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Abstract
Each person has their personal area which they do not want to share with others during social interactions. The size of this
area usually depends on various factors such as their culture, personal traits, and acquaintanceship. The same applies to the
case of human–robot interaction, especially when the robot is required to exhibit a certain level of social competence. Here,
we propose a new robot navigation strategy to socially interact with people reflecting upon the social relationship between the
robot and each person. To this end, we need a clear definition of interaction areas: (1) quality interaction area where people
can be engaged in high-quality interactions with robots, and (2) private area not to be interfered with by the robot speech or
action. A technical challenge in enhancing social human–robot interactions is how to enable robots to delineate the boundary
of the two areas of each person. Specifically, the social force model (SFM) is designed by a fuzzy inference system, where
the membership functions are optimized to give the robot the ability to navigate autonomously in the quality interaction area
using a reinforcement learning algorithm. Finally, the proposed model was verified through simulations and experiments with
a real robot that can generate a suitable SFM of each person, allowing the robot to maintain the quality of interaction with
each person while keeping their private personal distance.
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1 Introduction

People feel safe and comfortable within their own territory
they keep from others. We should be respectful of other
people’s territory and learn to adapt to such territory when
interacting with others. Therefore, the interpersonal distance
should be adaptively estimated to foster a better interaction
through real-time responses from others, allowing one to
modify their position not to trespass on others’ private areas.
In the near future, domestic robots are expected to share the
environment with humans and their perceptual and behav-
ioral abilities must conform to our social norms. Therefore,
domestic robots should be able to learn the proper social inter-
action distance and private area. However, it is difficult for
the robot to estimate the social interaction distance of each
person which may vary due to various social factors such as
their culture, personal traits, and acquaintanceship. Although
various researches have been conducted on the social model
formobile robot navigation [9,19,20], little attention has been
paid to the dynamics of human social factors.

For mobile robot navigation in a human populated envi-
ronment, collision avoidance is one of the most important
concerns.Another important issue that needs increased atten-
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tion is how to enable the robot to generate socially competent
navigation behaviors, which should help people feel safe and
comfort. These are important key challenges for human–
robot symbiosis. The theory of Proxemics [2] and its related
psychological concepts are frequently used for develop-
ing socially competent robot behaviors. This concept is
integrated into various research endeavors, especially safe
navigation considering social effects [3,25,26]. However, it
is still a challenging problem to formalize this social science
theory into a mathematic model for human-centered robot
navigation.

Considering individuals’ social factors, our goal is to pro-
pose a dynamic social force model of human–robot social
interaction. This enables the robot to adaptively estimate the
human social interaction distance, especially their private
area, in a public environment. This paper proposes a personal-
ized social interaction model designed by a fuzzy inference
system whose parameters are adjusted and optimized by a
reinforcement learning method in an on-line manner. The
estimated social force model is used as a cost map for the
path planner to generate robot navigation paths to make peo-
ple feel comfortable.

2 RelatedWork

In this section, we summarize the existing research related to
interpersonal distance to mediate people’s interaction with
others. First, we reference social science studies to give
the definition of privacy and Proxemics. Then, we describe
some studies based on the Proxemics theory to model human
interaction areas and its application. Finally, we identify the
technical challenges of modeling human interaction areas
responding to individuals, social factors.

2.1 Privacy and Proxemics in Social Science

The key idea to formalize human–robot interaction is to
understand and accommodate human behavior. Therefore,
the knowledge of social science is of importance. First of all,
Privacy was defined in human–robot interaction by Ruben
and Smart [24]. They summarized that privacy is the ability
of an individual or group to separate themselves and thereby
express themselves selectively. The boundaries and content
of what is considered private differ among cultures and indi-
viduals. Westin [31] mentioned that most of the animals seek
privacy either as individuals or in the small groups. From
this concept, we can get the idea of territoriality which is
the defense of one area against intrusion by others. In his
study, he reported three types of spacing observed among
animals: personal distance between individuals, social dis-
tance between groups, and fight distance at which an intruder
causes conflicts. At the same time, animals often gather in

