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Abstract
The existing procedures for autism spectrum disorder diagnosis are time-consuming and challenging both for evaluators and
children being evaluated. Occurrence of low agreement rates between different clinicians when evaluating a child suggests that
there exists a need for a more objective approach to diagnostics. To that end, we developed a robot-assisted ASD diagnostic
protocol. In this work the focus is on robot reasoning for tasks of the protocol. We propose the mixed observability Markov
decision process models for tasks which infer information about the state of a child based on observations of child’s behavior.
In order to formulate observation probabilities of task models, ASD experts are surveyed and their knowledge is encoded in
the observation probabilities of task models. Expert knowledge also allowed for implementation of child behavioral models
which are used to validate and tune developed models. Following the successful validation through simulations of child–
robot interaction using child behavioral models, task models are validated through experimental sessions with six typically
developing children and eight children with ASD. Results obtained through experiments show that the robot is capable of
correctly identifying the behavior of the child within the diagnostic tasks.

Keywords Robotics · Autism spectrum disorder · Diagnostics · Mixed observability Markov decision processes

1 Introduction

The focus of this paper is the robot reasoning for robot-
assisted autism spectrum disorder (ASD) diagnostics.
AlthoughASD, a neurodevelopmental disorder with nomed-
ical markers, is becoming more commonly diagnosed [1–3],
the diagnostic procedure forASDhas been identified as prob-
lematic, both in terms of inter-rater reliability [4] but also in
terms of time needed to reach a diagnosis [5]. Direct and
indirect costs linked to delay in the diagnosis [6,7] only
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emphasize the already well-know importance of early diag-
nosis which facilitates early intervention. The problems with
ASD diagnostics stem from the fact that the procedure is
highly complex, consisting of simultaneous administration
of various tasks and observation and coding of the behav-
ior and requires substantial amount of training for a human
examiner. Although the need for a more objective approach
is recognized [8], according to recent surveys [9,10] which
investigated the use of robots and technologies for people
with ASD, there are no robots used in the diagnostic process.
The most likely reason for such scarcity is the requirement
for efficient processing and reasoning algorithms that are to
be implemented on the robot to enable the robot to assist
in the procedure without increasing the number of people
needed. At the current stage of our work, we bypass those
requirements by using a semi-autonomous robot in the robot-
assisted ASD diagnostic protocol [11], which stands out as
one of the first applications of humanoid robots in the diag-
nostics procedure but also adheres to the trends in the field of
using robots for research related to ASD where most of the
researchers use Wizard-of-Oz techniques [12–16]. The dif-
ference in our approach is in the fact that the robot is aided by
providing correct observations of social cues in cases where

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12369-019-00577-0&domain=pdf
http://orcid.org/0000-0002-9806-8569
https://doi.org/10.1007/s12369-019-00577-0


372 International Journal of Social Robotics (2020) 12:371–388

the robot fails to detect them automatically, and not remotely
controlled. Operating under an assumption of near-perfect
social cue detection, the goal of this work is to formulate
a framework that will enable the robot to choose actions
autonomously and more importantly to process the obser-
vations of child’s behavior and infer information about the
unobservable state of the child.

To that end, we are proposing a Mixed Observability
Markov Decision Process (MOMDP) models for the tasks
of the protocol. Our approach is similar to [17], where
authors model the robot and mission states as fully observ-
able, while the operator’s cognitive ability is considered to
be partially observable. Similar model is presented in [18],
where authors model current robot configuration and his-
tory of the interaction as observable states, while the set
of partially observable variables consists of human mode
and human adaptability. A significant portion of research
on using Partially Observable Markov Decision Processes
(POMDP) andMOMDPs in robotic applications investigates
methods to generate the knowledge representation by using
various methods of machine learning on either already avail-
able data or data collected through experiments [19–21]. For
a POMDP, this knowledge is for the most part encoded in
form of state transition and observation probabilities and, to
a lesser degree, reward functions. The design factors that we
focus on in this work are transition and observation proba-
bilities, while rewards are used to ensure the task structure
is in accordance to the diagnostic protocol. To obtain afore-
mentioned probabilities one could analyze the statistical data
on how children react to different prompts, but to the best
of our knowledge, such a dataset either does not exist or
is not publicly available, especially for our target demo-
graphic of children aged 2-6. Data acquisition is restricted
by the specific circumstances of reduced availability of chil-
dren with autism. Therefore, to obtain the data to encode in
our MOMDP models, we take the approach used to develop
early expert systems and survey experienced ASD clinicians
to provide their estimates of the rates in which some events
in the diagnosis procedure occur, which we then encode into
probabilities in the task models. Then we use the belief state
of themodel as an automatic evaluator of the child’s behavior.
We do not evaluate theMOMDP decision-making feature, as
the structure of a task is fixed.

The contributions of this paper are twofold: (1) the tasks
of the robot-assistedASDdiagnostic protocol aremodeled as
MOMDPs by encoding expert knowledge about the expected
behavior of children; and (2) the diagnostic validity of the
task models is confirmed through experimental sessions with
fourteen children by comparing the robot’s belief at the end
of a task to assessment of the interaction provided by ASD
experts.

The paper is organized as follows. Following the intro-
ductory section, Sect. 2 presents our prior work and other

information upon which our work is developed. In Sect. 3 we
describe the design team, experimental setup and themethod-
ology used to evaluate whether the robot can identify the
behavior of a child. Section 4 brings forth the structure of task
models, which is complemented by Sect. 5 which describes
how the expert data is encoded in the aforementionedmodels.
Section 6 shows how simulation was used to perform initial
assessment of task models and tune some parameters of the
models. Finally, the results of the experimental sessions are
presented and discussed in Sect. 7 after which we conclude
the paper by outlining guidelines for future work in Sect. 8.

2 Preliminaries

In the envisioned robot-assisted diagnostic protocol, the
robot is actively participating in the diagnostic process, both
through eliciting the interaction and observing the child’s
behavior.

2.1 Robot-Assisted ASD Diagnostic Protocol

The protocol, which went through several iterations [11,
22,23], currently consists of four tasks developed upon the
ADOS [24] protocol:

– The response to a name call (RNC) task of the protocol
focuses on a child’s ability to respond after being called
by name, with the response classified as positive if eye
contact is detected.

– The joint attention (JA) task of the protocol focuses on
a child’s ability to transfer attention from one robot to
other robot, with the positive response being verified via
eye contact with the other robot.

– The play request: simultaneous multi-channel communi-
cation assessment (PR) task is used to instigate the child’s
vocalizations and eye-contact in coordination with hand
and body gestures, in order to assess the child’s ability to
communicate on multiple channels simultaneously.

– The goal of the functional imitation (FI) task is to evaluate
the child’s ability to imitate simple actions and consists
of 2 imitation sub-tasks with two objects: a toy frog and
a cup.

In all tasks, the robot first performs an action intended to
provoke the response of the child. List of all available actions
is presented in Table 1.

