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Abstract
This work proposes a robot-assisted navigation approach based on user intent adjustment, in the context of robotic walkers.
Walkers are prescribed to users with gait disorders so that they can support their body weight on the upper limbs, however, the
manipulation of such devices can be cumbersome for some users. Common problems for the users are lack of dexterous upper
limb control and visual impairments. These problems can render walkers’ users helpless, making them unable to operate these
devices effectively and efficiently. We present a new approach to robot-assisted navigation using a utility decision and safety
analysis procedure with user intent adjustments learned by reinforcement learning (RL) and supported on a rapidly-exploring
random tree inspired algorithm. The proposed approach offers full control of the assistive platform to the user until obstacles
are detected. In dangerous scenarios, corrections are computed in order that the assistive platform avoids collisions and follows
social norms, effectively guiding the user through the environment while enforcing safer routes. The experimental validation
was carried out in a virtual environment and in a real world scenario using a robotic walker built in our lab (ISR-AIWALKER).
Experimental results have shown that the proposed approach provides a reliable solution to the robot-assisted navigation of
a robotic walker, in particular the use of utility theory to evaluate candidate motions together with a RL model increases the
safety of the user’s navigation.

Keywords Assistive robotics · Reinforcement learning · Robot-assisted navigation · Robotic walker · Rapidly-exploring
random tree · Robot operating system

1 Introduction

The use of assistive platforms such as robotic walkers and
wheelchairs has increased in the last years. The increase ten-
dency is directly influenced by demographic statistics which
show an accelerated ageing tendency, resulting in increas-
ingly older societies [19]. Adding to this tendency, with the
progress of age, several health complications arise. Mobility
decay is for instance, one of the most recurrent disorders,
mainly due to muscular, neurological, and osteoarticular
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decay. New technological approaches that focus on help-
ing sufferers of such disorders have been emerging. Such
is the case of Assistive Robotics which aims to provide the
means to offer greater degrees of independence and less
need for dedicated caregivers. A mobility assistance widely
used to provide body weight support while walking is the
walker. This type of platform provides a reliable solution
in assistive and rehabilitative contexts. The ability to sup-
port the body weight contributes to the user’s safety while
walking, which is of great importance to mitigate a phe-
nomenon exhibited by users of these devices, Fear Of Falling
(FOF) [1]. However, these devices require dexterous manip-
ulation, for the user to be able to navigate safely without
collisions [2], which, for instance, is difficult for Parkinson’s
disease patients [5]. Another drawback is that a signifi-
cant number of elderly users have visual impairments [27],
adding an additional degree of stress to handle the walker
in order to avoid obstacles, and to constantly correct the
trajectory to be followed in order to reach the goal lying fur-
ther ahead. In this paper, we propose an assisted navigation
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approach fusing both user intent and environment perception,
to offer a reliable driving experience to the user, providing a
good performance navigation through the environment. This
approach, which combines the user intent derived from the
HMI and a local environment model, was deployed in the
ISR-AIWALKER [25]. The approachweights the user intent,
taking into consideration the environmental constraints, and
induces a safe and smooth navigational behavior. Commands
that lead to collisions are iteratively learned and penalized,
leading to an accurate user intent translation over time. The
main contribution of this work is the robot-assisted naviga-
tionmethod (henceforth named two stage utility theory aided
RL and RRT-UTRL-RRT) incorporating the user’s intent, a
local environment model and the RLmodel’s decisions using
utility functions and utility theory (Sects. 4.2–4.4). In partic-
ular the following contributions are highlighted:

– An RL model that considers a multi-state RL representa-
tion in order to fuse three inputs (user’s intent, pose and
local environment model). The RL model provides an
output action representing a correction to the user intent
based on the user’s navigational behavior (Sect. 4.3). The
decision computed by the utility theory is used to update
the RLmodel when the computed control command does
not match the selected RL action (Sect. 4.3.4).

– An RRT inspired approach searches for driveable space
by exploring and expanding nodes in a tree over the local
environment representation, biased towards a given con-
trol command hypothesis. An explorability index that
aids in the selection of the control command hypothe-
sis is computed from the explored tree nodes (Sect. 4.4).

The experimental validation of the proposed method was
carried out with the deployment in the ISR-AIWALKER
(with a force-based HMI) in a real-world scenario and in
a virtual environment. For the evaluation in the virtual envi-
ronment the ISR-AIWALKERHMIprovides the user’s intent
that moves a realistic virtual model of the walker. In this
paper, Sect. 2 refers to the related work concerning robot-
assisted navigation. Section 3 provides a general overview
of the ISR-AIWALKER. Section 4 details the development
of the robot-assisted navigation approach. The following sec-
tion presents experimental results, and respective discussion,
obtained using the test platform. Final conclusions are drawn
in Sect. 6.

2 RelatedWork

Looking at the aspects of motion planning or obstacle avoid-
ance in the literature for assistive platforms, three main
categories concerning the type of navigation employed can be
listed (see examples at [21]): direct user control, autonomous
or destination based control and shared control. In direct user

control the user keeps all the control of the platform with
the navigation approach activated only when a collision sce-
nario is detected. With target/destination based control the
user provides a goal/destination and the navigation approach
deals with all aspects of control. Finally, in shared control,
the navigation approach computes which control commands
should be applied at each iterationwhile the user keeps partial
control of the platform.

Through the years, several works can be found which
address navigation for assistive platforms, particularly robotic
walkers, following the aforementioned motion planning cat-
egories. This related-work section focuses on works address-
ing robot-assisted navigation relying on learning schemes to
take into account the user’s drivingbehavior. Toprovide some
historic context, some works relying on simple navigation
approaches will be mentioned. The PAM-AID walker is the
pioneer work in this field [15], designed to increase the inde-
pendence of persons with visual impairment and/or reduced
mobility. It is a passive walker, providing solely steering
control of the front wheel. It boasts a frontal ultrasonic
array, which serves for detection and avoidance of obsta-
cles. Another example is the PAMM smart walker [7], which
employs motorized locomotion, as well as, a sonar array and
a camera. Taking into account a map, the walker follows
visual landmarks and avoids obstacles using the sonar. User’s
commands/intention, on both works, is provided through a
force/torque sensor on the handles. Assistance is limited to
an obstacle avoidance perspective or to a navigation on a
structured and mapped environment. Following this initial
paradigm, there are, as well, the robotic walkers described
in [4,17,22,23]. More complex navigation approaches have
been proposed focusing on context-awareness, integrating
simultaneous localization and mapping (SLAM) techniques.
The mobile walkers Guido [29], ARSO [34], and the one
described in [32] are examples of devices integrating that
type of context-aware navigational modules.

