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Abstract There are a certain number of arm dysfunction
patients whose legs could move. Considering the neuronal
coupling between arms and legs during locomotion, this
paper proposes a novel human-robot cooperative method for
upper extremity rehabilitation. Legs motion is considered at
the passive rehabilitation training of disabled arm, and its tra-
versed trajectory is represented by the patient trunk motion.
A Kinect based vision module, two computers and a WAM
robot construct the human-robot cooperative upper extremity
rehabilitation system.Thevisionmodule is employed to track
the position of the subject trunk in horizontal; theWAMrobot
is used to guide the arm of post-stroke patient to do passive
training with the predefined trajectory, and meanwhile the
robot follows the patient trunk movement which is tracked
by Kinect in real-time. A hierarchical fuzzy control strategy
is proposed to improve the position tracking performance and
stability of the system, which consists of an external fuzzy
dynamic interpolation strategy and an internal fuzzy PDposi-
tion controller. Four experiments were conducted to test the
proposedmethod and strategy.The experimental results show
that the patient felt more natural and comfortable when the
human-robot cooperative method was applied; the subject
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could walk as he/she wished in the visual range of Kinect.
The hierarchical fuzzy control strategy performed well in
the experiments. This indicates the high potential of the pro-
posed human-robot cooperative method for upper extremity
rehabilitation.

Keywords Human-robot · Cooperative · Kinect ·
Rehabilitation · Hierarchical fuzzy control architecture

1 Introduction

Stroke is a leading cause of serious, long-term disability.
For instance, in China every year there are about 2,000,000
people suffering from a stroke, of which approximately 66
percent survives the stroke, commonly involving deficits of
motor function [1]; each year approximately 795,000 peo-
ple continue to experience a new or recurrent stroke only
in the U.S. [2]. Also accident is another cause of upper
limb disabilities. Movement disorders of the upper extrem-
ities dramatically reduce the quality of people’s life [3].
Upper extremity rehabilitation is a monstrous task, for the
increasing number of the patients and the small amount of
rehabilitation physician. Rehabilitation robot is an efficient
instrument to solve this problem.

In recent years, numerous rehabilitation robots have been
invented to do the upper limb rehabilitation. Considering
the mechanical structure, the robotic devices can be divided
into two categories: the end-effector-based (MIT Manus [4],
NeReBot [5], CRAMER [6], etc.) and the exoskeleton-based
(ARMin [7], CADEN-7 [8], Pneu-WREX [9], etc.) robots.
Many different control methods were implemented in the
rehabilitation training. He et al. used several adaptive neu-
ral networks for robots by state and output feedback, input
saturation and full-state constraints [10–12]. Xu et al. [13]
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presents an adaptive impedance force controller for an upper
limb Rehabilitation Robot. Richardson et al. [14] controlled
a 3-dof pneumatic upper-limb rehabilitation robot using a
position-based impedance control strategy.

Among the recent academic studies, Microsoft Kinect has
been used as an engaging and accurate markerless motion
capture tool and controller interface in stroke rehabilitation
[15,16]. Chang et al. [17] built a Kinect-based rehabilitation
system for young adults with motor disabilities. Hussain et
al. made use of Kinect-monitored manipulation of specially
designed intelligent objects (i.e a can, a jar, and a key-like
object embedded with inertial sensors) for fine motor control
diagnostics of the hand andwrist [18]. Su et al. [19] developed
a Kinect-enabled system for ensuring home-based rehabil-
itation (KEHR) using a Dynamic Time Warping (DTW)
algorithm and fuzzy logic to ensure the effectiveness and
safety of home-based rehabilitation.

The rehabilitation devices have provided different types
of training: active, passive, haptics, and coaching [3]. More-
over, for different kinds of upper limb disabled patients, their
rehabilitation training methods should be different. To stim-
ulate patient participation in the rehabilitation training, the
real-time states of the patient should be considered, what
is more, “patient cooperative training” [20,21] have been
widely used.

Current upper extremity rehabilitation systems enable
only upper limb motion without considering the connections
between upper and legs movement. Although a complete
explanation of the neuronal connection between the upper
and lower limbs has not yet been developed, some research
studies have shown that there exists a neuronal coupling
between arms and legs during locomotion [22,23]. Some
studies on lower limb rehabilitation usually connect with
upper limb [24], so considering the lower limb motion the
upper limb rehabilitation system may get better result than
the traditional system.

