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Abstract
Culture, intended as the set of beliefs, values, ideas, language, norms and customswhich compose a person’s life, is an essential
element to know by any robot for personal assistance. Culture, intended as that person’s background, can be an invaluable
source of information to drive and speed up the process of discovering and adapting to the person’s habits, preferences and
needs. This article discusses the requirements posed by cultural competence on the knowledge management system of a robot.
We propose a framework for cultural knowledge representation that relies on (i) a three-layer ontology for storing concepts
of relevance, culture-specific information and statistics, person-specific information and preferences; (ii) an algorithm for
the acquisition of person-specific knowledge, which uses culture-specific knowledge to drive the search; (iii) a Bayesian
Network for speeding up the adaptation to the person by propagating the effects of acquiring one specific information onto
interconnected concepts. We have conducted a preliminary evaluation of the framework involving 159 Italian and German
volunteers and considering 122 among habits, attitudes and social norms.

Keywords Culture-aware robotics · Companion robot · Knowledge representation

1 Introduction

When Manuel Neuer was elected the best goalkeeper of the
2014 Football World Cup, and found himself face to face
with his Chancellor Angela Merkel, he broke the protocol
and spontaneously leaned over for a hug, that the Chancellor
happily returned. Under very different circumstances, when
Toyota’s managing director Yuji Yokoyama had to announce
a major recall campaign of their flagship cars due to braking
problems, he bowed longer and deeper than usual to the offi-
cials of the Japanese Transport Ministry, to convey with the
greeting his sincere apology for the whole situation.
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The two episodes, reported in Fig. 1, well represent the
depth and the ways of the influence of culture on a person’s
actions. Both Manuel Neuer and Yuji Yokoyama knew that
meeting a government representative calls for a formal greet-
ing (a handshake in Germany, a bow in Japan), assessed the
context (a stadiummoments afterwinning the FootballWorld
Cup, a press conference for the announcement of the recall
campaign) and their own emotions (joy, shame) andmodified
the expected greeting gesture in a way that made their inten-
tions immediately clear, evoking in the recipient the response
they were hoping for.

The fact that Manuel Neuer and Yuji Yokoyama shared
the same cultural background of their respective counterparts
played a key role towards the success of their actions. Stick-
ing out the tongue, as done by the elderly man of Fig. 2a, is
considered rude and disrespectful in the USA, while in Tibet
it is a formal greeting. Similarly, the twomen shown head-to-
head in Fig. 2b and whomight appear as arguing to an Italian
observer, are actually performing the hongi, the traditional
greeting with which Māori people welcome a foreigner into
their group.

Of course, culture is more than this. Besides greetings and
facial expressions, culture influences individuals’ lifestyles,
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Fig. 1 aManuel Neuer hugging theGermanChancellor AngelaMerkel
after winning the 2014 Football World Cup. b Toyota’s managing
director Yuji Yokoyama bowing to officials of the Japanese Transport
Ministry before the press announcement of 2010 Toyota’s recall cam-
paign

Fig. 2 a Tibetan greeting. bMāori greeting

personal identity and their relationship with others both
within and outside their culture. Culture is the shared way
of life of a group of people that includes beliefs, val-
ues, ideas, language, communication, norms and visibly
expressed forms such as customs, art, music, clothing, food,
and etiquette. Cultures are dynamic and ever changing as
individuals are influenced by, and influence, their culture by
different degrees [26].

Various studies prove that culture also affects our interac-
tions with, and expectations of, robots [12]. A survey about
the requirements for a personal robot assistant conducted
in 2005 reveals that people expect the robot to pay atten-
tion to what they are doing (85% of respondents), be polite
(70%) and communicate in a human-like manner (71%) [9].
Interestingly enough, it is very difficult to meet those expec-
tations without providing the robot with a certain level of
cultural competence: “paying attention”, i.e., understanding
the meaning of gestures and words and reacting appropri-
ately, is not possible without an understanding of the cultural
identity of the person, as the episodes of Fig. 1 prove;
similarly, as Fig. 2a shows, the definition of politeness is
culture-dependent. Studies specifically focusing on the influ-
enceof the cultural backgroundon the interactionwith a robot
reveal that people from different cultures not only have dif-
ferent preferences concerning how the robot should be and
behave [12,24], but also tend to prefer robots better comply-
ing with the social norms of their own culture, both in the
verbal [2,34] and non-verbal behaviour [11,18]. Such dif-

ferences affect the robot’s likeability, as well as the trust,
comfort and compliance it inspires [34].

While this problem is relevant in all applications requiring
human-robot interaction, it is particularly critical whenever
the robot is expected to be a companion for elderly [29], dis-
abled people or children [8], who might, at once, need more
and better assistance and be less capable of describing their
needs and preferences. In such cases, the cultural competence
of the robot has a tremendous impact on the quality of the
care intervention, and even on its ethics [13].

Two complementary approaches have been proposed in
the literature to tackle the problem of ensuring the cultural
competence of a personal robot.

The “bottom-up” approach aims at adapting the robot’s
behaviour to suit the preferences and expectations of its
user, under the assumption that any behaviour deemed as
appropriate by a person is also appropriate for that per-
son’s culture. Examples of this interpretation range from
a method for parametrizing the interpersonal distance and
direction of approach on personal preference [31] to a com-
plex framework for the learning and selection of culturally
appropriate greeting gestures and words [32]. While this
approach bypasses the problem of finding a suitable repre-
sentation for the influence of culture on the robot’s actions
and perceptions, it is not well suited for encoding informa-
tion expressed at national level, nor how such information
might drive personal preferences.

On the contrary, the “top-down” approach relies on cul-
tural information valid at national level (e.g., Hofstede’s
dimensions for the cultural categorization of countries [16]),
to provide an informed a priori personal adaptation. Exam-
ples of solutions following the “top-down” approach include
a system for the customization of the gestures and facial
expressions of a virtual agent [28], and a framework for
expressing the influence of culture on the gestures and words
that a robot should use at a first meeting with a person [20].
The latter is among the very first attempts at merging the
“top-down” and “bottom-up” approaches, by making use of
empirical data (tagged video recordings) to complement the
information given byHofstede’s dimensions. As the reported
examples testify, the greatest limitation of the “top-down”
approach is the difficulty in modelling the mapping between
cultural information at national-level and variables defining
the robot’s behaviour, beside narrow, well-defined areas such
as the interpersonal distance [6].

Moreover, both approaches seem to leave some areas
uncovered: it is unclear, for example, how the “top-down”
approach would allow for modelling and initializing sym-
bolic variables (e.g., what are the eating habits of the user
for breakfast? which holidays does she celebrate?) and rules
(e.g., what is the appropriate behaviour for an invitation to
dinner at a friend’s house? what is the user’s attitude towards
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healthcare?), and it is certainly time-consuming, at least, to
learn all such information with the “bottom-up” approach.

To address the problem of endowing personal robots with
cultural competence on a broad spectrum of behaviours, we
propose to draw inspiration from the field of Transcultural
Nursing [26], which explores the influence of culture on
the efficacy of care and proposes and validates culturally
competent practices for (human) caregivers. We argue that,
among the various angles fromwhich the problemof defining
culture and its influence on humans’ behaviours is tackled,
the “practical” perspective pursued in Transcultural Nursing
is ideal for: (i) mapping human-related cultural knowledge
onto robots’ sensorimotor and verbal behaviours; (ii) defin-
ing metrics for the evaluation of the cultural competence of
the resulting robot’s behaviours and (iii) assessing the effect
of the culturally competent robot onto the assisted person, in
crucial aspects such as acceptability and efficacy.1

The contribution of this article is a hybrid “top-down/
bottom-up” software framework for the representation of
heterogeneous cultural and contextual information required
by a robot for elderly care to exhibit culturally compe-
tent behaviours. The framework relies on three core ele-
ments: (i) a three-layer ontology for storing all concepts of
relevance, national-level information and statistics, person-
specific information and preferences; (ii) an algorithm for
the acquisition of person-specific knowledge, which uses
national-level, culture-specificknowledge to drive the search,
and (iii) a Bayesian Network for propagating the effects
of acquiring one person-specific information onto intercon-
nected concepts. To the best of our knowledge, this is the first
framework for modelling the influence of culture on robot
behaviours that can manage numerical and symbolic infor-
mation and their combination, as well as rules and goals.

The hypothesis driving the first experimental evaluation
of the proposed framework is that the amount of interac-
tions required to learn individual preferences is significantly
smaller when having national-level cultural knowledge about
a user than in absence of such knowledge. Concretely,
as detailed in Sect. 4, we assess whether, given a user
who declares herself as belonging to one cultural group at
national level (e.g., Italian), using the proposed framework
and algorithms speeds up the acquisition of person-specific
knowledge. The preliminary evaluation involved a total of
159 Italian and German volunteers. Planned future exper-
iments will be devoted to assessing the perceived cultural
competence of the robot, by adapting validated tools adopted
in the field of Transcultural Nursing [21].

1 This rationale is at the core of the H2020 project CARESSES (http://
caressesrobot.org/),which aims at the development of culturally compe-
tent robots for elderly care. One of the key research areas of CARESSES
is denoted as Transcultural Robotic Nursing [5], which is, ideally, the
bridge between culturally competent human caregivers and culturally
competent robot caregivers.

