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Abstract
Personal assistive robots to be realized in the near future should have the ability to seamlessly coexist with humans in
unconstrained environments, with the robot’s capability to understand and interpret the human behavior during human–robot
cohabitation significantly contributing towards this end. Still, the understanding of human behavior through a robot is a
challenging task as it necessitates a comprehensive representation of the high-level structure of the human’s behavior from
the robot’s low-level sensory input. The paper at hand tackles this problem by demonstrating a robotic agent capable of
apprehending human daily activities through a method, the Interaction Unit analysis, that enables activities’ decomposition
into a sequence of units, each one associated with a behavioral factor. The modelling of human behavior is addressed with a
Dynamic Bayesian Network that operates on top of the Interaction Unit, offering quantification of the behavioral factors and
the formulation of the human’s behavioral model. In addition, light-weight human action and object manipulation monitoring
strategies have been developed, based onRGB-D and laser sensors, tailored for onboard robot operation. As a proof of concept,
we used our robot to evaluate the ability of the method to differentiate among the examined human activities, as well as to
assess the capability of behavior modeling of people with Mild Cognitive Impairment. Moreover, we deployed our robot in
12 real house environments with real users, showcasing the behavior understanding ability of our method in unconstrained
realistic environments. The evaluation process revealed promising performance and demonstrated that human behavior can
be automatically modeled through Interaction Unit analysis, directly from robotic agents.
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1 Introduction

The field of social robotics has garnered a significant amount
of attention from the research community, in order to allow
artificial agents’ entry at homes and everyday life, aiming to
assist humans at social, physical and cognitive level [25]. The
necessity for artificial agents to operate in a large spectrum
of diverse applications raises significant challenges, the most
outstanding of which involve the robot’s mobility in human
populated environments [8], the demand for context related
robotic operational behavior in crowded environments [7]
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and the prerequisite for human behavior understanding from
an artificial agent [38]. Several methods in the field of social
robotics offer solutions that sufficiently tackle many of the
aforementioned barriers [13,21].However, the field of human
behavioral understanding with artificial agents has witnessed
more superficial solutions [2,38].

A number of definitions about human behavior exist in
the literature, where despite the fact that the majority of
them argue regarding the actual factors that influence and
form a human behavior (e.g. genetics or social factors, etc.),
they all converge on the aspect that the human behavior can
be analyzed by the way humans act and interact, given an
external or internal stimulus, with other humans or objects
of the environment [4,47,53,61]. From a psychological point
of view, understanding of human behavior involves the anal-
ysis of the psychological signals, the empathy observation
and other social observations that frequently require the
expertise of psychologists to formulate a behavioral model
[40]. However, from an engineering point of view, such
psychological signals are difficult to be modeled through
an artificial agent and, thus, more quantitative observations
should be extracted. This is typically performed by study-
ing human daily activities and extracting patterns of reaction
upon humans’ interaction with their environment during
these activities.Moreover, through observation andmodeling
of daily activities, it is also feasible to understand normal and
abnormal behaviors revealing pathological situations [53].
Thus, it can be reasonably deduced that an artificial agent can
extrapolate the observations obtained during daily activities
monitoring to formulate human behavior patterns. Further-
more, the idea of analysing patterns of daily activities for the
determination of the human behavior relies on the fact that
artificial agents should be able to assess human behavior by
monitoring the subordinate steps of an ongoing activity and
decipher whether or not a human needs assistance [9]. This
attribute comprises an interesting pre-condition for a higher
level of autonomy and proactivity in human–robot interac-
tion, as it constitutes a fundamental block in the formulation
of robot behavioral models [14].

Towards addressing this challenge, the current work is
focused on the human behavior understanding and it is
grounded on the belief that robots need to understand the
behavior of humans at various levels of abstraction in order
to operate in a human compatible and socially acceptable
manner. A starting point for the apprehension of human
behavior can be obtained by systematically analyzing the
way daily activities are performed. Therefore, we adopted
the Interaction Unit analysis which is a methodology that
allows an in-depth activity decomposition, while analyti-
cally outlining the way actions are synthesized into complex
daily activities, and simultaneously determining the type of
objects manipulated by the human in each action. Each Inter-
action Unit is associated with a specific behavioral factor

that allows human behavior specificities identification. The
modeling of human behavior is addressed with a specifically
designed Dynamic Bayesian Network that operates on top of
the InteractionUnit framework, offering quantification of the
behavioral factors and activity recognition. Since the devel-
oped method targets operation onboard a robotic platform,
custom-tailored light-weight solutions for human actions
and manipulated objects detection have been developed.
Specifically, for human action recognition a skeleton based
algorithm has been designed, while for the differentiation
among large and small manipulated objects, cluster-based
tracking solutions have been implemented, both utilizing
depth data from the robot’s sensors. To allow efficient robot
monitoring of an activity in progress, an automated procedure
for selection of robot parking positions within the environ-
ment has also been developed, respecting human’s personal
space and maximizing the view of the area of interest related
to the ongoing activity. A representation of the robot dur-
ing the activity “having a meal” is graphically illustrated in
Fig. 1.

At this point, it should be stressed that the objective of
this work is not the establishment of a classical human
activity recognition method by assigning a discrete activ-
ity label. It aims to go one step deeper than this and further
scrutinize the recognized activity through the IU analysis
that produces meaningful deductions on how the activity
has been performed in order to understand the normal and
abnormal behavior of the user based on the way that s/he
executes the daily activities. Thus, this will offer an in-depth
understanding of human behavior through the monitoring of
well-defined daily activities modeled by the IUs.

To the best of our knowledge, this is the first complete
work in the field of social robotics where human behavior
understanding is performed through a step-wise IU analy-
sis of human activities and has been explicitly integrated on
an artificial agent providing a bottom-up analysis of human
actions and objects monitoring, all coupled with robot social
navigation strategies. Albeit the fact that the IU analysis is
not a new method, its formulation through a DBN and its
integration with an active robotic agent for the understand-
ing of human behavior through daily activities constitutes a
unique asset of our method. The analytical contributions of
this work are summarized as follows:

• The enhancement of the theoretical work of Interaction
Unit analysis with features that will enable human behav-
ior understanding in realistic environments.

• The modeling of the Interaction Unit analysis with a
machine interpretablemethod suitable to operate onboard
a robot.

• The integration of the collateral subordinate modules
required for activity monitoring with robot’s mobility.

123



International Journal of Social Robotics (2019) 11:437–462 439

Fig. 1 An illustrative example of the developed framework. On the left,
the reference frame of the environment setup along with the robot and
the human performing the “having a meal” activity is exhibited. In the
middle, the robot visualization (rviz) provides details about the envi-
ronment apprehension of the robot perspective, where the RGB-D point
cloud and the laser scans are presented. Moreover, in the rviz the auto-

generated robot parking positions along with the metric cost map are
visualized. On top right, the reference frames from the on-board RGB-
D sensor demonstrated the skeleton tracking and the detected small
objects in the scene are proposed. On the bottom right, the inferred IU
steps related to the current robot observations are appended

• To realization of a unified framework for human behavior
monitoring capable of operating with limited sensorial
input of a robot.

The rest of the paper is organized as follows. In Sect. 2
we present the state of the art on daily activity analysis and
human behavior understanding. Section 3 provides insights
about the selected activities and their decomposition with the
Interaction Unit analysis. Section 4 presents the modelling
of the human behavior with a Dynamic Bayesian Network,
while Sect. 5 analyzes the peripheral components required for
the human action recognition, the detection of manipulated
objects, the autonomous selection robot’s parking position,
and provides implementation details. Section 6 concerns the
experimental evaluation of the presented methodology and
conclusions are drawn in Sect. 7.

2 The State of the Art

Human activity analysis and recognition has been widely
studied during the last years, as it is being leveraged in a
variety of computer vision applications including surveil-
lance and patient monitoring systems, as well as systems
that involve interactions between people and machines [1].
Moreover, activity recognition and analysis plays a key role
for supporting people in their activities of daily life. Con-

sequently, studying the way humans perform their daily
activities comprises a reliable starting point for the extrac-
tion of required contextual information for the formulation
of human behavior models [18]. The current section firstly
analyzes the existing works in the field of human activity
recognition and afterwards, discusses the existing applica-
tions for the establishment of humanbehavioralmodels either
with robotic agents or with a grid of sensors installed in the
environment.