The neuromuscular of upper limb is more complicated
than the lower limb [25]. Clinically, motor function recovery
of lower extremity is better than the upper extremity [26].
Also, there are a certain number of arm dysfunction patients
whose legs could move. Towards these patients the motion
of legs can be used at the passive rehabilitation training of
disabled arm.

Traditional passive training thought the location of the
patient is changeless, only the disabled arm followed the
robot arm to move. However every passive rehabilitation
training process requires some time, and in this period the
patients may have trunk motion by walking to guarantee a
nature and comfortable training process, so the states of the
patient are changed frequently, the interaction force between
patient and rehabilitation robot will be changed, thus the sta-
bility and training effect of the rehabilitation system will be
influenced.

The movement direction by robot should be increased to
offset the autonomous motion by patient in horizontal. Thus
when patient do rehabilitation training, he can walk around
as his wish, and the enthusiasm of patient on the training is
improved. In addition, walking will help with health; it can
enhance patient’s physical strength and improve the effect of
rehabilitation training.

This paper presents a novel human-robot cooperative
method for upper extremity rehabilitation to the arm dys-
function patients whose legs could move. The legs motion
which is represented by the patient trunkmotion is considered
to realize a more natural and comfortable upper extremity
training. In this method, the WAM robot is used to guide
the disabled arm to do passive rehabilitation training, and
the patient can walk around the robot as he/she wished; the
motion trajectory of the patient is collected by Kinect and
transmitted to the WAM robot to drive the robot to move fol-
lowed the patient. A hierarchical fuzzy control architecture
which consists of a fuzzy dynamic interpolation strategy and
a fuzzy PD position controller is used to ensure the posi-
tion tracking performance and stability of the human-robot
cooperative rehabilitation training.

2 Upper Extremity Rehabilitation System

2.1 The Human-Robot Cooperative Upper Extremity
Rehabilitation Robot System

The human-robot cooperative upper extremity rehabilita-
tion robot system consists of a Barrett WAM (Whole Arm
Manipulator) robot [27], a three-dimensional force sensor
developed by us [28], a handle, a Microsoft Kinect, a tri-
pod, a client PC and a server PC, as shown in Fig. 1. The
standard WAM Arm is a 4-dof highly dexterous, naturally
back-drivable manipulator. The handle is fixed at the end of
theWAMarm to ensure easy grasping by patients. TheKinect
fixed on a tripod is used to measure the skeleton data of the
patient in real-time.

The client PC is running Windows 7 operating system,
it is responsible for processing position data and sending
the control command to the server PC. The pose tracking
part and fuzzy dynamic Interpolation strategy part are both
operated on the client PC. Kinect for Windows SDK (1.8.0)
is used to collect signals from the patient in real-time. The 3D
joint position data is acquired at the Kinect native sampling
frequency of 30 Hz.

The server PC is running Ubuntu Linux system, it is
responsible for running the control loop and providing high-
level command of theWAM rehabilitation system. Real-time
communication between the server PC and the motor Pucks
is realized by high-speed CAN bus with baud rate of 1Mbps.
The server PC and client PC are connected by Transmission
Control Protocol/Internet Protocol (TCP/IP).
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Fig. 1 The human-robot cooperative upper extremity rehabilitation
robot system

The whole system can be architecturally divided into two
main modules as follows:

1. A Kinect based vision module, the Kinect is employed to
locate the position of WAM Joint, track the trunk motion
of the patient, and communicate the motion information
to the WAM controller.

2. The WAM robot module, the WAM robot is applied
to guide the stroke arm to do passive training with the
desired trajectory, and at the same time this robot fol-
lowed the patient trunk movement tracked by Kinect in
real-time. The Joint1 of the WAM robot is used to follow
the movement of the patient trunk.

The predefined passive trajectory cooperates with the
patient trunk online movement trajectory, thus the patient
could do the passive training and walk around to adjust posi-
tion as he/she wished.

