a 
number of benefits to older adults such as improved mem-
ory, recall, and recognition functions, and opportunities for 
social engagement with other players [23, 24].

4.1  Bingo

A Bingo game consists of Tangy standing at the front of a 
room and randomly calling out numbers from 1 to 75 while 
players mark these numbers on their cards with red mark-
ers. Each player sits behind a table with a Bingo card and 
an assistance request device, Fig. 2. During the game, a 
player can press the green button on the assistance request 
device to ask the robot for help.

4.2  The Socially Assistive Robot Tangy

To facilitate recreational activities, the Tangy robot, 
Fig. 2, uses multi-modal interactions. Tangy is a human-
like social robot that can mimic human gestures using 
three degrees-of-freedom (DOFs) for each shoulder and 
one DOF for each elbow. The robot also has a two DOF 
neck. Tangy is able to verbally interact with users using 
its synthesized voice. It also uses its chest mounted tablet 
to display both images and text. Tangy retrieves world 
state parameters including activity, user, and environment 
information using multiple sensors. The robot’s sensors 
include: a 2D Logitech C920 camera mounted on top of 
its head, an ASUS Xtion IR sensor mounted behind the 
robot, a 2D Axis M1031-W camera in the robot’s right 
eye, a URG-04LX-UG01 laser range finder on the robot’s 
base. Furthermore, an additional ASUS Xtion IR sensor 
mounted on the robot’s chest is used to identify teacher 
poses during behavior demonstrations.

4.3  Bingo Learning Scenario

The overall goal is to have a teacher demonstrate to Tangy 
the structure of the Bingo activity. A teacher can either 
create new behaviors, use default behaviors or customize 
the default behaviors. These behaviors can be used to teach 
the structure of the game to the robot. Examples of default 
Bingo behaviors are shown in Table 1. To create a new 
behavior, a behavior name is first given. Then the robot’s 
gestures, speech, and 2D location can be customized by 
the teacher. This customization can also be done for the 
default behaviors.

During a Bingo activity demonstration, a teacher uti-
lizes the activity demonstration sub-interface to teach the 
robot the structure of the game using the behaviors.

Hokuyo 
Laser
Range 

ASUS Xtion 
IR Sensor 

2D 
Logitech
Camera
2D Axis 
Camera

ASUS Xtion 
IR Sensor

Bingo 
Card
Assistance 
Request Device

Fig. 2  Tangy and the Bingo scenario
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4.3.1  Activity Demonstration Sub‑interface

The activity demonstration sub-interface, Fig. 3, has three 
main features: (1) robot command center to demonstrate an 
activity to Tangy by having the teacher teleoperate Tangy 
and control the robot’s behaviors through a complete game 
(red box); (2) sensor views which includes the robot view, 
help view, and card view (green box); and (3) informa-
tion section which provides the list of activity scenarios 

that have already occurred during the demonstration and 
the robot behavior that was implemented in each scenario 
(blue box).

4.3.2  Behavior Demonstration Sub‑Interface

The teacher uses the behavior demonstration sub-interface, 
Fig. 4, to customize or create behaviors. We designed our 
behavior demonstration sub-interface to guide the teacher 

Table 1  List of example robot bingo behaviors

Robot behavior Default behavior

Greet players “Hi! My name is Tangy. I am so excited to play Bingo with you today” (Robot waves at 
players)

Tell a joke “Why wouldn’t the shrimp share his treasure? Because he was a little shellfish” (Robot 
brings its hand to its mouth and giggles)

Call out a Bingo number “The next number is: B-12” (Robot points to number displayed on its tablet)
Encourage a player “Wow, you are close to getting Bingo!”
Ask a player to remove incorrectly marked numbers 

on Bingo card
“Oops! You have some misplaced markers. Please remove these markers from the fol-

lowing numbers on your card: B-5, O-65” (Robot points to numbers displayed on its 
tablet)

Ask a player to mark missing numbers on Bingo card “I think you have some missing markers. Can you place markers on the following spots? 
B-1” (Robot displays numbers on its tablet)

Celebrate a winning Bingo card “Congratulations, you won Bingo!” (Robot raises both its arms straight up and sways 
them side to side in a celebration dance)

Ask a player to show Bingo card “Please move your Bingo card forward”
Navigate to a player who requires help (Robot physically navigates to a player that requires help)
Navigate to the front of the room (Robot physically navigates back to the front of the room)
Say goodbye to players “Well that’s it! Wasn’t that fun? Thank you very much for playing Bingo with me. I had 

so much fun! Goodbye!” (Robot waves at players)

Fig. 3  Activity demonstration sub-interface consisting of: robot command centre (red), sensor views (green), and information section (blue). 
(Color figure online)
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during all steps of the learning process to improve the usa-
bility of the system:

Step 1 (red box) The teacher selects the behavior he/she 
would like to customize.

