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Abstract
This work presents an approach for learning navigation behaviors for robots using Optimal Rapidly-exploring Random Trees
(RRT∗) as themain planner. A new learning algorithm combining both InverseReinforcement Learning andRRT∗ is developed
to learn the RRT∗’s cost function from demonstrations. A comparison with other state-of-the-art algorithms shows how the
method can recover the behavior from the demonstrations. Finally, a learned cost function for social navigation is tested in
real experiments with a robot in the laboratory.

Keywords Path planning · Learning from demonstration · Social robots

1 Introduction

Today, more and more mobile robots are coexisting with us
in our daily lives. As a result, the creation of motion plans
for robots that share space with humans in dynamic environ-
ments is a subject of intense investigation in robotics. Robots
must respect human social conventions, guarantee the com-
fort of surrounding persons, and maintain legibility so that
humans can understand the robot’s intentions [15]. This is
called human-aware navigation.

This problem was initially tackled by including pre-
programmed costs and constraints related to human-aware-
ness into motion planners to obtain socially acceptable paths
[11,36]. However, hard-coded social behaviors might be
inappropriate [5]. In many implementations (for instance
[12,24]), these costs are grounded in Proxemics theory [8].
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However, as shown in [19], Proxemics is focused on people
interaction, and it could not be suitable for navigating among
people.

All in all, it is easier to demonstrate socially acceptable
behaviors than mathematically defining them. Therefore,
learning these social behaviors from data seems a more prin-
cipled approach. In particular, we consider in this paper
the application of telepresence robots [33] (see Fig. 1). Our
goal is to increase the autonomy of such robots, freeing the
users from the low-level navigation tasks. In this setup, it
is very natural to collect navigation data online from the
users controlling the telepresence robot. Then, this data is
easily reproducible off-line and thus, used as examples to
learn social navigation behaviors during idle times of the
robot.

Thus, we present in the paper a new approach to learn
navigation behaviors from demonstrations. We make use
of Inverse Reinforcement Learning (IRL) concepts [21]
and sampling-based costmap planners, like Optimal-RRTs
(RRT∗)[10], to identify theRRTcost function that best fits the
example trajectories.Many IRL approaches for robot naviga-
tion are based on discrete Markov Decision Process (MDPs)
to frame the problem [9,28,37]. MDPs allow dealing with
uncertain outcomes of actions.However,MDPs present some
disadvantages for robot motion planning, like poor scalabil-
ity with the involved large (and typically continuous) state
spaces, which leads to high computational complexity. The
proposed method, which we have called Rapidly-exploring
random Trees Inverse Reinforcement Learning (RTIRL),
makes use of the RRT∗ instead of an MDP. It exploits the
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Fig. 1 Image of the telepresence robot developed in the TERESA
project http://teresaproject.eu

advantages of the RRT∗ to deal with continuous state and
control spaces and to scale with the state size. It is also gen-
eral enough to be applied in different scenarios.

The contribution of this paper is threefold: a new method
for learning robot navigation behaviors from demonstrations
that employs widely-used navigation planners like RRT*; a
comparison with other approaches from the state of the art
that shows how the method adequately recovers the demon-
strated behavior; and the application of the method to the
human-aware navigation problem.

The paper is structured as follows. After a summary of the
related work, next section describes the algorithm for learn-
ing fromdemonstrations usingRRT∗. Then, Sect. 3 describes
the particular problem of social navigation considered in the
paper. Section 4 presents a benchmarking evaluation of the
method, including a comparison with other algorithms from
the state of the art. In Sect. 5, a set of experiments with a real
robot using a learned cost function for social navigation is
presented. Finally, Sect. 6 summarizes the paper contribution
and outlooks future work.

1.1 RelatedWork

In the last years, several contributions have been presented
regarding the application of learning to the problem of
human-aware navigation, and in particular, an interesting
approach is Learning from Demonstrations (LfD) [2]. One
successful technique to do that is Inverse Reinforcement
Learning (IRL) [21]: the observations of an expert demon-
strating the task are used to recover the reward (or cost)
function the demonstrator was attempting to maximize (min-
imize). Then, the reward can be used to obtain a similar
robot policy. Other LfD techniques that directly learn maps
from inputs to actions, like Behavioral Cloning [35], are
in general more adequate for learning low-level control
policies than for planning [2]. An interesting characteristic
of IRL techniques is that they try to learn the underlying
behavior that the demonstrator is showing, and therefore,
they allow to generalize to different scenarios or situa-
tions where to perform the learned task. Furthermore, the
learned reward functions can be transferred to different plan-
ners.

The literature tackles the IRL problem from different
points of view. The initial projection method proposed by
Abbeel [1] was followed by other well-known approxi-
mations. A probabilistic method based on the principle of
maximum entropy is presented in [39], or a maximum mar-
gin structured prediction based on subgradients is employed
in [30,31]. In [27], a Bayesian perspective is taken to solve
the problem.

In most of the existing models, the IRL technique makes
use of MDPs as the underlying process. However, it is com-
plex to encode general problems with MDPs due to its
computational complexity which scales poorly with high
dimensionality and large state spaces.

Different solutions have been considered to deal with the
main MDP drawbacks. The computational cost is managed
in [20] by using a Bayesian nonparametric mixture model to
divide the observations and obtain a group of simpler reward
functions to learn. In [18], deterministic MDPs with large,
continuous state and action spaces are handled by consid-
ering only the shape of the learned reward function in the
neighborhood of the experts demonstrations. Furthermore,
neural networks are applied in [38] to learn non-linear poli-
cies. In [23], a socially normative behavior is learned using
flexible graph-based representation to model the underlying
MDP.

Other authors try to replace or represent the MDP by
another process according to the aim of the task. In [30],
the MDP can be replaced by an A∗ search algorithm. Dif-
ferent car driving styles are learned in [16] by modeling
the car dynamics using a time-continuous spline represen-
tation instead of an MDP. Another example is [14], where
the cooperative navigation behavior of humans is learned
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using Hamiltonian Markov chain Monte Carlo sampling to
compute the feature expectations over high-dimensional con-
tinuous distributions.

While the previous approaches show promising results,
they employ representations tailored to the problem at hand.
In this paper, we present an algorithm for learning robot nav-
igation behaviors from demonstrations using RRT∗ as main
planner [10]. RRT* planners are very common in robotics
applications; they are asymptotically optimal, can cope with
continuous state and action spaces and kinodynamic con-
straints, reason implicitly about obstacles and can be easily
extended to spaces with higher dimensions. We aim at creat-
ing a new learning algorithm combining both IRL and RRT∗
techniques to extract the proper weights of the cost function
from demonstration trajectories. This cost function can be
used later in a regular RRT∗ to allow the robot reproducing
the desired behavior at different scenarios. A similar idea of
ours is recently presented in [34] where the Maximum Mar-
gin Planning (MMP) method is extended to learn RRT∗ cost
functions.

This work is an extension of the work initially presented
in [25]. The paper has been significantly extended, including
a thorough evaluation of the learning performance through a
comparison with similar state-of-the-art approximations; the
application of the method to the social navigation problem
considering a wider set of features; and a comparison of the
resultant navigation behavior with respect to non human-
aware planners.

2 Learning a RRT* Cost Function

2.1 IRL Formulation with RRT* Planners

RRT∗ is a technique for optimal motion planning employed
extensively in robotics [10]. It is flexible and easily adapted to
different scenarios and problems. RRT∗ approaches reason
about collisions with obstacles at moderate computational
cost even in high dimensionality. They explore the config-
uration space to obtain optimal paths on cost spaces, and
the kinodynamic extension allows reasoning about the robot
dynamics.