2.2 Kinect Coordinate System on Rehabilitation

Kinect [29] has three autofocus cameras: two infrared cam-
eras optimized for depth detection and one standard visual-
spectrum camera used for visual recognition. On X and Y
dimensions the spatial accuracy are both 3mm, on Z dimen-
sions the spatial accuracy is 1cm, it could satisfy the needs
of rehabilitation training. The Kinect SDK forWindows pro-
vides detailed location, position and orientation information
for up to two players standing in front of the Kinect sensor
array [15]. Previous devices have difficulty tracking human
motion using a camerawithout body sensors; Kinect is a non-
invasive, nonconacting and markerless method for motion
tracking [12]. In this paper the Kinect is mainly used to track
the human skeleton data to assistive control the human-robot

X

Y

Z
K

W H S

Fig. 2 Kinect coordinate system. K Kinect;W the WAM; H the hand;
S shoulder position

cooperative rehabilitation training in real-time, 20 joints per
subject can be tracked.

The training scene is shown in Fig. 2; a stroke patient does
rehabilitation training beside theWAM robot and in the view
range of the Kinect. Due to the technical limitations of the
Kinect, the perspective is limited, so the key joint points of
the patient and the WAMmust stay within the optimal range
defined by the Kinect. Figure 2 shows the initial position
of rehabilitation training, WAM robot remains standing; the
Kinect, forearm of the WAM robot, hand joint and shoulder
joint are in alignment. The motion domain of the patient is
set range from −0.7 to 0.7 rad. The figure also shows the
position of Kinect (K), WAM (W), hand (H) and shoulder
position (S) in the Kinect coordinate system. Mapping the
Kinect coordinate into the WAM arm coordinate, the WAM
arm is placed approximately in the center of the Kinect visual
field.

In training the trunkmotion of the patient mainly occurred
in the horizontal direction. Because the height of the patient is
constant, and the shoulder-center point may revolve around
the shoulder. So the shoulder point was used to represent
patient’s trunkmovementwhen doing the human-robot coop-
erative rehabilitation training.

3 Methods

The human-robot cooperative rehabilitation training system
is a multi-variable, nonlinear system. During the human-
robot cooperative rehabilitation training, the patient walking
is random, so the movement of the patient trunk (direc-
tion, speed and acceleration) is indeterminate. To ensure the
safety and stability of the rehabilitation training, a hierar-
chical fuzzy controller that consisted of two stages (external
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Fig. 3 Control system block diagram of the human-robot cooperative rehabilitation system

controller and internal controller) was adopted, as shown in
Fig. 3.

The skeleton data reading, pose tracking and fuzzy
dynamic interpolation are contained in the external con-
troller, and the external controller is running on the client PC.
Fuzzy PD control of the WAM robot arm is carried out by
the internal controller on the server PC. The trajectory gener-
ated by the external controller is transmitted to the server PC
through TCP/IP. At last the rehabilitation robot will follow
the trunk movement of the stroke patient, and manipulate the
impaired upper limb to perform passive training which was
predefine by linear segments with parabolic blends [30] at
the same time.

3.1 Pose Tracking Module

The right hand was used as an example to show the human-
robot cooperative rehabilitation training; the left side could
also be derived in the same way. Figure 4 shows the rehabili-
tation training scene, the last frame(W-H′-S′) and the current
frame (W-H-S) of the Kinect, W represents the Joint4 coor-
dinate of the WAM robot, H and S represents the position
of hand and shoulder of the patient. The distance WH is the
length of the forearm of the WAM L. In the original location
of the rehabilitation training, the position of the WAM upper
arm remained vertical, the forearm position kept horizontal,
the patient stood by and hand held on the handle. According

Fig. 4 Rehabilitation training scene (W-H’-S’) presents last frame of
the Kinect, (W-H-S) presents the current frame

to the isosceles triangle �WHH′, the horizontal coordinate
of the WAM Joint4 W could be obtained as follows:

⎧
⎨

⎩

(wx − hx )2 + (wz − hz)2 = L2

(wx − h′
x )

2 + (wz − h′
z)
2 = L2

0 < wz < hz

(1)

where L is 0.35 m, W = (wx , wz),H = (hx , hz),H′
= (h′

x , h
′
z), the point H and H′ can obtained from Kinect.

In this paper, we mainly studied the patient trunk motion in
horizontal, so only the horizontal coordinate was discussed
in this section.