2.1 Human Activity Recognition and Analysis

Following Ziaeefard’s recent literature survey [60], the
majority of activity recognition methodologies concern the
study of the sequential execution of atomic actions. A com-
mon separation line between these methodologies comprises
the way atomic actions are recognized. Martinez et al. [26]
presented a method for silhouette based human action mod-
eling and recognition. The motion templates matching of
human actions was performed using motion history of depth
images (MHI) and, then, these templates were projected into
a new subspace using the Kohonen Self Organizing features.
On top of it, Hidden Markov Models (HMM) were used
to track the mapped behavior on the temporal sequences
of MHI. This approach achieved significant performance,
yet has not been evaluated on recent datasets recorded in
realistic environment and has never been integrated into a
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mobile robotic agent. This parameter necessitates among
others the positioning of a robot in such a place that will suffi-
ciently observe the scene. Efficient space-time representation
of humans based on 3D skeleton data is of great importance
in the field of human activity modeling, with a comprehen-
sive survey of the developed methods having been conducted
by Han et al. and can be found in [17]. In the work described
in [45], the authors presented a method suitable for recog-
nizing activities from 3D human skeleton coordinates. After
a key poses extraction step, which constituted the atomic
action template, a classification scheme was applied. The
key poses frame was set by minimizing the kinetic energy,
which was calculated over the joints movements and com-
bined with a Support Vector Machine (SVM) classifier. The
method achieved over than 92% and 84% accuracy on the
Cornell Activity and MSR Action3D datasets, respectively.
Santos et al. [41] introduced a novel approach that improved
the segmentation accuracy in human action sequences. The
method addressed the temporal segmentation problem of
body part trajectories in Cartesian Space, utilizing Discrete
Fast Fourier Transform and Power Spectrum as features. The
trained classifier was a Dynamic Bayesian Network (DBN)
and the entropy of its inference used to adjust continuously
the parameters in a sliding window. In this work the adap-
tation of the sliding window parameters has been evaluated
on UC-3D dataset and shown precise results, with an overall
ratio of 95%. In a similar method which also relied on 3D
skeleton features, Piyathilaka and Kodagoda [30] presented
an algorithm that incorporated the importance of weights for
skeleton 3D joints used, to train a DBN. It was assumed
that each human activity is a collection of different poses
that evolve over time and its evaluation on CAD-60 dataset
exhibited on average 75% classification accuracy on activ-
ities such as “medication intake” and “cooking”. However,
the evaluation data included mostly frontal and not occluded
recordings that do not resemble closely to realistic human
daily activities recordings. Faria et al. [12] employed 3D
skeleton features extracted fromRGB-D images to trainmul-
tiple classifiers through Dynamic Bayesian Mixture Models
(DBMM). The method was evaluated on CAD-60 dataset
with 12 different human activities and exhibited remarkable
performance i.e. more than 90% classification accuracy in all
cases overcomingother state-of-the-artmethods ranked at the
CAD-60 website. The authors in [50], computed heteroge-
neous features to decompose an activity into sub-activities,
where for each activity an HMM was trained utilizing those
features. The model relied on a maximum-entropy Markov
model, where a two-layered hierarchical structure was used.
The evaluation of the method was performed on more realis-
tic data and achieved poor performance in activities such as
“cooking” (43%) and “pill box manipulation” 56%, further
underlining that activity recognition under realistic environ-
ments is a very challenging task, due to partial observability

of the environment and the human and noisy measurements.
Rahmani et al. [32] combined the discriminative informa-
tion from depth images and 3D joint positions. Their method
used depth gradient histograms, local joint displacement his-
tograms and joint movement occupancy volume features.
Random Decision Forests (RDF) were exploited for feature
pruning and classification, leading to increased performance
evaluation on MSR Daily Activity Dataset (more than 92%)
which is more realistic than the CAD-120 one, however a per
class performance is not available.

By considering the objects in the environment, the authors
in [35] employed salient proto-objects for unsupervised dis-
covery of object and object-part candidates and used them as
a contextual cue for activity recognition. Since object knowl-
edge alone is not adequate to discriminate activities, they
used the Space Time Interest Points (STIP) motion descrip-
tors, which were then passed into a multi-class SVM. This
method achieved sufficient performance for classes such as
“having a meal” (66.7%), and “medication intake” (83.3%),
however the classification accuracy was degrading with the
environment complexity increase. Similarly, the work in [22]
introduced a complete framework that observed a scene with
a human and objects for a specific time frame. The ultimate
goal was to anticipate the future activities for the given time
frame. Each activity was modeled with a Conditional Ran-
dom Field, where a given graph structure had two types of
nodes, namely sub-activity and object. This was a complete
framework that connected activities with objects, while par-
tially dealt with the temporal segmentation issue. Another
STIP based method proposed in [59], relied on features
for depth-based action recognition. Different interest point
detectors and descriptors were combined to form various
STIP features, while the bag-of-words representation and
SVMclassifierswere used formemorization. Themain draw-
back of this method is that the appropriate combination of
detector/descriptor needs to be found in each testing example
to achieve adequate performance. However, the right combi-
nation ranks the papers performance within the state of the
art and, regarding the CAD-60 dataset, the method achieved
increased performance in classes of interest i,e. “medication
intake” and “cooking”, 67% and 100% classification accu-
racy respectively.

The authors of [56] introduced an extension of local binary
feature descriptors suitable for activity recognition tasks. The
descriptor is suitable for real-time applications due to the
computational advantage of computing a bag-of-words rep-
resentationwith theHammingdistance.Thismethod retained
real time performance, however the reported results cannot
be considered as promising, since it has not been evaluated
on realistic datasets i.e. with partial human observability and
variation on recordingdistances. Thework in [28] presented a
descriptor for activity recognition from videos using a depth
sensor. It described the depth sequence using histograms,
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capturing the distribution of the surface normal orientation
in the 4D space of time, depth, and spatial coordinates. This
descriptor has been evaluated on MSR action dataset and a
new acquired dataset and yieldedmore than 88%overall clas-
sification accuracy. Compared to the work referred in [59], it
had the advantage that there is no need to search for the appro-
priate combination of features. A different approach to the
problemwas introduced byWang et al. [55],where a new rep-
resentation of human actions, i.e. actionlets, proposed, which
deals with the errors of the skeleton tracking and character-
izes better the intra-class variations. A data mining algorithm
was proposed to discover the discriminative actionlets, offer-
ing the attribute to be highly representative of one action and
highly discriminative compared to the other actions. A mul-
tiple kernel learning approach was also employed to learn
an actionlet ensemble structure, yielding remarkable perfor-
mance results, yet the computational cost is considered to be
rather expensive. An additional scalable approach for activity
recognition based on objects is described in [57], however,
the objects in this work were tagged with RFID labels, which
means that such an approach would not be feasible in real life
applications.

2.2 Activity Recognition with Robots

Although the abovementionedworks reflect the current state-
of-the-art in the field of activity recognition, in their majority
they are designed to operate on video sequences for differ-
ent types of applications, rather than for actual human robot
interaction. For the realization of social robots capable of
operating in human populated environments, the understand-
ing of the human actions and the respective robot reaction is
imperative [7], while monitoring should be established in
these occasions typically through the robot’s onboard sen-
sors. Thus, a more relevant work is the one described in [9],
where the authors modeled pose trajectories using directions
traversed by human joints over the duration of an activ-
ity and represented the action as a histogram of direction
vectors. The descriptor benefited computational efficiency
as well as scale and speed invariance, however the experi-
ments were performed in segmented sequences. In addition,
in [30] the authors developed a human activity recogni-
tion method by applying 3D skeleton features directly on a
DBN model. Although this method is similar to the one pro-
posed herein, the authors did not consider the objects that the
person interacts with and, therefore, important information
about modeling of human behavior was omitted. In a more
recent work, Coppola et al. [10] introduced a method for
automatic detection of human interaction from RGB-D data
that enabled social activities classification. In this work the
authors defined a new set of descriptors, suitable to operate in
realistic data, while developed a computational model to seg-
ment temporal intervals with social interaction or individual

behavior and tested the method on their own publicly avail-
able dataset. In addition, the authors in [31] demonstrated
the effectiveness of DBN in time-dependent classification
problems, where in their work reported experimental results
regarding semantic place recognition and daily-activity clas-
sification.

The authors in [33] developed an activity recognition
framework suitable for industrial applications. In this work,
feature vectors appropriate for recognition have been pro-
posed, however, the learning framework was trained only
with human gestures and simple actions related to themanip-
ulation of an object without actual object detection and track-
ing feedback. The main drawback of this approach is that the
performance significantly degrades when a human interacts
with objects due to occlusions that stem from the presence
of objects. In another work introduced in [22], the authors
incorporated object affordances into human activity recogni-
tion. Specifically, a joint model of the human activities and
object affordances as a Markov random field was designed,
where the nodes represented objects and sub-activities, and
the edges represented the relationships between object affor-
dances, their relations with sub-activities, and their evolution
over time. Although this method achieved promising results,
the evaluation was constrained to sequences acquired from
the frontal view of the user. Tackling the issue differently, the
authors in [29] used a laser range finder to build stochastic
models of the observed movement patterns thus, formulating
predictive models of the human activities in terms of their
in-between interaction. Yet, this method proved more suit-
able for high-level activity inferences and less appropriate
for human behavior understanding.

2.3 Behavior Understanding fromDaily Activities
Monitoring

Understanding of user behavior through daily activities mon-
itoring is a demanding task given that simultaneousmodeling
of human actions and their respective interactions with
objects should be determined [39]. When it comes to robotic
applications the task becomes even more challenging since
the amount of onboard sensing devices is limited, while
the understanding of human activities mostly boils down to
finding good representations of the sensed primitives [38].
The partial observability of the scene primitives and the
uncertainty of human actions gave thrust to the development
of strategies that express the perception uncertainties, the
stochastic human behavior and the typical mission objectives
with explicit Partially Observable Markov Decision Process
(POMDP) models [44]. Authors in [18] proposed a knowl-
edge driven method for automatically generating activity
analysis and recognition based on POMDP models and con-
text sensitive prompting systems. The approach starts with a
description of a task and the environment in which this task
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will be carried out, using a method that is relatively easy to
generalize in various environments.