large groups. They seem to live in a tension between privacy
and sociality. Zeeger studied human privacy in childhood
[32], and found that 58 of 100 three-, four- and five-year-
olds said they had a special place at the daycare center that
belongs only to them. Newell found that adults usually seek
privacy when they feel sad or tired, or need to concentrate
[18]. These studies are mostly related to the theory of Prox-
emics [2] which describes different interpersonal distances
that people keep from others. These distances depend on
the type of interaction and relationship between individuals.
Human interaction areas could be defined by this theory as
shown in Fig. 1a. Among the various types of human inter-
action area, Public area is the area often used to interact
with strangers, Social area is to interact with acquaintances,
Personal area is used for familiar people, and Intimate area
is for intimate contacts. On the other hand, people also use
the interpersonal space concept to approach to others per-
son. For example, when we try get closer to the closed friend
to get more quality of interaction but keep the distance for
stranger tomake the personmore comfortable. On top of this,
protecting one’s privacy is an essential prerequisite for form-
ing long-term, stable relationships, and developing socially
competent robots. The safety reason is one of the criteria that
results in the comfortable feeling to interact with the robot
[24]. Therefore, the robot should consider human’s private
space tomaintain the comfortable feeling and quality of inter-
action. Empirical research claims that spatial privacy rights
are important to determine whether to accept the interaction
with robots [8,16,29].

2.2 Social Science in Human–Robot Interaction

The private space of human can be grouped into geometric
and potential field models [11]. The models are designed
based on four different shapes i.e., concentric circle, egg
shape, concentric ellipses or asymmetric shapes, which used
to describe the personal space of the human [23]. The private
space or personal space can model by the geometric func-
tions, for example, ellipse or semi-ellipse function. These
geometric models have crisp boundaries. Thus, they are
appropriated to express sharp transitions between personal
space and other free space. This group of models are suited
for local path planning and obstacle avoidance. The exam-
ples of this group ofmodelling can be found in [10,17,19,28].
However, the sharp transitions between spaces cause the
robot movement when it operates in population-environment
because the robot avoids intruding into the personal are.

Another group of models describes the personal space
of the human with the potential field method. This group
of models composed of the continuous functions assign-
ing values to location around the human. This group of
personal space models reflect the idea that human com-
fort is getting worse when an intruder approaches closer
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to humans. The example of this group of modelling can be
found in [3,7,9,20,25,26]. This group of personal spacemod-
els are suited for the optimal path planning frameworkswhich
would like to optimal path cost that comes from human’s
response.

Human social factors are incorporated into a high-level
representation. Human’s pose, speech, and gesture cues are
often used to evaluate social interaction area to guide a
robot in a socially compliant manner [15]. For example,
Butler and Agah studied what type of approach behaviors
make humans uncomfortable [1]. In [27], they investigated
human traits influencing proxemic behaviors. These works
proposed methods to design robot behaviors not to violate
people’s privacy. The social relationship and genders were
used as the social factors to generate the social interaction
area and robot collision avoidance paths in human envi-
ronments [21]. Several robot behaviors have already been
implementedwith the private space inmind, such as, standing
in line [17], following a person [4], and passing a person in a
hall [12].

Referring to the above literature, the actual size of inter-
action area at any given instance varies depending on social
factors of people and on the task being performed. Therefore,
adaptive space of human–robot interaction was proposed to
deal with uncertainties of robot perception [5]. The method
was based on the non-stationary model as skew-normal
probability density functions, allowing smooth adaptation in
situation awareness of a robot within the common human–
robot interaction. Luber and Spinello addressed the problem
of social-aware navigation among humans that meet the
objective criteria such as travel time or path length as well
as subjective criteria like human comfort feeling [13]. The
method adapts the social interaction area based on learning
from a set of dynamic motions observed in a public hall. In
[22], the authors performed computer simulations that the
robot should be able to prevent itself from intruding onto
the human private area, but place itself in a location allow-
ing social interaction, maximizing the degree of visiting the
acceptable area and minimizing the degree of trespassing on
the private area.

To recapitulate, a major weakness of previous works is a
lack of adaptability in social interaction without considering
individuals’ characteristics. In contrast, our approach enables
the robot to learn to estimate the human private area during
the interaction. The robot can learn parameters to update
the private area through the human feedback. This social
model can be integrated into a path planner to simultaneously
ensure the human safety as well as the quality of interaction
without intruding onto the private area (Fig. 1b). As the sizes
of the quality interaction area and the private area vary from
person to person, thiswork proposes a reinforcement learning
based path planning approach for social robots capable of
navigating outside the private area at all times.