The RRT∗ algorithm considers that a cost function is
associated with each point x in the configuration space
of the robot. The algorithm seeks to obtain the trajec-
tory ζ ∗ that minimizes the total cost along the path C(ζ ).
It does so by randomly sampling the configuration space
and creating a tree towards the goal. The paths are then
represented by a finite set of configuration points ζ =
{x1, x2, . . . , xN }.

Without loss of generality, we can assume that the cost for
each point x can be expressed as a weighted linear combi-
nation of a set of J functions f j (x):

c(x) =
J∑

j=1

ω j f j (x) = ωT f (x) (1)

The function f (x) = [ f1(x), f2(x), . . . , f J (x)]T is
based on J measurable characteristics that will be called fea-
tures. The particular features will depend on the task to be
learned, and are used to extract the information from the robot
configurations that are relevant for that particular task.While
not explicitly indicated, the value of the features will depend
also on the scenario s (given by the position of obstacles,
people, goals and any other relevant information external to
the robot) where the planning takes place.

The cost of a path is then the sum of the cost for all points
in it. Particularly, in the RRT∗, the cost of a path is the sum of
the sub-costs of moving between pairs of points in the path:

C(ζ ) =
N−1∑

i=1

c(xi ) + c(xi+1)

2
‖xi+1 − xi‖ (2)

= ωT
N−1∑

i=1

f (xi ) + f (xi+1)

2
‖xi+1 − xi‖

︸ ︷︷ ︸
f (ζ )

(3)

= ωT f (ζ ) (4)

where f (ζ ) is called the feature count vector of path ζ . Thus,
for a given weights vector ω, the algorithm will return tra-
jectories that try to minimize this cost.

Given a set of demonstration trajectories by an expert,

D = {ζ1, ζ2, . . . , ζD} (5)

and the definition of the feature function f (x) in (1), the prob-
lem of learning from demonstrations, in this setup, means to
determine the weights ω that lead our planner to behave sim-
ilarly to these demonstrations.

The concept of similarity in this context is ambiguous.
One may want to reproduce exactly the same trajectories
in the same situations. However, it is necessary to learn a
representation that can generalize to other cases. As in [1,16],
this can be achieved by using the mentioned features as a
measure of similarity. The objective is then to model the
underlying trajectory distribution of the expert p(ζ |ω) with
the constraint that the expected value of the features for the
path generated by themodel is the same as the expected value
of the features for the given demonstrated trajectories:

E( f (ζ )) = 1

D

D∑

i=1

f (ζi ) (6)

There are many distributions p(ζ |ω) that achieve the pre-
vious constraint. Applying the Maximum Entropy Principle
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[13,39] to the IRL problem leads to the following form for
the probability density for the trajectories returned by the
demonstrator:

p(ζ |ω) = 1

Z(ω)
e−ωT f (ζ ) (7)

where the partition function Z(ω) = ∫
e−ωT f (ζ )dζ is a nor-

malization function that does not depend on ζ . Thus, this
model assumes that the expert is exponentially more likely
to chose a trajectory with lower cost ωT f (ζ ).

Under thismodel, the (log-)likelihood of the demonstrated
trajectories is given by:

L(D|ω) = −D log(Z(ω)) +
D∑

i=1

(−ωT f (ζi )) (8)

The gradient of this log-likelihood with respect to ω is given
by:

∂L(D|ω)

∂ω
= D

1

Z(ω)

∫
f (ζ )e−ωT f (ζ )dζ

︸ ︷︷ ︸
E( f (ζ ))

−
D∑

i=1

f (ζi ) (9)

= D(E( f (ζ )) − 1

D

D∑

i=1

f (ζi )) (10)

We arrive at the original constraint in (6) by setting this gra-
dient to zero. This means, as indicated in [17], that the IRL
problem under the Maximum Entropy distribution is equiva-
lent tomaximizing the likelihood of the demonstrationswhen
assuming an exponential distribution.

Maximizing the likelihood (8) to obtain the set of weights
cannot be solved analytically. But the gradient (10) can be
used to apply gradient ascend techniques to solve this prob-
lem. As mentioned in [16], this gradient can be intuitively
explained. If the value of one of the features for the trajec-
tories returned by the planner is higher than the value in the
demonstrated trajectories, the corresponding weight should
be increased to penalize those trajectories.

The main problem with the computation of the previous
gradient is that it requires to estimate the expected value of
the features E( f (ζ )) for the generative distribution (7) over
the continuous space of trajectories.

E( f (ζ )) = 1

Z(ω)

∫
f (ζ )e−ωT f (ζ )dζ (11)

In [13], a probabilistic generative model for trajectories is
derived from data, and the expectation is computed byMonte
Carlo Chain samplingmethods, which are very computation-
ally demanding. One option is to approximate the previous
expectation by the features of the most likely trajectory [16].

Fig. 2 General learning scheme proposed to adjust the weights of the
cost function of a RRT∗ planner

In our case, we will approximate the expert by the RRT∗
planner on board the robot. Being an asymptotically opti-
mal planner, for some given weights, the RRT∗ will provide
the trajectory that minimizes the cost (the most likely) given
infinite time. As the planning time is limited, the RRT∗ will
provide trajectories with some variability on the features, and
thus the feature expectationE( f (ζ )) is computed by running
several times the planner between the start and goal configu-
rations. This is then used to calculate the gradient and adapt
the weights employed in the RRT∗ planner.

The experimental results will show that the method can
recover the behaviors taught by the expert.

2.2 RTIRL Algorithm

The general scheme of the learning algorithm proposed is
presented in Fig. 2. First, we define a scenario as a particular
situation where to perform the task proposed (for instance, a
particular position of the obstacles, people positions and ori-
entations, starting and goal positions, for the task of social
navigation). So, for each different scenario s ∈ S present
in the demonstrations, we plan a path to the respective goal
using the RRT∗ planner. The planner has a limited time to
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Algorithm 1 RTIRL

Require: Trajectory examples D = {ζ 1
1 , . . . , ζD} from S scenarios

Ensure: Function features weights ω = [ω1, . . . , ωJ ]T
1: f D ← calculeAvgFeatureCounts(D)

2: ω ← randomInit()
3: repeat
4: for each s ∈ S do
5: for rr t_repeti tions do
6: ζi ← get RRT star Path(s, ω)

7: f (ζi ) ← calculeFeatureCounts(ζi )
8: end for
9: f

s
RRT ∗ ← (

∑rr t_repeti tions
i=1 f (ζi ))/rr t_repeti tions

10: end for
11: f RRT∗ ← (

∑S
i=1 f

i
RRT ∗ )/S

12: ∇L ← ( f RRT∗ − f D)

13: ω ← UpdateWeights(∇L)

14: until convergence
15: return ω

plan, so small variations of the resulting path can arise. So,
as commented before, we deal with that by repeating the
plan some times and calculating the average values over the
number of repetitions. Then, the feature count of the demon-
stration paths and theRRT∗ paths are calculated and averaged
over all the scenarios. The difference between these values is
used to update the weights of the cost function at each itera-
tion. Thus, we get the weights that make the cost function fit
better the demonstration paths as output of the algorithm.

The approximation is described in more detail in Algo-
rithm 1. First, in Line 1 we obtain the average feature count
f D = 1

D

∑D
i=1 f (ζi ) from the example trajectories inD sce-

narios. The feature counts are obtained as the addition of the
feature values of pairs of nodes of the trajectory evaluated
similarly to Eq. (3).

Then we initialize the weights with a random value (Line
2). It is noteworthy that the weights are being normalized
during the learning iterations and the features values for each
node are also normalized for the sake of clarity of represen-
tation, but this is not a requirement of the algorithm.

The key point is the gradient given by (10), which requires
a comparison of the features counts obtained from the
example trajectories and the expected value from the RRT∗
planner. The latter is obtained by running rr t_repeti tions
times the planner for the current weight values for each sce-
nario considered (Line 6), and estimating and normalizing
the features counts (Line 7). In Lines 9 and 11, the averaged
values are computed.