Contrary to the earlier works, the present one aims at
the introduction of an autonomous human behavior under-
standing approach with a mobile robotic agent, capable to
infer normal and abnormal behavior on the sequence of the
ongoing set of itemized actions and objects that synthesize
the expected activity. It takes advantage of a robot’s mobil-
ity, to position itself in a spot that will enable light-weight
human and environment perception solutions to operate in
realistic conditions, compensating occlusions and sensors’
limitations. It takes into account the human personal space,
ensuring the cohabitant’s comfort, while the robot observes
the daily actions from automatically generated parking posi-
tions. Moreover, this method integrates the Interaction Unit
analysis with a robotic vision system, instead of utilizing
different sensors scattered in the environment, to sense the
human movements and the environment changes. It inter-
prets the InteractionUnit analysiswithDBNmodels enabling
human behavior monitoring instead of simply using it as a
prompting system.

3 Problem Formulation with Interaction Unit
Analysis on Daily Activities

3.1 Introduction to Interaction Unit Analysis

IU analysis was initially introduced by Ryu and Monk [37]
and comprises a psychologically motivated approach for
transcoding interactions relevant for fulfilling a certain task.
It has been mainly inspired by the problems encountered by
system developers when designing the interactive behavior
of novel hand-held devices to be applied in human computer
interaction applications. In such applications, IU specifies
the visible system state that leads the user to take some
action. In addition, the IU makes explicit the state of the
goal stack at the start and end of the unit, and the mental pro-
cesses (recall, recognition, or action) required. In our case
the system state is considered to be the environment state
(e.g. objects) and the actions correspond to the user’s actions
within daily activities. The mental processes correspond to
the behavioral factors that accompany each human action.
Through IUanalysis, the intimate connectionbetweenhuman
actions and the environment can be described in a format
suitable for user-machine interaction. Thus, the IU analysis
is used to formalize a machine interpretable task description.
Specifically, each task is decomposed into a sequence of IUs
that describe the task that needs to be fulfilled by the human
in order to execute it.

After the introduction of the IU methodology from Ryu
and Monk, Grześ et al. [15], developed a representative
work, according to which IU was utilized to analyze spe-

cific sequences of actions which were later encoded into
a POMDP framework. This POMDP acted as a prompting
system to assist people with dementia and developmental
disabilities. However, the proposed system utilized an ad-
hoc method for transcoding the IU analysis into the POMDP
model. The main drawback was that while each of the fac-
torswaswell defined, fairly detailed andmanual specification
was required to enable the translation. The idea behind IU
analysis was to guarantee the logical adequacy of users’ task
sequences and tomodel those sequences in ameaningfulway,
suitable to be interpreted by a machine. In the paper at hand,
the IU methodology is extended to analyze the activities of
daily living in a machine interpretable manner, by gathering
observations regarding human’s actions and the environment
state, using the robot vision system in order to understand the
human behavior.

The first set of “activities of daily living” (ADL) has
been been identified by gerontologists to allow the assess-
ment of the level of autonomy of elderly persons [20]. In
accordance to [18], activities of daily living can be decom-
posed into simple atomic actions which if they are associated
with specific behavioral factors, they can formulate a nominal
human behavior within an activity. The first step of the work
proposed herein, comprises the identification of the type of
activities that will be monitored by the artificial agent. Based
on the work presented in [6,48], it is typical for older adults
to face difficulties with the execution of complex tasks from
activities of daily living, e.g. cooking, hygienic procedures,
medication intake, dressing up, preparing meals, shopping,
eating etc. Thus, the criteria utilized for the activities selec-
tion involve their daily repeatability (participants should be
familiar with the examined activities), the natural environ-
ment in which they take place (typically house environment)
and their ability to be decomposed into a sequence of nomi-
nal atomic actions. In this work we refer to atomic actions (or
simply “actions”) as the elementary process of a humandoing
something, mostly relevant to physical motion e.g. the action
“hand to mouth”. Activities are considered as a sequence
of N executed atomic actions the time continuity of which
can result in the completion of a task, e.g. several “hand
to mouth” actions indicate the activity “eating”. A syndetic
notation among the identified actions and the behavioral fac-
tors is described in [36,37], where through the IU analysis a
notation that allowed the conjunction of atomic actions with
behavioral factors is provided. The sequential expression of
such behavioral factors constitutes a human behavior through
a systematically defined daily activity.

3.2 Association of Interaction Units with Behavioral
Factors

The method developed herein utilizes an adapted variation
of the IU analysis to build a model of the user activity by
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identifying and associating atomic actions with the simul-
taneously manipulated objects, facilitating feasibility of the
identification of environmental pre- and post-conditions with
a robotic agent. The behavior analysis builds upon an ideal
sequence of behaviors i.e., the simplest sequence of IU steps
labeled with specific behavioral factors that would complete
an activity. Thus, this list of behaviors is divided into the
logical sub-parts, viz. IU steps, that structure an activity. The
division into logical subtasks is a standard strategy andpeople
with cognitive impairment commonly stall at the boundary
between subtasks [3,27]. The behavioral factors consist of
three different elements, namely the “recognition factor, the
“recall factor and the “action factor”. More precisely:

– The Recognition factor (Rn) refers to the users percep-
tion and understanding with respect to the context of the
task given an external stimulus, e.g. the fact that the user
recognizes that there is a cup of water on the kitchen
table. This can be contrasted with the operation “recall”.

– The Recall factor (Rc) refers to the users ability to
remember something without being able to see the
required information directly. An example of this is that
the user recalls that the pill box is in the drawer and needs
to reach it, in order to get the pill box. Recall can be con-
sidered in general as a problem for people with dementia
and we expect most errors to occur for IUs associated
with recall operations.

– The Action factor (Ac) refers to the users interaction
with objects and the environment state and is a shorthand
for “recognizing the affordance of acting along with an
object”, for example opening the cupboard.

3.3 Interpretation of Daily Activities with
Interaction Units

Considering the selection of the studied activities in this
work, four different types have been found to be most appro-
priate namely, “cooking”, “meal preparation”, “having a
meal” and “medication intake”.We tackle herein each IU step
as an adjunct execution of an atomic action over an object,
which is coupledwith a behavioral factor, that determines the
normal and abnormal behavior of the user during the activity.
It should be stressed that the validity of each behavioral fac-
tor that justifies the expected user’s response at each IU step
has been reinforced with the expertise of phycologists and
neuroscientists1. Thus, the incorporation of a new activity in
the model can be done manually, since it requires the speci-
fication of each action with respect to IU analysis that has to
be performed explicitly by psychologists and neuroscientists
in order to associate precisely the expected user’s response

1 Full reference of the experts that provided the annotation of the behav-
ioral factors can be found in the “Acknowledgments” section

with a behavioral factor. The level of detail that each activity
can be analysed in terms of IU steps, depends on the various
actions and objects that the robot will be capable of appre-
hending, given its limited sensorial input, i.e. RGB-D sensor
and laser scanners. Additionally, it should be noted that in
some occasions, due to visual occlusions (e.g. the human
bends towards the open fridge and the robot is parked behind
him/her) further information to the duration of this IU step is
not feasible to be extracted, therefore it is expected that some
activities modelled herein will not include all the behavioral
factor labels. Indicatively, Table 1 discusses the IU analysis
for the activity “medication intake”. Specifically, in this table
the entity IU is referred to the ID of each interaction unit, the
sequence of which form, the pattern of the activity; Object
is the type of the large or small object involved in the respec-
tive activity (see Sect. 5.4). The entityAction corresponds to
the atomic action expected to be performed by the user (see
Sect. 5.3). Considering the Behavioral Factors, it encap-
sulates the actual label of the respective IU step in order
to be encoded later in the DBN model, the label of which
has been provided to the sequence after the experts’ analy-
sis. Moreover, Normal response and Abnormal response
describe the user’s typical or abnormal behavior respectively,
that should be observed by the end of the specific IU. ThePri-
ority component comprises a strict identifier (with the label
mandatory (M) / not mandatory (NM)) that immediately trig-
gers the event of abnormal behavior detection when such an
IU step has not been observed at all within a sequence.

In the originally specified IU analysis [18], the effect on
each action is coded on the goal stack and the environment
implicitly, through the new goal stack and critical environ-
ment in the subsequent IU. Each group ends in a dummy
IU that shows the goal stack and environment after the last
action. In this work, we simplified the model by directly
associating each IU behavioral factor with an expected com-
bination of human action and manipulated object instead of
having groups of dummy IU steps, allowing the direct mod-
eling with the DBN, the inference of which has physical
meaning and is easily interpretable.

4 Probabilistic Modeling of Human Behavior

Having discussed the interpretation of ADLs with IU analy-
sis, a model that allows inference over the observed human
and the environment space should be constructed. Themajor-
ity of the methodologies mentioned in Sect. 2 focus mainly
on the identification of the human activities and on the for-
mulation of prompting systems for decision making rather
than on the extraction of inference about the human behavior
through daily activities. The proposed methodology over-
comes the latter issues by exploiting IU analysis along with
a DBN. A Bayesian network (BN) is a directed acyclic graph
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(DAG) in which the nodes represent random variables and
the edges encode the conditional dependencies between the
variables and specify the joint probability distribution over
them. A DBN is a BN that represents temporal sequential
data and the term “dynamic” refers to the fact that the net-
work is used tomodel time sequences, where in the examined
case, it corresponds to the interpretation of a human behavior
through the time interval of a daily activity [5].