Fig. 3 The cultural iceberg model (left) describes the relationship
between a person’s culture and behaviours, while the Papadopoulos,
Tilki and Taylor model (center) describes the process allowing health
practitioners to act with cultural competence. A framework for man-
aging cultural knowledge is necessary for a culturally competent robot
(right) to assess the actions and words of a person and respond accord-
ingly

The article is organised as follows. Section 2 introduces
the concept of culturally competent robot and details the
requirements that cultural competence poses on the robot’s
knowledge management system. Section 3 describes the
method we propose for meeting such requirements. Section
4 reports its implementation and experimental evaluation.
Conclusions follow.

2 Motivations and Problem Statement

Figure 3 shows on the left-hand side the cultural iceberg
model, which describes the relationship between a person’s
culture and behaviours, acknowledging the influence of the
former on the latter. According to the model, inspired by the
theories of the anthropologist Edward T. Hall [15], a person’s
cultural identity is composed of core values (at the bottom
of the iceberg), their grounding in situations and events of
everyday life (interpretations) and the behaviours that map
the interpretations onto a person’s physical and verbal capa-
bilities. While the behaviours are immediately evident to an
observer, the associated interpretations, as well as the under-
lying core values, are not directly observable and can only be
inferred by correlating behaviours with generic knowledge
and previous experiences.

The Papadopoulos, Tilki and Taylor model [25] has
been devised by experts in Transcultural Nursing for devel-
oping culturally competent health (human) practitioners.
The model consists of four constructs: Cultural Awareness,
Cultural Knowledge, and Cultural Sensitivity, that lead to
Cultural Competence. Let us again consider the Tibetan man
of Fig. 2a: a culturally competent U.S. health practitioner, for
example, would (i) understand that her interpretation of the
gesture is influenced by her own culture and be aware that
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the same gesture might have a different interpretation for the
Tibetan man (cultural awareness), (ii) know that the gesture
is a traditional formal greeting in Tibet (cultural knowledge)
and (iii) respond ensuring that her actions and words enforce
and convey trust, respect and empathy (cultural sensitivity).
As a consequence, she might react by first mimicking the
same gesture and then inquiring about its significance for the
man.

As shown in Fig. 3 on the right-hand side, a robot does not
have own core values and interpretations: its cultural aware-
ness is therefore exclusively devoted to understanding the
meaning, as intended by the person it is interacting with,
of actions and words, as defined by experts in the field and
adapted to a robot assistant. For the same reasons, also its
cultural sensitivity is actually a-priori defined by experts in
the field. Cultural knowledge provides the foundation to both
stages, by storing the information required to understand the
meaning of a person’s actions and words, the information
required to identify and perform an appropriate response,
and finally the procedures to acquire new information and
revising previous assumptions by directly interacting with
the person. In our work, such information have been encoded
by experts in Transcultural Nursing in the form of a corpus
of Guidelines.2

The hybrid “top-down/bottom-up” software framework
described in this article is specifically designed to manage
such cultural knowledge.

Table 1 reports four interactions between a culturally com-
petent assistive robot and, respectively, an Indian Hindu
woman (first two blocks) and an English man (last two
blocks), highlighting the role of cultural knowledge. The
scripts,meant as a reference for development, have beenwrit-
ten by experts in Transcultural Nursing and in accordance
with the aforementioned Papadopoulos, Tilki and Taylor
model for developing cultural competence [25]. From an
implementation perspective, the cultural knowledge required
by the robot can be divided into three categories.

Knowledge pertaining to the context includes information
about the environment (e.g., allowing the robot to reach the
puja table) and about the assisted person (e.g., allowing the
robot to detect when Mrs. Chakrabarti is in a bad mood). In
both cases, information can be static, a priori set (e.g., the
location of the puja table), or dynamic, inferred from the
robot’s perception system (e.g., Mrs. Chakrabarti’s mood).

Knowledge pertaining to the robot’s sensorimotor and
communication capabilities is required by the robot to know
what it cando andhow theusermight prefer it to be done.This
knowledge again includes static, a priori information (e.g.,

2 The current corpus of Guidelines for Culturally Competent Robot
Behaviours, together with a set of scenarios grounding them in daily
life situations, is freely available at: http://caressesrobot.org/en/2018/
03/08/caresses-scenarios-and-guidelines-available/.

describing the set of commands allowing the robot to perform
the Namaste greeting, the associated parameters and their
preferable values) and dynamic information (e.g., describing
the robot’s current posture and values of related parameters).

Knowledge pertaining to the grounding of the core val-
ues in the situation includes goals (e.g., leading the robot
to chat with Mr. Miller about his past jobs, which triggers
an open question, or to suggest to Mrs. Chakrabarti to walk
with her to the puja table, which triggers the goal to reach
another area of the house) and social norms (e.g., causing
the robot to modify the values of the speech-related param-
eters to have a soft voice when it apologizes, or to reduce
its speed when walking besideMrs. Chakrabarti), which link
the robot’s behaviours to the context. Knowledge related to
the grounding of core values which is not related the robot’s
actions is, in our proposal, straightforwardly mapped onto
so-called conversation subject matters.

The above categories mention facts and preferences with-
out distinguishing between person-specific knowledge and
national-level knowledge, which is specific of a cultural
group. However, as Table 1 shows, both are necessary to
display a truly culturally competent behaviour. If the robot
lacks person-specific knowledge, and thus relies on culture-
specific, national-level knowledge only to tune its behaviour
towards the assisted person, it is likely to end up having dis-
torted, stereotyped representations of people (e.g., assuming
that all British women have tea at five in the afternoon). Con-
versely, if the robot lacks culture-specific knowledge, it will
either require a long and tedious setup phase, or incremen-
tally add behaviours as they are learned, thus implying an
unpredictably long phase in which it works with reduced
functionalities. The situations in Table 1 provide a novel per-
spective on the problem: the robot tunes its behaviour either
on person-specific knowledge (e.g., about Mrs. Chakrabarti,
when it proposes to walk with her to the puja table, knowing
that she has walking problems) or, in the absence of it, on
culture-specific knowledge about the national culture (e.g.,
when it chooses to greet Mrs. Chakrabarti with the Namaste
gesture since she is wearing a sari, or when it drives the dis-
cussion about Mr. Miller hobbies to the details of his past
jobs, since the UK has a pragmatic mindset and under the
assumption that Mr. Miller is at least familiar with it).

The use of culture-specific knowledge is key for the robot
to make “educated guesses” about the likely appropriate
course of action and ask confirmation about its intuitions,
which, we hypothesise, speeds up the process of learning
the preferences and customs of the assisted person without
limiting the robot’s capabilities, even at the earliest stages of
deployment.

In short, the knowledge required by a culturally competent
robot includes:
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– culture-generic knowledge about the context, the robot
itself and the grounding of core values, i.e., knowledge
ideally comprising all concepts from all cultures with no
information on how the former relate to the latter;

– culture-specific, national-level knowledge, describing
the cultural background of the assisted person, that the
robot can rely on whenever specific information is not
available;

– person-specific knowledge, describing the way in which
the cultural identity, preferences and environment of the
assisted person shape the appropriate robot behaviours.

The knowledge must be complemented by methods for
the smart integration of person-specific and culture-specific
knowledge, which rely on the latter to drive the discovery of
the former.

3 ProposedMethod

An ontology is a formal naming and definition of the types,
properties, and interrelationships of the entities relevant for a
particular domain of discourse [14]. The terminology defin-
ing the domain of discourse, containing general properties
of concepts, is stored in the terminological box (TBox) of
the ontology, while knowledge that is specific to instances
belonging to the domain is stored in the assertional box
(ABox) of the ontology. Ontologies allow non-technical
users to easily3 encode knowledge about the domain, which
is a key property in cross-disciplinary contexts, such as ours.

We represent the knowledge required by a culturally com-
petent robot with a modular ontology structure composed of
an upper ontology and a number of domain-specific ontolo-
gies.

Upper ontologies have been proposed to support semantic
interoperability among different domain-specific ontologies,
and consist of very general terms that are common across
all the considered domains, thus providing a common start-
ing point for the formulation of definitions [23]. Terms in
domain ontologies are ranked under the terms in the upper
ontology. At the same time, a number of domain-specific
ontologies have been already developed to describe highly-
specific domains that are likely to be connected with many
others, such as the Time ontology4 proposed as a standard for
the Semantic Web by the W3C, or the Food, Politics, Sport
and Wildlife ontologies included in the BBC collection.5

We adopt the OWL-2 language [33] to describe the ontol-
ogy. In the OWL-2 formalism, the TBox is composed of

3 For example using user-friendly tools such as Protégé: https://protege.
stanford.edu/.
4 http://www.w3.org/TR/owl-time/
5 http://www.bbc.co.uk/ontologies.