Fig. 1 Human interaction area: a human interaction area according to
proxemics [2]. b Our proposed interaction area considering the quality
of interaction and human privacy

Fig. 2 Overall process: Three main parts: (1) human social model
designed by a fuzzy inference system (FIS), (2) reinforcement learning
to update human social model by optimizing the parameters of the FIS,
and (3) social path planner to generate socially competent navigation
using social model

3 Personalized Social Interaction

3.1 Overall Process

We propose a novel method to navigate the robot capa-
ble of generating a socially competent path considering the
human state as shown in Fig. 2. There are three main parts
in the proposed method: (1) Human social model designed
by an Asymmetric Gaussian function which its parame-
ters are determine from a fuzzy inference system (FIS), (2)
Reinforcement learning which used as a tool to update the
parameters of the FIS, and (3) Social path planner to generate
socially competent navigation using the human social model.
During the human–robot interaction, the robot detects the
human state and social factors, such as the social relation-

123



270 International Journal of Social Robotics (2020) 12:267–280

ship between humans and the robot, to preliminary design
human’s private area. These social factors are the crisp set
of input data which gathered for the fuzzy inference system.
These crisp set are converted to a fuzzy set using fuzzy lin-
guistic variables, fuzzy terms, and membership functions.
Afterward, an inference is based on a set of fuzzy rules.
Lastly, the resulting fuzzy output is mapped to a crisp output
using the output membership function, in the defuzziffier
step. The output from the fuzzy inference system is the
parameters to calculate the model of privacy area of the
human which can be calculated by the Gaussian function.
Based on preliminary human’s private area, the robot can
estimate the social map that includes people’s private area
and use it to generate its navigation paths to perform social
interactions. However, with the preliminary estimate social
map, the robot receives the reward which is the combina-
tion of interaction degree and unacceptable degree, and use
it for update the parameters of input membership function
by learning mechanism (R-Learning). The robot continues
to navigate around humans based on the new estimate social
map. Finally, the robot will navigate through the paths that
generate based on the estimated social map to perform social
interactions within the quality interaction area, while not
intruding into the private area (Fig. 1b).

3.2 Human Social Model

The social factor describes the social cues of people such
as their relationship with other people, personality traits,
culture, and emotional states. Use of such information is
important to ensure people’s privacy as well as their safety in
social robot navigation planning. This section will summa-
rize the mathematic model of our fuzzy social relationship
[21]. Our proposed human’s socialmodel is designed accord-
ing to two concepts. First is a concept of asymmetric shape
personal space [23] which describes the personal or private
space of the human with the different size of the frontal area
and lateral area. Second is the degree of surrounding envi-
ronment which can be used as the cost for path planning
algorithm. Our proposed method considers the discomfort
feeling from humans which has the maximum value at the
human location, and decrease at the location far away from
the human position. Therefore, the asymmetric Gaussian
function which is the simple mathematics function, is suit
to the model asymmetric shape of personal space and possi-
ble to provide the degree of the surrounding environment.

3.2.1 Fuzzy Social Relationship Model

The human state and the social factor (e.g., relative posi-
tions between the robot and each person, social relationship
between them, genders of each person, etc.) can be used to
design the private area each person wants to secure and keep

Fig. 3 Human’s private area: the privacy area of the human can be
determine by using two factor. Frontal side B f r , which depends on
human’s motion, and Lateral side Bsi which can be determined by
social signals

from others. The private area can be represented by a set
of positions (x, y) surrounding each person to which force
values are assigned as follows:

F (x, y) =
n∑

i=1

fi (x, y) (1)

where n is the total number of persons, fi is the repulsive
force originating from the i th person which can be expressed
by the bivariate Gaussian distribution function. Let A be the
magnitude of the repulsive force which can be determined
by a person’s physique. Also let β f r and βsi be the size of
the private area in the frontal and lateral directions, respec-
tively, with respect to the i th person, as shown in Fig. 3. The
repulsive force generating from the i th person fi (x, y) is
designed by

fi (x, y) = A ∗ exp
(− (

β f r − βsi
))

(2)

which presents the degree of discomfort of the i-th person. Its
peak value is observed at his/her position which decreases as
the distance from him/her increases. It is clear fromEq. 2 that
the magnitude of the degree of discomfort depends not only
on the amplitude A, but also on β f r and βsi . These terms
can be updated by the human state and the social factors,
respectively.