4.1 Formulation of IU Related Bayesian Network

The developed DBN model exploits information from the
performed human atomic actions and the participation of
objects in those actions in order to produce distinct IU steps
that related to a behavioral factor. The derived information
from both is encoded as two distinct nodes, i.e. random
variables in the DBN architecture. It is worth noting that
both nodes are observed, not hidden. Specifically, the action
recognition module infers about the actions performed by
the human given a time interval. Thus, it is possible to
have the occurring actions with respect to a global clock
as well as their durations. The actions are modeled as a dis-
crete observed variable attaining values equal to the number
of actions, o1 ∈ [1, 2, . . . , Na], where o1 is the discrete
observed variable, Na is the number of actions and each value
represents a specific action, e.g. 1 → reach, 2 → open ,…,
Na → close etc. More details about the real time action
recognition module are provided in Sect. 5.3.

The manipulated objects are modeled as a discrete
observed variable o2 and the dimensionality is equal to the
number of objects types, Nob , i.e. o2 ∈ NNob

trackingstates .
Each dimension in this vector is “registered” to a specific
object type, for example the first dimension refers to the
“cup”, the second to the “pill box” and so on, and tracks
the existence or absence of a small object on the iden-
tified workspace above the segmented supporting surface
(Sect. 5.4). It should be noted that modeling of manipulated
objects in the DBN could be performed either as a number of
unidimensional, multi-state variables or with only one multi-
dimensional,multi-state variable.Both approaches havebeen
examined and none of them exhibited notable superiority
against the other. Therefore, we kept the second approach,
so as the physical presentation of our method to match with
its implementation approach, i.e. two observable variables
are modeled through two entities, for the sake of clarity. The
global clock is also used to place in the same time frame the
manipulated objects along with the performed actions. This
combination indicates the manipulated object by a human in
conjunction with the respective action at a particular time.
Object types that did not appear yet in the examined scene
as well as the ones that are present in the workspace at
that particular time but are not associated with the concur-
rently executed action, are not taken into consideration. For

example, we consider the case where the user performs the
“medication intake” activity and three known objects are ini-
tially present in the scene, a “cup”, a “pill box” as well as
a “remote-control”. In the course of a successful execution
of the considered activity the states of all the known objects
will be affected as follows: all irrelevant, non-visible known
objects, such as “pot”, “spoon” etc, will never appear in the
examined workspace, while the irrelevant “remote-control”
object, which is alreadywithin the examined workspace, will
remain still. For the corresponding dimensions of these object
labels the o2 vector will remain at the “not-detected” and “in-
workspace” values respectively, in all time instances. Thus,
none of them will be associated with any of the executed
actions. Dimensions corresponding to the “cup” and “pill
box” labels will receive the “manipulated” state at specific
time instances, when movement of these objects is detected.
Implementation details about real time object tracking and
event triggering can be found in Sect. 5.4.

Concerning the hidden node h1 of the DBN architec-
ture, it is a discrete variable representing the IU steps for
each activity which are associated with a behavioral fac-
tor. Thus, the number of possible values that this variable
can obtain depends on the respective activity. For example,
activity “cooking” has 14 IU behavioral factors and so the
obtained values will be in the range of this variable, while
activity “medication intake ” has 8 behavioral factors, affect-
ing the range of the respective hidden variable accordingly.
Each activity is modeled in a separate DBN, where the num-
ber of activities we are interested in is four (4). As a result, the
methodology trains four different DBNs where the observed
variables o1, o2 are identical for all DBNs, while the h1 is
a discrete activity specific one, ranging with respect to the
modeled activity.

An example DBN structure is illustrated in Fig. 2, for
an activity Ai , having Ns number of IU behavioral fac-
tors, where the node dependencies are represented by edges
between the consecutive BNs. A DBN’s structure can be
completed by specifying all the nodes and edges that belong
to two consecutive slices. Hence, a DBN is defined by two
components. The first one, comprises the set of nodes that
represent all randomvariables for a givenposition (time slice)
in the sequence, and the edges between those nodes (the intra
edges). This set of nodes and edges forms the BN that will
be duplicated along the length of the sequence. The second
one, is a set of edges that connect nodes in two consecutive
slices in the sequence (the inter edges). The network in time
slice t has two observable nodes, the observed action o1 and
the relative translation of objects o2. Objects and actions are
separately recognized using specifically designed custom-
tailored solutions to allow operation on a robotic platform,
but they are coupled via the h1 node. Only valid combina-
tions of actions oi and objects oi can produce nominally
defined IU behavioral factors in each activity. That is, the
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Fig. 2 Illustrative example of
the DBN structure. Red arrows
are explanatory and describe the
variable type and content. Black
and blue are edges indicating
intra and inter connectivity
among variables, respectively

two observable nodes are used as a pair to recognize the cur-
rent IU behavioral factor, while the appearance of a not valid
combination is associated with a control behavioral IU step
according towhich the user does not performa relevant action
to the examined activity. The interconnecting edges between
successive time slices shows the dependence among the IU
behavioral factors and the dependence of future actions from
the current IU step (behavioral factor). Moreover, they aim at
capturing the temporal relations between those steps within
each activity separately.

4.2 Training and Inference of DBNModels

In the presented architecture, there are four different activities
and, thus, an equal number of DBNs. Each DBN is trained
with the respective samples, corresponding to each activity.
It is worth noting that input samples retain the same format,
i.e. observed nodes are common for all DBNs. Of course, the
temporal lengthmight be different in each sample or activity;
however it is invariant in the case of DBNs (Fig. 3). This fact
will be exploited later, in the inference procedure. The hidden
node differs in each DBN model, both in terms of range as
well as in its semantic meaning. The latter implies that even
when two activities have equal number of IU steps, the i th IU
step in activity Ak is different from the i th IU step in activity
A j and correspond to different behavioral factors. To suffi-
ciently train a DBN we need temporally-aligned sequences
of the observed and the hidden nodes, which will allow esti-
mating of the Conditional Probability Density (CPD) tables
among the variables which are connected through edges. For
example, in the case of the action variable o1 which is dis-
crete, the CPD is a matrix that holds the probabilities of each

combination of o1 and parent values (h1). The discrete vari-
able o1 has size Na and a parent h1 of size Ns , which will
lead to a Ns × Na matrix as its CPD.

During the inference phase, query samples that correspond
to observed variables o1, o2 are provided to the trained DBN
models, aiming at the computation of the log-likelihood for
all the DBNs. This step leads into probabilities regarding the
label of the respective query sequence. The DBN with the
highest probability labels the query sample. The most prob-
able DBN on which the query sample belongs to, is further
processed by computing its Viterbi path [19,42]. The latter,
is a sequence of values of a hidden variable that best explains
the observed data. Specifically, in this architecture, given the
observed values for T time instances, the Viterbi path will be
a sequence of T values of the hidden variable h1, which cor-
responds to the T successive IU steps performed within the
respective sample. The sequence of the performed IU steps
is then exploited to model the normal or abnormal behavior
of the user considering specific criterions.

Given that the label of the activity has been inferred by
maximizing the log-likelihood, the method associates the IU
behavioral factors with the respective IU reference table that
describes the ongoing activity. Missing expected IU behav-
ioral factors indicate some abnormal behavior of the ongoing
activity; the incident is registered accordingly. The appear-
ance of prolonged repeated patterns of an IU step that is
associated to a specific behavioral factor (Rn, Rc, Ac) are
considered to be also an abnormality indicating that the user
stalled in the boundarybetween two IUsteps.Another param-
eter that is considered for themodeling of the humanbehavior
is the user specific duration required for each activity to be
completed. Since the time steps are constant, i.e. the tempo-
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Fig. 3 Indicative description of a training sample. Both hidden and
observed variable values are used for training, the dimensionality of
each slice is always Nob + 2 while the temporal length of the sample

may vary, in this particular example it is equal to 14, which means that
each time instance t is associated with an examined frame i.e. coupled
action and manipulated object

ral difference between t and t+1 is equal to the difference in
t+5 and t+6, the Viterbi path is utilized to provide statistics
regarding the duration of each IU, the duration of the entire
activity as well as the most probable sequence of executing
the IUs.

5 Autonomous Robot Monitoring

5.1 Robot Parking Positions Selection

Considering that monitoring of human behavior through
daily activities should be performed by a mobile robot
equipped with limited vision sensors, the selection of the
robot parking position that allows continuous human obser-
vation is essential. Our robot is equipped with a single
RGB-D camera and laser scanners of approximate 360◦ field
of view and should be able to autonomously select parking
poses thatwill enable it to sufficiently track the humanactions
and the manipulated objects in the scene, something that is
further limited by the on board RGB-D sensor. In addition, a

balance between the short and long distances from the cam-
era and the user is required since long distances allow full
body view of the human and, hence, better tracking while
close distance views are beneficiary for the detection of small
objects. Another constraint that should be considered during
the calculation of the robot’s parking pose is the discreet pres-
ence of robot during activity monitoring, respecting thus the
human’s comfort during human–robot coexistence.