Fig. 4 Knowledge representation architecture for a culturally com-
petent robot. The TBox layer (I) includes terms from existing upper
and domain-specific ontologies (grey boxes) and ontologies modelling
cultural-knowledge that we propose (white boxes). The Culture-
Specific ABox layer (II) includes instances (yellow circles) encoding
knowledge at national-level, while the Person-Specific ABox layer
(III) includes instances (orange circles) encoding knowledge uniquely
related to the user. Some instances of existing ontologies (dark circles)
may not change between the two ABox layers

classes and properties, which include data properties, relat-
ing instances of a class to literal data (e.g., strings, numbers),
and object properties, relating instances of a class to other
instances. Instances of classes and properties are stored in
the ABox.6

The relationship between the TBox and the ABox of the
ontology is sketched in Fig. 4. The Figure describes four core
elements:

– Culture-generic knowledge, a layer that stores the termi-
nology (TBox - I) required to represent all the information
related to the context, the robot, and the grounding of the
core values, ideally for all the cultures of the world;

– Culture-specific settings, a layer that stores the assertions
(CS-ABox - II) required to represent cultural information
at national level;

– Person-specific settings, a layer that stores the assertions
(PS-ABox - III) required to represent the unique cultural
identity, preferences and environment of the assisted per-
son;

– Assessment & Adaptation, an algorithm (A&A) for the
discovery of person-specific settings in light of culture-
specific settings, e.g., relying on “educated guesses” to be
confirmed through dialogue or autonomous robot obser-
vation.

6 We prefer the term “instance” to the OWL-2 term “individual”
because the latter is commonly used as a synonym of “person”, which
might lead to confusion in this article.
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Fig. 5 User TBox
(partial)—Only some classes
and properties are shown

It is easy to see that there may be concepts (e.g., the def-
inition of “woman”, or “day”) for which we do not need to
create different instances in the culture-specific and person-
specific layers. Such instances are ignored by theAssessment
& Adaptation algorithm.

3.1 Culture-Generic Knowledge

As discussed in Sect. 2, the knowledge required by our appli-
cation includes:

1. context-related information, describing (1) the assisted
person and (2) the environment;

2. robot-related information, describing (3) the actions that
the robot can perform, (4) their parameters and, even-
tually, (5) their combination into higher level planning
operators;

3. information related to the grounding of core values,
describing (6) goals, (7) social norms and (8) conver-
sation subject matters.

3.1.1 Context Domain

Figure 5 shows a portion of the TBox defining the User
domain. In the Figure, boxes denote classes (e.g., User,
Human), solid lines denote hierarchical “is a” relationships
(e.g., User is a Human), and dashed lines denote object
properties (e.g., hasRelative). Data properties (e.g., hasAge)
appear within the box of the class they refer to. Since User
is a Human it inherits from its parent class the data prop-
erties hasName, hasAge, hasGender, as well as the object
properties hasBirthday, hasNationality, hasLivingPlace. In
addition, it may be related to other classes through specific
object properties such as hasRelative and hasFriend, which
define the network of people whom the robot is expected to
meet or know about and their relation with the User. Among

the other properties, User is characterized by having a Robot
(or more): in a simplified Description Logics formalism [3]
this is expressed as:

User � Human � ∃hasRobot.Robot (1)

Figure 6 shows a portion of the TBox defining the Envi-
ronment domain, i.e., a person’s house with those furniture,
appliances and objects within it, which are of relevance for
the interactions (e.g., because they are strong indicators of
a person’s cultural identity, such as the Tatami, or tightly
connected to habits and preferences, such as the TeaCupSet
and the Coffeemaker). This knowledge also serves as a refer-
ence for the robot’s perception system, allowing for linking
static, semantic information to dynamic, numerical data (not
described in this article). It is important that the descriptions
of the Environment and all other domains are not limited to
relevant or common classes and properties for one nation and
culture, but rather include concepts frommany countries and
cultures. Although it is surely unlikely that an elderly English
woman sleeps on a tatami, it is not impossible: cultural com-
petence demands that the caregiver is able to accept such a
possibility, and act appropriately.

3.1.2 Robot Domain

The design of an ontology for the representation of robot
tasks is a complex and open issue, tackled, for example, by
a dedicated IEEE Working Group [17], and it goes beyond
the scope and goals of this article. In the present work, we
exclusively focus on the representation of those elements
related to the robot’s behaviour which depend on cultural
factors (shown in Fig. 7).

Let us consider the action ApproachUserAction, that
describes an atomic sensorimotor behaviour that the robot
shall perform to move from one location to another, close to
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Fig. 6 Environment TBox
(partial)—Only some classes
and properties are shown

Fig. 7 Robot TBox (partial)—Only some classes and properties are shown

Fig. 8 Conversation Subject Matters TBox (partial)—Only some classes and properties are shown
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where the user is. The action has a number of parameters,
including final location and final distance from the person.
While the former is contingent and tightly related to the
task at hand, it is easy to see that the latter might change
in accordance with cultural and personal preferences [6]. We
leave the representation of the culture-independent elements
required for planning to suit the requirements of the chosen
planner [19], and represent culture-dependent parameters of
actionswith the classCulturalParameter: the object property
hasParameter relates actions to each cultural parameter they
have. Each cultural parameter is represented as a subclass of
CulturalParameter, which has a number of data properties to
specify admissible values and semantic meanings associated
with those values (e.g., allowing for defining a certain range
of Volume values as “low”). The fact that the same parameter
might have different preferred values in different situations
(e.g., someone living in a condominiummight want the robot
to lower its Volume in the evening not to disturb the neigh-
bours) is modelled by building a collection of subclasses
below the parameter, with one class per situation of rele-
vance (e.g., VolumeEvening). The taxonomy of subclasses
corresponding to different situations and their initial values
are defined by experts2 and revised through interaction [27].

State-of-the-art planners [19] typically group actions into
higher-level planning operators, which represent more com-
plex robot behaviours. As an example, let us consider the
GreetOperator, which requires the robot to perform a greet-
ing gesture and utter an appropriate sentence. The gesture,
the sentence, and the relation between the two are all culture-
dependent: we represent each planning operator as a subclass
ofOperator, which is linked to actions via the object property
hasAction. Variants of an operator are modelled as a collec-
tion of subclasses of the operator (e.g., GreetBowOperator,
GreetNamasteOperator and GreetWaveOperator represent
three different greetings adopted in different cultures across
the world). The mechanism we adopt to let the planner know
which operator is to be preferred with a specific culture, or
person, is described in Sect. 3.2.

3.1.3 Core Values Domain

Goals, i.e., objectives driving the robot’s behaviour, are mod-
elled as subclasses of the class Goal and expressed in the
planner formalism as a desired state that the robot should
achieve. As for actions and planning operators, culture-
independent properties of goals and norms are not shown
in the Figure. As an example, seeing the assisted person
entering the room where the robot is might trigger the goal
StartInteraction, which requires the robot to offer its assis-
tance to the user, while a specific request from the user might
trigger the goal ShowTV (as it happens with Mr Miller,
see Table 1). All the goals that the robot shall be able to
accept must be described in the ontology. During interac-

Fig. 9 The classes Topic and User and the property hasTopic allow for
storing culture-specific and person-specific information and relate it to
other concepts

tion, the robot uses this information to trigger or suggest
goals to be achieved depending on direct requests or the
cultural knowledge it has about the person (e.g., the goal
AccompanySomewhere is proposed as the robot detects that
Mrs Chakrabarti is heading to the puja room for prayer, see
Table 1).

Social norms represent additional constraints relating
goals, planning operators, actions and cultural parameters
with specific contexts. Concretely, they define additional
goals that must be met, specific situations (states) that must
be achieved/avoided, planning operators, actions or values
of the cultural parameters which must be chosen/avoided in
a specific situation. Norms are expressed in the planner for-
malism and modelled in our ontology with the class Norm.
As for planning operators, the mechanism we adopt to let
the planner know which goals and norms are suitable for a
specific culture, or person, is described in Sect. 3.2.

Figure 8 shows a portion of the TBox defining the Con-
versation Subject Matters domain, intended as the collection
of knowledge which is meant at keeping the interest of
the user and show the robot’s attentiveness to the per-
son’s values, preferences, beliefs, etc. Figure 8 focuses
on the terms describing the user’s AttitudeTowardsEating,
AttitudeTowardsSports and AttitudeTowardsHolidays,
which are the ones considered during the experimental eval-
uation. Specific habits and preferences are modelled with
subclasses, such as EatingBreakfast, with object properties
such as hasBeverage and hasFood relating the prefer-
ence/habit to actual objects (e.g., drinks and food).As already
stated, the TBox should represent concepts (e.g., drinks
and food) that are typical of as many cultures as possible,
whichever the nationality of the user, to avoid stereotypes.
Luckily, many of such concepts (e.g., all possible beverages)
are part of existing domain ontologies that are imported in
our representation.

While some preferences and attitudes can be related to
goals and social norms (e.g., a conversation about eating
habits occurring in the late afternoon leads the robot to ask
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the person whether she wants assistance for preparing din-
ner),most of themare only used for “chit-chatting”, under the
intuition that users might appreciate a robot that is familiar
with the very same concepts they are familiar with.

The above principle forces the robot to tune in on the user’s
preferences concerning the robot, which does not necessar-
ily mean that it will end up mimicking the assisted person.
Concretely, the fact that a user is Italian, for example, does
not constrain the robot to behave as an Italian, or as expected
with an Italian; the robot will rather act in accordance with its
knowledge of culture-specific Italian habits at the beginning,
and progressively change its behaviour as it discovers how
the person likes it to be.