Step 2 (green box) The teacher is prompted to choose 
whether he/she would like to customize the speech and/or 
gestures. If a teacher has chosen to customize the gesture 
or both the speech and gesture, he/she proceeds to Step 3. 
Otherwise, if the teacher has chosen to only customize the 
speech for a behavior, he/she proceeds to step 4.

Step 3 (blue box) The teacher is prompted by the GUI to 
perform arm gestures for Tangy to display for the behavior.

Step 4 (yellow box) The teacher is prompted by the GUI 
to enter text he/she would like Tangy to say for the behavior.

Step 5 (purple box) The teacher can choose to preview, 
redo, or save a customization. When the teacher chooses to 
preview a behavior, Tangy performs the new speech and/
or gesture that has been taught. If the teacher has chosen to 
redo a customization he/she returns to step 1. If the teacher 
has chosen to save the customization, then he/she returns to 
the activity demonstration sub-interface.

4.4  Identification of World State Parameters

In this work, we utilize the sub-modules we have developed 
in [12] to identify the world state parameters.

4.4.1  Person Identification

Player identities are determined using the OKAO™ Vision 
software library based on facial features from 2D images 
captured using the 2D Axis camera. The facial features are 
compared to a database of features of known players in order 
to determine the identity of a player.

4.4.2  Player Activity State

Player activity states are determined using images captured 
from the 2D Logitech camera. Namely, the unique symbol 
on a Bingo card is identified by computing the Speeded-Up 
Robust Features (SURF) on the images and matching these 
features to a database containing the SURF features for the 
unique symbol on each card. Once the symbol has been iden-
tified, the grid lines surrounding the numbers are recognized 
using a Hough transformation-based method. The location of 
each red circular marker is determined using a red blob filter. 
Identified red markers are then matched with their nearest 
neighbor grid squares. Squares that have been matched with 
a red blob are considered marked squares. The numbers in 
the marked squares are then compared to the set of numbers 
called by Tangy to determine the player activity state.

4.4.3  Help State

Player assistance requests are monitored using IR and 3D 
point cloud information from the Asus Xtion IR sensor 
behind Tangy and a Hough Transformation based methodol-
ogy to identify IR reflective triangles that are revealed when 
a player presses the button on an assistance request device. 
The location of the player requesting for assistance is then 
determined by identifying the position of the IR triangle in 
the 3D point cloud of the environment.

4.4.4  Robot State

We use the ROS navigation software package for the robot 
to map, localize, and navigate in the environment using its 
wheel encoders and Hokuyo laser range finder. A map of the 
activity room is generated using the Gmapping Simultane-
ous Localization and Mapping technique. Robot localiza-
tion is achieved using a probabilistic adaptive Monte Carlo 
localization approach which uses a particle filter to deter-
mine the robot’s position. The A* pathfinding algorithm is 
utilized to plan a global path for the robot to follow and a 

Fig. 4  Behavior demonstration sub-interface with the following steps: 
(1) selecting a behavior (red), (2) selecting what to change (green), 
(3) demonstrating an arm gesture (blue), (4) entering in speech (yel-
low), and (5) reviewing and completeing a behavior demonstration 
(purple). (Color figure online)
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Dynamic Window based local path planner is responsible 
for implementing the trajectories.

5  Robot Teaching Study

We conducted a preliminary robot teaching study with 
caregivers at a residential care facility to investigate user 
experience and workload, and the usability of the robot LfD 
system (Fig. 5).

5.1  Participants

Five caregivers ages 26–52 years old (µ = 37, σ = 9.80) par-
ticipated in a one-hour robot teaching session. They were 
either recreation programs staff or social services staff, and 
all were experienced with facilitating Bingo games with resi-
dents. Informed written consent was obtained prior to the 
study. Participants had no prior experience working with 
robots. Similar sample sizes ranging from 3 to 6 partici-
pants have been utilized in studies where the perceptions of 
domain specialists (e.g. elementary school teachers, infor-
mal older adult caregivers, therapists for autism) are inves-
tigated towards end-user customization, programming, or 
teaching interfaces [13, 25–27]. Smaller sample sizes are 
often utilized because there are challenges with access to 
specialist populations due to the small number of specialists 
in each facility and their limited availability [26]. Although 
these sample sizes are small it has been well established 
within the field of human factors that a sample of five par-
ticipants is sufficient for identifying the usability problems 
of a system with diminishing returns with each additional 
participant [28, 29].

5.2  Methods

Robot teaching sessions were conducted in an activity 
room in the residential care facility. Each robot teaching 
session began with Tangy at the front of the room and 
the teacher seated behind a table with a Bingo card, an 
assistance request device, and red circular markers. The 
teacher had access to the integrated demonstration GUI 
on a laptop.