These constraints are tackled herein by developing a cus-
tom solution, tailored to the human presence and robot
dimensions. Firstly, the human pose in the scene is iden-
tified (see Sect. 5.3) and the average human state vector
(Xh,Yh, Zh, θh) is computed. Then, the human’s “personal
space”, inspired by Hall’s [16] proxemics theory, is modeled
by centering a Gaussian Kernel around (Xh,Yh), imposing
thus soft constrains regarding the human approaching bor-
ders instead of crisp ones, in order to handle occasions with
limited free space for robot maneuvering. The robot appre-
hends the human“personal zone” as a circular area around the
human of outer radius greater than 1.2m [51] and searches
for an optimal observation range outside this perimeter for
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Fig. 4 The autonomous selection of robot parking position scheme.
The human personal space and the search space i.e. observation area,
are superimposed on a 2D metric map . The generated robot parking
positions are presented with arrows among which, the red ones are
discarded due to the fact that the robot footprint does not fit among the
existing obstacles in the static 2D metric map, those marked with green
are the candidate ones and the blue is the selected robot parking position

the identification of a suitable parking pose that satisfies the
requirements for human frontal facing and the robot’s foot-
print fitting among the static obstacles of the global metric
map. The robot’s footprint affordance to the static metric
map is controlledwith a spatial decomposition technique, i.e.
kdTree, by searching with neighborhood radius of size equal
to the robot’s footprint radius, ignoring thus those poses that
intersect among the static obstacles and the footprint’s points
[34]. The selection of the most appropriate parking pose is
performed by applying an Euclidean distance minimization
criterion among the robot current pose and the calculated
ones, see Fig. 4.

5.2 Global Human Observation in the Scene

The first step towards human action recognition is the robust
detection and tracking of the human in the observed scene.
However, relying only on the robot’s RGB-D sensor for
human tracking introduces partial observability of the human
actions since the camera’s FoV is restricted and human track-
ing is not feasible during robot manoeuvring; e.g. the robot
traverses from its monitoring parking pose towards an activ-
ity related parking pose and in the meantime the human is
in the middle of an ongoing activity. Therefore, in order to
ensure constant situation awareness about the human pres-
ence, we fused two specific human tracking algorithms by
exploiting data form robot’s laser scanners and RGB-D sen-
sor:
RGB-D based human tracking A human detection and
tracking framework suitable to operate with low-cost depth
sensors at real-life situations addressing limitations such as

body part occlusions, partial-body views, sensor noise and
interaction with objects [54] has been adopted. In particular,
a human template is initialized in the first frame of a tracking
sequence, through a two-step initialization process, using as
input the human pose estimation provided by the Microsoft
Kinect v1 built-in skeleton tracker [46]. The human pose
tracker then employs the articulated SDF model [43] which
utilizes the articulated skinned human template to track the
human pose in sequences of depth images, extracting thus
the 3D positions of the skeletal joints required for the recog-
nition of atomic actions. The attributes of this method that
facilitate operation on real life robotic applications are pro-
vided through a series of complementary tracking features.
In particular, the Free space violation criterion reduces the
possibility of a part of the human template, to not correspond
to any part of the input data; The Body part visibility is a
factor which ensures that only the visible body parts are used
in the optimization process of the SDF model, since occlu-
sions of body parts due to obstacles and constraints of the
camera’s FoV are commonly encountered in realistic envi-
ronments. Last, the Leg intersection criterion counteracts
the occasional mix-up of the lower limbs, using a body part
representation similar to [52].
Laser basedhuman trackingThe laser basedhuman tracking
is mainly inspired by the work presented in [24], in accor-
dance to which, the laser scans are clustered according to
the distance and a feature vector is extracted for each cluster
using specific geometrical features. A random forest classi-
fier is trained with these features to model human presence
or absence. During the inference procedure, all the detected
pairs of legs that produce a high probability score are con-
sidered as potential humans. However, the method produces
many false positive observations, yet fusion with skeleton
tracking reduced the false positives through a blacklisting
procedure [23]. Specifically, when laser-based human tracks
are matched with skeleton based tracks in terms of global
coordinate system, the human position is locked. The rest
of the noisy information of the laser-based tracks are black-
listed, and their confidence degrades with time. In occasions
where the human is out of the RGB-D camera FoV, while
has been previously matched with the leg-based tracker, the
observation is passed to the white list and the monitoring of
the human position is resumed.

5.3 Human Action Recognition

The human action recognition module is the one developed
in [49], which is specifically designed to operate in realis-
tic conditions, with robotic platforms. It employs the tracked
humans skeleton joints and by extending the classic Eigen-
Joints [58] method, it improves recognition robustness for
a series of actions involved in common daily activities. The
method utilizes novel features to take into account action
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specificities such as joints travelled distance and their evolu-
tion trend in subsequent frames in relation to the reference
one. In addition, it associates specific actions with infor-
mation related to the users manipulated objects, taking into
account that several actions may be similar, yet performed
with different objects e.g. “eating” can be analysed as a “hand
to mouth” atomic action with object “spoon” and drinking
can be analysed also as a “hand to mouth” action with object
“cup”.Moreover, thismethod operates with continuous input
video streams without the demand of pre-segmented action
sequences which is a prerequisite on real time gathered data
by the on-board camera. Considering also the observed vari-
ables of the DBN, the detected actions correspond to the
observed variables o1 fed to the DBN during the training and
inference phase.

5.4 Detection and Tracking of Environment Objects

During daily activities, humans interact with a variety of
large objects e.g. “fridge”, “cupboard”, as well as with small
objects e.g. “cup”, “pot”, “pill box”,which share great hetero-
geneity between each other. This renders the task of human
manipulated objects tracking—by a single detection/tracking
method—a challenging task that, necessitates the adoption of
holistic solution for differentiation among tracking of large
and small objects. Towards this direction, the environment
has been organized in a hierarchical fashion where on top of
the metric map, a semantic model is constructed, which is
a tree structure that retains the relationships among objects-
places and describes explicitly the domestic environment in
terms of human concepts (Fig. 5).

In this schema small objects are organized in terms of
their attributes and their relations to large objects. The posi-
tion of the large objects is expressed in the same coordinate
systemas themetricmap. The design principle of this compo-
nent is based on the assumption that the human continuously
interacts with objects in the course of the activities of inter-
est; i.e. “cup” when the human drinks water, “table” when
the human is sitting at the kitchen table without performing
a specific simple activity. Therefore, the monitoring of the
large objects operates continuously, considering as the cur-

Fig. 5 Initialization of the small object monitoring: a the RGB refer-
ence image, b the isolated workspace area and c the outcome of the
object detection algorithm

rently large manipulated object, the one that has minimum
distance with human.

The initiation of the tracking component of small manip-
ulated objects relies on the assumption that the human
interacts with small objects placed on proximal to him/her
large objects. Each large object defines a workspace and the
small objects in the scene are expected to be present in this
workspace. Upon identification of an ongoing activity and
given that the robot has reached its parking position, the
monitoring of small objects is initialized as follows; firstly,
the closest to the user large object is determined e.g. the
table, and this information is utilized as a triggering event for
the small object detection and tracking. Secondly, RANSAC
plane segmentation is applied to extract the dominant plane
defined by the large object which acts as a supporting surface
for the small objects expected to be in the scene. The area
above the supporting surface is defined herein as workspace.
The convex hull of the large object’s points that satisfy the
plane equation is extracted and, thus, a geometrical descrip-
tion of the workspace with respect to the robot’s viewpoint
is obtained. The points above the plane are projected on it
and the properties of the convex description of the surface
are utilized to efficiently crop the scene. On the formulated
workspace, a depth-based object detection algorithm [11] is
applied and, thus, each pixel is labeled either as one of the
known Nob objects or as unknown. It is revealed that small
objects are not statically associated with large objects, how-
ever, information from large objects is extracted to determine
the type of small objects within its workspace and to deduce
whether these objects are manipulated by the user.

To infer which of the detected objects is currently manip-
ulated by the user a depth-based tracking rule is applied, in
accordance to which, a voxel grid filtering step merges the
points labeled as a specific object in a structure that enables
change detection during human manipulations. Comparing
all subsequent frames with a reference frame, all labeled
clusters are being checked in terms of their occupancy and,
hence, all detected objects are being tracked. If a new cluster
enters the monitored workspace, object detection is executed
specifically on the area defined by this cluster. If any change,
removal or addition of a small object takes place, the refer-
ence frame is updated accordingly.

The small object tracking system operates in three (3)
states for each considered object in the scene, i.e. “not-
detected”, “in-workspace”, “manipulated”. When the com-
ponent launches, all small objects can be either in the “not-
detected” or in the “in-workspace” state. While the human
executes an activity it is possible to add to the observed
workspace a previously unseen but known object. This object
will transit from the “not-detected” to the “in-workspace”
state. When the human picks up an “in-workspace” object,
its state changes to “manipulated”. Tracking states for all
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Fig. 6 Block diagram of the
software components involved
in human behavior
understanding and their
interconnection with specific
input output

Laser based leg tracker RGBD- based skeleton trackerHierarchical seman�c map

Small objects
monitoring

and tracking

Large objects
monitoring and tracking

Human ac�on recogni�on

Human ac�vity recogni�on

Human behavioural modelling

Global object manipulated
server
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object labels are reported as an o2 vector to the DBN at each
execution cycle.