3.2 Culture-Specific Settings

Figure 9 shows the solution we propose to store informa-
tion about how all aforementioned concepts are related to
culture-specific (national-level) and person-specific (user)
preferences and settings.

The classUser represents the person assisted by the robot,
that is related to all the concepts described in Sect. 3.1 by
ownership (e.g., of objects and furniture), preferences, habits,
beliefs, etc. Instances of User can be of two types: culture-
specific instances (CS-ABox layer in Fig. 4) are used to
store information about national-level culture, while person-
specific instances (PS-ABox layer in Fig. 4) describe real
people assisted by the robot. The class Topic is a super-
class to all classes in the context, robot and grounding of
core values domains (see Figs. 5, 6, 7, 8). Its data property
hasQuestion contains the question(s) the robot should use to
ask the user about any instance subsumed by Topic (e.g., “Is it
ok if I stand this close to you?” forEnglish-speaking instances
of the class ApproachDistance), while the data proper-
ties hasPositiveSentence and hasNegativeSentence con-
tain sentences that the robot can use to express, respectively,
a positive or a negative attitude towards the instance sub-
sumed by Topic (e.g., hasPositiveSentence for an instance
of the class Kitchen might be “The kitchen is the heart of
a home!”, while hasNegativeSentence for an instance of
the class AttitudeTowardsSports, borrowed from the actress
Phyllis Diller, could be “My idea of exercise is a good brisk
sit!”). All sentences, and especially negative ones, should
be checked by experts, to ensure that they are ethically and
culturally sound.

Definition 1 The likeliness7 l(a) of an instance assertion a is
a value in the range [0, 1], associated with the assertion a. It
7 We introduce the term likeliness for two reasons: (i) to highlight the
fact that it is not necessarily the result of statistical analyses, but it can
also be provided by experts on the basis of qualitative assessment; (ii)
to provide a unique name for the a posteriori probability (see Definition
1), the conditional probability (see Definition 2) and the evidence (see

corresponds to a reasonable estimate, to the best of available
knowledge, of the a posteriori probability of the assertion a.

In the culture-specific ABox layer describing culture C ,
the data property hasLikeliness is filled with the probability
l(a) that assertion a (an instance of Topic) holds for a person,
given that we know that she belongs to culture C . To clarify
the concept, let us assume that the chances that a British per-
son does some sport are quite high. This information might
be represented in the culture-specific ABox as:

User(GB_GEN)

DoesSport(GB_DOES_SPORT)

hasTopic(GB_GEN,GB_DOES_SPORT)

hasLikeliness(GB_DOES_SPORT, 0.7)

(2)

which corresponds to saying that there exists a culture-
specific instance GB_GEN of the class User (representing
British culture at national level) and an instance
GB_DOES_SPORT ofDoesSport � AttitudeTowardsSports,
that the second is a filler of the former for the property
hasTopic (which allows the robot to use the sentences in
GB_DOES_SPORT, presumably in English), and that the data
property hasLikeliness of GB_DOES_SPORT is set to 0.7.

Definition 2 In the culture-specific layer, we define the like-
liness l(a) as depending only on the national culture C and
hence ideally corresponding to the conditional probability of
assertion a given the evidence of C : p(a|C).

Beside the mathematical definition, the likeliness has a
practical meaning which might change for different classes.
With no loss in generality, we can define a hierarchy of object
properties subsumed by hasTopic, highlighting the different
meanings in which the user/instance relation is intended. For
example, User might be related to instances of classes in
the Environment domain by the property hasOwnership, to
instances of classes in the Robot domain by hasPreference,
to instances of classes in the Conversation Subject Matters
domain by hasHabit, hasBelief, hasAttitude, which are all
derived from hasTopic.

The use of a comprehensive culture-generic TBox and
a culture-specific ABox describing the relation between a
given culture and all the elements defined in the TBox allows
for avoiding stereotyped representations of cultures. It is a
well know fact that “biscotti (cookies) are commonly eaten
for breakfast in Italy,”8 but, although this is probably true for
many Italian men and women, it is not valid for all of them.
While the stereotype simply assumes that what is valid for

Definition 3), which our algorithms for the Assessment & Adaptation
(see Sect. 3.4) use concurrently.
8 https://en.wikipedia.org/wiki/Breakfast#Italy.
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Fig. 10 ABox describing British culture-specific (GB prefix) breakfast habits

most is valid for all, our culture-specific layer specifies the
likeliness of many different food to be eaten for breakfast
by an Italian person. This means that not only the culture-
specific layer is truly representative of all the facets of a
culture, but also that it allows individuals belonging to a cul-
ture to stray away from its most likely options as far and as
many times as they want.

Figure 10 shows the portion of the culture-specific
ABox of GB_GEN related to breakfast habits and prefer-
ences.9 In the Figure, boxes denote instances of classes
(e.g., GB_GEN, GB_EATING_BREAKFAST), yellow dashed
lines denote assertions of object properties (e.g.,
GB_BISCUITS_EATING_BREAKFAST is a filler ofGB_EATING
_BREAKFAST for the property hasFood). Data properties
(e.g., hasQuestion) appear within the box of the instance
they refer to, while hasLikeliness values appear on the top-
left corner of the instance they refer to and are denoted with
literals instead of numbers, with 0.05 mapped to Very Low
(VL), 0.1 to Low (L), 0.2 to Medium (M), 0.4 to High (H),
0.7 to Very High (VH). The reason for this choice is prac-
tical: while it is very difficult to obtain precise likeliness
values from statistical analyses, it is much easier to infer
approximate, qualitative values from the vast (but often inho-
mogeneous) corpus of information in the literature and on the
web (see Sect. 4). A discrete representation of likeliness val-
ues makes it easier to merge approximate and precise values.
Lastly, blue solid lines are used to remind the reader of exist-
ing hierarchical relationships between the classes that the
instances belong to (e.g. in the TBox, GreenTea is a Tea).

9 As usual, only object and data properties that are relevant for the
discussion are shown.

Figure 11 shows the portion of the culture-specific
ABox of GB_GEN related to robot goals, actions and
cultural parameters. Likeliness values are used to spec-
ify how appropriate each instance is for the British cul-
ture, and guide the decisions of the planner which ulti-
mately determines the robot’s behaviour. As an exam-
ple, if the situation calls for a greeting, the robot will
execute the operator GB_GREET_WAVE_OPERATOR, since
it has a higher likeliness than all other available greet-
ing operators. Similarly, whenever executing the action
GB_APPROACH_USER_ACTION it will set its parameter
approach distance to the range of values specified by
GB_LONG_APPROACH_DISTANCE, which is the most likely
setting among available ones. Lastly, the goal
GB_WEATHER_FORECAST, having high likeliness for the
British culture, is likely to be pro-actively suggested by the
robot as a service it can provide.

Instances of classes are created so that each instance is
filler for no more than one object property derived from
hasTopic, and its name is guaranteed to be unique by includ-
ing the name of the instance itself and the one whose
property is filled (as inGB_BISCUITS_EATING_BREAKFAST).
This means that, by considering all instances of Topic
and property assertions derived from hasTopic, the culture-
specific ABox layer is a tree rooted in the corresponding
instance of User (e.g., GB_GEN in Figs. 10, 11). This
constraint is key for storing into instances unambigu-
ous contextual information about their predecessors in the
tree, e.g. to distinguish between “biscuits that the per-
son may or may not eat for breakfast” (i.e., the instance
GB_BISCUITS_EATING_BREAKFAST) and “biscuits that the
person may or may not have with tea in the afternoon”
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Fig. 11 ABox describing British culture-specific (GB prefix) robot goals, actions and cultural parameters

(i.e., the instance GB_BISCUITS_EATING_AFTERNOONTEA,
not shown in the Figure), and even “biscuits that the person
may or may not need to buy”. This constraint is exploited
by the Assessment & Adaptation algorithm (see Sect. 3.4) to
ensure that the robot does not give wrong interpretations to
the person’s statements.

The sentences stored in the data properties hasQuestion,
hasPositiveSentence, and hasNegativeSentence ensure
that the robot can discuss the instance they refer to with the
user.

We adopt two mechanisms to fill the data properties
above. A number of complete sentences (such as “Having a
healthy breakfast is very important: feeding the body, nour-
ishing the soul!” in the instance GB_EATING_BREAKFAST)
are encoded at setup time by the designer and validated
by experts2. As videogame designers know, dramatiza-
tion is key for improving the user’s experience, and it
can hardly be achieved through automatic composition of
sentences [4,30]. However, manually encoding all verbal
utterances is very time consuming. As a backup solu-
tion, we rely on simple automated composition mech-
anisms, which exploit the hierarchical structure of the
ontology and the unique connections between instances
defined by the property hasTopic. As an example, in
Fig. 10 the instance GB_EATING_BREAKFAST encodes the
hasQuestion “Doyouhave$hasName for breakfast?”,which
is automatically copied and filled in all the instances that
are filler of GB_EATING_BREAKFAST along the property
hasTopic (e.g., GB_GREENTEA_EATING_BREAKFAST and
GB_NATTO_EATING_BREAKFAST), by using the value of the
corresponding data property hasName.