However, all the previous navigation approaches still con-
sider the user’s intention as merely a destination goal. They
navigate, knowing the goal a priori. The work described
in [33] combines two sources of user intent input, direct
force-based input, and estimation of direction and orientation
through a laser-range finder. In [11], a model for moderat-
ing user intention and user fatigue is proposed that takes
human input into account in three different decision-making
algorithms, related to path planning, collision avoidance,
and the degradation of user-based commands due to phys-
ical fatigue. An approach relying on drift–diffusion model is
used, combining user intention and the robot’s perception. A
system of rewards is given to each action ruling the decision-
making. It showed better performance than simpler models.
The drift–diffusion model was tested in [24], where two dif-
ferent approaches are tested for mobile assistive robots. The
other method is based on the Dynamic Window Approach
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Table 1 Summary of robot-assisted navigation approaches related to walker platforms in the literature

References Navigation approach Sensors Environment perception

[7] Shared control approach Sonars; camera A priori map

[22] Policy search Sonars A priori map

[4] Walker dynamics Laser rangefinder Obstacles

[23] Context-aware Laser rangefinder Road context

[32] Lookahead controller Tilting laser rangefinder A priori map

[34] A∗, Nearness diagram Camera; Sonars; Laser rangefinder A priori map

[29] Clean sweep Sonars; Laser rangefinder Obstacle projection

[12] Q-Learning Sonars Obstacles

[24] Drift–diffusion model, DWA Laser rangefinder Obstacles

[18] A∗, Hybrid DWA Laser rangefinder Grid map (SLAM)

[9] RLNA Microsoft Kinect Local map [10]

(DWA), and amotion command for the platform is computed
upon the user intent’s input. The results of the tests showed
an improvement in navigation efficiency of both methods
when compared to unassisted mobile platforms. Still in an
assistive context, a Double DWA (D-DWA) approach was
proposed [18] that provides smoothmovements and effective
traversal of tight spaces. In [8], an approach for assisted nav-
igation of visually impaired individuals through a Simulated
Passivity approach of the FriWalk is presented. It provides a
graphical user interface that provides indications to the user
about the path and only activates the walker’s motors when
a compensation is required, hence offering a perception of a
passive walker.

On the scope of social behavior, related to assistive plat-
forms, interesting works in that particular domain can be
found [26,31]. In [31] the robot avoids interfering with
humans by considering a dynamic social zone integrated in
the motion planner that models social interactions. On the
other hand, the work in [26] uses inverse RL to teach social
behaviors to a robot, by inputting the learning outputs to an
optimal rapidly-expanding random tree planner. The inverse
RL model is achieved through demonstrations.

An important aspect for assistive platforms is learning
from experience, more particularly, learning from user’s
actions. To this end, RL has been applied in multiple sce-
narios [14], and one of its growing fields of application lies
in the process of aiding the navigation of robotic systems.
In [12] RL is used by a robotic platform to learn the best
navigation behaviors when confronted with obstacles in a
closed course. The learned Q-values are used to moderate
the actions of the fuzzy-logic controller that initially defines
the platform’s behavior based on the presence and location
of obstacles. RL can also be used to assist a robotic plat-
form without learning precedent conditions, based solely on
rewards attributed recursively for each state-action pair. An
example of this type of approaches can be seen in [6], where

a navigation algorithm employs RL to learn a model using
a Q-matrix that acts upon a Fuzzy Neural Network-based
Action-State space. In [9], a walker’s motion planning is car-
ried out by a modified DWA where the DWA’s cost function
is aided by an RL model in order to incorporate the learned
user’s behavior [reinforcement learning robot-assisted navi-
gation approach (RLNA)].

Considering the aforementioned works, a summary of
robot-assisted motion planning approaches, in the context
of walker platforms, is provided in Table 1.

Our proposed robot-assisted navigation approach, belongs
simultaneously to the direct user control and the shared con-
trol categories of motion planning approaches. The method
provides assistancewithout requiring a globalmapor a global
plan of the user’s actions. Using a local map of the environ-
ment, the user can make local decisions and influence the
walker’s motion, but when a possible collision in the user’s
pathway is detected, themotion of thewalker is adapted using
the proposed method. Given its two-stage nature, the method
helps to avoid localminimum scenarios, complieswith social
behavior, learns from user’s behaviors and moves the assis-
tive platform smoothly in the environment.

3 Robotic Assistance Architecture

In this section, we present an overview of the proposed
robotic assistance architecture (shown in Fig. 1), with par-
ticular focus on the robotic walker and its user intent and
environmentmodels. The robot-assisted navigation approach
is the main contribution of this work and is detailed in the
next section.

3.1 RoboticWalker

The ISR-AIWALKER is a differentialmotorized robotic plat-
form with a force-based HMI (see Fig. 2). The platform was
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Robotic Assistance Architecture

Robotic Walker

Robot-Assisted Navigation Approach

Pose

Fuzzy Controller

Local Environment
Perception

3D Point Cloud

Force/Torque

Virtual Environment (Walker Model)

Environment Model

User's Intent

Fig. 1 Block diagram of the overall robotic assistance architecture,
composed by: the proposed robot-assisted navigation approach; a local
environment perception module; a Fuzzy module and interfaces with
thewalker platform and a virtualwalker. The inputs of the robot-assisted

navigation approach are the user’s intent and an environment model, the
output is the control command for the walker platform or for the walker
model in the virtual environment

Fig. 2 ISR-AIWALKER robotic walker platform

designed and built at the ISR-UC and is able to sustain a nom-
inal vertical load of up to 80kg (a more in-depth description
of the platform is presented in [9,25]). The walker is also
equipped, for tasks related to environment perception and
motion planning, with a Microsoft’s Kinect One and a Led-
dartech Leddar sensor. Addressing the HMI’s design, which
is of importance to this work, theHMI’smechanical structure
follows the typical frame of the walkers, used in the health-
care field, i.e. a configuration of parallel handles. It employs
an ATI Omega160 NetBox Force/Torque sensor with a fuzzy
controller that converts the forces exerted by the user on the
handles into linear and angular speed commands.