A member of the research team conducted a 15-minute 
interactive tutorial with each participant on how to utilize 
the activity and behavior demonstration sub-interfaces to 
teach Tangy an activity by guiding them through the avail-
able features. Then, each participant was asked to use the 
system to teach Tangy a complete Bingo game so that all 
states and possible behaviors could be considered. Partici-
pants had access to all the default behaviors presented in 
Table 1 but did not have access to any prior demonstrations 
by other caregivers. A post-interaction questionnaire was 
administered to the participants after the teaching sessions 
were completed.

5.3  Measures

We administered a three-part post-interaction questionnaire 
to measure: (1) user experience of the LfD system and GUI; 
(2) perceived workload during the teaching task; and (3) 
perceived usability of the LfD system.

Part A User Experience Open-ended questions were 
administered to investigate user experience of the dem-
onstration learning GUI and the teaching interaction with 
Tangy. The questions focused on: (1) the usefulness of the 
types of information presented on the demonstration inter-
face, (2) the appropriateness of the modalities to teach Tangy 
new behaviors, (3) the level of enjoyment while teaching 
the robot, (4) the overall perceptions of the usefulness of 
the system, and (5) alternative activities that can be taught 
using the system.

Part B Perceived Workload Perceived workload was 
measured to determine the demand on a teacher while teach-
ing the robot. This is important as our goal is to reduce the 
overall workload on caregivers in residential care facilities. 
We measure perceptions of workload utilizing the NASA-
TLX task load index [30].

Part C Perceived Usability Perceived usability is meas-
ured in order to determine if caregivers can effectively and 
efficiently interact with the system to accomplish the robot 
teaching task. We utilize the System Usability Scale (SUS) 
[31] to measure perceptions of the usability of the LfD sys-
tem because it is a standard questionnaire which has often 
been utilized with end-users for end-user teaching or pro-
gramming interfaces for robots [13, 32–34].

Fig. 5  Caregivers teaching the Bingo activity to Tangy by: a teaching 
the robot to request a player to bring the Bingo card forward when 
the robot cannot see the card, and b teaching the robot to wave for a 
Bingo behavior
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5.4  Results and Discussion

5.4.1  User Experience

We analyzed the responses to the open-ended questions by 
conducting a thematic analysis on the responses.

Interaction Modalities All five participants found it easy 
to demonstrate behaviors to Tangy using the modalities 
available to them. All participants agreed that demonstrating 
arm gestures was easy and commented on its usefulness for 
recreational activities. This aligns with our original design 
intent. Namely, Tangy learning behaviors from external 
observations allows a teacher to easily generate natural look-
ing motion trajectories [19]. Participants 1 and 5 suggested 
they would also be comfortable teaching gestures by direct 
teleoperation of Tangy’s arms. However, such a technique 
can be especially difficult if a user needs to generate ges-
tures requiring both arms. This can lead to unnatural looking 
motions as teachers often produce sharper velocity changes 
when simultaneously manipulating two arms [19].

All participants also found typing the robot’s speech 
through the GUI was easy and user friendly. Participants 
1 and 3 further elaborated on this with such supporting 
statements as “inputting speech on a computer is good and 
doesn’t need to be changed”, and “typing is user friendly”.

Useful GUI Features Participants found that the various 
features on the teaching GUI were appropriate for teach-
ing the robot. Participants 1, 3, 4 and 5 found that it was 
very helpful to have the various views and perceived world 
states presented on the GUI as it provided them with aware-
ness from the robot’s perspective. This validates our aim to 
ensure that the teacher’s interpretation of the world state is 
aligned with Tangy’s. Most of the participants also found it 
useful that the GUI presented the scenarios that had already 
been taught during the session. They stated that they used 
this information to maintain flow of the teaching session by 
recalling what scenarios had been taught and what should 
still be taught.

Enjoyability The participants all enjoyed teaching the 
robot and made statements such as, “I found it interesting to 
teach the robot”. Furthermore, they wanted to use the LfD 
system again in the future and made statements such as “I 
am excited to come back and use the system”.

Ease of Use All the participants found the LfD system 
easy to use. Participants 1 and 2 further indicated that 
they would like more teaching trials to better familiarize 
themselves and become more comfortable with the sys-
tem. Participant 1 elaborated by saying, “I am not very tech 
savvy, but am encouraged to come back and learn to use the 
system”.

Teaching Speed It took on average 20 min (σ = 4.62) for 
a caregiver to teach the robot. Based on the responses to the 
open-ended questions, the caregivers could envision “setting 

aside time to teach a new activity” and stated ideally “the 
teaching would only need to take 15 min to teach”. Partici-
pants 2 and 4 explicitly mentioned that they felt the teaching 
task could be sped up. Participant 4 elaborated by saying that 
“the robot should move faster during teaching. However, [the 
robot behaviors] do not need to be sped up for residents”.