3.3 Person-Specific Settings

The core element of the person-specific ABox layer is
the instance of User which corresponds to the real per-
son assisted by the robot, e.g., User(DOROTHY_SMITH).
All instances of Topic and its subclasses connected to
User(DOROTHY_SMITH)belong to theperson-specificABox
layer and uniquely refer to that specific user.

Definition 3 In the person-specific layer, the likeliness l(a)
corresponds to the evidence of assertion a collected through
interaction with the user.

Concretely, evidence about Mrs. Smith’s habits concern-
ing sports may be represented as:

User(DOROTHY_SMITH)

hasSpecific(GB_GEN,DOROTHY_SMITH)

Does_sports(DS_DOES_SPORT)

hasSpecific(GB_DOES_SPORT,DS_DOES_SPORT)

hasLikeliness(DS_DOES_SPORT, 0)

(3)

Notice that, in the person-specific ABox layer, instances
of Topic do not need to be directly linked to the user through
property instances of hasTopic, as they are simply fillers
of the corresponding instances in the culture-specific ABox
layer for the hasSpecific property.

Figure 12 shows an example of anABox includingboth the
culture-specific layer (yellow boxes) and the person-specific
layer (orange boxes). In the Figure, connections between
instances in the two layers (through the hasSpecific prop-
erty) are represented by overlapping the boxes (i.e., without
a corresponding arrow).

Instances are inserted in the person-specific layer at two
different times: in the setup phase, engineers, experts, the
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Fig. 12 ABox describing British culture-specific (GB prefix) and person-specific (Dorothy Smith) knowledge

assisted person, caregivers and relatives, add knowledge that
is a priori available about the user (e.g., which rooms are
part of her house and how they are connected to each other),
using ad-hoc prepared tools and tutorials aimed at facilitating
the insertion and validation of knowledge; at run-time, the
robot autonomously acquires knowledge either from its own
perceptual system or from interactions with the user.

Notice that property instances of hasTopic are only
present in the culture-specific ABox layer (yellow arrows),
whereas other property instances are only present in the
person-specific ABox layer (red arrows). For example, in
Fig. 12 property instances ofhasNext are only specified at the
person-specific level (because they have little to no meaning
at culture-specific level), to connect instances of Room with
each other to represent the topology of the specific house of
the user. As a consequence, the system can talk about rooms,
but not about their topological relationships.

As Figure 12 shows, at the end of the setup phase
the ontology lacks person-specific knowledge for many
instances. In all such cases, the robot must assess at run-
time person-specific knowledge (and adapt to it) by using
generic knowledge as a starting point.

Finally, notice that the black likeliness values in Fig. 12
refer to the culture-specific layer, whereas the red values refer
to the person-specific layer: English people might have a
Medium probability of keeping a vase in the cupboard, but
we know for sure that Dorothy Smith has one, since some-
one (Mrs. Smith herself, or a relative) added this piece of
information during setup.

Fig. 13 The offline initialization and online likeliness-driven assess-
ment phases, which, respectively, create and update the person-specific
ABox layer. Notice that only one culture-specific layer is used

3.4 Likeliness-Driven Assessment

The goal of the assessment and adaptation phase is to learn
the person-specific likeliness values (i.e., evidence) for all
instances of relevance for the interactions.Notice that in some
cases the likeliness in the person-specific layer of the ABox
will be 1 or 0, as the user, for example, either has a TV in
the bedroom or not, while instances related to preferences
or habits might lead to a more varied output. Moreover, dif-
ferent methods for the assessment of person-specific settings
might have different reliability (e.g., directly asking the user
guarantees a more reliable assessment than autonomously
inferring information from sensor data) and such differences
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Algorithm 1 Initialization
Require: AC

Ensure: TC
1: TC ← ∅
2: L ← ∅
3: r ← init(TC)
4: L ← updateTopicsTree(r ,TC,AC)
5: while L �= ∅ do
6: Lnext ← ∅
7: for all a∗ ∈ L do
8: Lnext ← Lnext∪ updateTopicsTree(a∗,TC,AC)
9: end for
10: L ← Lnext
11: end while

can be embedded in the person-specific likeliness values and
the way they are handled.

In our work, we assume that the robot acquires person-
specific knowledge by directly asking the user, using the data
property hasQuestion associated to all instances of Topic.
The simplest assessment procedure, trivially, is to go through
the instances one by one,without using culture-specific infor-
mation,whichmight lead the robot to askMrs. Smithwhether
she likes Miso soup (a Japanese dish) or Lasagne for break-
fast.

We propose an algorithm, sketched in Fig. 13 which
consists of an offline initialization phase and an online
likeliness-driven assessment phase.

The initialization phase is composed of two steps. In the
first step, the person-specific ABox AU is populated with the
knowledge that is available at setup by experts, relatives, etc.
At the end of this step, as shown in Fig. 12, some instances
of the culture-specific ABox AC are exactly replicated in AU,
others have a corresponding instance in AU, with different
likeliness values and other data properties, and others do not
have a corresponding instance in AU. In the second step, the
assessment tree TC is built from the culture-specific ABox
AC to drive the discovery of missing person-specific knowl-
edge.10

Algorithm 1 details the second step. The routine init(TC)
initializes the assessment tree with the culture-specific
instance of User as root and returns it in r (line 3). Then
all the instances directly connected to r through a property
derived from hasTopic are added to the tree by the function
updateTopicsTree(...), one level below root, and are returned
in the set L (line 4). In subsequent iterations (lines 5–11),
each instance a∗ in L is considered, and all instances that
are fillers of a∗ for a property derived from hasTopic are
added to the tree, at the level below L until L is empty. If two

10 TC is built from AC using OWL-2 APIs. In principle, building TC
as a separate structure is not required, since the tree–like structure of
AC can be directly explored using OWL-2 APIs. From this perspective,
Algorithm 1 shall be interpreted as providing information about how
AC is explored by Algorithms 2 and 3.

Algorithm 2 Assessment
Require: AC, TC, AU

Ensure: AU

1: a∗ ← findMax(AU,AC, TC)
2: f ∗ ← getParent(TC,a∗)
3: while f ∗ /∈ AU do
4: a∗ ← f ∗
5: f ∗ ← getParent(TC,a∗)
6: end while
7: l(a∗) ← assess(a∗)
8: createSpecificInstance(l(a∗),a∗,AU)
9: update(l(a∗),a∗,TC)

instances l1, l2 ∈ L belong to classes C1 and C2 that have
a child/parent relationship C2 � C1 in the TBox, then l1 is
directly linked to a∗ in the tree, whereas l2 is linked to l1 and
not to a∗. Concretely, updateTopicsTree(...) ensures that the
instance that belongs to the superclass is the closest to the
root in the tree.

At the end of Algorithm 1, there is a structure, the assess-
ment tree, which stores the knowledge in the culture-specific
layer in the form of a tree rooted in the culture-specific
instance of User and uses the object property hasTopic,
and the hierarchical relationships among instances, to define
branches. As discussed in Sect. 3.2, the tree-like structure is
key to ensure that each instance has a unique context. As an
example, Fig. 14 shows the assessment tree corresponding
to the culture-specific ABox of Fig. 10.

The online likeliness-driven assessment phase follows the
steps sketched in Algorithm 2 to identify the instances to
discuss with the user, and update the person-specific ABox
accordingly.

The algorithmfirst selects the instance to assess. The func-
tion findMax(...) in line 1 selects the instance a∗ ∈ AC with
the highest likeliness among those which appear in TC and
for which there is no corresponding instance in AU (i.e., for
whichwe do not know the user’s stance yet). If more than one
assertion have the same highest likeliness, one of them is ran-
domly selected. Then, the algorithm moves along the branch
connecting a∗ to the root in the assessment tree TC (lines 2-6),
until it finds an instance for which the parent already exists
in AU (in the worst case, moving up to the root, which by
definition has an instance in AU). To clarify the concept, let
us assume that a∗ is GB_GREENTEA_EATING_BREAKFAST,
but the robot does not yet knowwhether the user,Mrs. Smith,
drinks tea at breakfast, let alone whether she has breakfast
at all. The algorithm traces the missing information back
towards the root, until it finds the first one to assess (e.g.,
whether Mrs. Smith has breakfast). This way of proceed-
ing allows for investigating if Mrs. Smith has breakfast (a
node closer to the root in the assessment tree) before dis-
cussing her breakfast preferences (nodes farther from the
root). Moreover, it allows for pruning the branches departing
from GB_EATING_BREAKFAST in case it has been assessed

123



International Journal of Social Robotics (2019) 11:515–538 529

Fig. 14 The assessment tree
corresponding to breakfast
habits—British culture-specific
(GB prefix)

that Mrs Smith does not have breakfast (so that they will
not be considered in subsequent iterations of the algorithm).
Once the instance a∗ to assess has been identified, the rou-
tine assess() (line 7) allows for acquiring evidence about it
from the user. In the current implementation of the algorithm,
the assessment consists in verbally asking the corresponding
question to the user (or one among the questions). Then, a
new instance in the person-specific ABox is created, to store
the newly acquired information (line 8), and TC is updated
(line 9), e.g., eventually pruning portions of it. Sentences
stored in the data property hasPositiveSentence are used by
the robot to talk about things that it already knows about the
user, in order to provide context to its questions, keep the
interest of the person and show attentiveness to her values,
preferences, beliefs, etc. For instance, if the robot knows that
Mrs. Smith usually has breakfast but it does not know if she
has tea for breakfast, the sequence of sentences/questions
might be the following: hasPositiveSentence=“Having a
healthy breakfast is important”; hasQuestion=“Do you usu-
ally have a cup of tea for breakfast?” (since the instance
DS_EATING_BREAKFAST exists in the ABox, whereas the
instance DS_TEA_EATING_BREAKFAST does not).