5.5 Robot-Wise Implementation Details

The above described subordinate modules have been imple-
mented within the Robot Operating System (ROS) frame-
work and their operation along with the developed software
interfaces is exhibited in the architecture diagram illustrated
in Fig. 6. An in depth observation of this diagram proves
that the simultaneous monitoring of the human actions and
the respective human manipulated objects is a challenging
task when the observations stem from solely vision input, i.e.
RGB-D camera and Laser scanners. The global human posi-
tioning server is responsible to continuously provide data
regarding human’s location during the monitoring phase and
compensates the situations where the human is out of the
FoV of the RGB-D sensor. The global manipulated-object
server continuously provides observations about the objects
manipulated by the human during activity monitoring. Thus,
monitoring of the large objects continuously operates as
a background process considering the minimum distance
among the humanposition (global humanpositioning server)
and the registered large objects in the hierarchical semantic
map. Consequently, labels of large objects observations are
reported to the DBN retina, yet when changes on the position
of a small object is observed, the global manipulated-object
server infers the label of the respective small object. It is
apparent that the global manipulated - object server provides
high priority to the small objects tracking which is activated
after the robot has reached a parking position suitable for
monitoring a specific activity.

5.5.1 Runtime Analysis

The run-time performance of the overall autonomous moni-
toring framework depends on the individual performance of
its core modules, described above, as they sequentially pro-
vide the information necessary for humanbehavior inference.
The vision algorithms (human tracking, action recognition
and object detection and tracking) present the highest com-
putational burden introducing a performance latency in the
system.

The overall framework requires approximately 150ms to
capture at least one sample from eachmodule, with thework-
load being shared over a 2-PC configuration (Intel i7-5930K,
NVIDIA GTX970) installed in the robot, i.e. PC1 and PC2.
More specifically, human tracking, human action recognition
and parking position selection processes run on PC1, while
object detection and tracking run on PC2, effectively utiliz-
ing the available CPU and GPU resources. The final activity
inference is performed on PC1, after all the above modules
had concluded their execution. The runtime requirements of
each module are described in detail in Table 2.

6 Experimental Evaluation

The evaluation of the proposed human behavior understand-
ing method has been performed on two distinct test sites.
The first one concerned the assessment of the method on a
simulated room located in the premises of the Medical Uni-
versity of Lublin (LUM) at Poland. This simulated roomwas
utilized for the acquisition of a realistic dataset with daily
activities and served for the training and tuning of the DBN
models. Additionally, the autonomous operation capacity of
our method for human behavior understanding has been ini-
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Table 2 Run-time analysis of
the overall autonomous
monitoring framework: time
required to capture at least one
sample from each individual
module

Robot parking positions selection <0.01 s

Human tracking 0.06 s

Human action recognition 0.08 s

Object initial detection 1.0 s (executed once)

Object tracking <0.01 s

Activity inference <0.02 s (depends on number of samples)

tially evaluated on this simulated environment. The second
test site on which the proposed method has been evaluated
consists of 12 different real houses with real users located
in Barcelona. The robot, with the trained DBN models, had
been installed in each house and the user had the opportunity
to interact with it for seven days. In this period the selected
daily activities were repeated from the user frequently, i.e.
once per day and, thus, the capability of the proposedmethod
to perform human behavioral understanding has been evalu-
ated with large scale experiments in diverse and uncontrolled
environments.

6.1 Evaluation in a Simulated Room (LUMTest Site)

6.1.1 Dataset Acquisition

The subjects that participated at the LUM test site for the
dataset capture were elderly patients, selected by medical
personnel based on their mental and physical state and their
ability to perform the required activities. During the record-
ing process, each subject was asked to perform a series of
everyday activity scenarios for at least three repetitions,while
being monitored by the robot’s on-board camera.

Specifically, four (4) activitieswere selected, namelymeal
preparation, cooking, having a meal, medication intake. The
amount and type of the activities that the dataset contains
was selected by group of the neuroscientists and psycholo-
gists associated to this work. The main selection criteria can
be found in Sect. 3.1 and was deemed adequate to perform
behavior understanding. It should be stressed, that even if the
amount of the selected activities is disparate, which renders
the issue of activity recognition a relatively easy task that can
be addressed by several state-of-the-art methods, their subse-
quent execution steps (IUs) are essential for the extraction of
meaningful deductions for human behavior understanding.
For each activity sequence, a specific recording protocol was
followed as described in Table 3 the human pose and actions
as well as the manipulated objects were detected using the
pose tracking, action recognition and environment tracking
methods described in Sect. 5, respectively. The resulting cap-
tured data provided a realistic depiction of the monitoring
conditions that an assistive robotic platform may encounter
when deployed in real home environments,making it suitable
for the evaluation of the proposed framework. In total 123dis-

crete activity sequences, performed by 18 different subjects,
distributed in the four activities as outlined in Table 4 were
captured and used for evaluation purposes. In addition, Fig. 7
exhibits representative sample frames for each scenario.

6.1.2 Evaluation of the Activity Recognition Performance
(LUM Test Site)

The first step towards efficient behavioral modeling com-
prises the classification of the ongoing activity, so as for the
robot to be able to understand the type of the ongoing activity,
select the most appropriate parking position for close dis-
tance observation, recall the respective IU model and infer
correctly about the normal or abnormal behavior of the user.
The recorded datawere used for the training and testing of the
four different activities, following a leave one out cross vali-
dation procedure. Table 5 presents the detailed results of the
classification process, in accordancewithwhich it is revealed
that the developed activity recognition method presents high
activity classification potential, as it achieved overall preci-
sion and recall rates of over 98% respectively.

During the inference phase of the activity recognition
module, the observations of human actions and manipu-
lated objects presented sequentially to the DBN’s retina and
the DBN models were queried iteratively after gathering N
amount of observations. Specifically, the system was eval-
uated progressively in a slice-oriented manner, where the
observation window of each slice was set to N = 30, i.e.
approximately 3 s, while the activity label for the overall
sequence was inferred through majority voting; the activity
label that appeared in the majority of the N -size slices was
used to describe the whole sequence. The selection of the
parameter N was a decent compromise among the inference
frequency and the situation awareness for the autonomous
recognition of a new ongoing activity. According to this
parameter, the system expected to gather N pairs of synchro-
nized observations (human simple actions and manipulated
objects), and then theDBNmodels were queried and inferred
about the class that the aggregated sample (from the begin of
the sequence) belonged to. Therefore, it was observed that
during the experimental evaluation, for the first 2–5 slices
the trained DBN models could misclassify the activity type
of the query sequence. However, when the system gathered
more data, the overall class discrimination capability of it
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Table 3 The activities recording
protocol regarding the
environment setup

1.Meal preparation

a. The user is in the kitchen area

b. The user opens the fridge

c. The user gets an object from the fridge

d. The user closes the fridge

e. The user moves the object towards the kitchen bench

2. Cooking

a. The user is in the kitchen area

b. The ingredient of interest is in the drawer, the pot is in the cupboard

c. The user opens the drawer and gets the ingredient of interest

d. The user places the ingredient on the kitchen bench

e. The user closes the drawer

f. The user opens the cupboard and gets the pot

g. The user places the pot on the bench

h. The user closes the cupboard

i. The user gets the pot and places it under the sink

j. The user opens the tap of the faucet and then closes it

k. The user places the pot on the burner grate

l. The user turns on the burner grate.

m. The user waits

n. The user turns off the burner grate

3. Having a meal

a. The user moves towards the table

b. The user sits down

c. The user starts eating

d. The user starts drinking

e. The user stands up from the chair

4.Medication intake

a. The user sits on the chair near the table

b. The pill box and a cup of water are nearby, on the table

c. The user takes a pill and drinks water

Note that the order of the participant’s atomic actions was not binding

Table 4 Distribution of 18
different subjects to the four
activities in LUM dataset

Meal preparation Cooking Having a meal Medication intake

Participants 13 8 10 14

Repetitions 39 20 32 32

was revealed, and the total sequence was more accurately
classified. This phenomenon is typically observed in activi-
ties that are executed by humans in the same place and are
rather difficult to be identified even from a human observer.
Specifically, “Cooking” often is misclassified with the “Meal
preparation” activity during the beginning of the observation
(first slices), since they both take place in the kitchen area,
while “Having a meal” can be misclassified with the “Medi-
cation intake activity, as both take place in the kitchen table.
However, as we propagate deeper in an activity, the discrim-

ination ability of the DBN models increases since different
types of objects are involved in each activity.

6.1.3 Evaluation of IU Analysis for Behavior Understanding
(LUM Test Site)

For the evaluation of the IU steps detection process, a subset
of the overall LUM dataset was selected, including only the
activity sequences where the monitored subjects executed
all the IU steps. Next, every activity sequence was passed
through the respective activity IU step detection module. For
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Fig. 7 Sample sequences from the LUM dataset of the four activity
scenarios: a “meal preparation”, b “cooking”, c “having a meal”, d
“medication intake”

each IU step of an activity, the IU step detection rate was
estimated, defined as the rate of the activity sequences where
the IU step was detected, to the total number of the selected
activity sequences. Table 6 summarizes the IUdetection rates
for the four complex activities. It should be pointed out that
the IU analysis is not utilized to boost the performance of the
DBN based activity recognition, but it is used as a mean to
interpret the inference of the DBN model by analyzing the
behavioral factors of each element of the queried Viterbi path
and, thus, understand the human behavior.