3.2 Virtual Environment

For this work a simulation platform was designed to test
the proposed robot-assisted navigation approach. Using the

ISR-AIWALKER’s HMI feedback, a realistic model of the
walker is guided in a virtual environment. The walker’s vir-
tual model was obtained bymodeling the step response of the
ISR-AIWALKERmotors (first order transfer functions) with
the encoders and dimensions accurately represented in the
virtual model. This simulation environment helps to broadly
assess the proposed pipeline (i.e., with a large number of
volunteers) guaranteeing the safety of all volunteers. The
simulation environment architecture is presented in Fig. 3.
The virtual environment simulation software was developed
in OpenGL/Qt/C++ with a TCP/IP connection to the ISR-
AIWALKER’s HMI (see Fig. 3). With the use of such a
hybrid setup, we are able to ensure that volunteers can oper-
ate the physical HMI and, at the same time, remain safe,
without the need to expose them to real collisions during
tests (see Fig. 4). The user’s input (through the HMI) serves
as input for the robot-assisted navigation approach. Using
a virtual representation of the scenario, a virtual 3D point
cloud sensor generates 3D point cloud data. The generated
data is used to compute the local map and detect collisions.
The ISR-AIWALKER motion is computed by a differential
drive model.

3.3 User’s Intent

The desiredwalker’smotion is defined by a control command
uui (i.e., user’s intent) composed by linear v and angular
w speed components (uui = (v,w)) issued by the HMI.
Considering that the typical users of mobility assistances
are elderly and/or impaired users, we assume that the user
intent provided by the HMIs of these assistive devices is
coupled with uncertainty due to inherent constraints (i.e.,
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Fig. 3 Diagram representation of the simulation environment with the
HMI user intent (uui ) provided by the ISR-AIWALKER

Fig. 4 A volunteer performing a run in the virtual environment using
the ISR-AIWALKER’s HMI as input

users with impaired vision, uncoordinated motion and loss
of arm strength). This uncertainty on the user intent increases
as the user capabilities decrease [2]. The user intent uncer-
tainty is here defined as a region Ru comprised between
[[vui − Δvui , vui + Δvui ]], [wui − Δwui , wui + Δwui ]
in a continuous velocity space. The user intent provided
by the HMI is constrained in a continuous space lim-
ited by the upper and lower system boundaries (Rr =
[[vmin, vmax ], [wmin, wmax ]] and Ru ∈ Rr ).

3.4 Local Environment Perception

The local environment model Mlocal is defined as a two-
dimensional (2D) environment representation (nrows×ncols),
composed by a set of cells Mlocal = ci j with indexes i
and j corresponding to row and column, respectively. Each
cell ci j is defined with constant dimensions and contains a
probabilistic occupancy that represents to some degree the
existence of some obstacle on the environment and is updated
from sensor measurements. The environment is represented

on a local view centered on the walker’s base frame and is
used to evaluate possible collisions and detection of avoid-
able obstacles. Each cell ci j in Mlocal is converted to a binary
notation (free or occupied) to aid the collision detection and
planning. On the context of this work, the approach proposed
in [10] is used (see Fig. 5). The input is a 3D point cloud pro-
vided by theMicrosoft Kinect One sensor. For each 3D point
cloud, an intermediary 2.5D representation is generated and
a ground plane is extracted using an RRT inspired Ground-
Plane Detection approach (RRT-GPD). Using an inverse
sensormodel and the obtained ground plane, each 2.5D voxel
is converted to an occupancy probability and updated in the
local environment model (Mlocal ). The local environment
model is centered on the walker’s base frame with con-
stant grid size. Thewalker’s displacement and orientation are
required to update the cells in the local representation, and
orientation is required for collision detection. The walker’s
pose in the local environment model will be (0, 0, θ) at any
instant, where θ is the orientation of the platform.

4 Robot-Assisted Navigation Approach

In this section,we introduceour assistednavigation approach,
which includes a utility based decision step with RL and
a safety stage inspired by a RRT algorithm (UTRL-RRT).
The proposed approach is the result of the combination of
several modules summarized in Fig. 6. At every iteration,
the user’s intent is derived from the HMI present on the
ISR-AIWALKER. Using the local environment model, the
method analyses the environment and the hypothesis (can-
didates) for safe navigation. If the user’s intent represents
a safe command, no assistance is provided (green arrow in
Fig. 6). On the other hand, if the user’s intent represents
an unsafe command, the proposed approach will provide an
adequate linear and angular speed to preserve safety, resolve
the detected conflict or immobilize the platform if no valid
solution is found. The proposed approach is presented in
Algorithm 1.

4.1 Scenario Assistance Awareness

The platform’s user maintains most of the motion control
duties and is aided when a critical situation is detected based
on the provided user intent uui . The proposed method has
three main input variables: the user intent; a local environ-
ment model and the walker’s pose. We consider the motion
model of the robotic walker platform as being based on the
differential drive geometry kinematic model, given by
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Fig. 5 Local environment perception approach from [10]. The approach expects as input a 3D point cloud and outputs a local 2D Occupancy
gridmap
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Fig. 6 Robot-assisted navigation’s functional diagram. (Color figure online)

xk+1(u(v,w)) =

⎧
⎪⎨

⎪⎩

xk+1 = xk + vΔt cos θk

yk+1 = yk + vΔt sin θk

θk+1 = θk + wΔt

(1)

where (x, y) is the 2D position of the walker’s center of
mass, Δt the time step and θ is the walker’s orientation. For
a given user intent uui a set of velocity samples is taken
uniformly from Ru and paths for each sample are generated
by the computation of Eq. 1 with a predefined number of
lookahead iterations. If all of those samples produce a valid
path (ValidRequest in Algorithm 1), the velocity command
is sent to thewalker platform.Otherwise, if one ormore paths
fail either because a collision was detected or a generated
path provided a solution that was too close to an occupied
cell in Mlocal than a safety threshold, the method tries to
find a solution that respects the user intent but drives the
walker along the surrounding environment. The procedure

ValidRequest, using the user’s intent uncertainty region Ru,
computes two borderline linear and angular commands and
assesses possible collisions in an iterative procedure using
Eq. 1, with a predefined lookahead and a local representation
for collision computation.