Table 2 summarizeswhich social cue is evaluated inwhich
task of the robot-assistedASDdiagnostic protocol. Our focus
and prior work on autonomously detecting eye contact, imi-
tation, joint attention, gestures and verbal abilities of a child
[25–27] is grounded in established research on relevance
of social cues with respect to ASD: eye contact as a mea-
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Table 1 Actions performed by the robot in the diagnostic protocol

Action Channels Description

Call child by name Audio Speech

Call child using a special reference Audio Speech

Transfer attention by turning head Audio, motion Speech and movement of the robots head

Transfer attention by pointing with hand Audio, motion Speech and movement of the robots head and arm

Attract attention of the child Audio, visual, motion Playing music, flashing LEDs and movement of the robots head

Play Audio, visual, motion Playing music, flashing LEDs and movement of the robots head, arms and legs

Demonstrate frog jumping gesture Audio, motion Speech instructions and movement of the robots arms

Demonstrate drinking from a cup gesture Audio, motion Speech instructions and movement of the robots arms

The communication channels for each action are presented

Table 2 Social cues tracked by the robot in tasks of the robot-assisted
ASD diagnostic protocol

Task Eye contact Utterances Imitation Gestures

RNC Yes Yes No No

JA Yes Yes No No

PR Yes Yes No Yes

FI Yes Yes Yes No

sure of attention [28,29], verbal abilities of the child [30,31],
imitation capabilities of the child and ability to use ges-
tures [32,33]. Since the next action the robot should perform
depends on the response of the child and on its unobservable
inner state, the tasks of the protocol are suitable candidates to
be modeled via Markov decision processes with unobserv-
able states.

2.2 POMDPs andMOMDPs

A POMDP models an agent decision process in which the
system is discrete and dynamics of the system areMarkovian
but the agent cannot directly observe the system state (i.e.
the condition of a child). A POMDP is defined as a tuple
(S, A, O, T ,Ω, R), where S is a set of hidden states of the
system, A is a set of actions that can be performed, O is a
set of observations generated by the system, T denotes the
conditional transition probability between states depending
on action p(s′|s, a), Ω defines the conditional observation
probability p(o′|s′, a), while R is a reward function. Since
the state of the system is hidden to the decision maker, the
decision maker maintains the belief state b as a probability
distribution over S. Thus, b(s) is the probability of a system
being in the state s ∈ S. Based on the current value of belief
b, the decision maker chooses the best action with respect to
the expected reward.

A mixed observability Markov decision process [34] is
a special case of POMDP, specifically, a factored POMDP
modelwithmixed state variables. Fully observable state com-

ponents are represented as a single state variable X , while the
partially observable components of system state are repre-
sented as a different state variable Y , factoring the state space
of themodel, S = X×Y . Since each of the system state com-
ponents has a corresponding state transition function, namely
Tx and Ty , the complete MOMDP model is formally speci-
fied as a tuple (X ,Y , A, O, Tx , Ty,Ω, R). Full observability
of some state components can then be exploited formore effi-
cient solving of the POMDP, as implemented in the SARSOP
[35] solver, which is used in this work.

3 Methodology

In designing the robot-assisted protocol and interaction sce-
narios for the tasks of the protocol, we employ similar
strategy to that reported in [36], connecting robotics engi-
neers with experts in ASD diagnostics and rehabilitation.
We also employ similar naming scheme for team members.
Interaction scenarios are constantly tuned by the means of
iterative development, which consists of rapid prototyping
of basic behaviors, deploying the robot in the session with
children and then updating the requirements for the robot per-
formance. This approach is similar to that reported in [37].
The exploratory session presented at the end of this paper is
the latest iteration of this development and provides guide-
lines for protocol POMDP reward design. The robots used in
the robot-assisted ASD diagnostic protocol are NAO robots
bySoftbankRobotics, hardware versionV4 running software
version 2.1 [38].

3.1 Design Team

Our design team consists of three robotics engineers (REs)
and three ASD experts (AEs). Backgrounds of team mem-
bers are presented in Table 3. Role of the REs in the iterative
development of the robot-assisted protocol is implementa-
tion of robot behaviors and cognitive abilities and control of
the robot during sessions with children, while AEs provide
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Table 3 Members of the design team

Member Background Education level Expertise

RE1 Electrical engineering PhD Robotics, control

RE2 Electrical engineering PhD Robotics, control

RE3 Electrical engineering PhD student Robotics, human–robot interaction

AE1 Education and rehabilitation sciences PhD ASD diagnostics

AE2 Education and rehabilitation sciences PhD ASD diagnostics

AE3 Education and rehabilitation sciences PhD ASD intervention

relevant information in form of expected child behavior. AEs
also perform initial assessment of the results of the sessions
with children to provide guidelines for future development.

For the work presented in this paper, the role of REs is
to formulate the POMDP/MOMDP models and process the
data obtained from external experts and finally encode the
obtained information in the probabilities of observations in
developedmodels. On the other hand, AEs perform the selec-
tion of external experts and resolve ambiguous situations in
the obtained dataset.

3.2 Survey Participant Selection

AEs sought experienced clinicians with ASD diagnosis and
intervention background to complete the survey. Due to
highly specific information that we needed to obtain and the
requirement to have multiple years of clinical experience,
only 8 participants performed the survey.Average stated clin-
ical experience of those 8 participants is 8.125 years, min 3
years, max 14 years.

3.3 Data Collection and Analysis

The survey was administered through a simple Google form.
Bulk of the questions were of type:Given 10 children of type
X, how many of them would react with Y to Your prompt Z,
where X denotes either typically developing child or a child
withASD,Ydenotes observations in the tasks of the diagnos-
tic protocol and Z denotes actions in the task of the protocol.
Other questions pertained to duration and number of occur-
rences of eye contact, joint attention and expected number
of actions to obtain a valid response (eye contact or correct
imitation) for a given group of children which are aimed
more towards our implementation of social cue detecting
algorithm. Answers were exported from Google spreadsheet
and parsed in Python, which was also used by REs to extract
the observation probabilities. Data from sessions with chil-
dren was collected through camera and microphones both
on-board the robot and in the experimental room.

3.4 Experimental Setup and Participants

The sessions with children are performed in the Child Com-
munication Research Laboratory at the Croatian Institute for
Brain Research. The laboratory has a fully equipped exami-
nation and observation room, and is equippedwith a two-way
mirror to enable the observation and recording of the experi-
ments. The recording systemallows for video recordingusing
a high-definition camera placed behind the two-way mirror
and audio recording using an overhead microphone in the
examination room, as shown in Fig. 1.

When executing diagnostic tasks, the first NAO robot is
placedwith its back to themirror,while the other one is sitting
on the floor to its left with all lights turned off except during
the joint attention task when it activates to draw the attention
of the child. The layout is set up in such away that the child, if
cooperating, should be facing the main robot and the camera
for the majority of session, so that its reactions and facial
expressions can be observed and recorded. The clinician is
standing next to themain robot (on the right side of the table),
observing the interaction between the robot and the child.
The task of the clinician consists of providing comfort and
security to both the child and the parent, but also to assist the
robot during the imitation task by placing the object into the
robot’s hand and using tactile sensors on the head to signal
that the robot should start the demonstration. This procedure
is used to eliminate the possibility of failed grasps of the
object and ensures that the imitation is always performed.
A parent or a caregiver is also present in the room, usually
sitting on the couch behind the child, to provide additional
comfort and security for the child.