Currently, the angular joint movement speed for the 
robot’s arms is limited to 15 deg/s and robot navigation 
speed is limited to 0.5 m/s for interaction with residents. 
In the future, we will investigate increasing these speeds 
for faster robot teaching, but at the same time ensuring that 
they are safe for the caregivers. We limited the robot’s move-
ments to be slower than typical human speeds because stud-
ies have shown that in general humans interacting with a 
mobile service robot prefer that it move slower than a human 
with speeds between 0.4 and 1 m/s being most acceptable 
[35]. This was confirmed by the caregiver’s response to our 
open-ended questions specifying that the speed was appro-
priate for residents. Furthermore, residents did not have any 
negative opinions towards the speed of the robot during the 
activity facilitation HRI study detailed in Sect. 6.

It is also important to note that retraining would only 
be necessary in scenarios where caregivers wanted to: (1) 
create a new behavior and/or make customizations to the 
robot’s existing behaviors, or (2) teach the robot new activity 
scenarios previously unobserved during the demonstration. 
Herein, it would not be necessary for the teachers to demon-
strate the entire activity again. Instead, individual behaviors 
can be created or customized using the demonstration inter-
face. Similarly, previously unobserved activity scenarios can 
be taught to the robot by having a teacher setup the desired 
scenario and selecting/creating an appropriate behavior for 
the robot to implement using the activity demonstration 
interface. These activity scenario demonstrations would 
then be added as additional world state-behavior pairs to 
the existing activity trajectory and used as input into the 
activity learner to learn an activity policy.

Importance and Usefulness of Behavior Customization 
All participants emphasized that the ability to customize 
robot actions was important and useful. Participant 2 fur-
ther elaborated saying that “customizing speech is good 
for making the game exciting [for residents]”. Participant 
5 mentioned that “residents ask a lot of questions in the 
real game, so customizing the robot’s speech to explain the 
game is important”. Furthermore, Participant 1 mentioned 
that “[modifying speech] is very useful and a great option”.

Additional Activities All the participants stated that they 
would want to develop new recreational activities for Tangy 
using the LfD system. These activities included trivia, cha-
rades, and picture therapy games. The LfD system can be 
extended to include the aforementioned activities. The cur-
rent version of the proposed learning from demonstration 
system learns from non-experts the high-level structure of a 
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multi-stepped social activity and the individual robot behav-
iors necessary to facilitate the activity. However, for full 
autonomy of all modules within the architecture, the system 
would need to include the detection and classification of 
the activity states as well. Currently, the state identification 
methods for monitoring the specific world state for an activ-
ity (e.g. Bingo card state and assistance requests) using the 
robot’s sensors have been designed by the researchers. In 
the future, relevant state information for the facilitation of 
an activity could be directly taught by caregivers. This could 
be accomplished by extending our proposed system archi-
tecture to incorporate a similar approach to that presented in 
[36] which has been shown to enable human users to teach 
a robot to classify object and environmental states given 
the robot’s sensory information. Namely, the approach had 
users interactively train a robot by demonstrating the state 
of the environment to the robot and providing a label for the 
demonstrated state. The robot therefore learns to determine 
the current state given specific input sensory information.

5.4.2  Perceived Workload

The NASA-TLX questionnaire results for our system 
are presented in Table 2 and Fig. 6. The results showed 
moderate perceived mental (µ = 11, σ = 0.39) and tempo-
ral (µ = 10.2, σ = 0.86) demand during the sessions. The 
teaching task requires a teacher to design the sequence 
of scenarios and behaviors he/she would like for facilitat-
ing a complete game which is directly linked to mental 
demand. The moderate perceived temporal demand is also 
expected as caregivers had to facilitate a complete game. 
Some of the participants who scored higher for temporal 
demand were concerned with their general technology 
aptitude and mentioned that teaching may become faster 
as they become more familiar with the system. Perceived 
physical demand (µ = 4, σ = 0.95) was low and perceived 

effort (µ = 6.6, σ = 1.15) and frustration (µ = 5.6, σ = 0.90) 
were moderately low during the teaching task. The physi-
cal activity that occurred was only using the mouse and 
keyboard or demonstrating gestures with their arms. The 
participants’ scores for effort and frustration are supported 
by their feedback from the open-ended questions towards 
the ease of use of the interface. Participant 4 was moder-
ately frustrated during the teaching task, which can be sup-
ported by this participant’s suggestion in the open-ended 
questions towards having the robot move faster when navi-
gating and performing gestures. Overall, the participants 
felt they performed well during the teaching task and had 
moderately good perceived performance scores (µ = 5.8, 
σ = 0.66). The NASA-TLX workload scores ranged from 
34.67 to 51.33 (µ = 41.4, σ = 5.53).

