
Int J of Soc Robotics (2017) 9:643–658
DOI 10.1007/s12369-016-0377-4

Cooperative Human–Robot Planning with Team Reasoning

Raul Hakli1,2

Accepted: 30 August 2016 / Published online: 17 October 2016
© Springer Science+Business Media Dordrecht 2016

Abstract The paper studies the connections between phil-
osophical action theory and planning methods in artificial
intelligence. It proposes a method of cooperative planning in
which agents select actions using a combination of planning
and team reasoning. Whereas several standard approaches to
multi-agent planning start from individuals’ plans and try to
combine them into a group plan, the proposed method starts
from constructing a group plan from which the individuals
derive their sub-plans. The former method is labelled I-mode
planning and the latter we-mode planning. The basic idea of
the proposed we-mode planning method is that the agents
conceive themselves as a group agent that selects the best
plan specifying the actions of all individual agents who then
carry out their parts in the group plan. We-mode planning is
suited for human–robot cooperation in situations inwhich the
participants have a shared goal and a shared plan evaluation
function, and can observe each others’ actions. The method
is expected to lead in some cases to more human-like robot
behaviour and more efficient execution of joint actions in
human–robot teams.
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1 Introduction

There are several connections between theories of action
in philosophy and planning methods in artificial intelli-
gence (AI) and robotics. These fields of research have
influenced each other, often by philosophers presenting gen-
eral ideas and making conceptual distinctions, which are
then employed by computer scientists and engineers in their
detailed formalizations and implemented agent systems and
architectures, which are again studied and commented on
by philosophers. An important development in philosophical
theories of action is marked by the transition from so called
belief-desire theories (or BD-theories for short) to so called
belief-desire-intention theories (or BDI-theories). These the-
ories have inspired, especially through Michael Bratman’s
work ([13,15]), researchers in artificial intelligence in which
several BDI-logics and BDI-agent architectures have been
developed, e.g. [20,43,52,61,75,85].

However, some recent developments in philosophical the-
ories of action have not yet been sufficiently utilised in the AI
and robotics communities, and my aim here is to draw atten-
tion to some of them. In particular, I will look at attempts to
conceptualise joint action in terms of group agents, which
may have attitudes of their own. I will try to see what conse-
quences such a conceptualisation might have for multi-agent
planning and human–robot interaction (HRI). More specif-
ically I will focus on Raimo Tuomela’s distinction between
acting in the I-mode and acting in thewe-mode, and argue that
the distinction can be applied to multi-agent planning. More-
over, I will argue that a specific reasoning method, called
team reasoning, which is currently under intensive study in
philosophy and economics (see, e.g. [3,5,6,48,58,72,81]),
can be applied in the case of artificial agents like software
agents and robots. Furthermore, it can be extended from
selection of actions to selection of plans.
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Team reasoning has been proposed as an alternative to
game-theoretic methods of action selection, and it has been
argued to solve certain multi-agent decision problems bet-
ter than standard game theory [5,6,48,72]. Moreover, team
reasoning can also explain certain types of observed human
behaviour that competing theories have had difficulties with,
and there is some empirical evidence that people might use
team reasoning when they participate in shared activities
[22]. If people indeed do so, social robots exhibiting sim-
ilar reasoning would be likely to appear more predictable
and human-like in their behaviour, thereby enhancing inter-
action, especially collaboration, between humans and robots.
Conceptually, team reasoning is based on the idea of group
agency. In contrast to game theory, in which agents are seen
as maximising their expected utilities, in team reasoning the
agents conceive themselves as parts of a group agent that
maximises its expected utility. They identify the profile of
actions or strategies that is best for the group and then per-
form their part actions in that profile.

The idea of group agency can be extended to multi-agent
planning as follows. The agents conceive themselves as con-
stituting a group agent, which has all the combined capacities
of the group members and which constructs a plan to reach
its goal. Each individual agent in a way simulates the rea-
soning of such a group agent by using a method similar to
team reasoning: They compare alternative multi-agent plans
in relation to the group’s goals using a shared evaluation func-
tion, select the best one, and derive and execute their part in
the selected plan.