4.2 Candidate Sampling and Utility Theory Based
Decision

Given the user intent uui , a set of velocity samples Sv

with size (N ) is uniformly sampled within the region Rr

(CandidateSampling in Algorithm 1). For each velocity
uc ∈ Sv , using Eq. 1, we determine a set of poses (Sp) in
the 2D-Cartesian space (here defined as motion candidate)
with each pose defined as pi = (x, y, θ) (for i = 0, . . . , n),
poses generated from t = 0, to t = TLA with TLA, the
lookahead step of the candidate. The TLA represents how far
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Algorithm 1: Proposed approach for robot-assisted nav-
igation

Input: User intention (uui )
Local environment model (Mlocal )
Candidate iteration time (TLA)
Auxiliary parameters/variables
(tr ,K ,Ak−1,Sk−1)

1 if ValidRequest(Mlocal ,uui ,TL A) then
2 u′ ← uui ;

3 else
4 Sv ← CandidateSampling(uui );
5 Sc ← CandidateGeneration(Mlocal ,Sv,TLA);
6 Sc ← ComputeUMetrics(Sc);
7 SC ← ∅;
8 a ← MultiStateRL(Mlocal ,uui ,Ak−1,Sk−1);
9 foreach x in Sc do

10 SC ← SC
⋃

x ∧ ActionUtility(a,x);

11 SC ← SelectBestUtilitySet(SC );
12 Se ← ∅;
13 foreach x in SC do
14 ie ← RRT-E(x ,uui ,tr ,K ,Mlocal );
15 Se ← Se

⋃
ie;

16 u′ ← Sv ∩ Sc ∩ argmax(ie)
ie∈Se

;

17 RLActionUpdate(
∥
∥uui − u′∥∥);

Output: u′

the system should iterate the equation in order to provide a
reliable candidate. Defining Sc as the set of candidates, we
use the local environment model Mlocal to perform collision
checking and exclude invalid nodes (CandidateGeneration
in Algorithm 1). Given a valid set of candidates Sc, we start
by extracting characteristics for each candidate:

1. Candidate traveled distance:

dt =
|Sp|−1∑

i=1

∥
∥(Sp(i) − Sp(i + 1))

∥
∥ (2)

2. User intent to candidate velocity (uc) norm:

dui = ‖(uc − uui )‖ (3)

3. Minimum distance to obstacles on the left (dl ) and right
(dr ) side of the candidate c in the local map Mlocal :

(dl , dr ) = LocalDistance(c, Mlocal) (4)

Equations 2–4, provide a description in terms of length,
similarity to the requested user intent, and distance to near
obstacles considering the left (dl ) and right (dr ) side of the
platform. From these equations, and based on utility the-
ory [3,28], we define three utility functions that best describe
how useful each characteristic is:

1. Obstacle avoidance utility function: Obstacle avoidance
is an important part of any motion problem, but as robots
enter in human populated environments they are required
to take into account social conventions [13] (e.g., tend to
one side of hallways, respect personal space, do not inter-
rupt conversations). In this case,we incorporate the social
behavior of approaching to the nearest walls, in either
direction in order to leave a free pathway. Equation 5
provides such behavior as utility is modeled through
two Gaussian functions with the center of each peak the
higher utility value, conditioned by the nearest obstacle
position

UO (dl , dr ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

e
−

(
(dl−μo)2

2σ2o

)

, if dl ≤ dr ∧ dl < dmax
o

e
−

(
(dr−μo)2

2σ2o

)

, if dr < dl ∧ dr < dmax
o

0, otherwise

(5)

with μo the defined useful distance, σo the useful width
and dmax

o a threshold value for the distance to obstacles.
2. User intent-candidate utility function: The user intent uui

given by the HMI represents the user’s intent coupled
with uncertainty.Although this uncertainty could be trou-
blesome, in cases where the user is correct in the scenario
assessment, this utility function guarantees that the initial
intent is taken into account in the decision of the utility
of a candidate, given by:

Uui (dui ) = e
−

(
(dui )

2

2σ2ui

)

(6)

with σui the Gaussian width of the user intent utility.
3. Traveled distance utility function: On the set Sc, and

since we are employing a constant lookahead step TLA,
depending on the input uc for each candidate, the traveled
distance for each candidate will be different, so in order
to reward candidates that maximize the exploration of
wide areas of the environment model, the utility function
increases as the traveled distance increases, so that

Ut (dt ) = dt
dmax

(7)

with dmax the maximum distance threshold.

From [20] the total utility (ComputeUMetrics in Algo-
rithm 1) of a candidate c is now

Uc = WOUO + WuiUui + WtUt (8)
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withWO ,Wui andWt being the behavior dependent weights.
The candidate with maximum utility c∗ is then given by

c∗ = argmax
c∈Sc

(U (c)) (9)

withU (c) the set of utility values for each candidate (U (c) =
[Uc0, . . . ,UcN ]). From Eq. 9, a set SC of size |SC | = NL

candidates that maximize the utility of being a solution,
is selected (SelectBestUtilitySet in Algorithm 1). The aim
in choosing more than one candidate when possible (i.e.,
depending on the scenario), is to provide a second layer of
safety. This enables the prevention of possible complex sit-
uations that may arise, such as local minimum outside of
the initial system’s lookahead that are not modeled in the
utility function U (c), as well as to avoid scenarios where
the platform would face inevitable collisions, on the other
hand, reducing the number of candidates also reduces the
computational burden introduced by further exploring each
candidate.

4.3 Adjustment Learning from User’s Behavior

Although a local motion solution can be found using the
aforementioned approach, learning from the actions per-
formed by the user may aid in providing timely corrections.
Users of devices such as walkers or wheelchairs can suffer
from multiple overlapping symptoms which may require a
modified behavior of the local strategy in order to comply
with the user’s true intent [30]. Following the work proposed
in [9], a solution inspired by Q-Learning is proposed. In the
classic Q-Learning model, the inputs are the states (S) and
actions (A), and the output is the action that maximizes the
utility/reward of taking an action given an observed state.
Our approach follows a different procedure where, it tries
to model multiple observations of states in order to maxi-
mize the utility of a chosen action. The states are modeled as
obstacles surrounding the assistive platform, and the actions
represent corrections that should be applied to the user’s
intent.

4.3.1 Multi-State Q-Learning Approach

The proposed RL approach is presented in Algorithm 2. For
this particular problem the Q matrix is modeled as a 3D
matrix where rows and columns represent X and Y coordi-
nates in the assistive platform’s local workspace and height
cells represent the Q-values for each action. The Q matrix is
initializedwith constant bias towards a non correcting action,
with dimensions |S| × |S| × |A|.