According to a meta-analysis of over 200 publications 
utilizing the NASA-TLX [37], daily activity tasks had a 
median of 18.30 for their reported mean global workload 
scores. Tasks such as operating a robot ( ̃x  = 56) had a 
higher median for their reported mean global workload 
scores. Our mean global workload score is within the 

Table 2  NASA-TLX Questionnaire Scores

Workload factor Participants

1 2 3 4 5 Mean Score SD

Weight Score Weight Score Weight Score Weight Score Weight Score

Mental demand 0.20 10 0.27 10 0.2 14 0.27 10 0.20 11 11.0 1.55
Physical demand 0 1 0.07 10 0.1 1 0 1 0 7 4.0 3.79
Temporal demand 0.20 11 0.27 12 0.20 15 0.27 8 0.07 5 10.2 3.43
Performance 0.20 3 0.20 10 0.27 3 0.20 6 0.33 7 5.8 2.64
Effort 0.33 10 0.13 10 0.13 1 0.13 1 0.20 11 6.6 4.59
Frustration 0.07 4 0.07 6 0.07 1 0.13 12 0.20 5 5.6 3.61
Overall workload 42.00 51.33 34.67 38.70 40.33 41.4 5.53
Objective workload: total no. of 

robot behaviors and world states 
created

86 97 87 77 66 82.6 11.67

Fig. 6  Participant NASA-TLX scores during the activity teaching task
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lower quartile of mean global workload scores for the 
robot operation tasks reported in [37].

In Table 2 we also provide objective data on participants’ 
workload during demonstrations. Their objective workload 
is defined by the total number of behaviors and world states 
they created. Participants on average created 82.6 (σ = 11.67) 
behaviors and world states. A Pearson’s correlation coef-
ficient was utilized to identify if there was a relationship 
between their subjective and objective workloads. We uti-
lized an α = 0.05 for our analyses. The results of the corre-
lation analysis between subjective and objective workload 
showed a Pearson correlation of r = 0.514 with no signifi-
cant relationship (p = 0.376). Hence, these results demon-
strate that there was no statistically significant relationship 
between participants’ subjective evaluation of workload and 
objective measures of their workload. Although we did not 
observe a statistically significant relationship, it is interest-
ing to note that there were only small variations in the sub-
jective workload scores and the objective workload values 
across all the participants. This suggests that the perceived 
and objective workload between participants was consistent 
when using the LfD system.

5.4.3  Perceived Usability

The SUS scores ranged from 42.5 to 75 (µ = 58, m = 60, 
σ = 11.11). The mean SUS scores can be interpreted with an 
OK adjective rating, which suggests that there is some room 

for improvement with respect to the usability of the system 
[38]. As suggested in the open-ended questions, improve-
ments could include providing more teaching trials to allow 
caregivers to become more comfortable with the system and 
increasing the teaching speed.

6  HRI Study with Residents

An HRI study with residents was conducted to: (1) evalu-
ate the ability of the system to learn and facilitate Bingo 
games from the teacher demonstrations and (2) investigate 
residents’ experience and perceptions of Tangy facilitating 
the learned activity for them.

6.1  Methods

A total of 404 world state-behavior pairs were observed from 
the demonstrations provided by the five caregivers with an 
average of 81 behaviors per caregiver. Table 3 below pro-
vides the frequency each world state-behavior pair was 
observed during the demonstrations by the five caregivers 
and Fig. 7 illustrates the behaviors they utilized. As noted 
in Table 3 different behaviors were selected by the caregiv-
ers for the same world state. A video of the example robot 
behaviors during the Bingo game can also be viewed at https 
://youtu .be/wmmsz a9QVT g. We verified that only a single 
demonstration would be necessary for the random forest 

Table 3  Observed frequency of each world state during caregiver demonstrations

ANR assistance not required, AR assistance required

Current robot behavior Robot location Help state User activity state Demonstrator selected action Total instances 
of world state

None Front of room ANR Occluded Greet players 5
Call out a Bingo number Front of room ANR Occluded Encourage a player 49
Navigate to the front of the room/

greet players/call out a Bingo num-
ber/tell a joke/encourage a player

Front of room ANR Occluded Call out a Bingo number 271

Call out a Bingo number Front of room ANR Occluded Tell a joke 10
Navigate to player At user AR Bingo Celebrate a winning Bingo card 5
Navigate to player At user AR Incorrectly Marked Ask a player to remove incorrectly 

marked numbers on Bingo card
3

Navigate to player At user AR Missing Numbers Ask a player to mark missing num-
bers on Bingo card

11

Navigate to player At user AR Occluded Ask a player to show Bingo card 3
Call out a Bingo number/tell a joke/

encourage a player
At front of room AR Occluded Navigate to a player who requires 

help
22

Ask a player to mark missing num-
bers on card/celebrate a winning 
Bingo card/ask a player to remove 
incorrectly marked numbers on 
Bingo card