In ideal circumstances, this procedure will result in an
optimal plan for the group of agents. In realistic situations,
it needs to be augmented with monitoring, communication,
and helping behaviour that ensure coordination of actions,
successful execution of the plan, and replanning in cases
in which carrying out the original plan becomes impossi-
ble. The method is applicable in cooperative situations in
which the agents have a shared goal and certain other con-
ditions hold. In particular, it can be applied in HRI in cases
in which humans and robots cooperatively act together. This
paper presents the method in broad outline and further work
is required to test its usefulness empirically. Some poten-
tial benefits can be expected. For instance, using a team
reasoning approach is expected to reduce need of commu-
nication and effort to resolve potential conflicts as compared
to approaches in which the agents only plan for themselves
and then try to combine their plans. Also it is conjectured to
lead to more predictable and more human-like robot behav-
iour.

The paper is organized as follows: I start, in Sect. 2, by
providing the background to the research and discussing con-
nections between philosophical action theory and planning in
artificial intelligence and robotics. In Sect. 3, I will describe
the idea of group agents and we-mode action that will be

used to develop an account of we-mode planning in Sect. 4.
I will discuss related work in Sect. 5 and possible further
extensions in Sect. 6. Section 7 will conclude.

2 Background

2.1 Planning in the Single-Agent Case

Within philosophical action theory, there is an established
separation between two kinds of attitudes: attitudes that rep-
resent the current state of theworld (beliefs) and attitudes that
motivate the agent to change the state of the world (desires).
In BD-theories decision-making was conceived as practical
reasoning starting from premisses concerning beliefs and
desires, and resulting in conclusions concerning intentions
or actions. For instance, an agent whose strongest desire is
to build a tower of bricks and who believes that she can build
a tower of bricks only if she takes brick A and puts it on top
of brick B, would be rationally required to reason from these
premisses to the practical conclusion of forming an intention
to take brick A and put it on top of brick B.

This division between two kinds of attitudes seemed
essential for understanding rational agency. A rational agent
would be one whose beliefs are coherent and who can rea-
son how to satisfy her strongest desires based on her beliefs
about the environment. The role of intentions in this theory
was then to function as a link between attitudes and actions:
Having formed an intention to take a particular action, an
agent will start performing it (or at least try to perform it).

Several philosophers had studied the roles of beliefs,
desires, and intentions in practical reasoning and noted
the importance of intentions in understanding agency (see
e.g. [4,28,87]). It had been recognised that the output of
practical reasoning can be seen as an intention to act and
sometimes intentions were required as premisses as well, but
Michael Bratman’s work [13] was especially influential in
establishing the crucial roles of future-directed intentions in
practical reasoning: In addition to intentions-in-action that
initiate the next action to be taken, there are also future-
directed intentions that constrain other future actions. If I
intend to do something, then I am committed to doing it
and this commitment constrains my future actions: I can-
not select actions that would make it impossible to satisfy
the intention. Therefore, future-directed intentions must be
considered as premisses for practical reasoning because they
constrain future choices and pose problems for further delib-
eration. Bratman established a close connection between
intentions and plans: plans can be viewed as certain kinds
of future-directed intentions. This conceptual move paved
the way for the widespread acceptance of BDI-accounts in
the AI community in which planning had already been an
important area of research.
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Note that decision theory and game theory, which are
sometimes taken to serve as foundation for multi-agent sys-
tems (MAS) [67], are based on the belief-desire framework.
According to decision theory the next action to be selected by
an agent is the one that gives her the highest expected utility.
Game theory extends this basic idea to the case of multi-
ple agents. Both sometimes consider possible sequences of
actions in the form of decision trees or extensive games,
but they lack a notion of an intention-type commitment to
a sequence of actions: At each choice point, the next action
is to be selected based on expected utility calculations instead
of prior commitments. Some theorists criticise decision the-
ory for lacking a notion of commitment that is independent
of utility values [66].

In contrast, some others think that if commitments are
to play a role in agent’s decision making they should
be taken into account in the utilities [84, pp. 133–136].
However, it is not clear how that should be done in the
standard approach based on maximization of expected util-
ity (see, e.g., [60]). One could try modifying the utilities
by increasing the payoff of action alternatives that lead to
satisfaction of the intention or by penalising those alter-
natives that make it impossible to satisfy the intention.
The problem is that this would violate the idea that inten-
tions constrain decisions and not merely serve as consid-
erations that are weighed together with ordinary desires
[13, p. 24]. Bratman et al. [15] note that such constraints
are useful for resource-bounded agents because they limit
the amount of practical reasoning that the agent has to
do.