Let us assume that the robot is able to perceive the human
state which consists of his/her position, velocity, and orien-
tation with respect to the inertial coordinate frame denoted
by (xi , yi , ẋi , ẏi , θi ). Let d be the distance between the i-th
person’s position (xi , yi ) and any position (x, y) in their sur-
rounding environment. θi is the orientation of the person’s
facing direction vector. The magnitude of velocity v can be
computed by

vi =
√
ẋ2i + ẏ2i (3)
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Considering the motion of people, β f r can be defined as
follows:

β f r =

⎧
⎪⎨

⎪⎩

(d∗cos(θ−θi ))
2

2∗σ 2
f 0

if cos(θ − θi ) ≤ 0

(d∗cos(θ−θi ))
2

2∗(σ f 0/(1+γ f vi))
2 otherwise

(4)

where σ f 0 is chosen according to the different interpersonal
social distance defined in [2]. Here γ f is the normalization
term, and θ is the orientation of the vector that represents the
position of any point in the environment with respect to the
inertial coordinate system. Therefore, the robot would pay
more attention in front of people rather than behind of them.

This paper also reflects social factors of people in relation
to the robot, e.g., the gender, the relative distance, and the
relationship degree, to estimate the design parameters of the
private area in the lateral directionβsi . Since the social factors
vary depending on various conditions, it is difficult to group
them as a binary function. Therefore, a fuzzy logic approach
is used to quantify these parameters [21].

Gender is one of social factors that should be considered
to model the private area. The input MF of gender is defined
as a binary function subject to male (M) and female (Fe)
which is given by

Γ1(g) =
{
0, if g isM
1, if g is Fe

(5)

where g is the gender input.
Our next social factor is the relative distance which can

be divided into two sets such as near (Near) or far (Far). It
is represented by a sigmoid function. Let rr be the input of
the relative distance, ar the steepness of the distribution of
relative distance, and cr the inflection point. Then the MFs
of the relative distance is given as follows:

Γ2(rr ; ar , cr ) = 1/ (1 + exp (− ar ∗ (rr − cr ))) (6)

Likewise, the relationship degree describes the personal
knowledge or experience with the robot which can be set
by three Gaussian functions, familiar (Fam), acquaintance
(Acq), and stranger (Str). Let ri be the relationship degree that
the robot perceives from people. Therefore, the relationship
degree MFs are given as follows:

Γ3 (ri ) =

⎧
⎪⎪⎨

⎪⎪⎩

N
(
μFam, s2Fam

)
if Fam

N
(
μAcq , s2Acq

)
if Acq

N
(
μStr , s2Str

)
if Str

(7)

For the output of the fuzzy logic, there are several ranges
in the human interaction area according to the theory of Prox-
emics [2]. The distance of human interpersonal space inspires
us to estimate the private area of the human. Therefore, the
concept of different parameters in determining the different
social model for each person is chosen related to these inter-
personal space concept. In [21], we separate the personal
area into two group, far personal area (FPA) and near per-
sonal area (NPA). These interaction areas give the different
standard deviations σsi . Therefore, four Gaussian functions
are used to represent a change of standard deviation(σsi ) in
each interaction area which is defined as

σsi = N
(
μ, s2

)
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

N
(
μPA, s2PA

)
if PA

N
(
μSA, s2SA

)
if SA

N
(
μFPA, s2FPA

)
if FPA

N
(
μN PA, s2N PA

)
if NPA

(8)

Thus, a detailed description of the proposed fuzzy rule
is shown in Table 1. Combining the above-mentioned social
factors, βsi can be defined as follows:

Table 1 Designing the social
interaction area using fuzzy
rules

Input Output

Gender (Γ1) Relative Dist (Γ2) Relationship degree (Γ3) Interaction area N
(
μ, s2

)

M Near Fam NPA

M Near Acq FPA

M Near Str SA

M Far Fam NPA

M Far Acq FPA

M Far Str PA

Fe Near Fam FPA

Fe Near Acq SA

Fe Near Str SA

Fe Far Fam FPA

Fe Far Acq PA

Fe Far Str PA
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βsi = (d ∗ sin (θ − θi ))
2

2 ∗ N
(
μ, s2

)2 (9)

This means that, to prevent the robot from intruding onto
the human private area, the robot is required to delineate the
dynamic boundary of interaction areas based on the human
social factors.

3.2.2 Learning Fuzzy Social Model

In this paper, the reinforcement learning method is used to
learn from human feedback how to spot and respect the pri-
vate area varying from one person to another. We integrate a
reinforcement learning algorithm into fuzzy MFs. The MF,
as the agent, learns to improve the private area in an attempt
to increase the total amount of reward through human feed-
back. The action is then selected by the behavior policy in
order to adjust the MFs to effectively update the social force
(i.e., cost) map and to make a minimum cost path in the envi-
ronment. This process is repeated until a maximum reward
is reached in an iterative way.