Based on this comparison the weights of the cost function
are updated using gradient descent (line 13):

ωi+1 ← ωi − λ

φ
∗ ∇Li (12)

where φ is a value for stabilization which is being incre-
mented after each iteration, λ is an adjusting factor of the

Fig. 3 Some of the features employed in the social cost function
learned. d1, distance to the goal. d2, distance to the closest obstacle.
d3, distance from the people to the robot. α, angle between the person
front and the robot location. The three Gaussian functions deployed
over the people are also represented

equation and ∇Li = ∂L(D|ω)
∂ωi

is the i-th component of the
gradient.

Finally, the learning process finishes when the variations
of theweight values keepunder a certain convergencevalue ε.

3 Features for Social Navigation

The general learning approach presented above can be
applied to any task that can be solved with a RRT∗ plan-
ner and by defining the adequate features that describe the
task properly. From this section on, we apply the algorithm
to learn the particular task of human-aware navigation. So,
a set of features specially designed for that task is presented
here.

The social navigation task considered involves the robot
navigating in different house environments like rooms and
corridors where some persons stand in various positions so
that the robot has to avoid them to reach the goal.

The selection of the adequate features involved in the
social navigation task is not trivial [29]. A review and anal-
ysis of the most used features in the literature are presented
in [37]. Taking into account these previous works, a set of
commonly-used features have been considered here. In par-
ticular, they are the distance to the goal, the distance to the
closest obstacle, and the distance from the robot to the people
in the scene and the angle of the robot positionwith respect to
the people α, as depicted in Fig. 3. We are not using dynamic
features as velocities or accelerations here, which we will
leave for future work.

Thus, five functions based on the features presented are
combined to obtain the cost function employed in the RRT∗
planner. The functions are computed for each sample xk of
the configuration space. The first one is just the computation
of the Euclidean distance from the robot position to the goal:

f1(xk) = ‖xk, xgoal‖ (13)
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The second feature function uses the distance to the closest
obstacle for each node xk , with the aim of motivating the
robot to keep some distance from the obstacles. This value
growswhen the distance to the obstacle decreases. A distance
transform function is employed to obtain the distance to the
closest obstacle for each sample [3]. Then, a normalizedvalue
is obtained by using this distance according to Eq. (14).

f2(xk) = a1
γ ∗ (‖xk, xclosest_obs_k‖ + a2)

(14)

where a1 and a2 are the parameters that define the function
and take the values 2 and 0.2 respectively. γ is a normaliza-
tion parameters that takes the value 10 in this case.

Then, other three feature functions representing a prox-
emics cost with respect to the people in the environment
are employed. These cost functions are defined by Gaussian
functions and are inspired by the model used by Kirby et al.
[12]. One Gaussian function is placed in the front of the per-
son, another one in the back, and the last one in the right side
of the person. The shape of these Gaussian functions can be
seen in Fig. 3. These cost functions p depend on the distance
(d jk) and relative angle (α jk) of the robot position xk with
respect to each person j in the scenario. The costs due to all
persons in the scenario are integrated according to the next
expressions, where P represents the set of people:

f3(xk) = max{p f ront (d jk, α jk),∀ j ∈ P} (15)

f4(xk) = max{pback(d jk, α jk),∀ j ∈ P} (16)

f5(xk) = max{pright_side(d jk, α jk),∀ j ∈ P} (17)

The first Gaussian function is asymmetric and placed in
the front of the personwith σh = 1.20 (m) being the variance
in the direction the person is facing, and considering a smaller
variance towards the sides σs = σh/1.5. The second Gaus-
sian is placed in the back of the person with σh = σs = 0.8.
Finally, a third Gaussian is placed in the right side of the
person with σh = 0.8 and σs = 0.8/2.5. This function can
be useful in corridor scenarios where, usually in Europe, the
people usually walk on the right-hand side [15]. Another one
could be placed on the left side, so the system should learn
the correct weight for each side.

The values of the J (5 in this case) feature functions are
normalised and the cost function for each node xk is built
adding its weighted values c(xk) = ∑J

i=1 ωi fi (xk) where
ωi ∈ [0, 1] and ∑

i ωi = 1.
Finally, the total cost of the N nodes of the path ζ is

obtained based on the motion-cost function employed by the
RRT∗ algorithm to calculate the cost of moving from one
node to the next one according to Eq. (2).

4 Experimental Results

In this section, we validate the ability of the proposed
RTIRL algorithm to recover the cost function and the behav-
ior implicitly encoded by the demonstrations. To do so, a
ground-truth cost function is employed to obtain a set of
demonstration trajectories from a motion planner optimizing
such function. Then, these trajectories are used by the pro-
posed learning algorithm. This way, the learnt cost function
can be directly compared with the ground-truth one.

Moreover, we present a comparison with two learning
from demonstration algorithms of the state-of-the-art: the
Maximum Margin Planning algorithm (MMP) [30], which
uses an A∗ algorithm as a planner, and a new learning algo-
rithm called Rapidly Exploring Learning Trees (RLT∗) [34],
which adapts MMP to use a RRT∗ as a planner. These algo-
rithms have been chosen because they follow the same idea
of using a planning algorithm instead of an MDP, and these
planning algorithms are also two of the most used planners
in robot navigation.

TheMMP is a method for learning to plan which attempts
to automate the mapping from perception features to costs
(or rewards) as well as IRL tries to find the weights of a cost
(or reward) function of an MDP. The idea behind MMP is
to determine the set of weights that makes that the cost of
the demonstrated trajectories are lower than any other path
between the same start and goal configurations. For better
generalization, the cost function is augmented by a margin
that reduces the costs of paths far from the demonstrations.
The notion of closeness to demonstrations is defined by a
loss-function L : ζ × ζD → R+ which defines for each
path ζ how much the learner pays for failing to match the
example behavior ζD . This loss function value is inverted
(1 − L(ζ(k), ζD)) and added to the cost function. This way,
the algorithm tries tomake any demonstrated path better than
any other path by a margin that scales with the size of the
loss.

The loss-function employed in the A*-based MMP algo-
rithm [30] counts the number of states that the planner visits
but the teacher did not. It is also recommended to relax this
function so that nearby paths are also admissible. In the case
of RLT∗ the loss-function used takes into account the nearby
paths but it is not explicitly specified [34]. Therefore, in our
implementation, we have followed the idea of admitting also
nearby path by defining a loss-function, used in both meth-
ods (MMP and RLT∗), which add a cost for each point of
the evaluated path based on the Euclidean distance from that
point to the closest point of the demonstrated path according
to:

L(ζ(k), ζD) =
{
1 if dmin(ζ(k), ζD) > 1
dmin(ζ(k), ζD) otherwise

(18)
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Fig. 4 Some of the scenarios
employed in the validation
(scenario 9 and scenario 19
respectively). The green
cylinders represent the people in
the scene indicating their
orientations with an arrow. A
low-resolution coloured
costmap is also shown

where the function dmin calculates the Euclidean distance
between the point k of the path ζ and the closest point of the
demonstration path ζD .

4.1 AlgorithmValidation

In order to validate the algorithm performance, we have used
a set of demonstration trajectories obtained by a planner
optimizing a given ground-truth cost function unknown to
the learner. That is, the demonstration trajectories have been
recorded by the planner using a cost function with the fea-
tures explained in Sect. 3 and a known set of weights. This
way, we can compare the weights learned with the ground-
truth weights and the path costs of the demonstrations and
the learned paths. The paths generated with the cost function
computedwith the learning algorithm are expected to recover
the behavior of the demonstration trajectories. Moreover, we
should obtain approximately the same weights of the cost
function used to generate the demonstration trajectories, our
ground-truth, in case that a unique set ofweights can replicate
the desired behavior.