Since games are defined in terms of players, choices, and
payoffs, it seems that if intentions cannot be modelled by
modifying payoffs, the only option left to incorporate inten-
tions into games is to introduce constraints to the available
choices: The consequence of an agent’s adopting an inten-
tion could be modelled by removing from the agent’s set
of action alternatives those that are inconsistent with the
adopted intention. However, this proposal goes against the
idea that intentions are revocable: In some situations, it may
be reasonable to reconsider adopted intentions and this may
lead to revoking them. Currently, it is not clear how to incor-
porate intentions into game theory.

Bratman conceived of intentions as plans, calling his the-
ory the planning theory of intention. The major roles of
intentions are, according to Bratman [13, pp. 16–17], the
following:

1. Intentions are conduct-controlling attitudes. This means
that if a prior intention manages to survive until the time
to take the action, then it will determine the course of
action. Forming an intention involves a commitment to
act. This is not the case for desires which are merely
potential influencers of action.

2. Intentions have stability or inertia. This means that they
resist reconsideration: In normal circumstances in which
there is no special reason to reconsider, prior inten-
tions persist and constrain the agent’s future deliberation
because the agent considers the course of action set-
tled. (However, if need be, intentions can be revised or
retracted.)

3. Intentions pose problems for further deliberation, and
they lead to formation of new intentions. For instance,
an intended end requires that the agent plans for how to
achieve and adopts an intention concerning the means.
Similarly, a general intention to do something requires
specifying further details leading to the formationofmore
specific intentions.

Plans, according to Bratman [13,29] are “intentions writ
large”:They share the three properties of intentions and, addi-
tionally, have the following two characteristics:

4. Plans are typically partialmeaning that they are not fully
specified but allow for details to be filled in due course.

5. Plans typically have ahierarchical structuremeaning that
plans concerning ends embed plans concerning means,
and more general plans embed more specific ones.

These featuresmake sense for agentswith bounded resources,
because they enable us to coordinate our future actions both
intra- and interpersonally in broad outlines without requiring
all the details to be specified in advance, which could easily
lead to waste of resources due to unanticipated changes in the
environment. These ideas are clearly visible also in classical
AI planning methods. In particular, in methods using par-
tially ordered and hierarchical planning, steps in a plan may
be refined later by replacing one high-level step by several
more detailed action steps, and also the order in which they
are to be performed can initially be left open and fixed later
[63].

2.2 Planning in the Multi-Agent Case

Bratman has extended his theory of single-agent planning to
the multi-agent case [12]. In the case of intentional group
activities, Bratman talks about shared agency and shared
intentions. What is important for Bratman is that shared
intentions are patterns of individuals’ beliefs and intentions
concerning shared activities. They are thus built from ordi-
nary beliefs and intentions attributed to individuals. Hence,
they are not group intentions attributed to a group (as in
Tuomela’s [81] and in Gilbert’s [39] theories), nor is there
need to attribute specific we-intentions to the individuals (as
in Tuomela’s [81,82] and Searle’s [64,65] theories). Brat-
man advocates what he calls the continuity thesis, according
to which the move from the single-agent case to the multi-
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agent case is conceptually conservative [12]: Understanding
sociality and shared agency does not require radically new
conceptual, metaphysical, or normative machinery beyond
what is needed to account for individual planning agency.
With respect to the intentional attitudes, the basic building
blocks of individual beliefs, desires, and intentions, are thus
sufficient to account for collective intentionality aswell. Note
that the strategy is clearly different from the attempt to under-
stand collective agency by finding such analogies between
individual agents and group agents that warrant the attribut-
ion of intentional attitudes to groups. This approach can be
seen in Tuomela’s we-mode theory [81], in Gilbert’s plural
subject theory [39], in List and Pettit’s functionalism [55]
and in Tollefsen’s interpretationism [76].

Let us see how Bratman characterises shared intentions
[12]. A central idea for him is that individuals can have
intentions towards collective actions: I can intend that we do
something together. For instance, I can intend that we dance
tango and you can intend that we dance tango. Given that we
have such intentions and certain other conditions hold under
common knowledge, we have a shared intention to dance
tango. And if our sub-intentions and actions are mutually
responsive to these intentions, our shared intention leads to
our dancing tango. This, according to Bratman, is a central
case of sociality and acting together, and it is individualis-
tic in the sense that it does not require more than attitudes
attributed to individuals. However, there is a controversial
bit, which comes from the idea of intending that. According
to many philosophers, “intentions that” are derivative from
“intentions to”, and intentions to have a built in restriction
that we can only intend our own doings (see, e.g., [7]). This
condition is violated by the idea of intending thatwedo some-
thing because it is very difficult to understand what it means
for me to intend to do something that involves your doings
as well.