Specifically, the R-Learning algorithm is used as the
learner. Many reinforcement learners have to abandon the
discounted future reward. In this work, with the average
reward setting, R-Learning neither discounts nor divides
experience into distinct episodes with a finite return [14].
This is well-suited to the social cost map generation in order
to sustain long-term interactions that should take every inter-
action experience into account equally.

The transition matrix depends on the action by an agent.
In this paper, the state S consists of the parameters of
each MF. We focus only on mean values µ of MFs to
be learned, therefore, the state will consist of three means
of Familiar, Acquaintance and Stranger functions, µ =
[μFam, μAcq , μStr ]. The action, a ⊂ A, is how each MF
can be adjusted. To select the action a, the ε-greedy method
is used to select the action that has maximum estimated state-
action value Q. Therefore, the value of state S with the action
a can be defined as

Q(S, a) = Q(S, a)+α[R+ R̄+maxaQ(S′, a)− Q(S, a)]
(10)

where S′ is the next state,α is a constant learning rate, R is the
reward signal to be gained from the environment, and R̄ is the
average reward value. In the real robot experiment, the robot
can receive the reward in real time in the form of interaction
and unacceptable degrees, respectively, from each person’s
emotion or feeling. The interaction degree (I D) presents
the degree of interaction quality or the degree of easiness
of interaction, while unacceptable degree (UD) implies the
degree of discomfort during human–robot interaction. The

Algorithm 1 R-Learning
Input: Reward R
Output: action a

Initialization :
1: R̄ and Q(S, a);

LOOP Process
2: S ← current state;
3: Choose action a in S using behavior policy (e.g. ε-greedy)
4: Take action a, observe R, next state S′
5: δ ← R + R̄ + maxaQ(S′, a) − Q(S, a)

6: Q(S, a) ← Q(S, a) + αδ

7: if Q(S, a) = maxaQ(S′, b) then
8: R̄ ← R̄+βδ

9: end if

I D andUD are increasing and decreasing respectively when
the robot gets closer to the human. Both degrees depend on
the distance between the human and the robot. Therefore, the
reward can be defined as

R = k1 ∗ I D

k2 ∗UD + c
(11)

where k1 and k2 are the weights of each degree, and a con-
stant c is used to prevent zero division. For simulation, I D
and UD are collected from the generated path through the
predefined ground truth social map. Therefore, the interac-
tion and unacceptable degrees can be determined as

I D =
{∑

p
∑n

i=1 − fi (p) + 1, p within distance limit
0, otherwise

(12)

UD =
{∑

p
∑n

i=1 fi (p), p within distance limit
0, otherwise

(13)

where p is a set of navigation path coordinates in the pre-
defined social cost map. Therefore, this MF can be learned
by µ to maximize the reward having a maximum value of
I D and a minimum value ofUD. The complete R-Learning
algorithm is given in Algorithm 1.

3.3 Path Planner

WeuseTransition basedRapidly-ExploringRandomTree (T-
RRT) that can choose an optimal navigation path in the social
cost map and collect the reward [6]. T-RRT takes advantage
of two approaches. First, the exploration strength of the RRT
algorithm rapidly grows random trees toward unexplored
areas. Secondly, the features of stochastic optimizationmeth-
ods apply transition tests to accept or to reject potential states.
This planner produces the path that efficiently follows the
low-cost area and the saddle point of the cost map. Therefore,
we use T-RRT for the exploration and optimal path genera-
tion, allowing the robot to evaluate the navigation cost as the
social map is updated. More specifically, we employ T-RRT
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Fig. 4 Algorithm flow chart

to navigate the robot through the space that separates the
private area and the low quality interaction area.