At user ANR Occluded Navigate to the front of the room 16

Celebrate a winning Bingo card At user AR Bingo Say goodbye to players 5

https://youtu.be/wmmsza9QVTg
https://youtu.be/wmmsza9QVTg
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to converge to an accurate policy for a Bingo game if all 
the potential scenarios during a Bingo game were demon-
strated by a caregiver at least twice during a session. In our 
robot teaching study, each caregiver did not demonstrate all 
the possible scenarios in a Bingo game before the sessions 
ended and each only accounted for a portion of the potential 
scenarios even though they demonstrated a complete Bingo 
game (i.e. winning Bingo card condition). Hence, we com-
bined the caregivers’ demonstrations into a single dataset 
and used it as input into the activity learning sub-module 

to learn a Bingo activity policy that models the combined 
facilitation behaviors of all the caregivers. An example of 
a decision tree from the learned random forest is presented 
in Fig. 8. Since this was the caregivers first interaction with 
the LfD system they were likely more focused on learning 
the interface and completing a Bingo game then demonstrat-
ing all the potential activity scenarios. We hypothesize that 
given more time and familiarity with the LfD system the 
caregivers would provide a more complete demonstration of 
all the possible activity scenarios during a game.

(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Fig. 7  Robot behaviors during a facilitated Bingo game with users: a 
greeting; b call number; c joke; d navigate; e request to remove mark-
ers from numbers that have not been called; f request to move card 

closer to robot; g request to mark numbers that have been called; h 
encourage user to keep up the good work; and i celebrate

ValedictionCall 
number

Navigate 
to player

Call 
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Celebrate

GreetingNavigate 
to the 

front of 
the room
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Call 
Number

Help 
state
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User 
activity 
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Current 
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behavior

Fig. 8  Example decision tree from the random forest learned from the 
caregivers’ demonstrations. Decision nodes (green circles) represent 
the state being evaluated. Branches (blue edges) represent the pos-

sible values for a state. Leaf nodes (red rectangles) are the executed 
actions. (Color figure online)
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With its new learned activity policy and behavior poli-
cies, Tangy facilitated Bingo games with groups of residents 
that were cognitively intact or had mild cognitive impair-
ment according to the Cognitive Performance Scale, Fig. 9. 
A total of 18 participants (2 Males, 16 Females) ranging 
in age from 73 to 93 (µ = 83.06, σ = 6.27) participated in 
one-hour Bingo sessions with the robot. Post-sessions, each 
participant completed a short 5-point Likert scale question-
naire (5- strongly agree, 1-strongly disagree) based on their 
experience with Tangy and the Bingo game, Table 4. Similar 
samples sizes ranging from 3 to 26 participants have been 
utilized in HRI studies with older adults [39].

6.2  Results and Discussions

Tangy was capable of facilitating the Bingo games with the 
residents with a 100% success rate using the learned activ-
ity policy. This demonstrates that non-expert caregivers can 
teach a high-level activity structure to a robot and the robot 
can learn an optimal policy to autonomously implement the 
activity.

Table 4 presents the descriptive statistics for the ques-
tionnaire results from this study and from our prior work in 

[40] where a traditional finite state machine developed by 
our research team was used to have Tangy autonomously 
facilitate Bingo games with older adults at a long-term care 
facility. In our prior work, the finite state machine was cus-
tomized for the facility based on our observations of the 
structure of a Bingo game facilitated by caregivers at the 
facility and their individual activity facilitation behaviors. 
Overall the questionnaire results demonstrated that the 
residents had positive perceptions towards the robot facili-
tated Bingo games. Namely, the results suggest that, in gen-
eral, the residents had positive and engaging experiences 
because they found the robot facilitated Bingo game inter-
esting ( ̃x = 4 ); enjoyed playing the Bingo game with Tangy 
( ̃x = 5 ); and found the robot was able to help them during 
the Bingo game ( ̃x = 4.5 ). The participants also agreed that 
Tangy should host Bingo games again ( ̃x = 5 ) and intended 
to participate in future robot facilitated games ( ̃x = 5 ). These 
results demonstrate that the proposed system architecture 
has the potential for enabling caregivers to effectively teach 
a robot to facilitate group recreational activities that are 
engaging to residents and would lead to future interactions.