However, because plans are understood as intentions in
Bratman’s theory, we can describe the difference in plan-
ning terms, and this may help us understand what Bratman
is after. In his theory, having a plan should not be understood
merely as having a recipe for doing something but being
committed to doing something, thus as having an intention
[13, pp. 28–29]. According to Bratman, individuals can have
plans that specify not only their own actions but also other
agents’ actions. When an agent considers alternative plans,
these plans may be multi-agent plans in the sense that they
specify what each agent is to do. It is not difficult to under-
stand what is means for an agent to commit herself to such a
plan. It entails performing the actions specified for her in the
plan and possibly also keeping an eye on whether the other
agents can handle their parts and maybe having a disposi-
tion to help them if needed. In terms of plans this appears
unproblematic, and the idea has been endorsed also in AI
approaches to multi-agent planning [41]. The problem only

appears when the situation is described in terms of intentions
because according to a common understanding of intentions
one can only intend one’s own actions, and this is why “inten-
tions that” have been controversial (for discussion, see, e.g.,
[14,56,83]).

Bratman is more concerned with defining the building
blocks of shared intentions than presenting an algorithm for
finding individual sub-plans and putting them together, but
based on his discussions as well as on some of the AI litera-
ture on cooperative planning (e.g. [41]) we can try to outline
how planning typically proceeds in a few main steps, assum-
ing here that they have a shared goal:

1. Each agent finds the individual sub-plan that contributes
to the shared goal and best serves their goals and inten-
tions taking into account their previously adopted plans.
The plan specifies the agent’s own actions but it may
involve constraints related to other agents’ actions, for
instance some steps may presuppose that some other
agents perform complementary actions.

2. The agents negotiate and adjust their sub-plans in order to
make themmesh (and to satisfy the shared goal), possibly
via constructing a global multi-agent plan.

3. Each agent implements their sub-plans, and, when
needed, adjusts to changes, monitors and helps others.

Such methods can be called I-mode planningmethods: In
them the individual plans (or intentions) are primary. Some
methods do not even require a group-level plan but if there
is one, it is produced by a method that takes the individual
plans as input. We-mode planning would use a more top-
down strategy in which the group plan (or group intention) is
primary and the individual plans are produced by a method
that takes the group plan as input. In the next chapter, we will
motivate such an approach that is based on group agency.

3 Group Agents and We-Mode Action

Several philosophers have recently considered the possibil-
ity of group agents [55,76,81]. Arguments to the effect that
groups satisfy conditions of agency have been presented,
for example, by List and Pettit [55, p. 20]: According to
them, an agent is anything that has representational states
(e.g. beliefs or views), motivational states (e.g. desires or
goals), and a mechanism that produces actions on the basis
of these states (in essence, a method of forming intentions).
Since groups, like committees, organizations, and nations,
are often attributed such states and can on the basis of those
states make decisions that lead their members to act, it seems
to be possible to view them as agents.

In Tuomela’s theory, on which I will focus here, groups
act through individual group members trying to pursue the
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group’s goals. Groupmembers can pursue goals in twoways:
They can act in the I-mode or in the we-mode [80]. Roughly,
the difference is as follows:Whenacting in the I-mode, agents
select their actions on the basis of their attitudes (beliefs,
desires and intentions) whereas in the we-mode they select
their actions on the basis of what they consider as their
group’s attitudes: They conceive themselves as constituting
a group agent that has attitudes of its own and can select
between collective actions that specify each group member’s
actions. The individuals then do their parts as if they were
the limbs of the larger agent.