All of the skeleton data collected from the kinect were
smoothed by Kalman filter [31]. According to the location
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of the patient limb at the current moment, Kalman filter can
predict the location of each joint at nextmoment, and improve
the real-time of the system and smoothness of themovement.

Assuming the system equation:

{
xk = Axk−1 + Buk−1 + Qk−1

yk = Hxk + Rk
(2)

where xk is systemstate,uk−1 is system input,Qk−1 is system
state noise, yk ismeasurements, Rk is themeasurement noise,
k = 1, 2, 3, . . . n. The update step of the Kalman filter is
given by:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x̂−
k = Ax̂k−1 + Buk−1

P−
k = APk−1AT + Qk−1

Kk = P−
k HT (HP−

k HT + Rk)

x̂k = x̂−
k + Kk(yk − Hx̂k−1)

Pk = (I − KkH)P−
k

(3)

where Kk is the kalman gain matrix, I is a identity matrix.

In this paper A =

⎡

⎢
⎢
⎣

1 0 �t 0
0 1 0 �t
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ , H =

[
1 0 0 0
0 1 0 0

]

, uk−1

= 0,�t is the sampling period.
In the human-robot cooperative rehabilitation training, the

stroke patient kept standing and did training around theWAM
robot. The initial angle was set to zero. Next frame the angle
could be given by vector method as:

α = sgn(s′
x − sx )

π

180
∗ cos−1

−→
WS · −−→

WS′
∣
∣
∣
−→
WS

∣
∣
∣

∣
∣
∣
−−→
WS′

∣
∣
∣

(4)

−→
WS = (wx − sx , wz − sz)−−→
WS′ = (wx − s′

x , wz − s′
z)

Where α is the angle that patient turned, S = (sx, sy, sz),S′
= (s′x, s′y, s′z), the point S and S′ can be obtained fromKinect.
The positive or negative sign of the α depends on the position
of the s′

x and sx .

3.2 Hierarchical Fuzzy Control Strategy

The hierarchical fuzzy controller consisted of an external
controller which was fuzzy dynamic interpolation controller
and an internal controller which was fuzzy PD position con-
troller.

3.2.1 Fuzzy Dynamic Interpolation Controller

The patient trunk motion was mainly subjected to human
control, the trunk speed was random, so the signal which was
captured by kinect and imported to robot was not smooth.
To ensure smooth movement of the robot, some trajectory
interpolation methods were discussed.

Trajectory interpolation is used to smooth the data accord-
ing to the path points. In joint space it means to get the pro-
cessing position for starting position and target position with
certain interpolationmethod [32]. The interpolationmethods
can decide the capability of the control system. Many inter-
polation methods have been adopted by researchers, such as
LSPB (linear segments with parabolic blends), linear inter-
polation [33], Lagrange interpolation [34], sample-based
interpolation [35] and so on.

To get a goodmovement performance of the robot, a novel
fuzzydynamic interpolation strategywas adoptedwhichused
fuzzy logic connected with dynamic interpolation strategy
[28]. The velocity of the patient trunk was used to evaluate
the path condition by fuzzy logic in real-time, so as to inter-
polate the trajectory dynamicly. According to the general
experience, the method was used as follows:

1. When the patient speed was small, LSPB was employed;
2. speedwasmiddle, linear interpolation (LI)was employed;
3. speed was big, pulse linear interpolation (PLI) was

employed.

LSPB and linear interpolation are from the reference [28].
The pulse linear interpolation is a method based on the linear
interpolation, which is combined with a similar pulse vari-
ance. In this work, it is expressed as follow:

{
θki = θlki + sgn(θlki − θα)δk

δk = |θk−θk−1|
nk

(5)

where θlki and δk are the ith interpolation value by linear
interpolation and variance for the subsegment connecting
with kth and (k−1)thwaypoints, respectively, θα is the actual
position, θk and θk−1 are the values of kth and (k−1)th way-
points, respectively, and nk is the whole interpolation points
for this subsegment.