For each update of the RL model, the first step con-
sists in getting the current observed states by iterating Eq. 5
(CurrentStates), given the user intent, pose and the envi-

Fig. 7 Representation of the definition of states from an environment
snapshot, considering the user’s intent (green). (Color figure online)

ronment representation (see Fig. 7). Modelling all possible
combinations of obstacles is not a tractable problem in this
context, and in this work we propose an approximation to
model states using the obstacles in the local environment
model. For the current set of observations Sk a set of unique
possible actions is obtained (UniqueActionsForStates).
This set of actions represent all possible actions that the plat-
form is allowed to perform in the current state. The reward R
is computed by minimizing the reward value for each state in
Sk (RewardForState) considering Eq. 11. For each state s
in Sk−1, using a nearest neighbour approach (NearestState),
we find the nearest state in Sk , and retrieve its maximum
Q-value (QSx ). Using s and the previous action Ak−1, the
Q-value is updated (Q(s, Ak−1)). A set containing all pos-
sible output actions (A∗

k ) is updated with the action that
maximizes the Q-value for state s. A value corresponding
to the weight of the observation s is also computed. This
weight represents the contribution of a given state to the
final output action of the RL model (StateWeight). The
weight, considering the observed reward (r ) for s, is given
by

w(r) =
{
Kw||r ||, if r < 0
1, otherwise

(10)

where Kw is a weight gain. The output action is computed
using aweighted histogram (WeightedHistogram). The his-
togram is computed considering all the actions in A∗

k where
in each action’s bin (in a histogram sense), instead of adding
one unit to the bin, the bin is incremented with the weight
for each action. The output is then computed by finding the
bin/action that maximizes the weight.

4.3.2 States

The input of the proposed robot-assisted navigation approach
is a local environment model which means that the robot is
centered in the representation, and the representation con-
tains data from the nearest obstacles. In order to apply the
RL approach a view of the representation must be considered
when taking into account the desired intent of the user. From
Eq. 1 a lookahead simulation is performed by considering
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Algorithm 2: MultiStateRL - Q-Learning algorithm
adapted for user intent adjustment

Input: Environment Model (M)
User Intent (uui )
Last Action (Ak−1)
Last set of States (Sk−1)

1 Initialization:
2 Q ← A(|S|×|S|); A ← [

0 · · · 1 · · · 0];
3 Update Loop:
4 Sk ← CurrentStates(M);
5 A′ ← UniqueActionsForStates(Sk );
6 A∗

k ← ∅;
7 wk ← ∅;
8 R ← argmin

s∈Sk
RewardForState(s);

9 foreach s ∈ Sk−1 do
10 Sx ← NearestState(s,Sk );
11 QSx ← maxA′ (Q(:, Sx ));
12 Q(s, Ak−1) ← Q(s, Ak−1) + α(R + QSx − Q(s, Ak−1));
13 A∗

k ← A∗
k

⋃
argmax

A′
(Q(A′, Sk−1) ∧Q(A′, Sk−1) > 0);

14 w ← w
⋃

StateWeight(R,s);

15 Ak ← WeightedHistogram(w,A∗
k );

16 Sk−1 ← Sk ;
17 Ak−1 ← Ak ;

Output: Sk ,Ak

the user’s intent (uui ). From the final position of the simula-
tion, the nearest obstacles are extracted using an occupancy
threshold and rotated considering the final orientation caused
by the user’s intent. The states represent a lookahead view of
the representation provided the platform executed the issued
user’s intent. A depiction of this procedure is shown in Fig. 7.

4.3.3 Rewards

The rewards were designed in order to reward motions that
do not collide with the observed states. In particular, states
close to the platform contribute with a critical negative
reward in order to signal an unwanted maneuver. Rewards
are decreased from those critical negative rewards to posi-
tive rewards considering the type of maneuvers executed by
the assistive platform (see Fig. 8). In the lateral regions the
rewards increase faster in order to not penalize motions that
follow walls or traverse doors. In the frontal area it increases
slowly and spans a wide area to avoid frontal collisions, the
same idea is applied to the rear region in order to protect the
walker’s user. The span of the longitudinal region increases
and decreases according to the walker’s linear speed. The
reward is given by

R(x, y, b, v) = Kb − Kre

(

− x2

2(Kx v)2
+ y2

2(Kyb)2

)

(11)

where b is the baseline distance of the walker platform, v is
the walker’s speed, Kx , Kr , Kb and Ky scaling factors and

Fig. 8 Three examples of the rewards based on a likelihood of collision.
From red to blue, the rewards are represented where red represents a
negative reward and blue the maximum positive reward. From left to
right: reward for a stationary platform; reward for a platform moving at
half themaximumspeed; and reward for a platformmoving atmaximum
speed. (Color figure online)

(x ,y) the positions of the states considering that this reward
representation is centered in the walker’s referential.

The Algorithm 2 considers the worst case scenario for
the learning approach which means that all Q-values are
updated with the lowest reward. It is also possible to com-
pute a reward for each state s in Sk and individually update
the Q-values. Due to the nature of the application, a deci-
sion was made to force the learning in the worst case (i.e.,
to guarantee that more maneuvers are avoided) but a more
relaxed approach can be obtained by computing a reward for
each state s, by removing the minimum computation of R
and adding R ← RewardForState(Sx ) after the computation
of the nearest state.

4.3.4 Actions, Action Update and Utility Update

Five possible actions where defined (see Fig. 9) consisting in
two big adjustments of the users heading, two small adjust-
ments and one action representing that there is no need to
adjust the intent from the user. The actions were defined
in order to avoid sudden motion transitions caused by the
learned actions in the behavior of the walker, thus creating
smooth transitions in the local planning and actuation of the
walker’s motors. In order to associate a utility to the RL
model output, the five actions where modeled using the form
of sigmoidal functions on the edges and Gaussian functions
for each action in-between. The equation that represents the
computation of the utility (ActionUtility in Algorithm 1) is
given by:

URL(a, x) =

⎧
⎪⎪⎨

⎪⎪⎩

KB + KU
(1+e(−Ks (−x+A(a)))

, if a = 1

KB + KU
(1+e(−Ks (x−A(a)))

, if a = N

KB + KUe
−

(
(x−A(a))

(σ )

)2

, otherwise

(12)

where N is the number of actions, KB is a minimum cost
parameter, KU a scaling parameter, Ks a sigmoid’s shape
parameter, σ the Gaussian function shape parameter and
A(:) the centroid for each action, considering the variation
between the user’s intent and a defined candidate (x).
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Fig. 9 Representation of the
utility (Eq. 12) for each RL
output action
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Equation 8 is updated for the RL procedure and is given
by:

Uc = WOUO + WuiUui + WtUt + WRLURL (13)

whereWRL is the RL associated weight. As stated earlier, the
output of theRLmodel is computed considering, anweighted
histogram instead of other techniques such as ε-greedy or
replay/preview techniques.