4 Results and Analysis

This section shows simulation and real experiment results
with a humanoid robot Pepper. Our goal is to enable the robot
to plan paths to visit every person in the environment without
trespassing on their private area, but to keep the distance from
which people are able to have high quality interactions. Fig-
ure 4 shows the algorithmic process flowchart implemented
in this paper. First, the robot explores the environment to
generate a geometric map. It can then create a social map
by computing and assigning the social cost to the geometric
map. Using the social map, the robot can generate the path
to visit any person in the environment. Specifically, a genetic
algorithm is used to determine the order of visiting people.
After that, T-RRT path planner generates the low-cost path
following the order of visiting people. To update the social
map, R-learning adjusts the MF parameters by receiving the
rewardwhile visiting people. The socialmap is being updated
until the robot gains the maximum rewards which maximize
the interaction degree and minimize the unacceptable degree
evaluated by people. The simulation results show that our
proposed method has the capability to adjust and update the
social map to gain the maximum interaction degree and min-
imum unacceptable degree in various conditions. We also
perform real robot experiments to show that our proposed
method can navigate the robot to interact with people at the

proper distance. The social factors of each person, i.e., the
gender and relationship degree of people in relation to the
robot, are given to the robot in both simulations and real
robot experiments.

4.1 Simulation Results

In the simulation, we assume that a geometric map is given or
created by the robot. Our proposed model is to generate the
social map by computing and updating social cost assigned
to the geometric map. This social map is used to plan the
robot navigation path in the environment. To validate the
proposed model, we need to receive the reward from people.
Therefore, the concept of social relationship model in [21] is
used to model the ground truth social map of people whose
relationship degree MFs are set to three Gaussian functions
as follows: sFam = 0.15, μFam = 0.1 to Fam set, sAcq = 0.15,
μAcq = 0.3 to Acq and sStr = 0.15, μStr = 0.8 to Str set. The
ground truth MFs are shown in Fig. 7 (Top).

To estimate the human private area, the initial parameters
of the relationship degree MFs in Eq. (7) are designed as
follows: sFam = 0.15, μFam = 0 to Fam set, sAcq = 0.15,
μAcq = 0.5 toAcq set, and sStr = 0.15,μStr = 1 to Str set as
shown in Fig. 7 (Middle). These parameters can be adjusted
by the learning process. Likewise the relative distance MFs
are designed as follows: aNear = − 0.35, cNear = 300 to
Near set and aFar = 0.35, cFar = 300 to Far set.

For the output function, the social interaction area is split
into four Gaussian sets. The parameters of Eq. (8) are as fol-
lows: μPA = 0.035, sP A = 0.005, μSA = 0.045, sSA =
0.005, μFPA = 0.0035, sFP A = 0.06, μN PA = 0.0035,
sN PA = 0.065. These parameters are decided based on the
human interaction area concept [16] which determined the
range of an individual’s interpersonal space with different
social factors when the robot approached the person. Reflect-
ing their results, we can determine the parameters for the
output membership functions.

For the reinforcement learning process, we set the discrete
states which consist of threemean values of each relationship
MF, i.e., μFam, μAcq , μStr . The action set for each func-
tion is simply defined as stay, move right, or move left, i.e.,
0, + 0.1,− 0.1. The MFs can be adjusted through iterative
learning processes until gaining a maximum reward signal.

The ground truth and estimation social map can be seen
and compared in Fig. 5. The results show that the estimated
social cost map with the initial setting (Middle) is different
compared to the ground truth map (Left). With an initial set-
ting, the robot estimated the private area unsuitably for the
people, causing the robot to generate paths that decrease their
comfortable feeling. The learning process enables the robot
to adjust the system parameters and re-estimate the human
private area incorporating the feedback from the human.
Therefore, the estimated social map after the learning pro-
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Fig. 5 Social map: comparison of social maps. Ground truth social map (left) initial social map (middle) and estimated social map after the learning
process (right)

Fig. 6 Private boundary:
comparison of private area
boundaries. Ground truth
boundary (blue solid line),
estimated boundary at initial
setting (green dash line), and
estimated boundary after the
learning process (red dash line).
(Color figure online)

cess (Right) becomes similar to the ground truth map and
can be used to generate paths that make people feel comfort-
able. To make it clearer, Fig. 6 shows that the private area
boundary of the initial setting (green dash-line) is smaller
than the ground truth (blue line). However as the learning
process proceeds, the estimated private boundary becomes
similar to the ground truth (red dash-line). The relationship
degree MFs after the learning process can be seen in Fig. 7
(Bottom). The results of our proposed model can be compare
to the fixed-parametersmodelwhich use the same parameters
to estimate the social map (Fig. 7). The errors of estimated

socialmaps for three, four, andfivepeople, respectively, com-
pared to ground truth social maps, are shown in Fig. 8. The
result shows that, while navigating the initial and updated
social cost maps, the robot was able to learn and adjust the
MFs through the reward obtained from people. Finally, the
errors converged to a value near zero (red). However, for the
fixed-parameters model (blue), the error of social map is con-
stant which mean the estimate social map is not change and
different to the ground truth.