This idea does not require that in addition to the individ-
ual agents there would exist another super-agent that would
somehowcontrolwhat the individuals do. Individuals are still
autonomous, but they deliberate from the perspective of their
group: They evaluate the options and deliberate, not from the
I-perspective, asking “What should I do?”, but from the we-
perspective, asking “What should we do?”. As Wooldridge
and Jennings [86, p. 567] correctly note, because it is the
individuals who ultimately have the ability to act, the rela-
tion between individual and collective intentional states must
bemade clear. However, that does not require that the relation
is such that collective intentional states are defined in terms
of individual intentional states which are taken to be primi-
tive. Instead, collective intentional states can be understood
as being collectively constructed by the group members who
see themselves as constituting a group and who identify with
it and therefore reason and act from the group’s perspective.
As an example, consider the following type of we-mode rea-
soning: I am a member of our group and we intend to build
a tower together. We believe that in order to build a tower
together we all have to place our bricks to the tower. There-
fore, I intend to place my brick to the tower. The premisses
of my practical reasoning refer to the group’s irreducible
attitudes but the conclusion is an individual intention. This
kind of we-mode we-reasoning is what gives the connection
between the group agent’s attitudes and the individual inten-
tions that are necessary for the group agent to function. The
group agent is not an agent with a mind of its own, rather it
is the result of the individuals’ changing their point of view
from first-person singular to first-person plural, from “I” to
“we”.

Cooperation to a shared goal is also possible in the I-mode
in Tuomela’s theory. If the attitudes of an individual are pos-
itively affected by the group, for instance, if they adopt the
group’s goal and pursue it in the way theywould pursue a pri-
vate goal, we can say that the agents act in pro-group I-mode.
For example, I may reason from my intention to contribute
to the shared goal to build a tower and my belief that the
goal cannot be satisfied unless I place my brick to the tower,
to forming an intention to place my brick to the tower. In a
simple case like this there is no difference in the resulting
action. However, as we will see later, in more complicated

cases, pro-group I-mode reasoning is more prone to coordi-
nation failures.

The characteristic features of we-mode in Tuomela’s the-
ory are group reasons, collectivity condition, and collective
commitment. The first feature means that the group’s atti-
tudes, especially goals, function as reasons for action for
the group members. The collectivity condition holds for the
group’s attitudes, for instance agoal, such that it is necessarily
the case that if the goal is satisfied for one member, it is satis-
fied for all members. Another difference between the I-mode
and the we-mode is in the commitments to the action: In the
I-mode the agents are only committed to themselves, but in
the we-mode there is also collective commitment, meaning
that each group member is committed to others to participate
in the joint activity. This commitment is typically a result
of a collective decision to do something together. These are
just rough characterisations of the main differences between
I-mode and we-mode. For precise definitions, see Tuomela’s
writings (e.g. [80,81]).

Some of the differences can also be characterised in game-
theoretical terms [48]: I-mode action can be seen as ordinary
expected-utility maximization, and in pro-group I-mode the
utility function derives from the group’s utility function.
(There are several proposals in the literature concerning the
nature of group utility [24,38,71,73,80], see also literature
on social choice theory [35].) We-mode action on the other
hand can be seen as the group agent’s utility-maximization,
that is, as the group members doing their parts in the col-
lective action that according to the group’s expectations
maximizes the group’s utility. This can be illustrated by view-
ing an agent’s decision-making as employing team reasoning
[5,48,72]. Team reasoning presupposes that the agents have
a shared goal that they are trying to satisfy, that is, that they
can be seen as maximising the same utility function. Once
the agents identify the action combination (specifying the
actions of all of the agents) that maximizes expected group
utility, team-reasoning agents will form intentions to perform
their part actions of that action combination.

As an example, consider a “blocks world” scenario in
which a human being and a robot are trying to build a tower
from bricks and pyramids [19]. Both agents are assumed to
have available the same actions and to be able to observe
each other and the state of the world. The agents have a
shared goal to build a tower in which the bricks are in the
correct order and one of the pyramids is on the top. Sup-
pose that both agents have reasoned that in order to satisfy
the goal of building a tower, one of them will have to start
building the tower by placing the first brick in the middle
of the table while the other agent waits. Let us assume that
both agents can reach all the blocks but are concerned with
their own resource consumption and prefer to do as little as
possible. This is not essential, it is only meant as an illustra-
tion of where the individual utility functions may come from.
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Table 1 Matrix representing possible actions of the agents

Take Wait

Take 0, 0 1, 4

Wait 4, 1 2, 2

The numbers represent the agents’ utilities, that is, how much each
values the outcome resulting from the combination of actions taken by
the agents. The first number in each outcome is the row player’s (the
human being) utility

We could have as well assumed that both are very eager and
want to place as many bricks as possible, in which case their
preferences, and hence utilities (which are numerical repre-
sentations of preferences) would be different (but would lead
to similar problems). Suppose, for simplicity’s sake, that the
relevant actions the agents consider are “take” and “wait”.
We can then represent the situation as the game-theoretic
matrix in Table 1 where the human is the row player (player
1) and the robot is the column player (player 2).