Behind the two-way mirror is a control and observa-
tion room where another clinician and a robot operator are
observing the experiment. All experiments are recorded both
by the robot’s on-board camera and by an external camera
placed behind the two-way mirror. Audio from the session is
recorded by an overheadmicrophone and themicrophones of
the robot. The main robot is operating in a semi-autonomous
mode, since instead of directly controlling the robot actions,
the operator is aiding the robot by providing the correct obser-
vations which are critical for task and protocol execution,
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Fig. 1 On the left, the layout of the room where sessions with children were taking place. In the middle, a snapshot of an experimental session
during the functional imitation task. On the right, a snapshot from the joint attention task. (Color figure online)

as the algorithms for social cue detection are not accurate
enough for fully autonomous execution. The critical obser-
vations are those that directly influence the execution of a
task, i.e. if the child correctly imitates the gesture, the robot
should not repeat it so it is critical to detect that the gesture
has been imitated, but it is not critical to detect whether the
child was speaking at the same time. It is important to note
that for the evaluation of robot decision-making, all obser-
vations will be critical, but we are not at that point yet in
our research. Other correct observations are obtained offline
through video analysis after the session. For the joint atten-
tion task, themain robot sends commands to the second robot
to activate when needed, while the second robot signals to
the main if the child responded by detecting eye contact.

The operator also has the ability to pause execution at
any point if the robot system fails (i.e. the robot falls down).
In such cases, the clinician in the room is tasked with set-
ting the robot into a safe starting position to enable soft
restart of the session. However, in cases where such failure
occurred, the children were reluctant to continue so the ses-
sion was stopped. It is important to reiterate that the operator
cannot influence the decision-making of the robot but only
provides decision support by making sure that the observa-
tion the controller is receiving is indeed the correct one. Such
approach is necessary in order not to waste a session due to
incorrect critical observation detections. Within the task the
robot chooses actions according to solutions of each task
model. Task models are running on-board the robot’s com-
puter, while the interface towards the operator is running on
the remote computer.

Fourteen children of preschool agewere recruited, six typ-
ically developing and eight already diagnosedwithASD.The
children were matched by mental age. Gender balance was
not considered during participant selection. For all children
the session was first contact with the robot, no repeated ses-
sions were considered to avoid learned behaviors. The audio
and video recordings of all sessions were analyzed offline
and all actions of the robot and social cues exhibited by the

child were extracted and the outcomes are obtained offline
by using observed action-observation pairs to calculate the
final belief state of the robot. The following task sequence
was used for most of the sessions (some sessions were inter-
rupted before finishing all tasks):

1. Play request
2. Functional imitation
3. Joint attention
4. Response to a name call

The play request task is chosen to be performedfirst to give
the child more time to get accustomed to the robot and the
examination room as it does not require the child to cooperate
with the robot. Then, the objects from the imitation task are
used to draw child closer to the robot. After the imitation task
the child is expected to be focused on the robot,which enables
execution of the joint attention task. The session ends with
the response to a name call task with, since the child is likely
to be focused on the second robot after the joint attention
task.

4 TaskMOMDPModels

According to recommendation by AEs, we model a child as
being in one of the three states related to low functioning
ASD, high functioning ASD and typically developing, that
we denote SC = {sL A, sH A, sN A}, respectively. Extending
our previous work [23], we incorporate set of states used
to estimate engagement level of the child SE = with two
states (high and low engagement) and set of state used to
estimate child verbal activity SV with also two states (high
and low verbal activity). Belief over SE is updated based on
occurrences of child–robot eye contact, while belief over SV

is updated upon the detection of child vocal activity, which
does not necessarily coincide with end of task iteration when
belief over SC is updated. In our implementationwemaintain
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Fig. 2 General structure of a task MOMDP model. The set of all states
S is factored into a fully observable set SFO and a partially observable
set of states SC ×SE ×SV . Robot actions ak change states in ST , which
is used to track the progress of the task. Social cues that the child may
exhibit are coupled in the observation set O+. Observations in OT ,
which is a subset of O+, are used for decision-making within the task

these belief states separately. States SC , SE and SV make up
the set of partially observable states of a taskmodel SC×SE×
SV , which is common for all tasks and consists of 12 states.
Figure 2 shows a representationof taskMOMDPmodel.With
such definition of states, note that the robot actions cannot
change the state of the child SC , which is modeled by using
identity state transition matrices for states SC . As we do not
have the data on how the actions of the robot influence the
engagement and verbal activity of child, we also set identity
transition matrices for SE and SV .

Figure 2 also shows that the set of all states S of the task is
factored into four subsets, SC×SE×SV×ST , where ST is the
set of observable states used to track the progress of the task.
The actions of the robot may change the states in ST . This
interaction of actions and states in ST is modeled through
state transition matrices for each task separately, along with
the reward function, in order to achieve the sequence and
desired number of repetitions of each action withing the task.

In the MOMDP model of a diagnostic task, two sets of
observations are distinguished, OT and O+. The observa-
tion setOT consists of observations that directly influence the
decision-making in the task (i.e. eye contact for response to a
name call, see Table 2) and consequently generate pseudo full
observability of the ST states, as detailed in the following sec-
tions. The observation set O+ contains all observations that
are tracked within a given task (including OT ) and is used to
build the belief over SC . Since there aremultiple independent
observations in the system, belief update for multiple condi-
tionally independent observations is performed by dividing
the belief update step into sub-steps such that only one vari-
able is observable in a given sub-step (similar to the approach
in [39]). To achieve the proper behavior of the model, the
state of themodel must not be changed between the sub-steps
which translates into requirement that all partial updates to
the belief must be performed before pursuing further actions.

Fig. 3 Set of observable states ST , transition probabilities and possible
observations OT for actions call and rcall of the response to a name
call task

4.1 Response to a Name Call

This task consists of three calls by name followed by one
call that uses a special phrase referring to something dear
or interesting to the child. Consequently, the set of actions
for this task is A = {call, rcall, end}, corresponding to a
regular call, a call reinforced with special reference and task
termination, respectively.

The observable set of states ST for this task consists of 5
states si ∈ ST , as shown in Fig. 3. The transition functions for
each action are defined in matrix form, where each element
of the matrix tai j defines the following conditional probability
of transition:

tai j = p(s j ∈ ST |si ∈ ST , a ∈ A) (1)

For the actions call and rcall, the task is modeled as a vari-
ation of left-right-banded type of Markov chain by defining
the following transition matrices:

Tcall = Trcall =

⎡
⎢⎢⎢⎢⎣

0 0.5 0 0 0.5
0 0 0.5 0 0.5
0 0 0 0.5 0.5
0 0 0 0 1
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

. (2)

The transition function for action end is defined as identity
matrix, indicating that the action does not change the state of
the task.