The fuzzy dynamic interpolation adopted the velocity col-
lected by kinect as the input of the fuzzy logic, the output
was the level of the interpolation method. Because the move-
ment of the patient trunk was uncertain, the velocity of the
patient exported from Kinect contained spike pulses. The
input velocity was defined as seven fuzzy sets, negative big
(NB), negative medium (NM), negative small (NS), zero
(ZE), positive small (PS), positive medium (PM), and pos-
itive big (PB). The output level was defined as LSPB, LI
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Fig. 5 Input-output membership functions for fuzzy reasoning a is
input variable VEL, b is the output variable level

Table 1 Inference rule table of Level

Input NB NM NS ZE PS PM PB

Output 3 2 1 1 1 2 3

PLI=3, LI=2, LSPB=1;

(linear interpolation), PLI (pulse linear interpolation). The
domain of discourse of input was [−0.1,0.1], while the out-
put was [0,3]. For convenience, two scaling factors were used
Gv = 12 and Gl = 1 for velocity and level respectively.
Mamdani algorithm was used. Triangular-shaped and trape-
zoidalmembership functionswere used as fuzzymembership
function. The input-output membership functions for fuzzy
reasoning are shown in Fig. 5. Figure 5a shows the member-
ship functions of the input variable VEL (velocity); Fig. 5b
shows membership functions of the output variable Level.
The fuzzy control rules are shown in Table 1. Where level 1
represents LSPB, level 2 corresponding to LI, level 3 corre-
sponding to PLI.

In order to achieve a safe movement exercise, the velocity
of the patients should be maintained in lower level. When
V > Vmax (Vmax is the maximum velocity), the training
should be switched into emergency mode. According to the

experiment on several stroke patients, the Vmax was set to
0.3 rad/s.

3.2.2 Fuzzy PD Position Controller

The fuzzy PD position controller was applied to control
the WAM robot to do the rehabilitation training stably and
smoothly. The block diagram of the WAM robot fuzzy
position controller is presented in Fig. 3 in the internal
controller. The proportional regulation can reduce devia-
tion and differential regulation can improve the dynamic
performance of the system. So the fuzzy controllers were
designed for P and D separately. Joint position tracking
error θe and the error rate θec were the input of the fuzzy
PD position controller, �KD and �KP were the output
of the fuzzy P controller and fuzzy D controller. Both of
the input and output were defined as seven fuzzy sets,
negative big (NB), negative medium (NM), negative small
(NS), zero (ZE), positive small (PS), positive medium (PM),
and positive big (PB). In real training, the domain were
θe[−0.1, 0.1], θec[−0.01, 0.01],�KD[−100, 100], and
�KP[−2.5, 2.5] separately. For convenience, four scaling
factors were used Gθe = 0.1/6,Gθec = 0.01/6,�KD =
100/6, and �KP = 2.5/6. Torque applied to the WAM is as
follow:

τP = (KP + �KP)(θd − θ)

+(KD + �KD)
d(θd − θ)

dt
+ M · Gscale · g (6)

where KP and KD are gain parameters of PD controller
respectively, �KP and �KD are the outputs of the fuzzy
P controller and fuzzy D controller separately. θd and θ are
the desired and actual position respectively, M is the link
mass vector of theWAM,Gscale is the gravity compensation
coefficient, and g is the gravity compensation coefficient. M ,
Gscale and g are used for gravity compensation. Mamdani
algorithmwas used. Triangular shaped and trapezoidal mem-
bership functions were used as fuzzy membership function.
The output characteristic of controllers are shown in Fig. 6.
Figure 6a shows the input and output relationship of �KP,
Fig. 6b shows the input and output relationship of �KD.

4 Experiment and Results

4.1 Experiment

The experiments were performed by six young healthy vol-
unteers (three males, age: 25 ± 3) with no history of upper
limb impairment. All of them were from Southeast Univer-
sity in Nanjing, China. To verify the effectiveness of our
proposed human-robot cooperative upper extremity rehabil-
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Fig. 6 a Output characteristic of fuzzy P controller. b Output charac-
teristic of fuzzy D controller

itation method and the hierarchical fuzzy control strategy,
several experiments were conducted.

To obtain obvious results, the vertical flexion/extension
exerciseswere adopted as the passive training trajectory. Sev-
eral experiments were conducted.

To show the effects of the human-robot cooperative reha-
bilitation training, the experiments were designed as follow:

1© the subject followed theWAMArm todopassive training,
and at the same time the subject was asked to simulate
the patient trunk movement occasionally;

2© Upper limb did human-robot cooperative movement
training and the subject walked around the WAM robot
occasionally.