Particularly, we have employed the ground-truth cost
function to record 30 trajectories, each one in a different
demonstration scenario (different initial robot position, goal
position and person positions in different parts or rooms in
a house map). Also, we varied the number of persons in the
scenes from 1 to 3. These demonstrations have been recorded
by using the RRT∗ planner with the ground-truth cost func-
tion proposed. All the trajectories are performed in a fixed
area of 100 m2 with the robot in the center. And the time for
plan calculation employed is 10 s, which have been seen that
it is enough to converge close to the optimum given the space
for planning.

Testing and validation of the approximation will be based
on splitting the 30 different demonstration trajectories into 20
trajectories to learn the weights of each cost function, and 10
configurations to compare the resultant paths. An example of
the scenarios employed in the validation can be seen in Fig. 4
where the scenarios 9 and 19 are presented. In order to have
small well-defined sets of trajectories in different enough
scenarios, we have grouped the trajectories used for learning

Table 1 Demonstration trials

Trial 1 Learning [1–20]

Evaluation [21–30]

Trial 2 Learning [11–30]

Evaluation [1–10]

Trial 3 Learning [1–10, 21–30]

Evaluation [11–20]

Table 2 Relative error in the weights committed by the learning algo-
rithms in the three trials

REω RTIRL RLT∗ MMP

Trial 1 0.101 0.208 0.524

Trial 2 0.057 0.197 0.361

Trial 3 0.047 0.109 0.561

Mean: 0.068 ± 0.016 0.171 ± 0.031 0.482 ± 0.062

The mean values and the standard errors are also shown

and evaluation in three trials for cross-validation according
to Table 1.

The time the RRT∗ is allowed to plan a path during the
execution of the learning algorithms RLT∗ y RTIRL is 3 s
(other times are also considered in Sect. 4.2). In the case of
the MMP learning, the resolution of the discretization of the
state space for the A∗ planning is 0.05 m, which is consid-
ered a good resolution to get a smooth A∗ path. Finally, 100
iterations of each learning algorithm have been performed.
As the ground-truth weights are known (ωgt ), we can calcu-
late the relative errors committed in the final weights learned
according to:

REω = ‖ωgt − ω‖
‖ωgt‖ (19)

These relative errors obtained in the weights by each algo-
rithm for the 3 trials are shown in Table 2. As can be seen, the
RTIRL approximation can recover the ground-truth weights
with a small error for all the trials committing a final average
error much lower than the other approximations.

Once the learning phase has finished, we can compare the
10 trajectories reserved for evaluation of the 3 trials with the
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Fig. 5 Dissimilarity values for the 10 configurations for evaluation of the 3 trials

Path comparison Trial 1, Scenario 7

 Demo paths

 RTIRL paths

 RLT* paths

 MMP−A* paths

 people

Path comparison Trial 2, Scenario 2

 Demo paths

 RTIRL paths

 RLT* paths

 MMP−A* paths

 people

Path comparison Trial 3, Scenario 4

 Demo paths

 RTIRL paths

 RLT* paths

 MMP−A* paths

 people

Fig. 6 Visual comparison of the paths learned in some of the scenarios for evaluation of the three trials

trajectories computed by the RRT∗ (andA∗ planner in case of
MMP) with the estimated cost functions in order to visualize
how close to the trajectories are in other scenarios. The plan-
ning time for the RRT∗ planner and the space discretization
for the A∗ planner are the same that the ones employed in the
learning phase. To overcome the randomness of the RRT∗
algorithm, 5 paths are planned and an average computation
over these paths is performed. The comparison is performed
using the following metrics:

4.1.1 Path Dissimilarity Comparison

The first metric, that we called dissimilarity, is used to com-
pare how different are two given paths. This metric is an
estimation of the area contained between two paths ζ1 and ζ2
by employing the Riemann’s summation:

dissimilari t y(ζ1, ζ2) =
∑N−1

k=1
d(ζ1(k),ζ2)+d(ζ1(k+1),ζ2)

2 ‖ζ1(k) − ζ1(k + 1)‖
δ

(20)

where the function d calculates the Euclidean distance
between the point k of the path ζ1 and its closest point of
the path ζ2. δ is the number of divisions that we performed
in the path ζ1. In this case, we have split the paths into slots
of 10 cm in which we calculate the area. The paths are more
similar when the dissimilarity approaches zero.

Figure 5 shows the dissimilarity values (along with the
standard errors in the case of the 5 paths of RRT∗-based
approximations) for the trials 1, 2 and 3 respectively. As can
be seen, for trial 1, the dissimilarity of the RTIRL method is
the lowest in most of the cases. The other algorithms lead to
big dissimilarity values in some scenarios while the RTIRL
method keep a low dissimilarity except for scenarios 5 and 6
where none of the algorithms is able to lead to a good path.
In the case of the trial 2, the same happens again. The MMP
weight set is not able to reproduce correctly the behavior in
scenarios 2, 8 and 10. TheRLT∗ weight set fails in scenarios 3
and 8. The RTIRL algorithm only partially fails in scenario 8
because some of the 5 paths take another homotopy. Finally,
for trial 3, the RTIRL was able to reproduce very well all the
evaluation paths while the MMP and RLT∗ cost functions
lead to paths farther from the ground-truth in scenarios 1, 4
and 8, and 4 and 6 respectively.

For a better understanding of the dissimilarity values,
Fig. 6 shows a visual comparison of the paths corresponding
with some of the worst cases of the scenarios for evalua-
tion observed in the dissimilarity comparison presented in
the Fig. 5. As can be seen, the weight set learned by the
RTIRL approximation (blue lines) leads the paths closer to
the demonstrated ones (green circles) in most of the cases.

Table 3 summarizes the dissimilarity values for the 3 trials.
The results obtained by the weights learned with the RTIRL
algorithm are better than the state-of-the-art methods.
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Table 3 Dissimilarity means and standard errors committed by the
learning algorithms in the three trials

Dissim RTIRL RLT∗ MMP

Trial 1 0.027 ± 0.014 0.065 ± 0.024 0.098 ± 0.028

Trial 2 0.010 ± 0.004 0.025 ± 0.011 0.037 ± 0.022

Trial 3 0.007 ± 0.000 0.024 ± 0.011 0.061 ± 0.027

Mean 0.015 ± 0.006 0.038 ± 0.015 0.049 ± 0.025

4.1.2 Feature Count Comparison

Another interesting comparison is the feature count of the
paths f (ζ ), obtained according to Eq. (3). Figure 7 shows
the relative errors committed in the feature counts of the
pathswith respect to those of the demonstration paths. Again,
the RTIRL method commits the lowest errors in most of the
cases while the other methods fail strongly in some cases.
These results are stated in Table 4, which averages the results
of the 3 trials. As can be seen, the RTIRL method reaches
significant better results than the RLT∗ and MMP methods
which performance is quite similar according to this metric.

4.1.3 Path Cost Comparison

Finally, as the weights of the ground-truth cost function are
known, we can also compare the costs of the learned paths
and the demonstration paths. To do that, we can calculate the
relative error in the cost of the paths according to:

REcosts(ζ
i
l , ζ

i
d) = ωT

gt ( f (ζ
i
l ) − f (ζ id))

ωT
gt f (ζ

i
d)

(21)

where ζ il is the path obtained in the scenario i with the cost
function learned and ζ id is the demonstration path in the sce-
nario i . ωgt is the weight vector of the ground-truth function.