In the case of the response to a name call, the set of obser-
vations OT is related to eye contact and consists of two
observations: OT = {yes, no}. The full observability of the
ST is achieved by defining that the observation oT = yes can
only be generated by the state s5, while other states can only
generate observation oT = no (see Fig. 3). Such formulation
of observation probabilities ensures that the task transitions
through states s1 to s4 if there is no eye contact, but jumps to
s5 immediately if eye contact is detected.
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To achieve the desired task structure, the action call is
rewarded in states s1, s2 and s3, the action rcall in state s4
and the action end in state s5.

The verbal activity of the child is also tracked within the
task and the four classes of utterances are grouped into a set
OV . Finally, the set of all observations tracked within the
response to a name call task is defined as O+ = OT × OV .
In order to build the belief over states SC , the conditional
probabilities of observations in set O+ need to be spec-
ified with respect to the states in SC and actions A. As
there are no studies from which the observation probabili-
ties could be inferred, they are extracted form the experience
and expectations of clinicianswho areworkingwith children.
The formulation of observation probabilities is discussed in
Sect. 5.

4.2 Joint Attention

The joint attention task consists of three calls accompanied
by turning the head of the robot, one call accompanied by
pointing with hand and one attempt of attracting the attention
of the child with the other robot. The set of actions for this
task is A = {turn, point, attract, end}. To account for an
extra iteration compared to the response to a name call task,
six states are used in ST , with the structure of the observable
part of the model shown in Fig. 4.

Again, a left-right banded Markov chain is used as a
template, resulting in the following transition probabilities
matrices for states in ST :

Tturn = Tpoint = Tattract =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0.5 0 0 0 0.5
0 0 0.5 0 0 0.5
0 0 0 0.5 0 0.5
0 0 0 0 0.5 0.5
0 0 0 0 0 1
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (3)

The action turn is rewarded in states s1, s2 and s3, the
action point in state s4, the action attract in state s5 and
the action end in state s6. The observation set for the joint
attention task is equal to the set used for the response to a

Fig. 4 Set of observable states ST , transition probabilities and possible
observations OT for actions turn, point and attract of the joint attention
task

name call task, except for the fact that eye contact occurrence
is detected by the second robot towards which the first one
tries to transfer the attention of the child.

4.3 Play Request: Simultaneous Multi-channel
Communication Assessment

This is the simplest task to model, as it consists of only one
action that is performed three times, regardless of the behav-
ior of the child. Accordingly, the action set is defined as
A = perform, end. The state set ST has four states, while
the task observation set OT is an empty set as there are no
observations that influence the decision-making in the task,
as shown in Fig. 5. The transition probabilities for action
perform are:

Tperform =

⎡
⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1

⎤
⎥⎥⎦ . (4)

Within the task, the robot tracks eye contact, verbal
activity and the gestures of the child that could indicate
the request for more play. Therefore, the observation set
of the task is O+ = OT × OE × OV , where OE =
{eye contact, no eye contact} are the observations of eye
contact, OV are observations of child utterances as detailed
in Sect. 4.1 and OG = {occurred, not occurred} are the
observations related to the occurrence of gestures that indi-
cate the child’s desire to continue play.

4.4 Functional Imitation

In this task the robot tracks whether the child successfully
performs the imitation of drinking and frog jumping, along
with eye contact and verbal activity. This means that the
observation set OT consists of two observations, OT =
{yes, no}, and the set of all observations is the same as in
the play request task, namely O+ = OT × OE × OV .
Regarding the formulation of states in ST , seven states are
needed to achieve the desired task structure, as shown in
Fig. 6, since each demonstration is performed three times at
the most.

The action set for the imitation task consists of three
actions A = { f rog, drink, end}. The action frog is
rewarded in states s1, s2 and s3, the action drink in states

Fig. 5 Set of observable states ST and state transition probabilities for
action perform of the play request task
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s4, s5 and s6, and the action end in state s7. The left-right
banded Markov chain model for the functional imitation
task is encoded in transition probabilities in the following
way:

T f rog = Tdrink =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.5 0 0.5 0 0 0
0 0 0.5 0.5 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0.5 0 0.5
0 0 0 0 0 0.5 0.5
0 0 0 0 0 0 1
0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

As can be seen fromFig. 6, upon the observation of correct
imitation of the frog jumping gesture, the robot will be sure
that the task is now in state s4, and switch to the demonstration
of drinking gestures. Similarly, if the child imitates drinking
successfully, the task will switch to state s7 in which the task
ends.

Finally, actions and observations for each task are sum-
marized in Table 4. The reward function for each task
model is specified through immediate rewards with respect
to fully observable states to ensure that the structure of
a task is kept. The design parameters to be determined
for task models are probabilities of all observations in
Table 4 taking into account actions (except action end) and
states SC .

Fig. 6 Set of observable states ST , transition probabilities and possible
observations OT for actions turn, point and attract of the functional
imitation task

5 Encoding Expert Knowledge in Task
Models

In our prior work [23], the observation probabilities were set
according to engineer expectations. Herein we improve on
those foundations and encode the knowledge of ASD experts
in the observation probabilities. For each action within all
tasks of the protocol, Gaussian probability density function
(pdf ) estimates are fitted to the histogram of answers by clin-
ical experts from the survey. If in-team experts deem that the
observation probability for both low-functioning and high-
functioning ASD state are the same for a given action, then
unimodal Gaussian pdf is used, and the observation value
is set to the mode of the pdf (i.e. the mean value of expert
answers). If in-team experts deem that the observation proba-
bility for low-functioning and high-functioning ASD should
be different, then the bimodal pdf is used, and two modes of
such distribution are used as values for observation proba-
bility calculation. In such case, the AE team members select
which mode corresponds to which state.

5.1 Observation Probabilities for the Response
to a Name Call Task

Since the verbal activity of the child is assumed to be the
same in all tasks, this section focuses on the determination
of eye contact probabilities for two actions in the task from
answers to the following four questions:

– Given 10 typically developing children, how many of
them respond to the call by name?

– Given 10 typically developing children, how many of
them respond to the call using a reference to an object of
their liking?

– Given 10 children with ASD, howmany of them respond
to the call by name?

– Given 10 children with ASD, howmany of them respond
to the call using a reference to an object of their liking?

We summarize estimates of eye contact observation prob-
abilities for each state of SC in Table 5.