In the period of human-robot cooperative rehabilitation
training experiment, subject was asked to simulate the
trunkmovement of the patient occasionally; and the robot
used the hierarchical fuzzy controller.

To show the effects of the hierarchical fuzzy controller,
contrast experiments in each hierarchy were designed:

3© External hierarchy: LSPB and fuzzy dynamic interpo-
lation were used separately on the comparative experi-
ments.

4© Internal hierarchy: Traditional PD control method and
fuzzy PD control were used separately on the compar-
ative experiments. To reflect the effect of each control
method, the same trajectory was adopted in advance.

In order to decrease the influence produced by the acciden-
tal elements each subject was asked to do some simulation
exercises first, moreover, each experiment was carried out
for several times, until the result was relatively stable.

4.2 Results

Because each subject’s trajectory is different, the resultwhich
was staying roughly at a moderate level was selected to
represent the performance of the human-robot cooperative
rehabilitation training system.

The joint position error and the corresponding control
torquewere recorded and demonstrated to reflect the tracking
performance and stability respectively. The interaction forces
between patient and WAM robot which were measured by
the three-dimensional force sensor show the comfort level of
the rehabilitation training.

The results of the experiment 1© and 2© were depicted
in Figs. 7 and 8. In the 1© experiment, when the subject was
following theWAMArm to do passive training, if the subject
was asked to simulate the trunkmovement of the patient occa-
sionally, but theWAMdid not do the synchronousmotion, the
interaction forces between patient and WAM robot changed
with a wide range. The variation trends of the interaction
forces are shown in Fig. 8. T1 shows the beginning of the
patient trunkmovement, and T2 is the trunk position restored
time. The absolute value of three forces in X, Y and Z direc-
tion are all increased in the period from T1 to T2. After
T2, the interaction forces are gradually gone back to normal.
In this situation the patient feels very uncomfortable, and
the rehabilitation training system is very unstable. In the 2©
experiment, when subject simulated the trunk movement of
the patient occasionally, the WAM also did the synchronous
motion. The interaction forces between patient and WAM
robot are shown in Fig. 8. The figure shows that when sub-
ject did the human-robot cooperative rehabilitation training,
the generated forces are all smaller than the first comparative
experiment. And each force is very uniform in each direction
(X, Y and Z). Thus the patient feels comfortable and natural
in the rehabilitation training.

The feelings of the volunteers in the experiment 1© and
2© were showed in the Table 2. Scores from 0 to 10 are
used to describe the feelings. 10 represents vary comfortable,
nature, convenience and interesting; 0 represents uncom-
fortable, restricted, illiberality on the contrary. It shows the
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Table 2 Six volunteers’ feeling in the experiment

Number Experiment 1© Experiment 2©
1 7 9

2 5 7.5

3 6 8

4 6 8.5

5 6.5 8.5

6 5 8

subjective results on the comparison experiments. The num-
bers in the table show that experiment 2© scored higher. It
indicates that the volunteers prefer the human-robot cooper-
ative rehabilitation training method than the traditional one
subjectively. Moreover the experiment 3© and 4© show the
effects of the human-robot cooperativemethod on each joints
objectively.

The comparison illustrates that the human-robot coopera-
tive rehabilitation training method could reduce the interac-
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Fig. 9 Trajectory of the subject trunk after Kalman filter
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tion forces when patient trunkmotion occurred in upper limb
passive rehabilitation training, thus human-robot coopera-
tive upper extremity rehabilitation system is more stable than
the traditional rehabilitation training system.Moreover using
the human-robot cooperative movement trainingmethod, the
subject can walk as he/she wished in the visual range of
Kinect, and the training is more natural and comfortable and
interesting, the volunteers feels better. Because the legs are
added to the upper limb rehabilitation training, the human-
robot cooperative training could enhance the effect of the
rehabilitation training.

The results of the experiment 3© and 4© were depicted
in Figs. 9–12, the training mainly included movement in
two directions: the upper limb did passive training in ver-
tical direction, and the trunk of the subject moved as he/she
wished in horizontal direction.