In the “meal preparation” activity, a 73.71% average IU
step detection rate was achieved. IU steps 1 and 2, which
correspond to “reaching and opening the fridge”, achieved
very high detection rates, over 89%. IU 3 “close the fridge”
presented relatively lower detection rate, and the reason is the
challenging viewpoint and corresponding occlusions during
human tracking, as the user would usually overlap with the
fridge door after opening it, thus making it harder to track the
“close the door” action. In the “cooking” activity, all of the
IU steps achieved a detection rate of over 80%, leading to an
overall IU stepdetection rate of 87.50%. In the “having ameal
activity”, an 95.62% overall IU detection rate was achieved,

with the two mandatory IU steps, namely IU 3 “start eating”
and IU 4 “start drinking”, achieving almost perfect detec-
tion rates. IU steps 4 and 5, i.e. “sitting down to the kitchen
table” and “standing up from the kitchen table”, achieved
more than 90%detection ratewhile the erroneous estimations
in these cases stemmed mainly from human occlusions from
the kitchen table. Finally, in the “medication intake activity”
82.03% overall IU detection rate was achieved, with all of the
IU steps being detected at least 75% of the times. The reason
for the relatively low recognition rate of IU 1 and IU 4 steps
during the “medication intake” activity is the fact that some
users opened/closed the pill box very close to their body and
behind the monitored surface i.e. kitchen table, where occlu-
sions from the kitchen table took place.

From the above, it is concluded that the IU analysis
achieved sufficient detection results, proving the ability of
the method to infer over the examined samples. The effec-
tiveness of the developed IU-step based method has been
validated, both in terms of activity execution evaluation and
selection of suitable IUs to detect and track for each activity.
Additionally, it should be mentioned that the human activity
recognition module is built and assessed on top of the object
monitoring and human action recognition software compo-
nents; as such, it is expected that errors on object detection
and action recognition can be propagated to the hierarchy
and, thus, can be inherited to the human activity recognition
and IU analysis method.

6.1.4 Activity Recognition with Autonomous Robot
Monitoring (LUM Test Site)

The next step of the experimental evaluation process com-
prises the assessment of the robot’s ability to recognize
the type of an ongoing activity and autonomously select
the most appropriate parking position for close distance
observation. In this context, the trained activity recognition
frameworkwas exposed to a continuous sequence of observa-
tions in accordance towhich the userswhere asked to perform
sequentially the activities, while the robot had to select and
navigate towards a parking pose convenient for the moni-
toring of this activity. Initially, the robot was parked on its
charging station which is normally located in a discreet spot

Table 5 Confusion matrix of
the activity classification results
on the LUM activities dataset

Activities Classified AS

Meal preparation Cooking Having a meal Medication intake

Meal preparation 38 1 0 0

Cooking 0 20 0 0

Having a meal 0 0 32 0

Medication intake 1 0 0 31

Total 39 21 32 31
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Table 6 IU step detection results and behavioral modelling assessment for the four activities at the LUM dataset

IU 1 IU 2 IU 3a IU 4a Overall

Meal preparation

100% 89.74% 64.10% 79.41% 83.31%

IU 1 IU 2a IU 3a IU 4a Overall

Cooking

85% 100% 85% 80% 87.50%

IU 1 IU 2 IU 3a IU 4a IU 5 Overall

Having a meal

93.75% 93.75% 100% 96.87% 93.75% 95.62%

IU 1a IU 2a IU 3a IU 4 Overall

Medication intake

75% 81.25% 96.87% 75% 82.03%

aMandatory IU step

in the home environmentwhere the robot observes the human
and large objects. During this experiment, each user per-
formedprogressively all the target activities,while therewere
intermediate segments where the user was doing nothing rel-
evant to the target classes. In this occasion, the human activity
recognition module should have the ability to continuously
infer about the ongoing activity based on the log-likelihood,
while deductions about the IU steps should take place only
when the system is confident about the ongoing activity. To
model this confidence factor, the target samples undergo a
thresholding procedure on the log-likelihood level, where
each sample is examined among all the DBNmodels and the
resulting log-likelihood value is assessed. In cases that it is
below a predefined threshold Tll , experimentally estimated
during the activity classification experiments described in
Sect. 6.1.2, this segment of the sequence is considered as
unknown and during this phase, the user does not performany
of the target classes or is in the begging of an activity, where
the systemhas not yet gathered enough observations. In order
to reduce the impact on the overall activity recognition, of
individual slices generating momentarily false activity pro-
posals, the inference of the ongoing activity is performed
taking into consideration not only the latest slice, but also
all the previous slices that have generated the same activ-
ity label, in the form of a history buffer. The history buffer
is reset and cleared only when the current slice, along with
the slices in the buffer, produces an activity label different
than the last slice. While this approach does indeed increase
the activity recognition robustness, it also introduces a bias
in favor of longer activities, which produce larger history
buffers, thus requiring more non-activity slices to ”forget”
the activity after its actual conclusion.

Once the robot was confident about a certain activity the
autonomous parking positions generation module was acti-
vated and upon selection of the most appropriate one, the
robot traversed towards that pose. For the evaluation of the
autonomous recognition capability, the sequences of all the
activities performed 20 times in a specific order i.e. “meal
preparation”, “cooking”, “having a meal” and “medication
intake”. The ordering of this sequence is conceptually jus-
tified by considering the rationale where the user firstly
prepares the ingredients for the meal, then proceeds with the
actual cooking and, afterwards, the eating activity follows.
The “medication intake” activity was retained last, mainly
due to the fact that typically, medication is received after a
meal while also this activity is contextually different with the
rest of the activities and is expected to take place separately
within the day.

The results obtained from this experiment revealed the
ability of the system to recognize in the correct order all of
the examined sequences. During this experiment, the DBN
models are queried periodically in slices of N acquired obser-
vations (i.e. every 3 s), stored in a buffer -where observations
are concatenated- and the log-likelihood of all DBN net-
works is assessed after N observations. Whenever the DBN
models obtained continuous log-likelihood values above the
predefined threshold Tll , the recognized class index was
assigned to the respective class and the autonomous robot
position selection was activated. Upon selection of the most
appropriate parking pose, the robot navigated towards this
direction. During the robot’s locomotion, the software com-
ponents for human action and object manipulation where
deactivated and activated again upon reaching the target pose.
Figure 8 summarizes the outcome of the aforementioned
evaluation procedure and demonstrates the capacity of the
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Fig. 8 Experimental results for continuous activity recognition at the LUM test site

developed methodology to recognize correctly the ongoing
activities within the long testing sequences, as the detection
rate achieved was over 93%.

Further experimental assessment of the autonomous recog-
nition mode comprises a more detailed view, by considering
also the temporal accuracy during the evaluation of the long
sequences. From this experiment, it is revealed that the per-
formance decreases mainly due to the fact that the evaluation
is performed online and the algorithm needs some time to
“forget” the last activity, reset the history buffer and accu-
rately infer about the class label of the new one. Specifically,
in intermediate time durations between successive activities,
the observations are getting noisy since information of the
previous and the current ongoing activities are retained,while
also the robot is traveling from one position to another. Con-
sequently, the log-likelihood for all the trained classes obtains
values under the threshold Tll and as a result, the query sam-
ple is classified as unknown or misclassified to the previous
activity class. The outcome of this experiment is summarized
in (“Precision Column”) Fig. 8.

More specifically, by observing the results in Fig. 8 it is
revealed that for the “meal preparation” activity we have low
precision mainly due to the fact that at its last moments it
overlaps with the first moments of the “cooking” activity.
Yet, this can be justified if we consider that both activi-
ties have similarities in the involved IU steps (objects and
simple activities) e.g. reaching the kitchen bench or the cup-
board, and the observations need to propagate deeper in the
“cooking” activity in order for the log-likelihood to obtain
a higher value for this class while gradually “forgetting”
the previous one. Concerning the “Cooking” activity high
precision results were obtained, revealing that the recogni-
tion of this activity is not heavily affected from the “meal
preparation” activity, something that is reasonable since
the “Cooking” activity has a relatively long average dura-

tion. The “having a meal” activity retained high precision
scores, while the average recall results were caused mainly
from the preceding “cooking” activity, which due to its
long average duration needed a longer time period to be
“forgotten” and as a result, would overlap with the ini-
tial moments of the “Having a meal” activity. Finally, the
proposed framework achieved high precision and recall val-
ues for the “Medication intake” activity indicating that the
recognition of this activity was affected less from the other
activities.