Table 4 Task actions and observations

Task Actions Observations

Eye contact Joint attention Verbal activity Touch Imitation

RNC Call, phrase, end Yes, no – No, vocalization, jargon, speech – –

JA Turn, point, attract, end Yes, no Yes, no No, vocalization, jargon, speech – –

PR Play, end Yes, no – No, vocalization, jargon, speech Yes, no –

FI Drink, frog, end Yes, no – No, vocalization, jargon, speech – Yes, no
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Table 5 Estimates of eye contact probabilities for actions within
response to a name call for each component of state SC

Action p(ec|sLFA) p(ec|sHFA) p(ec|sTY P )

call 0.1400 ± 0.049 0.3667 ± 0.094 0.8000 ± 0.254

rcall 0.2667 ± 0.047 0.5200 ± 0.040 0.9125 ± 0.078

Finally, observation matrices for each action in the task
are formulated as follows:

Ocall =
⎡
⎢⎣

no eye contact eye contact

sTY P 0.1375 0.8625

sHFA 0.6334 0.3666

sLFA 0.8600 0.1400

⎤
⎥⎦, (6)

Orcall =
⎡
⎢⎣

no eye contact eye contact

sTY P 0.0875 0.9125

sHFA 0.4800 0.5200

sLFA 0.7334 0.2666

⎤
⎥⎦. (7)

5.2 Observation Probabilities for Joint Attention
Task

The following six questions are used to extract the observa-
tion probabilities for the joint attention task:

– Given 10 typically developing children, how many of
them respond to the joint attention request using just
speech instructions and head turning?

– Given 10 typically developing children, how many of
them respond to the joint attention request using speech
instructions, head turning and pointing towards object of
interest?

– Given 10 typically developing children, how many of
them respond to the object of interest trying to attract
their attention?

– Given 10 children with ASD, howmany of them respond
to the joint attention request using just speech instructions
and head turning?

– Given 10 children with ASD, howmany of them respond
to the joint attention request using speech instructions,
head turning and pointing towards object of interest?

– Given 10 children with ASD, howmany of them respond
to the object of interest trying to attract their attention?

For all actions in this task, the bimodal pdf is selectedwith
respect to the probabilities for children with ASD, indicating
that there is an expected difference in reactions from low-
functioning and high-functioning children with ASD. The
estimates of the joint attention observation probabilities for
each state of SC are summarized in Table 6.

Table 6 Estimates of joint attention probabilities for actions of joint
attention task for each component of state SC

Action p( ja|sLFA) p( ja|sHFA) p( ja|sTY P )

turn 0.0250 ± 0.043 0.2500 ± 0.050 0.8000 ± 0.254

point 0.1800 ± 0.075 0.4667 ± 0.047 0.9375 ± 0.099

attract 0.5200 ± 0.075 0.8333 ± 0.047 0.9625 ± 0.048

Finally, the observation matrices for each action in the
joint attention task are formulated as follows:

Oturn =
⎡
⎢⎣

no joint att . joint attention

sTY P 0.200 0.800

sHFA 0.750 0.250

sLFA 0.975 0.025

⎤
⎥⎦,

(8)

Opoint =
⎡
⎢⎣

no joint att . joint attention

sTY P 0.0625 0.9375

sHFA 0.5334 0.4666

sLFA 0.8220 0.1780

⎤
⎥⎦,

(9)

Oattract =
⎡
⎢⎣

no joint att . joint attention

sTY P 0.0360 0.9624

sHFA 0.1667 0.8333

sLFA 0.4800 0.5200

⎤
⎥⎦.

(10)

5.3 Observation Probabilities for Play Request

In the play request task, the robot observes verbal activity,
tracks eye contact and detectswhether the child is performing
any action that may suggest a request for more play from
the robot. For eye contact in this task the same probabilities
determined for the action attract in the joint attention task are
used, as the robot performs similar acts. For the request part,
the experts provided answers to the following questions:

– Given 10 typically developing children, how many of
them request more play during one iteration of play
request task?

– Given 10 children with ASD, how many of them request
more play during one iteration of play request task?

For this particular question, in-team AEs deemed there is
no difference in reactions between high and low functioning
children with ASD. The mean values extracted from answers
to the survey are shown in Table 7.
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Table 7 Estimate of probability of child requesting more play for each
component of state SC

Action p(req|sLFA) p(req|sHFA) p(req|sTY P )

perform 0.5875 ± 0.154 0.5875 ± 0.154 0.6500 ± 0.335

Observation matrix for the perform action is defined as
follows:

Oper f orm =
⎡
⎣

no request request

sTY P 0.3500 0.6500
sHFA 0.4215 0.5785
sLFA 0.4215 0.5785

⎤
⎦. (11)

5.4 Observation Probabilities for Functional
Imitation

To estimate the probabilities of a child correctly imitating the
demonstrated gesture the following questions were posed:

– Given 10 typically developing children, how many of
them correctly imitate demonstrated gesture?

– Given 10 childrenwithASD, howmany of themcorrectly
imitate demonstrated gesture?

As can be inferred from the aforementioned questions,
there is no difference in the observation probabilities between
the two gestures used in the functional imitation task.
The difference in reactions from low-functioning and high-
functioning children with ASD are expected in the imitation
task and the estimates of imitation observation probabilities
for each state of SC are shown in Table 8.

The observation matrices for two actions in the imitation
task are the same and attain the following values:

O f rog = Odrink =
⎡
⎣

no imitation imitation

sTY P 0.0875 0.9125
sHFA 0.6667 0.3333
sLFA 0.8400 0.1600

⎤
⎦.

(12)

In addition to the gesture imitation, within this task the
robot tracks eye contact with the robot, so the probabilities
obtained for the action point of the joint attention task (see

Table 8 Estimates of imitation probabilities for each component of
state SC

Action p(im|sLFA) p(im|sHFA) p(im|sTY P )

frog 0.1600 ± 0.049 0.3333 ± 0.047 0.9125 ± 0.060

drink 0.1600 ± 0.049 0.3333 ± 0.047 0.9125 ± 0.060

Table 6) are used, as the action of demonstrating the gesture
and prompting the child to imitate using speech is similar to
the pointing gesture in the joint attention task and is expected
to cause similar response rate.

5.5 Observation Probabilities for Child’s Verbal
Behavior

As already stated, the verbal behavior of a child is modeled
as not being dependent on the task or actions, therefore the
following questions were used to determine the probability
of occurrence of each of four classes of verbal behavior (no
verbal activity, vocalizations, jargon and speech):

– Given 10 typically developing children, how many of
them do not speak or vocalize during any given interac-
tion?

– Given 10 typically developing children, how many of
them vocalize during any given interaction?

– Given 10 typically developing children, how many of
them use jargon during any given interaction?

– Given 10 typically developing children, how many of
them speak during any given interaction?

– Given 10 children with ASD, how many of them do not
speak or vocalize during any given interaction?

– Given 10 children with ASD, howmany of them vocalize
during any given interaction?

– Given 10 children with ASD, how many of them use
jargon during any given interaction?

– Given 10 children with ASD, how many of them speak
during any given interaction?

The mean and standard deviation extracted from expert
answers are presented in Table 9.