In this paper, we define the quality interaction area and the
private area. Figure 9 shows the interaction degreewith three,
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Fig. 7 Fuzzy input MFs:
comparison of parameters of
social relationship model (fuzzy
membership function). Ground
truth values (top), Initial
parameters of membership
functions (middle), and trained
parameters of membership
functions (bottom)

Fig. 8 Social map error: the error between the ground truth cost and
estimated cost on the social map. Fixed-parameters (blue) estimates the
same cost of social map, the error is maintain. For our proposed (red), at

the beginning, the error is high due to the incorrect parameters. As the
learning process proceeds with updated parameters, the error converges
to zero (red). (Color figure online)

four, and five subjects, respectively. The results show that our
proposed method increases the interaction degree of subjects
during their interaction with the robot until it suits everyone.
Figure 10 shows the results of the unacceptable degree. The
results show that our method can reduce the unacceptable
degree of subjects until they feel comfortable to interact with
the robot. These results show that our proposedmodel outper-
forms the fixed-parameter for estimated the privacy area and
more clearly with the number of humans in the environment.
The results can be summarized in Table 2. We also perform
the simulation with four subjects facing different directions.
The results are consistent with the previous results obtained

from the simulations with different numbers of subjects. The
results show that our proposed method increases the quality
interaction degree and reduces the unacceptable degree of
the subjects, as shown in Table 3.

4.2 Humanoid Robot Experiment

We perform the experiment with a humanoid robot Pepper
developed by SoftBank Robotics Corp. A variety of sensors
of Pepper and its innate perception capabilities are suitable
for human–robot social interaction. We navigate the robot
through the environment while interacting with as many
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Fig. 9 Interaction degree: interaction degree presents the acceptable degree that the robot can receive from people along generated paths. High
interaction degree means that the robot approaches close enough to have quality interactions with people

Fig. 10 Unacceptable degree: unacceptable degree presents the total discomfort feeling that robot receive from people along the generated path.
The robot should plan the path without entering the human private area

Table 2 Results of learning social model with the number of people

No. of people Average interaction degree Average unacceptable degree Average social map error

Initial After
learning

Initial After
learning

Initial After
learning

3 5.6804 5.7923 0.9742 0.2528 0.0243 0

4 5.5695 7.6095 1.8829 0.2321 0.0587 0

5 5.2651 6.6644 3.4072 0.9995 0.0560 0

Table 3 Results of learning social model with people facing different directions

Facing directions of 4 people Average interaction degree Average unacceptable degree Average social map error

Initial After learning Initial After learning Initial After learning

Into the center of group 5.5787 7.1985 1.74589 0.2129 0.0501 0

Out of the center of group 5.5695 7.6095 1.8829 0.2321 0.0587 0

people as possible therein. We test the proposed navigation
method in the open-source environment of Robot Operat-
ing System (ROS). Specifically, Pepper needs to have prior
knowledge about its environmental geometricmapwhich can

be stored in the map server. With several sensors, Pepper can
localize itself required for the navigation task. Pepper also
can detect and receive the human state and social factors to
generate the social map to assign the social cost to the geo-
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Fig. 11 Humanoid robot experiment overall process

metric map. This social map imposes constraints on the robot
path, enabling the robot to avoid or interact with people. The
robot also receives a reward frompeople to update the param-
eters of MFs to re-compute and update the social map. The
overall process is illustrated in Fig. 11.

The Pepper robot visits everyone and keeps the distance
to make them feel comfortable around it. However, as many
uncertainties exist, it is likely that Pepper initially makes a
rough estimate of the size of the private area which may
not suitable for him/her to comfortably interact with it. For
instance, Fig. 12a shows that Pepper is outside the bound-
ary of the quality interaction area Bi . During the interaction