This wasmainly due to the nature of the problem of aiding
a user while driving an assistive platform. The initial guess,
when no prior knowledge of the output of an action or when
each action represents a negative outcome, should be handled
by the local planner. In this particular scenario, when the user
is driving the walker platform, we cannot randomly select
an output action by risking the safety of the user. In this
context, the best possible solution is to let the local planner
select the appropriate decision considering the user intent
and the local environment, and then let the model learn from
the decisions output. This means that if the Q-value of the
bin with maximum weight is negative, no action is issued,
and an utility of zero is considered. The output of the RL
model is updated after the decision of the motion planning,
considering the variation between the user’s intent and the
selected candidate. The action is updated (RLActionUpdate
in Algorithm 1) by

Sk−1 = argmax
a=1:N

URL
(
a,

∥
∥uui − u′∥∥)

(14)

4.4 RRT Explorability Analysis and Candidate
Refinement

To increase the method’s safety, we introduce a RRT [16]
inspired algorithm to assess the explorability of each candi-
date on the SC set (see Algorithm 1). In the scope of this
work, we define explorability as an indicator of a candidate’s
ability to further generate valid solutions on a determined
region.

The RRT algorithm is a sample-based approach that is
probabilistically complete and has the advantage of being
able to find a feasible path relatively quickly (when a feasi-

Algorithm 3: RRT-E - RRT Explorability index
Input: Motion candidate (c)

User intent (uui )
Simulation step (tr )
Maximum number of iterations (K )
Local environment model (Mlocal )

1 Initialization:
2 RRT Tree (G) with initial configuration;
3 (G.InitializeTree(c)).
4 InvalidCount ← 0;

5 for k=1 to K do
6 vrand ← SampleRandomVelocity(uui );
7 xrand ← SelectRandomExpansion(G);
8 xnew ← Steer(xrand , vrand , tr );
9 if CollisionFree(Mlocal ,xrand ,xnew) then

10 G ← G
⋃

(xrand , xnew);

11 else
12 InvalidCount ← InvalidCount + 1;

13 ie ← K−I nvalidCount
K ;

Output: ie

ble path exists), even in high-dimensional spaces, but is not
reliable in finding optimal solutions or in ensuring two equal
solutions to the same motion planning problem. In this par-
ticular application of the RRT inspired algorithm, the goal
is not to obtain a valid path, but to compute an explorability
index related to the growth of the RRT. By sampling veloci-
ties biased towards the user intent, and evaluating the reach
of each node, the RRT explores the surrounding space since
the growth of the RRT is only constrained by surrounding
obstacles. The proposed variation of the RRT algorithm is
presented in Algorithm 3.

For each motion candidate c in the set SC , the pro-
posed RRT inspired approach is instantiated and iterated
K steps. For each iteration, a random velocity biased on
the user intent is sampled and used to guide the search
component of the algorithm. The proposed algorithm has
four main procedures enumerated by the same order of
execution, being SampleRandomVelocity, SelectRandom-
Expansion, Steer and CollisionFree. The SampleRan-
domVelocity procedure provides a new velocity sample
vrand biased on the user intent uui or sampled in the Ru
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window. In this context, biased on the user intent means that
the user intent will be selected for exploration more than
any other intent pair, sampled from the Ru window (e.g.,
considering a bias factor of 30%, for 10 samples, 3 will be
the user intent and 7 sampled from the Ru window). The
SelectRandomExpansion procedure selects a random ele-
ment xrand on the initial tree to be explored using vrand . To
avoid unnecessary explorations, the direction of exploration
is included in this procedure guaranteeing that the explo-
ration goes only forward or backward (except for the initial
node that allows both directions). The Steer procedure com-
putes the new trajectory (and a new node xnew) using Eq. 1.
The CollisionFree procedure uses the local representation
Mlocal to assess possible collisions between the proposed
trajectory and the environment, using the walker’s footprint
dimensions. When a collision is detected a counter contain-
ing the number of invalid explorations is incremented and the
node is blocked for further exploration in SelectRandomEx-
pansion. If the trajectory is collision free, the node is added
to the tree and can be selected for expansion in its motion
direction.

The output of the algorithm is the explorability index given
by:

ie = #ValidExplorations

#ExploredNodes
= K − InvalidCount

K
(15)

Applying the proposed algorithm to each candidate in the set
SC creates a new set Se containing the explorability index for
each candidate. The candidate that maximizes the utility and
explorability is then given by:

u′ = Sv ∩ Sc ∩ argmax(ie)
ie∈Se

(16)

Scenarios that represent near collisions often provide solu-
tions with a small explorability index for strong user intents.
The final solution u′ will be selected from a set of candidates
which, whilemaximizing the utility,may represent unwanted
solutions due to the small explorability. If a node is selected
with an explorability index smaller than a given threshold it
is discarded and a warning is triggered. The same behavior
is applied in solutions that offer small values of total utility.
Solutions with small values of total utility in the set SC rep-
resent situations where the requested user intent cannot be
satisfied, either because the region could not be explored or
there are many obstacles in the robots pathway.

Triggering a warning forces the walker to stop and the
user to be warned that the desired intent is invalid (see Visual
Aid/Debug in Fig. 11). This action guarantees that in cases
where a collision is almost eminent the user still has the
ability to rotate the walker and provide an updated intent.
The final form of the proposed algorithm for robot-assisted
navigation is presented in Algorithm 1 and a representation

Fig. 10 Representation of the proposedmethod: in red, excluded nodes;
in light grey, valid candidates; in dark grey occupied cells in the local
model; and in green, the RRT exploration for one candidate. (Color
figure online)

is shown in Fig. 10. It is important to note that the RRT
inspired algorithm allows the proposed approach to avoid
local minimum obstacle configurations.