The relative errors in the costs of the paths for the evalua-
tion scenarios of the 3 trials is shown in Fig. 8. As can be seen,
the results are quite similar to those obtained for the relative
error in the feature count, where the error committed by the

Table 4 Mean relative errors in the feature counts of the paths with the
standard errors committed by the learning algorithms in the three trials

RE f c RTIRL RLT∗ MMP

Trial 1 0.147 ± 0.054 0.300 ± 0.080 0.344 ± 0.081

Trial 2 0.132 ± 0.054 0.228 ± 0.088 0.214 ± 0.066

Trial 3 0.061 ± 0.008 0.152 ± 0.059 0.201 ± 0.059

Mean 0.113 ± 0.038 0.227 ± 0.076 0.253 ± 0.069

RTIRL algorithm is much lower than the error reached by
the other approximations. Moreover, the average results for
the trials in presented in Table 5. Again, the RTIRL clearly
improves the results of the RLT∗ and MMP methods.

4.1.4 Statistical Significance

A Welch’s T-test is employed to compare the results of the
methods in the 3 trials. Table 6 shows the results of the t-tests
when comparing the differentmetrics alongwith the p-values
obtained.As can be observed, the better results reached by the
RTIRLmethod canbe considered significant (for a 0.05 level)
whereas the differences between the RLT∗ and the MMP
method can be neglected in the setup presented.

4.2 Learning with Different RRT* Planning Times

We also evaluate the performance of the proposed learning
algorithm regarding the time that theRRT∗ planner is allowed
to plan a path during the learning process (this time may
be different from that used in execution after learning) and
the number of repetitions of the planning. Table 7 shows
the average relative error committed in the weights for the
methodsRTIRLyRLT∗ according to different planning times
of the RRT∗ planner (0.5, 3 and 9 s) and different number
of planning repetitions (10 repetitions, 5 repetitions and 1
repetition respectively). As can be observed, the algorithm
behaves well even for short planning times. The relative error
in the weights just varies around a 3% in both algorithms.
These results highlights the importance of the number of
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Fig. 7 Relative error in the feature counts for the 10 configurations for evaluation of the 3 trials
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Fig. 8 Relative error in the cost of the paths for the 10 configurations for evaluation of the 3 trials

Table 5 Mean relative errors in the path costs with the standard errors
committed by the learning algorithms in the three trials

REcosts RTIRL RLT∗ MMP

Trial 1 0.166 ± 0.054 0.363 ± 0.101 0.410 ± 0.092

Trial 2 0.169 ± 0.077 0.323 ± 0.139 0.276 ± 0.100

Trial 3 0.067 ± 0.007 0.213 ± 0.090 0.299 ± 0.116

Mean 0.134 ± 0.046 0.300 ± 0.110 0.328 ± 0.103

Table 6 Results of the Welch’s t-test

T-tests RTIRL-RLT∗ RTIRL-MMP RLT∗-MMP

Dissim. p = 0.041 p = 0.003 p = 0.124

RE f c p = 0.031 p = 0.005 p = 0.663

REcosts p = 0.024 p = 0.006 p = 0.828

Table 7 Average relative error in the learned weights committed by the
learning algorithms according to different planning times of the RRT∗
planner used in the learning phase

REω 0.5 s (10 rep) 3 s (5 rep) 9 s (1 rep)

RTIRL 0.098 0.068 0.077

RLT∗ 0.149 0.171 0.180

repetitions. Even if the time for planning is short, we can
still have a good estimation of the average features values if
we repeat the plan several times. The results also show that
the RTIRL is all in all more efficient in terms error versus
planning time than the RLT* algorithm.

5 Evaluation of the Social Navigation

In this section, the cost function for social navigation learned
using the RTIRL algorithm is evaluated by performing real
experiments with the TERESA robot in the laboratory. We
perform a comparison between the social capabilities of a
navigation system employing the cost function learned from
a set of demonstrations (which we will denote Social Navi-

gation System (SNS)) and a standard navigation stack where
all entities in the scene are considered as simple obstacles.
For the latter we employ the popular move_base framework
from ROS1 [26] (denoted Non-Social Navigation System
(Non-SNS)). The default configuration parameters have been
used but the related ones to the robot footprint, velocities
and accelerations than have been adjusted to the TERESA
robot.

The library of RRT algorithms and the rest of necessary
modules for the SNS have been developed by the authors and
are available in theGithubof theServiceRoboticsLab2 under
BSD license. A RRT∗ replanning each 0.5 s in a local area
surrounding the robot and using the learned costs is employed
formotion planning, and a simple controller derived from the
DynamicWindows Approach algorithm [7] is used to follow
the RRT path.

5.1 Metrics

A set of simple metrics for a social evaluation used in the
literature [22], some of them based on the Proxemics theory
[8], has been considered here:

– Time to reach the goal (Tp) Time since the robot start the
navigation until the goal is correctly reached.

Tp = (Tgoal − Tini ) (22)

– Path length (L p) The length of the path followed by the
robot from the initial point to the goal position.

L p =
N−1∑

i=1

‖xir − xi+1
r ‖2 (23)

– Cumulative heading changes (CHC) It counts the cumu-
lative heading changes of in the robot trajectorymeasured

1 http://wiki.ros.org/move_base.
2 https://github.com/robotics-upo/upo_robot_navigation.
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by angles between successive waypoints. It gives a sim-
ple way to check on smoothness of path and energy [22]
so a low value is desirable.

CHC =
N−1∑

i=1

(hir − hi+1
r ) (24)

where hir indicates the heading of the robot in the position
i . The angles and their difference are normalized between
−π and π .

– Average distance to closest person (CPavg) A measure
of the mean distance from the robot to the closest person
along the trajectory.

CPavg = 1

N

N∑

i=1

(‖xir − xicp‖2) (25)

where xicp indicates the position of the closest person to
the robot at step i .

– Minimum and maximum distance to people (CPmin and
CPmax respectively) The values of the minimum and the
maximum distances from the robot to the people along
the trajectory. It can give an idea of the dimension of
the robot trajectory with respect to the people in the
space.

CPmin = min{‖xir − xicp‖2 | ∀i ∈ N } (26)

CPmax = max{‖xir − xicp‖2 | ∀i ∈ N } (27)

– Personal space intrusions (CPprox ) This metric is based
on the Proxemics theory which define personal spaces
around people for interaction [8]. These areas are defined
as:

– Intimate. Distance shorter than 0.45 m.
– Personal. Distance between 0.45 and 1.2 m.
– Social. Distance between 1.2 and 3.6 m.
– Public. Distance longer than 3.6 m.

Thus, the metric classifies the distance between the robot
and the closest person at each time step in one of the
Proxemics spaces (in our caseweuse only three: Intimate,
Personal and Social+Public), and obtain a percentage of
the time spent in each space for the whole trajectory:

CPk
prox =

⎛

⎝ 1

N

N∑

j=1

F(‖x j
r − x j

cp‖2 < δk)

⎞

⎠ ∗ 100 (28)

where N is the total number of time steps in the trajectory,
δ defines the distance range for classification defined by
k = {I ntimate, Personal, Social+Public}, andF(·)
is the indicator function. The desirable behavior should

lead the robot to spend most of the time in the Social or
Public distance range, but this depends on the dimensions
of the space and the density of people in the area. So, for a
small area shared with people, intrusions in the Personal
area are acceptablewhereas for a big open space the robot
should stay in theSocial andPublic distances. In any case,
the intrusions in the Intimate space should be avoided.

– Interaction space intrusions (ISprox ) This metric is
inspired by the work of Okal and Arras [22] in formal-
izing social normative robot behavior, and it is related to
groups of interacting persons. It measures the percentage
of time spent by the robot in the three Proxemics spaces
consideredwith respect to an interaction area formed by a
group of people that are interacting with each other. The
detection of the interaction area of the group is based
on the detection of F-formations. A F-formation arises
whenever two or more people sustain a spatial and orien-
tational relationship in which the space between them is
one towhich they have equal, direct, and exclusive access
[4,32].