with Pepper, people give reward by the verbal answer to the
question from the robot. This reward allow Pepper to eval-
uate the social distance with them, i.e., the positive reward
when Pepper is within the area where they feel comfortable
to interact with it, or the negative reward for the distance
from which they feel difficult to interact or discomfort (out-
side the quality interaction area boundary Bi or inside the
private area boundary Bp). Learning people’s social inter-
action model helps Pepper to re-estimate the human private
area until gaining a maximum positive reward. Finally, Pep-
per can locate itself within the area to interact with people
that separates the private area as shown in Fig. 12b. In order
to evaluate our proposed model, a total of five subjects par-
ticipated in the experiment. Each person has a different range
of quality interaction area, which is represented by the green
line Bi and private areas, which is represented by the red line
Bp. The results are shown in Figs. 13, 14, 15, 16 and 17. It
was confirmed that the social map may not clearly designate
the private area at the initial phase of interaction, which is
unsuitable for the subjects. In case of Figs. 13, 14, 16, and 17,
the robot is located away from the quality interaction area,
therefore the robot receives hardly noticeable response from
people, which is considered to be the negative reward, to
update its parameters associated with the MF of the interac-
tion degree. On the other hand, the robot receives the positive
reward to update its parameters for theMF of the private area.
In case of Fig. 15, the robot is initially located inside the pri-
vate area. Therefore, the robot receives the negative reward to
decrease the unacceptable degree and the positive reward to
update the parameters associated with the interaction degree.

Fig. 12 Humanoid robot experiment: (left) the real experiments with pepper. (Right) the blue area visualizes the estimate private area. The green
line is the quality interaction area boundary Bi . The red line is the private area boundary Bp
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Fig. 13 Experiment result with pepper robot: the interaction distance
(blue line) converges to the area between the quality interaction area
boundary Bi and the private area boundary Bp of Person 1. (Color
figure online)

Fig. 14 Experiment result with pepper robot: the interaction distance
(blue line) converges to the area between the quality interaction area
boundary Bi and the private area boundary Bp of Person 2. (Color
figure online)

Finally, our proposed social distance learning model enabled
the robot to interact with the subjects at the proper distance
between the boundaries of interaction and private areas as
shown in Figs. 13, 14, 15, 16 and 17.

5 Conclusion

In this paper, a newproxemics learning strategywas proposed
for social mobile robots toward realizing socially competent
navigation behaviors by integrating a fuzzy inference system
and a reinforcement learning method. The proposed method
employed an individual’s state and social factor information
to determine the size of the quality interaction area of each
person in a shared environment. However, initial social maps

Fig. 15 Experiment result with pepper robot: the interaction distance
(blue line) converges to the area between the quality interaction area
boundary Bi and the private area boundary Bp of Person 3. (Color
figure online)

Fig. 16 Experiment result with pepper robot: the interaction distance
(blue line) converges to the area between the quality interaction area
boundary Bi and the private area boundary Bp of Person 4. (Color
figure online)

may not correctly produce an accurate interaction distance
to each person. This problem may cause the robot to intrude
onto the human private area or remain away from the quality
interaction area. The proposed method used the concept of
learning from experiences to update the interaction distance
with people reflecting their feedback. This concept improves
the accuracy of social navigationmapgeneration for the robot
capable of avoiding the humanprivate areawhilemaintaining
the path within the quality interaction area. The simulation
and real robot experiments showed that our proposedmethod
provides accurate social interaction cost maps through the
reinforcement learning process which can increase the inter-
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Fig. 17 Experiment result with pepper robot: the interaction distance
(blue line) converges to the area between the quality interaction area
boundary Bi and the private area boundary Bp of Person 5. (Color
figure online)

action degree and reduce the unacceptable degree at the same
time.

There are some aspects of our proposed method that
should be improved and expanded by future research. First,
our proposed human’s area of privacy was designed by using
aGaussianmodel, thenwe tried to determine the goodparam-
eter for this model by using reinforcement learning as a
kernel-based approximation scheme in human–robot inter-
action. Even though we have focused on an empirical study
on developing new learning framework for socially com-
petent robot exploration in human space, we will further
consider a spectral learning scheme instead of this kernel
based approach because kernel-based approximation scheme
needs a big amount of training data (human–robot interac-
tion in our problem) [30]. Second, we will investigate the
effect of different parameters of the reinforcement learning
algorithm, i.e., discounting factor, undiscounting factor or
reward function and analysed in the analytical point of view.
Third, the proposedmethod showedonly the empirical results
that it could be used to learn and model the human’s pri-
vate area. The evaluation of the solution of each state on
the problem will be considered and improved to verify the
optimal solution for each state which could be improved the
proposed private area model. Fourth, we will extend exper-
iments under various dynamic environments populated with
moving obstacles. Moreover, different social factors such as
individual cultures and personality traits can be considered
to design a more sophisticated social interaction map.
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