5 Experimental Results

5.1 ISR-AIWALKER Software Architecture

In order to deploy the proposed approach in the walker
platform, the ROS based software architecture shown in
Fig. 11was developed. The architecture is composed by three
main modules; walker interface; local environment percep-
tion; and robot-assisted navigation. The walker interface is
composed by 3 sub-modules (walker’s HMI, sensor acquisi-
tion and walker driver) responsible for all sensor acquisition
and wheel actuation. The walker’s HMI sub-module was
developed in-house and connects ATI Omega160 NetBox
Force/Torque sensor using TCP/IP and provides a ROS twist
message. Sensor acquisition provides the point cloud from
a Microsoft Kinect One sensor, based on the available ROS
driver.1 The walker driver implements bidirectional commu-
nication between the robotic walker (low level) and the ROS
environment providing two topics; a ROS odometry message
and a custom message for low level variables (e.g., battery
status, encoders). The module also receives a ROS twist
message to drive the robotic walker motors. The local envi-
ronment perception module provides a local representation
of the environment taking into account non-trivial obstacles
that are in the robot’s pathway (e.g., floor outlets, stairs) and

1 Kinect One driver Package—https://github.com/code-iai/iai_
kinect2.
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Local
Environment
Perception

Robot-Assisted
Navigation
Approach 

Walker's HMI

Walker Interface

Walker Driver
(low level)

Sensor Acquisition

User intent (geometry_msgs/Twist)

3D Point cloud 
(sensor_msgs/PointCloud2)

Pose (nav_msgs/Odometry)

Linear and angular velocities (geometry_msgs/Twist)

2D gridmap
(nav_msgs/OccupancyGrid)

RVIZ Visual Aid/Debug
  visualization_msgs/MarkerArray)

Fig. 11 Deployed ROS based software architecture in the ISR-AIWALKER platform. In bold are highlighted the ROS message types for each
module

Fig. 12 Snapshots with a user driving the walker, from the office traversal and door entrance (a, d). Images b and e correspond to the local occupancy
map for a office traversal and door entrance, c and f to the Microsoft’s Kinect One point cloud in both scenes

other obstacles (e.g., chairs, tables, walls). The module pro-
vides a local ROS occupancy grid-map message (see [10] for
more details). Figure 12 shows a volunteer driving the ISR-
AIWALKER platform in two scenarios, as well as the local
environment model and 3D point cloud for each scenario.
Finally, the robot-assisted navigationmodule implements the
proposed approach (see Fig. 6) and provides a ROS twist
message. Table 2 presents the parameters used during the
validation process with the proposed robot-assisted naviga-
tion module.

5.2 Experimental Protocol

To validate the proposed robot-assisted navigation approach
in the ISR-AIWALKER, two sets of tests were defined. The
first set of tests were conducted in a virtual environment (see
Fig. 13) where a group of twelve volunteers was asked to
drive the assistive platform in three modes: no navigational
aid (uui drives the walker platform), proposed approach
(UTRL-RRT) and proposed approach without the learning
stage (UT-RRT). The virtual scenario was inspired in the
real world scenario presented in Fig. 14.
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Table 2 Validation parameters Parameter Value Parameter Value Parameter Value

μo 0.8 dmax 1.0 K 400

σo 0.25 WO 1.0 α 0.5

dmax
o 3.0 Wui 1.0 Kb 1.0

N 75 Wt 1.0 Kr 2.0

σui 0.25 tr 0.3 Kx 5.0

b 0.45 Ks 10.0 Ky 1.0

KB 0.1 KU 0.9 σ 0.1

WRL 1.0 nrows 300 ncols 300

Δvui 0.1 Δwui 0.4 vmin −0.22

vmax 0.22 wmin −0.75 wmax 0.75

TLA 1.0 Δt 0.1 A(N = 5) −0.5, −0.2, 0, 0.2, 0.5

Fig. 13 Screenshots of the virtual environment

Fig. 14 Scenario for the experimental validation of the proposed
approach. In blue the start of the test, in green the end of the test and in
red the path each volunteer had to perform. (Color figure online)

In the second set of tests, and considering the scenario
presented in Fig. 14, a group of four volunteers was asked
to drive the assistive platform with two different navigation

pipelines. Following the work proposed in [9], each one of
the volunteers was asked to drive the walker with RNLA and
with the proposed UTRL-RRT approach. A newRLmodel is
initialized for each user, guaranteeing that each model only
adapts to the user it is learning from. The test consisted on
exiting an office environment (through a door) traversing a
long corridor with multiple 90◦ turns and a final step consist-
ing in performing a door entrance (see Fig. 14). It is important
to note that in both sets of tests, the same goal and start points
are provided (equal in both sets of tests) and the volunteers
are expected to perform similar trajectories.

In order to evaluate the performance of the robot-assisted
navigation approaches, based on the data gathered from both
sets of experimental tests, we consider the following perfor-
mance indices [9]: the average robot’s speed estimate (UR),
and the average control command and the user’s intent (UC ,
UU I ); average variation of the robot’s speed estimate (CR),
and average variation of the control command and the user’s
intent (CC , CU I ); minimum distance to obstacles (do) and
test duration time (Ts).

Prior to the start of each test, a familiarization with the
system and the objectives of the experiment was performed
by each volunteer (for the virtual environment and ISR-
AIWALKER).Eachvolunteerwas asked to drive safelywhile
avoiding obstacles and to report scenarios of distress (e.g.,
stress while performing certain motions or uneasiness with
any type of motion). In cases of distress the volunteer would
stop the platform and the scenario would be restarted if pos-
sible.

5.3 Results in the Virtual Environment

The main results obtained with the experimental tests in the
virtual environment are summarized in Table 3 and the per-
formed trajectories are shown in Fig. 15. All the volunteers
where able to achieve the goal positionwith the virtualwalker
without critical collisions.
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Most volunteers showed difficulties while traversing the
door entrances without aid, reaching a state where a colli-
sion was almost imminent and multiple in place maneuvers
where required. Considering the proposed approach, from
the presented results, it becomes clear that the RL the model
led to improved navigation performance in light of the met-
rics used. Average control command increased as the users
where able to more easily drive the virtual platform (and
increase its speed) and the average variation of control com-
mand decreased as less speed transitions were needed to
successfully achieve the goal position. One volunteer (V7)
in particular showed great difficulty while maneuvering the
virtual walker but with the robot-assisted navigation assis-
tance, the volunteer was able to successfully drive the virtual
walker. Four volunteers (V1, V2, V3 and V8) had similar
results for each run with the different robot-assisted naviga-
tion approaches as well as without assistance, which means
that the user’s driving behavior did not need any aid, this
comparison considers that a ±15 s difference is acceptable
(this accounts for some delay while starting or ending the test
run).