3.5 Bayesian Adaptation

The assessment and adaptation method discussed in the pre-
vious Section has two main limitations:

– it assumes the national culture of the user to be one and
a priori fixed;

– it assumes the likeliness of instances to be uncorrelated
from each other.

To better clarify the second issue, let us again consider
the breakfast habits of different cultures across the world. In
many cases, ham and cheese go together: either they are both
common options for breakfast, as it happens in Germany, or
they are both uncommon, as it happens in Italy. The likeli-
ness of one, thus, can be correlated to the likeliness of the
other. Correlations can be found even between instances very

Algorithm 3 Initialization (Bayesian Adaptation)
Require: T = {TC}, C = 1 . . . N
Ensure: B
1: init(B, T1)
2: for all a∗ ∈ B do
3: L(a∗) ← getLikeliness(T , a∗)
4: CPT (a∗) ← computeCPT(B, L(a∗))
5: update(CPT (a∗), a∗, B)
6: end for

far from each other; for example, one might find that, for a
national culture, ham and cheese are common for breakfast
and Pentecost Monday is celebrated as a national holiday: if
this were true, updating the likeliness of one instance after
having acquired evidence about the other might speed up the
assessment and adaptation process.

Modelling and managing such correlations requires prob-
abilistic reasoning over the likeliness values, which is a
capability that standard ontologies do not have. To this pur-
pose, beside approaches aiming at extending the ontology
itself with mechanisms for dealing with probability, such as
PR-OWL [7], a large corpus of literature relies on comple-
menting a standard ontologywith a Bayesian Networkwhich
takes care of the probabilistic reasoning [1,10].

We follow the latter philosophy, and associate to the ontol-
ogy a Bayesian Network11 built starting from the assessment
trees of all cultures of relevance.As an example, theBayesian
Network in Fig. 15 is built starting from three assessment
trees with identical structure as the one shown in Fig. 14, for
the Italian, German, and Japanese cultures.

Algorithm 3 shows how the Bayesian Network B is built
starting from a set of N assessment trees T = {TC}, with
C = 1 . . . N . First, the nodes and links of B are built tomirror
the structure of one tree in the set T , say T1 (all TC have the
same structure), but the root node of B has a link towards
all other nodes (line 1). Then, for each node a∗ in B, the N
likeliness values L(a∗) of the assessment trees TC (line 3)
are used to build the corresponding Conditional Probability

11 In the current implementation, we use the API to create belief net-
works provided by Netica. See: https://www.norsys.com/netica.html.
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Fig. 15 The Bayesian Network
corresponding to breakfast
habits—Italian, German,
Japanese. Yellow filling denotes
culture-specific likeliness values
imported from the
culture-specific ABox layers

Table (CPT) (line 4) and update the Bayesian Network with
the CPT (line 5).

The differences between the Bayesian Network and the
assessment trees deserve a detailed analysis.

Firstly, the network does not correspond to the assess-
ment tree of one specific culture (e.g., German or Italian) but
it rather stores information about all the cultures taken into
account. As an example, the Bayesian Network in Fig. 15
integrates culture-specific knowledge about the Italian, Ger-
man, and Japanese cultures (notice the missing national
prefix).

As a consequence, the root node, unlike all other nodes, is
not binary, as it considers all the cultures taken into account
(e.g., Italian, German, Japanese). This fact allows for deal-
ing with the first issue listed above: the a priori probability
of the root node (i.e., of the user’s culture) can be initial-
ized as uniformly distributed over all possible background
cultures, or on the basis of available knowledge about the per-
son. For example the a priori probability of the root node for
an Italian woman living in Alto-Adige, a German-speaking
province in the north of Italy with strong ties with the Aus-
trian culture, might be set as: P(GEN = Italian) = 0.7,
P(GEN = German) = 0.3, P(GEN = Japanese) = 0.

Secondly, in the Bayesian Network the node GEN is pre-
decessor of all the nodes of the network. This directly comes
from the definition of culture-specific likeliness (see Defini-
tion 2), which relies on probabilities directly conditioned by
the user’s culture. The Bayesian Network makes this depen-
dency explicit.

Lastly, each node of the Bayesian Network is associated
with a CPT (two of them are shown in Fig. 15) that represents
the probability of the node conditioned by all its parents in
the network.

Filling the CPT, the task of function computeCPT(...) in
line 4 of Algorithm 3 is not trivial.

Consider the EATING_BREAKFAST CPT of Fig. 15,
which contains the values for P(EATING_BREAKFAST = T|
GEN= Italian), P(EATING_BREAKFAST=T|GEN=German)
and P(EATING_BREAKFAST = T|GEN = Japanese): these
values corresponds to the N = 3 likeliness values that
are stored in the corresponding culture-specific ABox layers
(VH, VH, VH in the Figure). The missing entries of the CPT
are straightforwardly computed on the basis of the available
ones.

However, in the case of nodes (e.g.,
ESPRESSO_EATING_BREAKFAST) that are conditioned both
by the root node GEN and by their immediate predeces-
sor in TC (e.g., COFFEE_EATING_BREAKFAST), the available
likeliness values are not sufficient to define all the entries
of the table. The rationale that we propose to address this
problem (and that we have adopted in the experiments
described in Sect. 4) is as follows. For the CPT entries
which assume the immediate predecessor in TC to be TRUE,
the CPT entry is set equal to the culture-specific likeliness,
i.e., we assume that the immediate predecessor in TC has
no impact on the probability of the node (see the yellow
cells in the CPT of node ESPRESSO_EATING_BREAKFAST).
For the CPT entries which assume the immediate predeces-
sor to be FALSE (see rows 2, 4, and 6 in the CPT of node
ESPRESSO_EATING_BREAKFAST), we propose two options:
(i) with pruning, i.e., the CPT entry is set to 0 (which means,
for example, thatwedeem it impossible for a personwhodoes
not drink coffee for breakfast to have an espresso for break-
fast); (ii) without pruning, i.e., the CPT entry is set equal to
the culture-specific likeliness, i.e., we again assume that the
immediate predecessor has no impact on the probability of
the node. As the experiments show, the latter option is better
suited for assessment methods relying on direct interaction
with the user (thus subject to the logical inconsistencies typ-
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ical of natural dialogues), while the former is better suited
for assessment methods which rely on sensory data.

Figure 16 shows how the initialization and assessment
phases become when Bayesian adaptation is enabled. The
initialization phase is devoted to the creation and filling
of the Bayesian Network, as outlined in Algorithm 3. The
online Bayesian assessment phase follows the same steps
sketched in Algorithm 2 to assess the personal traits of the
user and update the person-specific ABox accordingly. More
precisely, once a new evidence is acquired (line 7), it is incor-
porated in the Bayesian Network (line 8), which results in an
update of the posterior probabilities of all other still-unknown
nodes, including the root. By copying the new posterior prob-
abilities in the assessment tree, the update ultimately impacts
the order in which instances in the ABox are assessed (line
1).

This feature of Bayesian Networks allows for tackling the
second issue discussed at the beginning of the Section. A-
priori known correlations among instances can be modelled
by adding links between nodes and defining CPTs accord-
ingly. In the case of ham, cheese and Pentecost Monday, the
correlation is due to the fact that the nodes have a common
cause (i.e., they are all valid for a given “national culture of
the user” GEN) rather than a causal relationship among them.
This case is straightforwardlymapped onto theBayesianNet-
work, where the probabilities of nodeswith a common prede-
cessor are dependent given that their predecessor is not com-
pletely known (i.e., P(HAM_EATING...|PENTECOST...) �=
P(HAM_EATING...)).12 This situation is very likely to hold
in our application, as persons very rarely completely match
their background culture (think of the Italian woman living
close to Austria, whose culture might be a personal mix-
ture of the Italian and German cultures and for which we
might set a non-null probability both for P(GEN = Italian)
and P(GEN = German)).

4 Experimental Evaluation

Hypothesis Given a user self-declared as belonging to
nationality G and given national-level, culture-specific
knowledge about:

– nationality G;
– a nationality A geographically close to G;
– a nationality B geographically far from G;

then, the use of the representation proposed in the previous
Sections allows for speeding-up the acquisition of person-

12 On the opposite, two nodes with a common predecessor are con-
ditionally independent given that their predecessor is known, i.e.,
P(HAM_EATING...|PENTECOST...,GEN) = P(HAM_EATING...|GEN).

specific knowledge starting from national-level, culture-
specific knowledge. Concretely, we postulate that the pro-
posed representation and methods allow for increasing the
number of correct “educated guesses” made by the robot,
and therefore to identify all instances which hold true for the
person with a smaller amount of questions asked.