ISkprox =
⎛

⎝ 1

N

N∑

j=1

F(‖x j
r − x j

f ‖2 < δk)

⎞

⎠ ∗ 100 (29)

where x j
f determines the center of the closest formation

or group of people f to the robot at step j .

5.2 Experiments

The social navigation behavior learned using the proposed
learning algorithm RTIRL is evaluated here. A cost func-
tion using the features described in Sect. 3 has been learnt
from navigation demonstrations in static scenarios. The
demonstrations were recorded in the Robotics Lab and some
scenarios of the TERESA project (an elderly care center in
Troyes, France, see Fig. 1). The planning time for the RRT∗
employed during the learning phase was 3 s. The learned
cost function is then used by the Social Navigation Sys-
tem.

Two sets of experiments have been performed. One in a
static scenario (the learning is performed from static scenes)
and another one in a dynamic scenario, to check the behavior
in scenarios with moving pedestrians.

These evaluation experiments have been recorded in the
Robotics Lab of the Pablo de Olavide University. The room
has an approximate dimension of 4.60 × 7.60 m and it is
equipped with an Optitrack Motion Capture System. This
system has been used to accurately estimate the position of
the robot and persons involved in the experiments so that
results cannot be biased by localization errors.
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Fig. 9 Capture of the real experiments for the social navigation evalu-
ation in the University Pablo de Olavide

5.2.1 Experiments in Static Scenarios

In the static scenario we have considered two different sit-
uations: first, a small group of two people talking to each
other in the middle of the scene, as can be seen in Fig. 9;
second, there are two persons in the scenario, but they are
not interacting each other. Figure 10 shows two examples of
the scenarios proposed, where the robot paths and the people
position and orientation are shown.As can be seen, the Social
Navigation System (SNS) avoid interfering with the group
indicating a more acceptable behavior than the Non-Social
Navigation System (Non-SNS) from the social point of view.

Tables 8 and 9 shows themetrics, with their standard devi-
ations, obtained for four runs of each navigation system in
the static scenario with a group of interacting people, and
another four runs in the scenario with two non-interacting
individuals respectively.

In the case of two people not forming a group, the met-
rics do not present many significant differences as can be
observed in Table 8 (note that the I Sprox metric is not appli-
cable because there is not interaction space). This is because

of, in this particular setup, the social taught behaviors lead the
robot to similar paths of the Non-SNS. Nevertheless, some
metrics can be highlighted: the minimum distance to people
is higher in the case of the SNS which indicates that the sys-
tem always was able to keep some distance to the person; and
the SNS was able to spend less time in the Personal space in
favor of the time in the Social space which indicates a better
social behavior.

Furthermore, the case of a group of people presents clearer
differences. The Non-SNS performs clear intrusions in the
Intimate space with respect to the closest person and also
to the interaction space of the group. Again, the minimum
distance to people is higher in the case of SNS. These results
show that the SNS is more respectful of the people spaces
and the interaction space of the group from a social point of
view.

5.2.2 Experiments in Dynamic Scenarios

Another test has been recorded in a dynamic situation. The
aim is to check whether the social cost function learned for
static situations is still able to behave in a socially acceptable
way in an environment with moving pedestrians. To do that,
the RRT∗ re-plans at a frequency of 2 Hz. In this scenario,
two people are walking freely in the scenario, sometimes
forming a group and sometimes walking alone. At the same
time, the robot is receiving waypoints that lead it to cross
the room avoiding the people around. One long run for each
navigation systemwas performed. Figure 11 shows the paths
followed by the people in one of the runs (right) and the paths
followed by the robot with the SNS and the Non-SNS (left).
As can be seen, the SNS tried to deal with the people adapting
its paths to the individuals in a social way unlike the Non-
SNS, which tried to perform the same direct trajectory to the
goal many times.

Fig. 10 Static scenario for
social evaluation along with
some of the paths obtained by
the SNS and non-SNS. Left:
Two persons, represented by
magenta circles with the blue
arrow indicating their
orientation, are forming a group.
Right: Two persons are facing
the walls (not a group). The red
line shows the path followed by
the TERESA social navigation
system (SNS). The blue line
shows the path of the move_base
non-social system (Non-SNS)

 SNS path
 Non−SNS path
 people

 SNS path
 Non−SNS path
 people
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Table 8 Results for social navigation evaluation with a static scenario with two people

No Group Tp(s.) L p(m.) CHC(rads.) CPavg(m.) CPmin(m.) CPmax (m.)

SNS 22.70 ± 1.52 4.86 ± 0.40 4.54 ± 0.79 1.74 ± 0.09 1.08 ± 0.16 2.47 ± 0.13

Non-SNS 24.18 ± 1.73 4.92 ± 0.23 4.37 ± 0.40 1.90 ± 0.14 0.63 ± 0.07 2.82 ± 0.01

CPprox (%)

Intimate Personal Social+

SNS 0.00 ± 0.00 12.77 ± 1.02 87.23 ± 0.87

Non-SNS 0.00 ± 0.00 17.24 ± 0.98 82.76 ± 0.98

Table 9 Results for social navigation evaluation with a static group of two people

Group Tp(s.) L p(m.) CHC(rads.) CPavg(m.) CPmin(m.) CPmax (m.)

SNS 23.65 ± 0.64 5.45 ± 0.27 4.18 ± 2.55 1.87 ± 0.08 0.79 ± 0.17 2.71 ± 0.11

Non-SNS 23.15 ± 1.34 5.02 ± 0.08 4.41 ± 0.08 1.88 ± 0.12 0.42 ± 0.15 2.74 ± 0.17

CPprox (%) I Sprox (%)

Intimate Personal Social+ Intimate Personal Social+

SNS 0.00 ± 0.00 17.83 ± 1.52 82.17 ± 1.52 0.00 ± 0.00 0.00 ± 0.00 100.00 ± 0.00

Non-SNS 2.60 ± 3.67 14.50 ± 3.06 82.90 ± 0.61 7.64 ± 0.70 13.00 ± 0.01 79.37 ± 0.71

Fig. 11 Representation of the
paths followed in the dynamic
free run experiment. Left: paths
followed by the robot using the
SNS (red) and Non-SNS (blue).
Right: Paths followed by the two
people in the scenario

 SNS path
 Non−SNS path

 person 1
 person 2

Table 10 Results for social
navigation evaluation of a free
run with two people moving in
the scenario

Tp(s.) L p(m.) CHC(rads.) CPavg(m.) CPmin(m.) CPmax (m.)

SNS 495.50 70.24 89.16 2.50 0.31 4.65

Non-SNS 387.80 50.18 74.34 2.50 0.27 4.84

CPprox (%) ISprox (%)

Intimate Personal Social+ Intimate Personal Social+

SNS 0.60 14.31 85.08 3.31 12.27 84.42

Non-SNS 3.17 10.11 86.73 8.51 12.67 78.81

Table 10 shows the metrics obtained in the experiment. In
this case, the total time Tp indicates the total duration of the
run being the recording of the SNS case a bit longer than the

Non-SNS recording. Under this condition, the path length
metric L p indicates the total length traveled by the robot (all
the trajectories), and, as can be seen, it was longer in the
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SNS case. This fits with the paths shown in Fig. 11 left, and
explains the higher value in the cumulative heading changes
(CHC) since the SNS tried to adapt its paths to the people in
the scene. Again the most relevant and significant metrics are
the intrusions in the Proxemics spaces of the closest person
(CPprox ) and the interaction area (I Sprox ). The intrusions in
the intimate spaces are much lower in the case of SNS, what
states the effort on minimizing the disturbance of people. As
a general result, we can say that the behavior of the SNS is
more socially acceptable than the behavior showed by the
Non-SNS as expected.