The obtained results give evidence of the importance of the
learning model in the performance of the volunteers, as well
as that the proposed method without the learning module
performs poorly. Overall, volunteers’ feedback was highly
positive in using the UTRL-RRT approach. The aid while
performing the door traversals was particularly highlighted.
In Fig. 16, the actions of RL and the actions performed by
the walker platform, as well as the iterations in which the RL
model was updated, are shown for volunteers V4, V5, V6 and
V7. The results show that the model is able, in most cases,
to select the action that will be used to drive the platform.
In the virtual environment, only for the volunteer V6, an
update of the model was required due to negative Q-values.
These negative Q-values were caused by close obstacles (that
produced negative rewards) but were solved by the utility
theory decision (and the decision was used to improve the
RL model).

5.4 Experiments in a Real Environment

Considering the scenario in Fig. 17, the experimental results
in a real-world setting are summarized in Table 4 (the results
are rounded to the second decimal point) for each robot-
assisted navigation approach. All the volunteers performed
similar trajectories in the test scenario. This was expected
since all users were able to successfully complete the pro-
posed goal. Comparing the output of both methods, the
average control command is slightly higher in the RLNA,
as well as the average variation, showing that the proposed
UTRL-RRT approach reduces those metrics in most cases
considering the same metrics for user intent. The average
control command and average variation of control command
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Fig. 15 Overlap of all the geometric paths performed by the volunteers
in the virtual environment. In red are the geometric paths obtained with-
out a robot-assisted navigation approach, in green the geometric paths

followed under the proposed approach without the RL model and in
blue the geometric paths generated with the proposed approach. (Color
figure online)
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Fig. 16 Snapshot of the performed RL actions, by four volunteers (V4, V5, V6 and V7) in the virtual environment, using the proposed UTRL-RRT
approach. In red the RL model actions and in blue the actions taken by the platform (considering Eq. 12). (Color figure online)

more closely follow the user’s intent in the UTRL-RRT
approach while in the RLNA the variations are higher. The
standard deviation for the average control and average varia-
tion of control in the proposed approach is slightly smaller for
all four volunteers which indicates that themotion transitions
are smoother. Due to the utility rule that governs the distance
to lateral obstacles and considering thewalker’s footprint (see
Fig. 2) the proposed approach provides, for most volunteers,

the desiredwall approaching behavior to leave oneway of the
pathway free. Due to some difficulties while performing door
traversals the average distance to obstacles decreaseswith the
RLNA. With the proposed approach each door traversal was
performed without problem. No resets or critical problems
were detected in the aforementioned tests.

For the proposed RL approach, in Fig. 18, the results are
shown for one of the tests. It is noticeable that for most iter-
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Fig. 17 Sample of the performed geometric paths overlapped with the scenario map

Table 4 Performance results for the validation tests

Volunteer 1 Volunteer 2 Volunteer 3 Volunteer 4

RLNA UTRL-RRT RLNA UTRL-RRT RLNA UTRL-RRT RLNA UTRL-RRT

CC 0.05 ± 0.10 0.02 ± 0.04 0.04 ± 0.08 0.03 ± 0.04 0.05 ± 0.09 0.03 ± 0.04 0.06 ± 0.07 0.04 ± 0.05

CR 0.03 ± 0.02 0.03 ± 0.02 0.03 ± 0.02 0.03 ± 0.02 0.03 ± 0.02 0.03 ± 0.02 0.03 ± 0.02 0.03 ± 0.02

CU I 0.03 ± 0.03 0.02 ± 0.02 0.03 ± 0.03 0.02 ± 0.02 0.03 ± 0.03 0.02 ± 0.02 0.04 ± 0.05 0.03 ± 0.04

UC 0.23 ± 0.09 0.22 ± 0.04 0.21 ± 0.07 0.23 ± 0.05 0.23 ± 0.11 0.24 ± 0.05 0.25 ± 0.09 0.25 ± 0.08

UR 0.20 ± 0.05 0.22 ± 0.04 0.19 ± 0.05 0.22 ± 0.04 0.19 ± 0.07 0.23 ± 0.05 0.22 ± 0.07 0.23 ± 0.06

UU I 0.24 ± 0.06 0.21 ± 0.04 0.23 ± 0.07 0.21 ± 0.05 0.25 ± 0.09 0.22 ± 0.05 0.26 ± 0.09 0.25 ± 0.08

do (m) 0.76 ± 0.34 0.87 ± 0.39 0.94 ± 0.63 1.02 ± 0.70 0.79 ± 0.57 0.87 ± 0.25 0.87 ± 0.30 0.84 ± 0.24

Ts (s) 176 180 205 174 219 166 187 175

Fig. 18 Snapshot of the performed RL actions, by one volunteer, using the proposed UTRL-RRT approach. In red the RL model actions and in
blue the actions taken by the platform (considering Eq. 12). (Color figure online)
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ations, the RL action and the updated action in the model are
the same, meaning that the model ends up learning important
corrections. It is also important to note that most mismatches
between actions are from neighbouring actions (2–3 and 3–
4), which is normal for a initial model biased towards a non
correcting action. On the other end, when the Q-values were
negative, it correctly forced the update by learning from the
computed output action.As can be seen in Fig. 18 (the actions
shown in red), the RL model provided important corrections
that aided the assistive platform.

6 Conclusion

In this paper we proposed a new robot-assisted navigation
approach, validated and deployed in the ISR-AIWALKER
platform. It is a solution to aid users with mobility impair-
ments, that usually are faced with complex environments,
inherently difficult to navigate due to the presence of obsta-
cles and narrow passages, which demand dexterous walker
operation. In our studies, the proposed approach presented
promising results both in the virtual environment and in the
real-world scenario. The proposed approach improved the
performance of the user on several scenarios, which are com-
monly encountered in real-life situations. The performance
of the volunteers, when using the proposed UTRL-RRT
approach, improved significantly for the presented metrics,
taking less time for three volunteers to complete the scenario
and improving the presented control-related metrics for all
volunteers. In the future, we plan to extend our work with
the incorporation of dynamic obstacles and introduction of
additional user’s behaviors, as well as performing further
tests with individuals belonging to the target population of
these assistive devices to better ascertain the efficacy of our
method.
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