6.2 Evaluation in Real Environments (Barcelona Test
Site)

The subjects that participated at theBarcelona test site experi-
mentswere elderly patients selected by themedical personnel
of Fundacio ACE Barcelona Alzheimer Institute & Research
Centre and fulfilled the same inclusion criteria with the ones
that participated at the LUM test site. In total, 12 subjects
were selected, with the experiments taking place in their
personal real home environment, representative examples of
which are presented in Fig. 9. The subjects were asked to
execute the same four activities, with at least one repetition
each day, for seven days in total, while the robot was observ-
ing them from a selected parking position. Apart from two
home environments were the robot was not able to enter the
kitchen area due to space limitations, and, thus, the “meal
preparation” and “cooking” activities were not examined, in
the rest of the apartments all four activities were executed.
During this experimental procedure 308 activity instances
were examined in total, corresponding to all the participants
for the seven days of interaction. The distribution of these
activities is presented in Table 7.
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Fig. 9 Representative instances of the robot observing human behavior through daily activities in six houses at the Barcelona test site. Each row
corresponds to a different house while from left to right the robot observes the “meal preparation”. “cooking”, “having a meal” and “medication
intake” activities

Table 7 Distribution of the 12
different subjects for the four
activities at the Barcelona test
site

Meal preparation Cooking Having a meal Medication intake

Participants 10a 10a 12 12

Repetitions 7 7 7 7

Total executions 70 70 84 84

a2 participants did not performed the indicated activity due to space limitations
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6.2.1 Autonomous Behavior Understanding (Barcelona Test
Site)

This experimental procedure comprises the evaluation of the
proposed method to perform autonomous behavior under-
standing through the daily activities recognition, the selection
of the most appropriate parking position for close distance
observation and the assessment of the IU analysis. For these
experiments the DBN models and the log-likelihood thresh-
old Tll that distinguishes the ongoing activities, were retained
from the LUM test site. Considering the robot’s charging sta-
tion, this was selected with the criterion to ensure maximum
visibility of the user and the large objects of interest, where
the examined actions took place in each house. Each partic-
ipant performed the target activities sequentially within the
day while there were also intermediate segments were the
user was doing nothing relevant to the target classes. Thus,
when the robot gathered such observations for a significant
amount of time, the history buffer was cleared and reset. In
situations where the DBN models obtained continuous log-
likelihood values above Tll , the system was activated and
the robot calculated the most appropriate pose and moved
towards the selected pose to resume the activity recognition
and behavior understanding.

Figure 10 summarizes the detailed results on the classifi-
cation process of the real environments at the Barcelona test
site. The overall detection rate is above 92%, however it is
decreased when compared to the operation in the simulated
environment. This is related to the fact that in the complex
realistic environments there aremore occlusions fromperiph-
eral objects and the performance of the small and large object
detection and the human tracking degrades. The precision
capability of the methods (“Precision” column Fig. 10) is
also decreased since the method needs more time to “forget”
the last activity and reset the history buffer, especially in sit-
uations where the two activities do not start immediately one
after the other and the robot gathers observations irrelevant

Table 8 IU step detection results and behavioral modelling assessment
for the four activities at the Barcelona test site

IU 1 IU 2 IU 3a IU 4a Overall

Meal preparation

94.29% 87.14% 84.29% 87.14% 88.21%

IU 1 IU 2a IU 3a IU 4a Overall

Cooking

88.57% 91.43% 84.29% 87.14% 87.86%

IU 1 IU 2 IU 3a IU 4a IU 5 Overall

Having a meal

90.48% 88.10% 91.67% 72.62.87% 82.14% 85.00%

IU 1a IU 2a IU 3a IU 4 Overall

Medication intake

86.90% 83.33% 86.90% 83.33% 85.12%

aMandatory IU step

with the trainedmodels and, thus, the log-likelihood value for
all the trained classes obtained falls below the thresholdTll . In
general the overall analysis regarding the accuracy, precision
and recall follows the same pattern with the similar experi-
ment conducted in the simulated environment. However, the
performance is degraded, mainly due to noisy measurements
from the action and object detection components, introduced
by the challenges in the realistic environments.

Meanwhile, another part of the experimental assessment
concerns the methods’ ability to correctly infer about the
behavior factors that allowunderstanding of the user’s behav-
ior through the IU analysis. Thus, each recognized activity
sequencewas passed through the respective IU step detection
module. The inference regarding the IU steps was performed
after the robot selected and moved towards the parking
position. As stated above, each participant performed each
activity at least once per day; as a result the maximum rep-

Fig. 10 Experimental results for continuous activity recognition at the Barcelona test site
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Fig. 11 Per subject behavior modelling evaluation at the Barcelona test site. For subject11 and subject12 the evaluation on “meal preparation”
and “cooking” activities was not applicable due to space limitations

etitions of each activity per participant was seven (7), apart
from twohouse environmentswhere the “cooking” and“meal
preparation” activities were omitted. The users were asked to
perform the activities naturally, while the robot was observ-
ing them. The robot inferred continuously regarding the IU
analysis and decided over the normal and abnormal behav-

ior after the completion of the activity, i.e the log-likelihood
value was below the threshold Tll . The evaluation of the
robot’s capability to correctly assess the user’s behavior was
performed offline where the sequences of the obtained data
were examined by the experts to annotate and compare the
robot’s inferencewith the actual humanbehavior, i.e. to check
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formissingmandatory IU steps. In Table 8, the average cross-
subject performance for the detection of each IU step and
the overall IU detection rate per activity is summarized. The
method achieved over 85.00% detection rate on the real envi-
ronments and when compared with the respective results in
Table 6, it is revealed that the performance remains ade-
quate. Specifically, for the “meal preparation” activity the
performance was slightly increased and this was due to the
fact that in many cases the robot selected a parking posi-
tion with good visibility that allowed successful observation
of the large objects and the human actions. Regarding the
“cooking” activity the behavior understanding capability of
the method was approximately the same, while the behavior
understanding during the “having a meal” activity exhibited
lower performance when compared to the simulated envi-
ronment. This was due to the fact that the robot typically
parked in large distances from the user while s/he was hav-
ing a meal considering the proxemics to respect the personal
space and, thus, the performance of the object detection com-
ponent degraded, especially in situations where the table was
cluttered with several objects. The behavior understanding
during “medication intake”was approximately the samewith
slightly better performance in IU1, when the user was sitting
in an open space and the robot was capable to approach in
close distance to observe the activity. The per subject behav-
ior modelling analysis is summarized in Fig. 11 where for
each subject the IU detection rate for the seven days of inter-
action is exhibited. Note, that for subject11 and subject12
only two of the activities were examined.

Last, it should be noted that the selection of appropriate
parking positions for the monitoring of each activity ensures
the necessitated controlled nature of the observed environ-
ment, where human and object detection tracking algorithms
operate accurately, an attribute that positively impacts on the
action recognition mode and, hence in the behavioral under-
standing mode, since the RGB-D camera is closer at the user
and the depth data becomes more reliable. In addition, the
manipulated objects involved in each scenario hold major
role in the discriminative ability of the DBN models and
the selection of optimal parking pose for monitoring allows
precise detection of the small objects. Concerning the exe-
cution rate, it strongly depends on the gathering rate of the
data exposed to the DBNs retina and is regulated from the
slowest software component; in our specific case, this is the
global manipulated object server, which operates at a rate
of 10Hz. The inference rate of the human behavior under-
standing module depends on the amount of the data existing
in the buffer, and indicatively, for relatively large sequences
of 5min, it takes approximately 1sec for inference, while
this execution rate increases linearly with the time that DBN
models are exposed to the data.

7 Conclusions

In this work, the ability to understand the human behavior
through daily activities, with a robot, has been presented.
Each selected activity has been analysed in terms of Inter-
action Unit analysis, which is a typical psychology-inspired
method to model human behavior. We modeled the problem
with a specifically designed Dynamic Bayessian Network
that allowed the transcription of Interaction Unit analysis
into a machine interpretable manner. This approach facili-
tated both activity recognition and in-depth activity analysis
in terms of evaluation of the associated to the IUs behav-
ioral factors. Moreover, it should be stated that until now the
implementation of Interaction Unit analysis required explicit
measurements of the environmental state and human actions,
which was addressed by applying several sensors to obtain
the necessary recordings. In the proposedmethod, it has been
demonstrated that behavior understanding through IU anal-
ysis can be performed with a mobile robot equipped with a
minimum set of sensors i.e. RGB-D camera and laser scan-
ners. The latter has been achieved by taking advantage of
the robot’s mobility, where by placing the robot towards the
region of interest, better view from the human and environ-
ment state is obtained. To this end, a component responsible
for the automatic selection of robot parking positions has
been developed, which also takes into consideration the psy-
chological constraints of the proxemics theory. The added
value of IU analysis integration with all of the subordinate
monitoring modules into a united framework operated by a
robotic agent, increases drastically the automation of human
behavior understanding through daily activities observation,
since it presents a minimum invasion on the environmental
setup.Consistent observations fromhumans andmanipulated
objects were obtained through custom-tailored delicately
designed software components capable of operating in real
time and under realistic environmental conditions, thus com-
pensating limitations such as human side-views, occlusions
and interactions with realistic daily-used objects. The evalu-
ation of the proposed method has been performed on two test
sites. Thefirst one concerned the evaluation of themethod in a
small scale controlled simulated environment at theLUMtest
site, while the second one concerned the evaluation on a large
scale experiment in unconstrained environments, with 12 real
users in their personal home environments at the Barcelona
test site. The obtained results show the capability of the robot
to accurately differentiate the ongoing activities as well as to
precisely infer about the behavioral factors for each specific
activity and thus adequately understand the human behavior.
Finally, the findings of the research conducted herein could
be also analyzed in terms of the overall impact of the sys-
tem on the users. This necessitates further research efforts to
identify how the users accepted the system, for instance by
using for example System Usability Scale and other metrics.
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