Once the probabilities for verbal activities are obtained,
theyneed to benormalized (sumof probabilities for each state
needs to be equal to one). This is necessary for POMDPs
(and consequently MOMDPs) as the solver cannot handle
simultaneous observations from the same variable (i.e. child
exhibiting two classes of verbal behavior within one itera-
tion of action-reaction-observation sequence). The fact that
the sum of the probabilities is not equal to one to begin with,

Table 9 Vocal observation probabilities within tasks of the robot-
assisted ASD diagnostic protocol for each state in SC , obtained by
surveying experienced ASD clinicians

Observation p(obs|sLFA) p(obs|sHFA) p(obs|sTY P )

No activity 0.760 ± 0.120 0.575 ± 0.268 0.088 ± 0.078

Vocalization 0.425 ± 0.156 0.200 ± 0.100 0.513 ± 0.329

Jargon 0.800 ± 0.000 0.438 ± 0.157 0.338 ± 0.303

Speech 0.388 ± 0.145 0.600 ± 0.100 0.888 ± 0.105
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is due to humans easily conceiving a situation in which the
child produces both speech and vocalization within some
interaction, while the POMDP framework considers these
observations as mutually exclusive. This cannot be per-
formed by simply scaling probability vector for each state
with the inverse of sum of its components, as the scaling fac-
tor is not guaranteed to be the same for each vector, which
skews the ratio between the probabilities across states which
affects the belief update step (i.e. it would change the knowl-
edge representation).

To maintain this ratio of probabilities across the states, the
sum of components of the probability vector for each state
is calculated. For vocal observations in Table 9, all values
in each column are added. Then, all entries in the matrix
are scaled with the maximum of obtained column sums. A
residual observation is introduced into the model and is used
to collect the remaining probability for each state, resulting
in the final observation probabilities matrix that is used in the
MOMDP model:

Over . =
⎡
⎣

no act . voc. jarg. speech res.

sTY P 0.037 0.216 0.142 0.374 0.231
sHFA 0.242 0.084 0.184 0.253 0.236
sLFA 0.320 0.179 0.337 0.163 0.0001

⎤
⎦.

(13)

As all other observation sets are binary, this procedure is
not necessary to formulate consistent matrices.

5.6 Updating Belief with Respect to Engagement
andVerbal Activity

Through the survey, the experts also provided estimates on
how many eye contacts are needed to deem the child to be
engaged with the examiner, and the answer was three. A
similar question was posed regarding verbal activity and the
experts estimate that the number of verbal actions needed to
deem the child verbally active was five. As the eye contact
detection on the robot runs somewhat faster than sound clas-
sification, five is used as the target number of occurrences
for both eye contact and speech of the child to deem the
child engaged with the robot and verbally active. In terms
of the belief state of the robot, targets of b(sHE ) > 0.9 and
b(sHV > 0.9 are set to be reached after five detections.

At this stage, there is no data on how the actions of the
robot affect the engagement and verbal activity of the child,
so identity state transition probability matrices are used indi-
cating that actions of the robot cannot change states in SE

and SV . Ideally, the initial belief over sHE and sHV should be
zero, but that coupled with identity state transition matrices
would result in belief state not changing with new observa-
tions. Therefore, the initial belief state is set to the following
values:

b(sHE )0 = b(sHV )0 = 0.1 (14)

Now, the observation probabilities remain to be deter-
mined. With the goal of having b(sHE ) > 0.9 after five
detections of eye contact, the following eye contact detec-
tion probabilities are set:

OE =
[no eye contact eye contact

sHE 0.2 0.8
sLE 0.8 0.2

]
. (15)

which result in b(sHE ) = 0.9118 after five detections of eye
contact. To achieve similar belief values for verbal activity
after five detections of speech and b(sHE ) ≈ 0.5 after five
detections of jargon, the following verbal observation prob-
abilities are used:

OV =
[no act . voc. jargon speech

sHV 0.10 0.20 0.30 0.40
sLV 0.48 0.30 0.12 0.10

]
. (16)

Updating the belief for five occurrences of speech results in
b(sHV ) = 0.9118, which is the same value as for b(sHE ).
This is expected as the ratio of observation probabilities
between states for speech and eye contact are the same. The
formulation of observation probabilities in (16) indicates that
the evolution of belief over the child verbal activity results
in different estimates of verbal activity for different observa-
tions detected. It can also be observed that only detections
of jargon and speech contribute to higher verbal activity esti-
mates, while detection of vocalization lowers the belief over
sHV as vocalizations are generally considered to be pre-
verbal form of communication.

With the expert knowledge encoded in the transition and
observation probabilities of the task MOMDP models, the
remaining question to be answered is whether sequential
updates of the robot belief using multiple observations gen-
erate outcomes that have diagnostic validity and to which
degree can robot’s belief after the end of a task be used as a
measure of child’s behavior during task administration.

6 Monte Carlo Simulation of Child–Robot
Interaction

To facilitate the simulation of the interaction, a stochastic
behavioral model is formulated in which any action of the
robot samples the response of the child according to the
probability distribution of social cues obtained from experts
in the survey. Due to the lack of data, the engagement and
verbal level estimation are omitted from investigations and
consequently from child models and simulation is used to
evaluate diagnostic validity of tasks and to tune the amount of
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information each observation brings into the robot’s belief.
Three stochastic child models are needed, one for each of
the considered child types. Each model consists of pairs of
actions and vectors of observation probabilities from all task
MOMDP models. The simulation of a task is performed by
repeating the following steps N times:

1. Set initial belief state b to uniform over states SC .
2. Select next action a using b and policy of the task.
3. If the next action is end, the task is finished. Save b

for further analysis and go to step 1 if number of task
instances simulated is smaller than N . If task has been
simulated N times, end the simulation.

4. For action a select observation probability vector for
social cues considered in the task and perform roulette
wheel selection to obtain the observations o for this step

5. Update belief using b, a and o and go to step 2.

Step 4 of one simulation iteration contains a roulette wheel
selection of the observation which will be detected. The
roulette wheel selection, also known as the Fitness propor-
tionate selection, is a commonoperator in genetic algorithms.
It is used to select chromosomes of the genetic algorithm that
are selected for recombination based on the fitness of each
chromosome. Themore fit the chromosome is to some fitness
function, the more likely it is to be selected. For child behav-
ioral models, chromosomes are replaced with observations
and fitness is replaced with observation probabilities in order
to simulate child–robot interaction.

In the most common implementation of the roulette wheel
selection, which is also adopted in this work since there are
notmany observations, the first step is to formulate a cumula-
tive distribution function (CDF) over the list of observations
using observation probabilities. This operation is equivalent
to setting the number of bins on a roulettewheel to the number
of observations and their widths according to their respective
probabilities. Next, a uniform random number n in the range
[0, 1) is generated using a random number generator. Finally,
taking the inverse of CDF for n gives out the observation that
the model generates.