6 Conclusions

This paper presented an approach for teaching a robot social
navigation behaviors using demonstrations. To this end, a
method based on IRL has been implemented and linked
with a regular RRT∗ to learn the weights of its cost func-
tion, so the planner behaves similarly to the demonstrated
behaviors. The method is simple to implement and allows to
overcome the typical problems associated to IRLs based on
MDPs. The proposed method allows to deal with continuous
state spaces and is capable of dealing with larger scenarios
(in terms of persons and features) than previous discrete-
MDP-based approaches for human-aware navigation [28]. It
also simplifies the generalization of the behavior thanks to
the inherent benefits of RRTs. The approach has been val-
idated using demonstrations provided from a ground-truth
cost function. The results show that it is able to properly
approximate the demonstrated cost function, and to obtain
behaviors more similar to the demonstrations than related
algorithms from the state-of-art. Furthermore, Sect. 5 has
shown how the taught behaviors lead to more socially appro-
priate motion than methods not considering the learned
costs.

The proposed method has been applied to a telepresence
robot.While the learning approach is offline, this setup allows
to gather additional data whenever the user employs the robot
in teleoperated mode, and thus to update the learned costs
iteratively when new data is available, considering new sce-
narios.

Future work will consider including kinodynamic con-
straints of the robot in theRRT∗ planner and the use of a richer
set of features also employing the velocities of the robot
and persons. Additionally, we will also evaluate learning the
relevant features from the demonstrations. For that, recent
approaches of deep learning for IRL [6] will be considered.
Finally, a further mathematical analysis of the distributions
of path costs followed by the RRT∗ planner as well as other
optimization techniques to solve the problem will be consid-
ered.

Funding this study was funded by the EC-FP7 under grant agreement
no. 611153 (TERESA).

Compliance with Ethical Standards

Conflict of Interest The authors declare that they have no conflict of
interest.

References

1. Abbeel P, Ng AY (2004) Apprenticeship learning via inverse rein-
forcement learning. In: Proceedings of the twenty-first international
conference onMachine learning, ICML ’04. ACM, NewYork, NY,
USA, p 1. https://doi.org/10.1145/1015330.1015430

2. Argali B, Chernova S, Veloso M, Browning B (2009) A survey of
robot learning fromdemonstrations. RobotAuton Syst 57:469–483

3. Borgefors G (1986) Distance transformations in digital images.
Comput. Vision Graph. Image Process. 34(3):344–371. https://doi.
org/10.1016/S0734-189X(86)80047-0

4. Cristani M, Bazzani L, Paggetti G, Fossati A, Tosato D, Bue
AD, Menegaz G, Murino V (2011) Andrea Fossati, Del∼Bue, A.:
social interaction discovery by statistical analysis of F-formations.
In: British machine vision conference (BMVC), pp 23.1–23.12.
https://doi.org/10.5244/C.25.23

5. Feil-Seifer D, Mataric M (2011) People-aware navigation for goal-
oriented behavior involving a human partner. In: Proceedings of
the IEEE international conference on development and learning
(ICDL)

6. Finn C, Levine S, Abbeel P (2016) Guided cost learning: Deep
inverse optimal control via policy optimization. In: Proceedings of
the 33rd international conference on machine learning, vol 48

7. Fox D, BurgardW, Thrun S (1997) The dynamic window approach
to collision avoidance. IEEE Robot Autom 4(1):23

8. Hall ET (1990) The hidden dimension. Anchor
9. Henry P, Vollmer C, Ferris B, Fox D (2010) Learning to navi-

gate through crowded environments. In: Proceedings of the IEEE
international conference on robotics and automation (ICRA), pp
981–986

10. Karaman S, Frazzoli E (2011) Sampling-based algorithms for opti-
mal motion planning. Int J Robot Res 30(7):846–894

11. Kirby R, Forlizzi J, Simmons R (2010) Affective social robots.
Robot Auton Syst 58:322–332

12. Kirby R, Simmons RG, Forlizzi J (2009) Companion: a constraint-
optimizing method for person-acceptable navigation. In: RO-
MAN, pp 607–612. IEEE

13. Kretzschmar H, Kuderer M, Burgard W (2014) Learning to pre-
dict trajectories of cooperatively navigating agents. In: 2014 IEEE
international conference on robotics and automation (ICRA) , pp
4015–4020. IEEE

14. Kretzschmar H, Spies M, Sprunk C, Burgard W (2016) Socially
compliant mobile robot navigation via inverse reinforcement learn-
ing. Int J Robot Res. https://doi.org/10.1177/0278364915619772

15. Kruse T, Pandey AK, Alami R, Kirsch A (2013) Human-aware
robot navigation: a survey. Robot Auton Syst 61(12):1726–1743.
https://doi.org/10.1016/j.robot.2013.05.007

16. KudererM, Gulati S, BurgardW (2015) Learning driving styles for
autonomous vehicles from demonstration. In: Proceedings of the
IEEE international conference on robotics & automation (ICRA),
Seattle, USA, vol 134

17. Kuderer M, Kretzschmar H, Sprunk C, BurgardW (2012) Feature-
based prediction of trajectories for socially compliant navigation.
In: Proceedings of robotics: science and systems (RSS). Syd-

123

https://doi.org/10.1145/1015330.1015430
https://doi.org/10.1016/S0734-189X(86)80047-0
https://doi.org/10.1016/S0734-189X(86)80047-0
https://doi.org/10.5244/C.25.23
https://doi.org/10.1177/0278364915619772
https://doi.org/10.1016/j.robot.2013.05.007


International Journal of Social Robotics (2018) 10:235–249 249

ney, Australia. http://www.informatik.uni-freiburg.de/~kudererm/
publications/kuderer12rss.pdf

18. Levine S, KoltunV (2012) Continuous inverse optimal control with
locally optimal examples. In: ICML ’12: Proceedings of the 29th
international conference on machine learning

19. LuberM, SpinelloL, Silva J,ArrasKO (2012) Socially-aware robot
navigation: A learning approach. In: 2012 IEEE/RSJ international
conference on intelligent robots and systems, pp 902–907. https://
doi.org/10.1109/IROS.2012.6385716

20. Michini B, CutlerM,How JP (2013) Scalable reward learning from
demonstration. In: IEEE international conference on robotics and
automation (ICRA). IEEE. http://acl.mit.edu/papers/michini-icra-
2013.pdf

21. Ng AY, Russell SJ (2000) Algorithms for inverse reinforce-
ment learning. In: Proceedings of the seventeenth international
conference on machine learning, ICML ’00. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, pp 663–670. http://dl.
acm.org/citation.cfm?id=645529.657801

22. Okal B, Arras KO (2016)Formalizing normative robot behavior. In:
Social robotics: 8th international conference, ICSR 2016, Kansas
City, MO, USA, November 1-3, 2016 Proceedings. Springer Inter-
national Publishing, pp62–71. https://doi.org/10.1007/978-3-319-
47437-3_7

23. Okal B, Arras KO (2016) Learning socially normative robot navi-
gation behaviors with bayesian inverse reinforcement learning. In:
Proceedings of the IEEE international conference on robotics and
automation, ICRA , Stockholm, Sweden, pp 2889–2895. https://
doi.org/10.1109/ICRA.2016.7487452

24. Pacchierotti E, ChristensenH, Jensfelt P (2006) Evaluation of pass-
ing distance for social robots. In: IEEE workshop on robot and
human interactive communication (ROMAN). Hartfordshire, UK

25. Pérez-Higueras N, Caballero F, Merino L (2016) Learning robot
navigation behaviors by demonstration using a RRT* planner. In:
International conference on social robotics. Springer International
Publishing, pp 1–10