The questionnaire results from this study are similar to 
the questionnaire results with the Bingo games facilitated by 
the designed finite state machine. This demonstrates that our 
system would enable non-expert caregivers to independently 
teach a robot a customized activity with customized behav-
iors for their specific facility and the learned policy would 
perform just as well as one customized by an expert roboti-
cist based on direct observations of a caregiver. However, 
pre-programming a robot to autonomously facilitate custom-
ized activities requires a considerable amount of expertise 
and is not scalable as it would require robotics professionals 
to observe caregivers at each individual facility and custom-
ize activities according to these observations. Hence, the Fig. 9  A Bingo game facilitated by Tangy with a group of residents

Table 4  Comparison of questionnaire results with [40]

Statement Median Frequency Median 
from [40]

Frequency from [40]

1 2 3 4 5 1 2 3 4 5

I think Tangy makes the Bingo game interesting 4 2 2 1 5 8 5 0 0 0 0 7
I enjoyed playing Bingo with Tangy 5 0 1 1 5 11 5 0 0 0 0 7
Tangy was able to call out the Bingo numbers clearly. 5 0 0 0 0 18 N/A – – – – –
Tangy displaying numbers on his screen was helpful 5 1 0 1 0 16 N/A – – – – –
I enjoyed when the robot waved to me 5 0 0 5 3 10 N/A – – – – –
I thought it was helpful when the robot pointed to its screen 3.5 1 0 8 2 7 N/A – – – – –
I enjoyed when robot did the celebration gesture 5 0 0 1 6 11 N/A – – – – –
Tangy was able to help me 4.5 1 1 3 4 9 5 0 0 1 1 5
I would ask Tangy for help again 5 1 1 0 3 13 5 0 0 1 0 6
I would follow what Tangy asks me to do in the Bingo game 5 0 0 0 3 15 5 0 0 0 0 7
I would play Bingo with Tangy again. 5 1 0 0 5 12 5 0 0 0 0 7
Tangy should host Bingo games again 5 0 0 2 5 11 5 0 0 0 1 6
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main advantage of the proposed approach is that it would not 
limit a socially assistive robot to only include activities pre-
programmed on the robot by roboticists but would enable 
caregivers to create and customize their own activities.

It is interesting to note that the caregivers taught a Bingo 
activity policy that requires Tangy to frequently ask for 
player feedback (e.g. asking how everyone is doing dur-
ing the game) and provide instructions (e.g. letting players 
know the number pattern they need to mark on their cards to 
win) to all the players participating in the activity. This was 
achieved by creating new speech for the robot’s encourage 
behavior and implementing this behavior when the robot 
was facilitating the activity at the front of the room. This is 
different from our original intentions of encouraging a player 
when the robot identifies a correctly marked card [12]. This 
is important to note, as this behavior is often utilized by 
caregivers to actively encourage all the older adults partici-
pating in an activity regardless of their activity performance.

Our expectation that caregivers would execute multiple 
different behaviors in the same world state during the facili-
tation of a Bingo activity was also confirmed by the learned 
activity policy. Namely, multiple behaviors were demon-
strated for the same world state of the robot at the front of 
the room and when players have not requested for assistance. 
In particular, Tangy learned a policy where in this world 
state there was a probability of 82% it would call Bingo 
numbers, a probability of 15% it would encourage players 
to check their cards, and a 3% probability it would tell jokes.

Both the actual use of the customization capabilities 
of the LfD system by caregivers as well as their responses 
towards the usefulness and importance of behavior customi-
zation supports our motivation of adapting robot facilitated 
activities based on the needs of the users within the resi-
dential care facilities. The positive feedback from the older 
residents provides further insight into the benefits of robot 
activity personalization by non-expert teachers.

7  Conclusions

We have presented a LfD system architecture for SARs to 
address the unique challenges of learning from non-experts 
group social activities. Namely, we proposed a random for-
est classifier which learns a probabilistic model of a human 
teacher’s non-deterministic activity facilitation behavior 
from his/her demonstrations and implements the learned 
activity where the world state is dynamic (i.e. the behaviors 
of the robot cannot be sequentially planned). We evaluated 
the user experience, perceived workload, and perceived usa-
bility of the LfD system by having caregivers from a resi-
dential care facility teach Tangy a Bingo activity. Results 
showed that, overall, the caregivers had a positive experi-
ence using the system and would want to teach the robot 

to autonomously facilitate various activities with residents. 
They had moderately low perceived workloads while utiliz-
ing the system and found it easy to use as well as useful. Fur-
thermore, the caregivers taught the robot to execute multiple 
different behaviors in the same world state. This validates 
our expectation that caregivers want to demonstrate non-
deterministic behaviors to accommodate the residents’ needs 
and our proposed LfD system could learn a probabilistic 
model of the caregivers’ non-deterministic activity facilita-
tion behavior from their demonstrations. The importance 
of caregivers being able to personalize the activity was also 
emphasized by the older residents as they found the person-
alized behaviors helpful as well as entertaining and enjoyed 
playing Bingo with Tangy.

The presented proof-of-concept study consisted of short-
term interactions between the residents and the robot. Hence, 
we will conduct more long-term studies to investigate if 
there is a novelty effect with the robot. Furthermore, partici-
pant perceptions of the technology were obtained via self-
reported surveys so there could be potential for response bias 
Based on the results we have obtained here, in the future, to 
address these limitations we will run long-term studies with 
both caregivers and residents at residential care facilities to 
observe their continued use of the robot and measure par-
ticipants’ pre- and post-study perceptions towards the tech-
nology to investigate any changes in perceptions over time.