6.1 Scaling the Amount of Information Each
Observation Brings into the Belief of the Model

Simulating the child–robot interaction showed that in some
cases the outcome of the task defined by the belief of the
robot over states of the child can be decided solely by the last
action-observation pair and not by the sequence of actions
and observations during the whole task. The possibility of
abrupt change of belief in only one iteration indicates that
the amount of information that the observations bring into the
task model needs to be scaled down. This can be achieved by
flattening the probabilities of observationswithin an observa-

tion set across all states. This results in belief being updated
by smaller amount, preventing abrupt changes. If the amount
of information each observation brings into the task model
is denoted ps ∈ (0.5, 1.0),1 the observation probability
p(o|s, a) can be flattened in the following way:

p′(o|s, a) = ps · p(o|s, a) + (1 − ps) · [1 − p(o|s, a)] .

(17)

Different amounts of information for each observation can
be specified by using different values of ps for different
observation sets, such as observations that directly influ-
ence the decision-making within tasks (OT ) and additional
observations in the task (OA = O+ \ OT ). The amout of
information of the observations in OT is denoted pTs , and
pA
s denotes the importance of the additional observations

OA. After several iterations of tuning, the amounts of infor-
mation in observation sets is set to the following values:

pTs = 0.9, (18)

pA
s = 0.7. (19)

6.2 Evaluation of Diagnostic Capabilities of Task
Models

The distributions of outcomes after simulating 10000 iter-
ations of all tasks for all the child behavioral models are
summarized in Fig. 7.

Figure 7a shows that three of the tasks are capable of
identifying typical behavior, albeit with lower confidence
than identifying low-functioning behavior, if compared to
Fig. 7c. This is to be expected since typical behavior results
in lower number of iterations in the task (task ends when
child responds), so there are fewer opportunities to update
the belief over the state of the child. The outcomes of play
request task from Fig. 7a, while showing trend towards iden-
tifying typical behavior should be classified as inconclusive
as belief is nearly an uniform distribution over considered
states. Outcomes for the simulation of high-functioningASD
behavior, shown in Fig. 7b, indicate that task models are not
suited for identifying such behavior, as outcomes are either
inconclusive or classify behavior to be more similar to that
expected fromachildwith low-functioningASD.Tomeasure
how clearly the belief of the robot can identify an underlying
type of behavior, the Hellinger distance [40] is used to mea-
sure the distance between distributions of b(sTY P ), b(sHFA)

and b(sLFA). The Hellinger distance is used to quantify how

1 Value ps = 0.5 results in uniform distribution of observation prob-
abilities while value ps = 1.0 leaves probabilities unchanged. Values
ps > 1 increase the difference in probabilities increasing the amount of
information the observation brings into the task. Values ps < 0.5 result
in probabilities that update belief in the wrong direction.
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(a) Outcomes of diagnostic task simula-
tions with the model of a typically de-
veloping child.

(b) Outcomes of diagnostic task simu-
lations with the model of a child with
high-functioning ASD.

(c) Outcomes of diagnostic task simula-
tions with the model of a child with low-
functioning ASD.

Fig. 7 Distributions of the model’s belief at the end of each task. Each
quadrant in a graph represents the outcomes of one of the tasks (tasks
are labeled according to Sect. 2). Box plots in the inner-most circle (blue
color) represent distributions of the model’s belief that the child exhib-
ited behavior similar to that expected from a typically developing child,
b(sTY P ). Outer-most circle box plots (green color) show distributions
of the model’s belief that the child exhibited behavior similar to that

expected from a child with low-functioning ASD, b(sLFA). The box
plots in the middle band (red color) show distributions of the model’s
belief that the child exhibited behavior similar to that expected from a
child with high-functioning ASD, b(sHFA). Dashed lines mark a point
in the belief space of the model where all components of belief over
states in SC are the same (i.e. the outcome of a task is inconclusive if
all components of belief state are near this line). (Color figure online)

similar are two probability distributions, P and Q. Distance
can attain values in range [0, 1], with maximum distance 1
describing a scenario in which P assigns probability zero
to every outcome to which Q assigns some probability, and
vice-versa. For two discrete probability distributions, or in
this case two normalized histogramswith the same amount of
bins, P = (p1, . . . , pn) and Q = (q1, . . . qn), the Hellinger
distance is defined as follows [41]:

H(P, Q) = 1√
2

√√√√
n∑

i=1

(
√
pi − √

qi )
2. (20)

The Hellinger distances between the task outcomes for
each of the child models are shown in Table 10. As already
mentioned, the higher values correspond to the greater dis-

tance between histograms meaning less overlap between
outcomes of the task.

If the child exhibits the typical behavior, there is practi-
cally no overlap of b(sTY P ) with other two components of
the belief state for response to name call and joint attention
tasks. The distances between belief components for imitation
task attain slightly lower values but also show that there is no
significant overlap of outcomes, indicating that the imitation
task is also suitable for the detection of the typical behavior
of the child. On the other hand, the distances between the
outcomes of the play request task show a significant overlap,
which confirms that the task is not suitable for detection of
the typical behavior.

The outcomes of simulation with a model of a child with
high functioning ASD show the most overlap, which is obvi-
ous from Fig. 7 but is also indicated by lower values of
distances in Table 10. It can be concluded that none of the

Table 10 Hellinger distance
between distributions of task
outcomes for pTs = 0.9 and
pA
s = 0.7

Model H Task

Name call Joint attention Play request Imitation

TY P H(b(sTY P ), b(sHFA)) 0.952 0.923 0.445 0.873

H(b(sTY P ), b(sLFA)) 0.953 0.954 0.609 0.923

HFA H(b(sTY P ), b(sHFA)) 0.785 0.741 0.287 0.695

H(b(sLFA), b(sHFA)) 0.707 0.458 0.425 0.209

LFA H(b(sTY P ), b(sLFA)) 0.781 0.855 0.852 0.891

H(b(sLFA), b(sHFA)) 0.708 0.798 0.845 0.651
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tasks are particularly well suited for detection of highly func-
tional autistic behavior. If the child exhibits autistic behavior
as simulated using model of a child with low functioning
ASD, all tasks are successful in correctly predicting the child
type with small overlap between outcomes.

To summarize, the simulation of child–robot interaction
and analysis of outcomes confirmed that the taskmodels with
observation probabilities extracted from expert knowledge
can, for the most part, successfully differentiate between the
autistic behavior and the behavior characteristic for a typi-
cally developing children but fail to differentiate between the
degrees of autism severity, as most of the outcomes for all
three models end at the either end of the spectrum. To some
degree, this is expected as there is no observation in themodel
that is characteristic to sHFA. In all observation probability
matrices in Sect. 5, there is no observation probability asso-
ciated to sHFA that is greater than probabilities assigned to
other two states in SC , which means that for any observation
detected, the belief of the robot will steer towards sLFA and
sTY P more than towards sHFA.