26. QuigleyM,ConleyK,GerkeyBP,Faust J, FooteT,Leibs J,Wheeler
R, Ng AY (2009) Ros: an open-source robot operating system. In:
ICRA workshop on open source software

27. Ramachandran D, Amir E (2007) Bayesian inverse reinforcement
learning. In: Proceedings of the 20th international joint conference
on artical intelligence vol 51, pp 2586–2591. http://www.aaai.org/
Papers/IJCAI/2007/IJCAI07-416.pdf

28. Ramón-Vigo R, Pérez-Higueras N, Caballero F, Merino L (2014)
Transferring human navigation behaviors into a robot local planner.
In: Proceedings of the IEEE international symposium on robot and
human interactive communication, RO-MAN. https://doi.org/10.
1109/ROMAN.2014.6926347

29. Ramon-Vigo R, Perez-Higueras N, Caballero F, Merino L (2015)
Analyzing the relevance of features for a social navigation task.
In: L.P. Reis, A.P. Moreira, P.U. Lima, L. Montano, V. Munoz-
Martinez (eds.) Robot 2015: Second Iberian Robotics Conference,
Advances in Intelligent Systems and Computing, vol. 418, pp. 235–
246. Springer International Publishing. https://doi.org/10.1007/
978-3-319-27149-1_19

30. Ratliff ND, Bagnell JA, Zinkevich Ma (2006) Maximum margin
planning. In: International conference on machine learning—
ICML ’06(23), pp 729–736. https://doi.org/10.1145/1143844.
1143936

31. Ratliff ND, Silver D, Bagnell JA (2009) Learning to search: func-
tional gradient techniques for imitation learning. Auton Robots
27(1):25–53. https://doi.org/10.1007/s10514-009-9121-3

32. Setti F, Russell C, Bassetti C, Cristani M (2015) F-formation
detection: individuating free-standing conversational groups in
images. PLoS ONE 10(5):1–32. https://doi.org/10.1371/journal.
pone.0123783

33. Shiarlis K, Messias J, van Someren M, Whiteson S, Kim J, Vroon
J, Englebienne G, Truong K, Evers V, Perez-Higueras N, Perez-
Hurtado I, Ramon-Vigo R, Caballero F, Merino L, Shen J, Petridis
S, Pantic M, Hedman L, Scherlund M, Koster R, Michel H (2015)
Teresa: a socially intelligent semi-autonomous telepresence sys-
tem. In: Workshop on machine learning for social robotics at
ICRA-2015 in Seattle

34. Shiarlis K, Messias J, Whiteson S (2017) Rapidly exploring learn-
ing trees. In: Proceedings of the IEEE international conference on
robotics and automation (ICRA). IEEE, Singapore, Singapore

35. Shiarlis K, Messias J, Whiteson S (2017) Acquiring social inter-
action behaviours for telepresence robots via deep learning from
demonstration. In: Proceedings of the IEEE/RSJ international con-
ference on intelligent robots and systems (IROS). Vancouver,
Canada

36. Sisbot EA, Marin-Urias LF, Alami R, Siméon T (2007) A human
aware mobile robot motion planner. IEEE Trans Robot 23(5):874–
883

37. Vasquez D, Okal B, Arras KO (2014) Inverse reinforcement learn-
ing algorithms and features for robot navigation in crowds: an
experimental comparison. In: Proceedings IEEE/RSJ international
conference on Intelligent Robots and Systems (IROS), pp 1341–
1346. https://doi.org/10.1109/IROS.2014.6942731

38. Xia C, Kamel AE (2016) Neural inverse reinforcement learning
in autonomous navigation. Robot Auton Syst 84:1–14. https://doi.
org/10.1016/j.robot.2016.06.003

39. Ziebart B, Maas A, Bagnell J, Dey A (2008) Maximum entropy
inverse reinforcement learning. In: Proceedings of the national con-
ference on artificial intelligence (AAAI)

Noé Pérez-Higueras received his Computing Engineer Degree in 2009
and a Master Degree in Industrial Computing in 2010 both from the
University of Almería, Spain. After 3 years collaborating with the
Department of Languages and Computing of the University of Almería,
he started as Ph.D. Candidate in Robotics in the Pablo de Olavide Uni-
versity, Seville, Spain. His research interests are robot navigation and
planning and social robotics.

Fernando Caballero is Associate Professor at the Department of Sys-
tem Engineering and Automation, University of Seville, Seville, Spain.
He received his B.S. in Telecommunication Engineering in 2003 and
his Ph.D. in Robotics in 2007 both from the University of Seville,
Spain. His research focuses in robot localization, mapping and navi-
gation in real setings. He has participated in numerous National and
European funded research projects involving aerial and ground robots.

LuisMerino is Associate Professor at the School of Engineering, Pablo
de Olavide University, Seville, Spain. He received the Telecommuni-
cations Engineer Degree in 2000 from the University of Seville. In
2007 he received a Ph.D. degree on Robotics from the University of
Seville. His thesis has been awarded with the ABB Award to the Best
Doctoral Dissertation on Robotics 2007, given by the Spanish Com-
mittee of Automation (CEA, Robotics Group). His research interests
include robot localization and navigation, multi-robot systems, sen-
sor fusion and planning under uncertainties applied to robotics, and he
leads or has led several EU projects on social navigation.

123

http://www.informatik.uni-freiburg.de/~kudererm/publications/kuderer12rss.pdf
http://www.informatik.uni-freiburg.de/~kudererm/publications/kuderer12rss.pdf
https://doi.org/10.1109/IROS.2012.6385716
https://doi.org/10.1109/IROS.2012.6385716
http://acl.mit.edu/papers/michini-icra-2013.pdf
http://acl.mit.edu/papers/michini-icra-2013.pdf
http://dl.acm.org/citation.cfm?id=645529.657801
http://dl.acm.org/citation.cfm?id=645529.657801
https://doi.org/10.1007/978-3-319-47437-3_7
https://doi.org/10.1007/978-3-319-47437-3_7
https://doi.org/10.1109/ICRA.2016.7487452
https://doi.org/10.1109/ICRA.2016.7487452
http://www.aaai.org/Papers/IJCAI/2007/IJCAI07-416.pdf
http://www.aaai.org/Papers/IJCAI/2007/IJCAI07-416.pdf
https://doi.org/10.1109/ROMAN.2014.6926347
https://doi.org/10.1109/ROMAN.2014.6926347
https://doi.org/10.1007/978-3-319-27149-1_19
https://doi.org/10.1007/978-3-319-27149-1_19
https://doi.org/10.1145/1143844.1143936
https://doi.org/10.1145/1143844.1143936
https://doi.org/10.1007/s10514-009-9121-3
https://doi.org/10.1371/journal.pone.0123783
https://doi.org/10.1371/journal.pone.0123783
https://doi.org/10.1109/IROS.2014.6942731
https://doi.org/10.1016/j.robot.2016.06.003
https://doi.org/10.1016/j.robot.2016.06.003

	Teaching Robot Navigation Behaviors to Optimal RRT Planners
	Abstract
	1 Introduction
	1.1 Related Work

	2 Learning a RRT* Cost Function
	2.1 IRL Formulation with RRT* Planners
	2.2 RTIRL Algorithm

	3 Features for Social Navigation
	4 Experimental Results
	4.1 Algorithm Validation
	4.1.1 Path Dissimilarity Comparison
	4.1.2 Feature Count Comparison
	4.1.3 Path Cost Comparison
	4.1.4 Statistical Significance

	4.2 Learning with Different RRT* Planning Times

	5 Evaluation of the Social Navigation
	5.1 Metrics
	5.2 Experiments
	5.2.1 Experiments in Static Scenarios
	5.2.2 Experiments in Dynamic Scenarios


	6 Conclusions
	Funding
	References