In particular, we postulate that:

H1 asking questions using the likeliness-driven assessment
algorithm described in Sect. 3.4 allows for acquiring
person-specific information faster than using a random
assessment algorithm, which asks questions in a random
order;

H2 asking questions using the likeliness-driven assess-
ment algorithm with Bayesian adaptation described in
Sect. 3.5 allows for a further speed-up with respect to
the likeliness-driven assessment algorithm;

H3 when enabling the Bayesian adaptation, the assessment
algorithm is able to converge towards the nationality G
self-declared by the user, regardless of how it has been
initialized.

In the preliminary evaluation reported here we consider
two situations:

– the user nationality G is Italian, and we set A as German
and B as Japanese;

– the user nationality G is German, and we set A as Italian
and B as Japanese.

The Japanese national-level cultural knowledge is consid-
ered in the experiments to evaluate hypothesis H3, to allow
for assessing the algorithm’s performance when initialized
with national-level cultural information possibly very far
from the user’s stances.

4.1 Materials andMethods

As the above hypotheses suggest, the proposed framework
for the encoding and acquisition of cultural knowledge is
novel in itself, independently from its use by a robot in
an assistive scenario, and thus requires to be evaluated
before and independently from its deployment. Planned
future tests will be aimed at assessing the effectiveness,
naturalness and cultural competence of an assistive robot
equipped with the proposed framework [5]. For a prelimi-
nary validation of the proposed approach we have chosen
a subset of conversation subject matters (as described in
Sect. 3.1) and formulated a list of questions related to
these selected topics. In the specific case, five conver-
sation areas have been selected: AttitudeTowardsSport,
AttitudeTowardsHolidays, AttitudeTowardsOtherPeople
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Fig. 16 The offline
initialization and online
likeliness-driven assessment
phases, which, respectively,
create and update the
person-specific ABox layer, in
the case Bayesian adaptation is
enabled

andAttitudeTowardsEating,with a specific focus on the sub-
topic EatingBreakfast, for a total of 122 questions. For each
question, possible answers are yes, rather yes than no, rather
no than yes and no.

Questions have been prepared by the authors, after per-
forming a qualitative and quantitative analysis of a high
number of documents available online, describing the typ-
ical habits and preferences of Italian, German and Japanese
persons related to the conversation subject matters men-
tioned above. Some of the questions capture habits of a
specific culture (e.g., attitude towards specific national holi-
days, or towards typical breakfast food), and for all questions
the probability of getting a positive answer from an Ital-
ian, German or Japanese user (the culture-specific likeliness
described in Sect. 3) has been estimated. For example, an
Italian user has a low probability of drinking green tea dur-
ing breakfast (and thus the corresponding instance in the
culture-specific ABox has a low likeliness), while he has a
high probability of shaking hands while introducing himself
(high likeliness).

The list of questions has been made available online and
shared mainly by means of social networks;13 the respon-
dent is requested to provide information about his city
of residence, nationality, age and gender, while remaining
anonymous. At the end of the experiments, we could collect
the answers of 124 Italian and 35 German (some of them
living in Italy) respondents.

Collected answers have been analysed offline, with the
following methodology. For each respondent, we:

1. initialize all variants of the Assessment & Adaptation
algorithms (i.e., random assessment, likeliness-driven
assessment, likeliness-driven assessment with Bayesian

13 German version: https://tinyurl.com/ybvr4xeo;
Italian version: https://tinyurl.com/y8b3zuub.

adaptation), in accordance with the hypothesis under
evaluation;

2. for each variant, identify the instance a∗ to be asked (i.e.,
the “educated guess” that the algorithm considers likely
to be true for the user, given its current knowledge about
him/her);

3. for each variant, retrieve the respondents’ answer to a∗,
update the algorithm and go back to step 2 until all
instances forwhich the respondent gave a positive answer
have been found.

In all cases, a question cannot be asked more than once.
Since a core feature of a culturally competent personal robot
is the ability to quickly identify and adapt to the preferences,
habits and needs of its user, an algorithm able to assess them
in a short time (i.e., able to obtain a greater number of posi-
tive answers in the same amount of time) is to be preferred.
Thus, considering the answers yes and rather yes than no
as positive answers, the number of questions required by an
algorithm to obtain 50%, 60%, 70%, 80%, 90% and 100% of
positive answers have been considered as the benchmarking
parameters. Moreover, since Algorithm 2 (with and without
Bayesian adaptation) chooses randomly between assertions
a with the same likeliness, each set of user’s answer has been
considered for 20 runs and the results averaged.

The random assessment algorithm requires no initializa-
tion phase and randomly selects the question to pose among
all available questions (i.e., all the questions that have not
been asked already).

As described in Sect. 3.4, the likeliness-driven assessment
algorithm requires the setup of the selected culture-specific
ABox layer and the initialization procedure described in
Algorithm 1 to create the assessment tree. Two variants of
the algorithm have been considered: in the variant without
pruning a negative answer to a parent question in the assess-
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ment tree has no impact on the children questions; in the
variant with pruning a negative answer to a parent question
prunes the underlying branches of the assessment tree (i.e.,
if the user answers no or rather no than yes to the question
“Do you usually have breakfast?”, all questions related to
breakfast habits and preferences will be ignored).

The likeliness-driven assessment with Bayesian adapta-
tion requires the setup of the culture-specific ABox layer
for all national cultures of relevance and the execution of
the initialization procedure described in Sect. 3.5 to create
the Bayesian Network and the associated assessment tree. In
our experiments, we considered the national-level cultures
of Italy, Germany and Japan. The Bayesian Network is ini-
tialized by setting the a priori probability of the node GEN
as distributed over the three available national cultures (e.g.,
P(Italian) = 0.8, P(German) = 0.1, P(Japanese) = 0.1),
and questions are selected with the rationale of Algorithm
2, as discussed in Sect. 3.5. The answers yes and rather yes
than no are interpreted as yes findings and deterministically
set the evidence of assertion a∗ as P(a∗) = 1 (and, sym-
metrically, no and rather no than yes are interpreted as no
findings and set the evidence of a∗ as P(a∗) = 0). Again,
two variants have been considered: in the variant without
pruning all nodes are connected only to the GEN node and a
negative answer to a parent question in the assessment tree
has no impact onto the children questions (see the Condi-
tional Probability Table shown in Fig. 17a); in the variant
with pruning all nodes are connected both to the GEN node
and to their immediate predecessor in the assessment tree and
a negative answer to a parent question in the assessment tree
prunes the underlying branches of the assessment tree (see
the Conditional Probability Table shown in Fig. 17b).

Beside this deterministic interpretation of the collected
evidence, we have also tested a probabilistic variant of the
likeliness-driven assessment with Bayesian adaptation, for
which yes produces an evidence P(a∗) = 0.8, rather yes
than no produces P(a∗) = 0.6, rather no than yes produces
P(a∗) = 0.4, and no produces P(a∗) = 0.2. In this case
pruning never happens, but the user’s answers still have a
direct influence on the a posteriori probability of the imme-
diate successors of a∗ (e.g., if the user answers rather yes
than no, rather no than yes or no to the question “Do you
usually have breakfast?”, then all probabilities related to hav-
ing coffee during breakfast will be accordingly reduced).

4.2 Results and Discussion

Figure 18 compares the performance of the likeliness-driven
without pruning, likeliness-driven with pruning, Bayesian
adaptation without pruning and Bayesian adaptation with
pruning assessment algorithms, using the random assess-
ment algorithm as a reference, to test hypotheses H1 and H2.
The two graphs refer, respectively, to the performance with

Fig. 17 Conditional Probability Tables related to the node
COFFEE_EATING_BREAKFAST: a in the Bayesian adaptation without
pruning variant the node is connected only to the GEN node, b while
in the Bayesian adaptation with pruning variant the node is connected
also to its immediate predecessor EATING_BREAKFAST

Italian subjects (a) and with German subjects (b), and they
are averaged over 20 runs and over the total number of sub-
jects per group. In the graphs, the groups of columns denote
the ratio between the number of questions required to reach
a certain percentage of positive answers (50%, 60%, 70%,
80%, 90% and 100%, from left to right) by each proposed
algorithm, with respect to the random assessment algorithm.
As an example, the leftmost yellow column states that the
Bayesian adaptation with pruning assessment algorithm dis-
covers 50% of all positive answers with less than half of
the questions required by the random assessment algorithm,
while the rightmost yellow column states that the same algo-
rithm needs approximately 60% of the number of question
required by the random assessment algorithm to discover
100% of the positive answers.

As the Figure shows, the likeliness-driven assessment
algorithm seems to be consistently better than the random
one (thus supporting hypothesis H1), and theBayesian adap-
tation assessment algorithm seems to be consistently better
than the the likeliness-driven one (thus supporting hypothesis
H2).

Further considerations arise.