7 Experimental Sessions with Children
in Clinical Setting

As already mentioned, fourteen children of preschool age
were recruited, six typically developing and eight already
diagnosed with ASD. During the sessions, it was observed
that typically developing children sometimes exhibit autistic
behavior, and vice versa. This was also shown in our pre-
vious work on imitation [26], with possible reasons being
that all the children in the ASD group are undergoing inter-
vention and are trained to perform similar tasks almost daily
and exhibited no anxiety towards the robot while typically
developing children were more shy and wary of the robot. To
properly validate the proposed task MOMDP models, it is
important to analyze the outcomes of the protocol based on
the exhibited behavior, not the child diagnosis. In order to do
so, the sessions with children were transcribed as a sequence
of actions and observations, anonymized and shared with
AE team members. AE team members were asked to evalu-
ate the transcript of the child behavior and conclude whether
the behavior within each task is more similar to that of a
typically developing child or to that of a child with ASD. If
not confident in making the assessment, AEs were encour-
aged to classify task results as inconclusive. Results of AE
classifications are summarized in Table 11.

As can be seen from Table 11, not all children performed
all actions and all tasks, some due to the various robot failures
some due to children themselves being afraid or not wanting
to cooperate with the robot. Results of eleven sessions of the
response to a name call task are shown in Fig. 8. The graphs
showmeanvalues of belief at each iterationof a task as points,

Table 11 Number of sessions classified in each of the behavior classes
considered by ASD experts for every task of the protocol

Typical ASD Inconclusive Total

RNC 6 4 1 11

JA 1 8 3 12

PR 5 3 6 14

FI 4 4 3 11

(a) Belief during 6 sessions classified as typical behavior.

(b) Belief during 4 sessions classified as autistic behavior.

(c) Belief during 1 session classified as inconclusive.

Fig. 8 Belief of the MOMDP task model over child states during the
response to a name call task. (Color figure online)

while the vertical bars at those points show the spread of the
belief at the same iteration. If there is no bar, it means that
the spread of belief is not significant in those points, which
occurs if the sequence of actions and observations is similar
up to that point. Mean values of belief in subsequent points
are connected with a line to better visualize the evolution of
belief between iterations.

Evolution of the robot’s belief in Fig. 8a shows that the
robot correctly identifies typical behavior. In all sessions the
children responded immediately and the only difference was
in using speech, which results in small variance of belief at
the end of a task. Similar can be observed for autistic behav-
ior, for which the evolution of the robot’s belief is shown
in Fig. 8b. Again, the variance in belief during the task is
generated by differences in verbal activity. The belief shown
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Belief during 1 session classified astypical behavior.

Belief during 8 sessions classified asautistic behavior.

Belief during 3 sessions classified as inconclusive.

(a)

(b)

(c)

Fig. 9 Belief of the MOMDP task model over child states during the
joint attention task. (Color figure online)

in Fig. 8c cannot be used to draw meaningful conclusions
as it presents only one session, but suggests that in cases in
which the human is not confident enough to make the assess-
ment, the robot may be biased towards classifying behavior
as autistic.

Figure 9 shows the belief of the robot during 12 sessions
of the joint attention task. Although result of only one ses-
sion, Fig. 9a provides valuable insight into the evolution of
the robot’s belief. In this session, the child did not respond in
the first iteration, but responded in the second one and used
speech (which is deemed to correspondwith typical behavior
in themodels) so the robot immediately changed its estimate.
Graph in Fig. 9b shows that the robot can correctly identify
behavior classified by ASD experts as autistic, while Fig. 9c
again shows that the sessions classified as inconclusive by
humans are classified as autistic behavior by the robot. How-
ever, comparing Fig. 9b, c, one can observe the difference in
graphs, and that the robot fails to clearly identify the behav-
ior as low-functioning ASD, indicating that the robot is also
less confident in the results from these sessions.

The robot’s belief during the play request task is shown
in Fig. 10, with graphs confirming that this task is the least
informative, as suggested by simulation results from Fig. 7.
While graphs in Fig. 10a, b confirm that the robot can identify

Belief during 6 sessions classified as typical behavior.

Belief during 3 sessions classified as autistic behavior.

Belief during 3 sessions classified as inconclusive.

(a)

(b)

(c)

Fig. 10 Belief of the MOMDP task model over child states during the
play request task. (Color figure online)

the behavior of the child in accordance with assessment of
a human, although with not much confidence, the graph in
Fig. 10c shows that the robot tends to identify the behaviors
deemed to be inconclusive by humans as similar to those
expected from a child with high-functioning ASD. Similar
pattern can be observed in Fig. 11. Again, both Fig. 11a,
b confirm that the robot can correctly identify the behavior
of the child in the same way a human does, while Fig. 11c
shows that for the sessions deemed to be inconclusive the
robot infers that the behavior is related to high-functioning
ASD.

More data is required to draw conclusions in cases in
which the behavior of children is ambiguous. Although there
is no enough data to claim that sessions deemed inconclu-
sive by ASD experts reflect high-functioning ASD behavior,
it is interesting to consider that in those cases the results
from Figs. 10c and 11c suggest that, even though there are
no observations in the model that are characteristic to high-
functioning autistic behavior, the models are capable to infer
that the behavior may be similar to that expected from a child
with high-functioning ASD.
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Belief during 4 sessions classified as typical behavior.

Belief during 4 sessions classified as autistic behavior.

Belief during 3 sessions classified as inconclusive.

(a)

(b)

(c)

Fig. 11 Belief of the MOMDP task model over child states during the
functional imitation task. (Color figure online)

8 Conclusion

In this paper, we presented a novel method to design
MOMDP task models for controlling and evaluating the
child–robot interaction within the robot-assisted ASD diag-
nostic protocol. Each task of the protocol is modeled as an
MOMDP. Observation probabilities of eachMOMDPmodel
are set according to answers gathered by surveying ASD
experts. Same survey is used to formulate stochastic models
that are used to simulate the interaction. Simulation results
validated task models as capable of identifying the under-
lying behavior of the child but also enabled fine-tuning of
some parameters in task models. Finally, the task models
were validated through experimental session with six typi-
cally developing children and eight children with ASD. The
MOMDPmodel’s belief at the end of each taskwas compared
to assessment of anonymized transcript of the interaction
by human experts. The comparison showed that the model’s
belief can be used as an automatic evaluator of the child’s
behavior. These results enable development of a protocol
modelwhichwill enable the robot to adapt to different behav-
ior of a child and choose sequence of tasks in a given session
to maximize information gathered from the interaction.

The major drawback of the MOMDP task models as for-
mulated in this work is the dependency on the accuracy of
social cue detection, which was not high enough to perform
the experimental evaluation in a way in which the robot is
fully autonomous. Rather, the human operator provided the
robot with corrections of observations of social cues in cases
where automatic detection failed. With the reliance on social
cues and capabilities of NAO robots in mind, there is lit-
tle probability that the robots will be performing the tasks
autonomously in the near future. A more likely scenario is
the robots being a part of a smart room for autism diagnosis
in which multiple sensors will be installed to aid the robot
in tracking the child and observing its behavior. Since the
proposed methodology of formulating a task model can be
used with any task from the ADOS, there is a possibility of
extending the protocol with new tasks, for which the most
prominent candidate is the task of free play in which the
robot just observes a child playing with toys and encodes the
preferences of the child. A more immediate future work is
likely to include more sessions with children with emphasis
on evaluating whether the task models can indeed identify
high-functioning behavior.
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