A limitation of the implemented LfD system is that it 
currently assumes players will be engaged in the group rec-
reational activity facilitated by the robot (e.g. playing the 
game) using the activity policy learned from the caregiv-
ers. Although all the residents during our HRI study were 
engaged during our Bingo games, the activity policy taught 
by the caregivers may not be the optimal policy for keeping 
residents engaged. The proposed framework could be modi-
fied in the future to learn an optimal policy on-line through 
a two-step process. First, the system could be developed 
to monitor residents’ engagement in an activity from their 
facial expressions, body language, eye contact, and verbal 
behaviors. Resident engagement can then be utilized by the 
socially assistive robot as feedback to identify robot behav-
iors which maintain and/or improve resident engagement 
during an activity. Namely, the socially assistive robot can 
utilize resident engagement as the reward in on-line rein-
forcement learning based techniques to learn the optimal 
policy for maintaining engagement during an activity.

Although both caregivers and residents from the residen-
tial care facility had positive perceptions towards the robotic 
technology, in the future we intend to conduct a compara-
tive analysis between traditional human facilitated activities 
and the robot facilitated activities. Such a study will pro-
vide insights on how the proposed LfD system and the robot 
facilitated activities could be utilized to support residential 
care facilities in providing meaningful activities to residents.
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Appendix

Post‑Interaction Questionnaire

Part A: Open‑Ended Questions

 1. Did you find it easy to customize a new gesture for the 
robot?

 2. Would you prefer another method for teaching the 
robot a new gesture (e.g. keyboard and mouse, physi-
cally moving the robot’s arms)?

 3. Did you find it easy to customize new speech for an 
action?

 4. Would you prefer another method for inputting new 
speech (e.g. such as speaking into a microphone)?

 5. Was it useful to see what the robot saw in the Graphical 
User Interface?

 6. Was it useful to present information about the current 
activity that the robot is observing (e.g. if someone has 
requested for assistance, how a Bingo card has been 
marked by a player, the called out Bingo numbers).

 7. Was it useful to know what the robot has learned dur-
ing the robot teaching session in the Graphical User 
Interface?

 8. Do you think you could develop new recreational activ-
ities for the robot to do with the residents using this 
system?

 9. Did you enjoy teaching the robot a new activity?
 10. Do you have any additional comments or suggestions?

Part B: NASA‑TLX Task Load Index

Please place an “X” along each scale at the point that best 
indicates your experience during the robot teaching session, 
ranging from low to high for statements 1-5 and good to bad 
for statement 6.

Low High

Good Bad

1. Mental Demand: How much mental and perceptual 
activity was required during the Bingo teaching task 
(e.g. moving arms, clicking the mouse, pressing but-
tons)? For example, was the Bingo teaching task easy or 
demanding, simple or complex, exacting or forgiving.

2. Physical Demand: How much physical activity was 
required during the Bingo teaching task (e.g. pushing, 
pulling, turning, controlling, activating, etc.)? Was the 
Bingo teaching task easy or demanding, slow or brisk, 
slack or strenuous, restful or laborious?

3. Temporal Demand: How much time pressure did you 
feel due to the rate or pace at which the Bingo teaching 
task occurred? Was the pace slow and leisurely or rapid 
and frantic?

4. Effort: How hard mentally or physically did you have to 
work to teach the robot Bingo?

5. Frustration: How discouraged, stressed, irritated, and 
annoyed versus gratified, relaxed, content, and compla-
cent did you feel while teaching the robot.

6. Performance: How successful do you think you were 
in accomplishing the goals of the Bingo teaching task? 
How satisfied were you with your performance in 
accomplishing these goals?

Part C: System Usability Scale

Please place an “X” to indicate your level of agreement to 
the following statements.

1=Strongly 
Disagree

2=Somewhat 
Disagree

3=Neutral 4=Somewhat 
Agree

5=Strongly 
Agree

 1. I think that I would like to use the robot teaching sys-
tem frequently to teach the robot to facilitate new lei-
sure activities with residents.

 2. I found using the robot teaching system too complex.
 3. I thought the robot teaching system was easy to use.
 4. I think that I would need the support of a technical 

person who is always nearby to be able to use this robot 
teaching system.

 5. I found the various functions of the robot teaching sys-
tem were well integrated.
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 6. I thought there was too much inconsistency in the robot 
teaching system.

 7. I would imagine that most recreational activity pro-
gram staff would very quickly learn to use the robot 
teaching system.

 8. I found the robot teaching system very cumbersome to 
use.

 9. I felt very confident using the robot teaching system.
 10. I needed to learn a lot of things before I could get going 

with the robot teaching system.
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