– Independently from the assessment algorithm adopted,
the variant with pruning performs better than the vari-
ant without pruning, since all questions that are children
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Fig. 18 Comparison of the performance of the Likeliness-driven
without pruning, Likeliness-driven with pruning, Bayesian adaptation
without pruning and Bayesian adaptation with pruning assessment
algorithms, using the Random assessment algorithm as a reference.
Shorter columns denote better performance

of a question with a negative answer will be not asked.
However, since people are often inconsistent in their con-
versations, these algorithms do not guarantee to obtain
the totality of positive answers: in particular, only for
35% of Italian subjects and 26% of German subjects to
prune branches does not result in a loss of some positive
answers. The two rightmost columns of the variants with
pruning refer to these subjects only. However, for most of
the tests (94% of Italian and German subjects) the vari-
ants with pruning discover at least 80% of the positive
answers.

– The variants of theBayesian adaptation assessment algo-
rithm perform slightly better than the corresponding ones
of the likeliness-driven assessment algorithm. Indeed,
even if the Bayesian Network is initialized with a pri-
ori probabilities corresponding to the user nationality,
enabling the Bayesian adaptation allows for taking into
account the fact that the user may give answers that bet-
ter match with a different nationality. The advantages
brought by this rationale are especially evident with the
German subjects, since many of them have lived for a

long time in Italy and this fact has an influence on their
answers.

The effects of initializing the GEN node with different
probability distributions over the three available national cul-
tures (addressed by hypothesis H3) are shown in Fig. 19.
Specifically, the a priori probabilities have been initialized

– with a uniform distribution: P(GEN = Italian)
= P(GEN = German)=P(GEN = Japanese) (no knowl-
edge about user nationality in the Figure);

– by setting the maximum value corresponding to the
nationality G declared by the subject in the question-
naire, i.e., for a person that self-declares to be Italian
P(GEN = Italian) = 0.8 (nationality declared by the user
in the Figure);

– by setting the maximum value corresponding to a differ-
ent nationality Awhich is geographically close to the one
declared by the user, i.e., for a person that self-declares
to be Italian P(GEN = German) = 0.8 (user nationality:
case A in the Figure);

– by setting the maximum value corresponding to a dif-
ferent nationality B which is geographically distant to
the one declared by the user, i.e., for a person that self-
declares to be Italian, or German
P(GEN = Japanese) = 0.8 (user nationality: case B in
the Figure).

Results show that in all cases there is a clear improvement
with respect to the random assessment algorithm, even when
the Bayesian Network is initialized with a nationality (and
therefore, likeliness values) very far from the one declared
by the subject (case B). Moreover, the posterior probability
of the GEN node (which captures the user’s culture), in more
than 85% of the tests converges to the nationality declared
by the user after sufficient evidence has been collected (thus
providing preliminary support to hypothesis H3).

Specifically, for the Italian subjects, initializing the GEN
node with the correct nationality of the subjects guarantees
better results (see Fig. 19a), while for the German sub-
jects differences in performances between the algorithms are
less relevant (see Fig. 19b). To assess whether this is due
to the mixed cultural background of the German subjects
described before (i.e. many German subjects are living in
Italy), Fig. 19c only considers the German subjects who live
in Italy. In accordance with our hypothesis, in this case the
initialization of theBayesianNetworkwith the Italian nation-
ality (caseA) generally gives better results, as their habits and
preferences tend to bemore coherentwith the culture-specific
Italian ABox (e.g., they tend not to have ham and cheese for
breakfast).

Figure 20 compares the performance of the Bayesian
adaptation without pruning, Bayesian adaptation with prun-
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Fig. 19 Comparison of the performance of the Bayesian adaptation
assessment algorithm, for different initialization strategies of the a priori
probability of the node GEN, using the Random assessment algorithm
as a reference. Shorter columns denote better performance

ing and Bayesian adaptation with probabilistic evidence
assessment algorithms. In the first two cases, the evidence
is deterministic (i.e., 0 for no, rather no than yes and 1 for
yes, rather yes than no), while in the latter case it corresponds
to 0.8, 0.6, 0.4 or 0.2, moving from yes to no.

The analysis of the results show that, in general, the
Bayesian adaptation with probabilistic evidence assessment
algorithm performs better than the deterministic variants.
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Fig. 20 Comparison of the performance of the Bayesian adaptation
without pruning,Bayesian adaptation with pruning andBayesian adap-
tation with probabilistic evidence assessment algorithms, using the
Random assessment algorithm as a reference. Shorter columns denote
better performance

Indeed, this variant achieves results that are comparable with
those of the variant with pruning, but with no loss of posi-
tive answers (i.e., it always finds all positive answers). More
specifically, for the Italian subjects, the Bayesian adaptation
with probabilistic evidence assessment algorithm allows for
finding 80% of all positive answers with, on average, 4.99
questions less than the Bayesian adaptation without pruning
variant, and 1.13 questions less than the variant with pruning.

Finally, the effects of applying the proposed algorithms
on the different types of subject matters composing the
list of questions (AttitudeTowardsEating, EatingBreakfast,
AttitudeTowardsSport, AttitudeTowardsHolidays and
AttitudeTowardsOtherPeople) have been investigated. As
Fig. 21 shows, while for some subject matters there is a
great difference between the performance of the proposed
assessment algorithms and the random assessment one, for
others the difference is less evident. Subject matters of the
first type are strictly related to the national culture to which
the person belongs, (e.g. AttitudeTowardsHolidays shown
in Fig. 21b), while subject matters of the second type typi-
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cally include elements that are shared among many cultures
(e.g. AttitudeTowardsSport, shown in Fig. 21a).

In the latter case the implementation of a Bayesian Net-
work (initialized with the nationality declared by the user, or
even with uniform distribution) gives clear advantages with
respect to any variant which does not enable Bayesian adap-
tation. Conversely, for subject matters strictly related to the
national culture, the average performance obtained by the
likeliness-driven and by the Bayesian adaptation assessment
algorithms are comparable, although the Bayesian adapta-
tion assessment algorithm still performs slightly better than
the likeliness-driven algorithm. Consider as an example the
question “Do you celebrate Pentecost Monday?” - a Chris-
tian holiday that is a national holiday in Germany but not in
Italy, or the question “Do you celebrate the birthday of the
Emperor?” - a Japanese holiday. It is very likely that only
German people will give a positive answer to the first ques-
tion and that only Japanese people will give a positive answer
to the second one. However, it cannot be excluded a priori
that an Italian person could have acquired somehabits that are
typical of other cultures: as it happened to some of the Ger-
man respondents of our questionnaire, the user could have
lived for some time in Japan and taken the habit of celebrat-
ing the birthday of the Emperor. Thus, while the knowledge
of the user nationality is key for quickly detecting the main
habits and preferences of the person, an adaptive approach
gives the possibility to learn in a shorter time also those traits
in which the user differs from its national culture.

5 Conclusions

This article tackles the problem of endowing robots with a
knowledge representation framework allowing for represent-
ing cultural information and using it for better managing and
adapting to the user’s habits, preferences and needs. Draw-
ing inspiration from the scenarios of culturally competent
behaviours for robots for elderly care drafted by experts in
Transcultural Nursing, we have identified the main require-
ments for the robot’s knowledge representation system, i.e.,
(i) the ability to store and manage culture-generic knowl-
edge about the context, the robot itself and the grounding
of core values; (ii) the ability to store and manage national-
level, culture-specific knowledge, that the robot can rely on
whenever person-specific information is not available; (iii)
the ability to store and manage person-specific knowledge,
describing the way in which the cultural identity, preferences
and environment of the assisted person shape the appropriate
robot behaviours; and (iv) the ability to efficiently integrate
person-specific and culture-specific knowledge, by relying
on the latter to discover the former.

To fulfil the above requirements, we have proposed a
framework which relies on three core elements: (i) a three-
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Fig. 21 Comparison of the performance of the likeliness-driven and
Bayesian adaptation assessment algorithm, for different initialization
strategies of the a priori probability of the nodeGEN, over different types
of conversation subject matters. The Random assessment algorithm is
taken as a reference. Shorter columns denote better performance. The
data refer to the Italian subjects only

layered ontology for storing all concepts of relevance,
national-level information and statistics, and person-specific
information and preferences; (ii) an algorithm for the acqui-
sition of person-specific knowledge, driven by national-level
knowledge (likeliness-driven assessment algorithm with its
variants), and (iii) a Bayesian Network for speeding up
the adaptation by propagating the effects of acquiring one
person-specific information onto interconnected concepts
(Bayesian adaptation assessment algorithm with its vari-
ants).

For a preliminary evaluation of the framework we have
hypothesised that, given a user that declares herself as
belonging to a given cultural group at national level, using
the frameworkwith the proposed algorithms can significantly
speed-up the acquisition of person-specific knowledge start-
ing from national level knowledge. This hypothesis has been
preliminarily validated with 159 Italian and German volun-
teers by asking questions on 122 habits, attitudes and social
norms.
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Ongoing work is devoted to relaxing the limitations of
acquiring knowledge only through dialog, but rather using
the robot’s onboard sensors for culturally-competent object
and scene recognition. To this end, we are exploring the use
of online vision services, which have the advantage of relying
on huge training sets continuously updated and maintained
[22].
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