Figure 9 shows the trunk trajectory of the subject in hori-
zontal after Kalman filter. The trunk trajectory was imported
to the Joint1 of the WAM robot. Figure 10 shows the Joint1
position tracking error (Error1). The dash line shows the
result of LSPB, the red full line shows the result of fuzzy
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Fig. 11 Experiment 4© results in horizontal. a Joint1 position tracking
error-Error1. b The corresponding torque of Joint1

dynamic interpolation. From the figures it is evident that
error1 is smaller in the fuzzy dynamic interpolation than the
LSPB, so the former has better tracking performance than
the latter.

Figure 11 shows the position tracking error and the cor-
responding torque in horizontal motion. Figure 12a shows
the pre-defined passive training sinusoidal trajectory which
is performed by Joint4. Figure 12b shows the Joint4 position
tracking error and the corresponding torque in vertical. The
dash line shows the result of traditional PD control, the red
full line shows the result of fuzzy PD control. From the graph
it is evident that traditional PD controller has more frequent
vibration and larger torque overshoot than the fuzzy PD con-
troller, especially in the vertical flexion/extension exercise.
Also the fuzzy PD control has better tracking performance
and smoothness than the traditional.

The system moving performance tracking errors and con-
trol torques were further analyzed. The maximum of the
absolute error (MAE) and the sum of absolute error (SAE)
of the trajectory tracking errors were adopted to evaluate
position tracking performances. Moreover, maximum abso-
lute torque (MAT) and maximum absolute rate of the torque
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Fig. 12 Experiment 4© results in vertical. a Pre-defined sinusoidal tra-
jectory. b Joint4 position tracking error-Error4 c The corresponding
torque of Joint4

Table 3 Position tracking performance in experiment 3©
Method MAE SAE

Lspb 0.0073 4.1420

Fuzzy dynamic interpolation 0.0039 2.1168
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Table 4 Position tracking and torque control performance in experiment 4©
Trajectory Position tracking (rad) Torque variation (Nm, Nm/s)

MAE SAE MAT MART

Horizontal Traditional control 0.0042 2.2380 3.2123 31.4065

Fuzzy control 0.0020 1.2722 2.6592 20.0509

Vertical Traditional control 0.0101 14.6421 19.6944 35.6160

Fuzzy control 0.0042 6.5371 17.3029 15.5528

(MART) were considered to analyze the movement stability
and smoothness of the control performance.

In experiment 3© the position tracking performance is
showed in Table 3, and the value of MAE and SAE show
that the Error1 is smaller in the fuzzy dynamic interpolation
than the LSPB. Position tracking and torque control perfor-
mance in experiment 4© are present in Table 4. For fuzzy
PD controller the values of MAE, SAE, MAT and MART
are both smaller than the traditional PD control in the two
directions.

The results of the experiments reveal that the hierarchi-
cal fuzzy control strategy was succeeding in improving the
training.

5 Conclusions

Considering the neuronal coupling between arms and legs
during locomotion, and motor function recovery of lower
extremity is better than the upper extremity clinically. In the
upper limb passive rehabilitation training, the legs motion is
considered to realize a more natural and comfortable upper
extremity training. So considering the participation of the
patient, human-robot cooperative becomes needed.

This paper presented a human-robot cooperative method
for upper extremity rehabilitation training. A Kinect based
vision module was employed to track the trunk motion of the
patient and communicated its position to theWAMcontroller
to lead the robot follow the position of the patient trunk. A
WAM robot was used to guide the stroke arm to do passive
training with the predefined trajectory, and at the same time
the robot followed the patient trunk movement tracked by
Kinect in real-time. A hierarchical fuzzy control strategywas
proposed to improve the position tracking performance and
stability.

The experiments show that the human-robot cooperative
upper extremity rehabilitation training method can suc-
cessfully realize natural and comfortable upper extremity
training. The subject can walk as he/she wished in the visual
range of Kinect. The enthusiasm to use legs of the patient is
boosted in the human-robot cooperative training.

The analyses of the MAE and SAE show that position
tracking performance of the human-robot cooperative reha-

bilitation training system is very well in each hierarchy. The
analyses of the MAT and MART show that the fuzzy control
performance is good. So the human-robot cooperative upper
extremity rehabilitation training can obtain a good result.
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