Because both agents are concerned with their resource
consumption, each prefers the action combination in which
they themselves wait and the other one takes the brick. Both
think that if their preferred action combination does not hap-
pen, it is better to wait a while in the hope that the other
one will reconsider in the next turn: At least it will not lead
to waste of effort, but of course there is no progress on the
tower building either. The next best option is to be the one
who takes the brick while the other one waits, because that
will contribute to the goal. The worst outcome is the one in
which both simultaneously try to take the same brick because
that leads to waste of resources and may not advance tower
building either.

The exact numbers in the matrix do not matter. The point
of the exercise is to see that agents often have mismatches
in their preferences, and this may lead to inefficiency in
planning and execution. Suppose, for instance, that we use
standard game-theoretic ideas to build artificial agents that
reason about what to do in the above situation. Then we may
implement best-reply reasoning in which each agent reasons
roughly as follows: On the one hand, if the other agent takes
a block, it will be better for me to wait. On the other hand,
if the other agent waits, it will be better for me to wait as
well. Therefore, because in both cases it is better for me to
wait, I should wait (independently of what the other agent
does). Because the situation is symmetric, the agents will
end up in the only Nash equilibrium of the game in which
both agents wait. This situation is not desirable because it
does not advance the goal of building a tower.

One may think that the problem arises from there being
something wrong in how the interaction situation has been
modelled: Maybe if we change the agents’ preferences a bit,
they will be able to find better ways of coordinating their

actions. After all, we have assumed that the agents are coop-
erative and have a shared goal, so this should be reflected
in their preferences. Indeed, we will suggest that in such a
case they should be seen asmaximizing the same utility func-
tion. There are two problems, however. (1) Arriving at such
a group utility function is non-trivial. (2) Merely changing
the utility functions is not sufficient to solve the problem. In
this paper, the focus is on the second problem, which will be
motivated below. As a solution, team reasoning is suggested.
As to the first problem, we will not try to give a general
solution to it but assume that it can be solved somehow. In
simple cases in which the agents only have one shared goal,
the group utility function may be given in the specification
of the problem to be solved by the agents. There are also
methods of constructing utility functions that can take sev-
eral goals into account [46]. In some special cases in which
individual utilities are available and satisfy certain conditions
allowing interpersonal comparison, group utility may be cal-
culated as a function of individual utilities, e.g., by summing
them or using other methods of aggregation [35]. Sometimes
it may be possible to model how agents’ preferences in a
group influence each other [71]. In more complicated cases,
the agents may need to communicate and agree on a suitable
group utility function [48].Methods like negotiation, persua-
sion, or argumentation may someteimes be relevant in such
a process.

Suppose now that the agents agree on a group utility func-
tion and assume further that they are willing to conceive the
situation in its terms. The process of changing individual
utilities to group utilities has been called a preference trans-
formation [6]. In the above example, we may assume that
the agents ultimately agree that it is best for the group that
the agent closest to the brick (here assumed to be the human
being) will take it because that results in minimizing cost for
the whole group. The agents then adopt these group utilities,
and we have the matrix in Table 2 in which the numbers for
both players in each outcome are identical.

The resulting matrix contains two Nash equilibria: one
in which the robot takes the brick and the human waits and
another in which the human takes the brick and the robot
waits. Moreover one of the equilibria (the latter) is strictly
better than the other. The resulting game resembles games
like Hi-Lo which are problematic for game theory. In such
games there are multiple Nash equilibria, so agents are not

Table 2 The matrix with transformed utilities

Take Wait

Take 0, 0 4, 4

Wait 3, 3 2, 2

The numbers still represent the agents’ utilities but they are now iden-
tical with the group’s valuation of each outcome
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guaranteed to converge to the optimal outcome even though
such games are easy for human beings to optimally solve
[5,22,48,73]. The problem is that the type of best-reply
reasoning that tries to model how agents might end up in
Nash-equilibria leads to an impasse. Think of the two agents
in the above situation trying to decide what to do by consid-
ering their best replies to the other agent’s possible strategies
in terms of the group’s utilities. Each would reason as fol-
lows: If the other one takes the brick, it is better for the
group that I wait. However, if the other one waits, better for
the group that I take it. The same applies to both agents:
Each agent’s best reply depends on the other agent’s action.
Because each agent’s best action depends on the other agent’s
action, this kind of reasoning is not sufficient to decide which
agent should perform which action.

Agents acting in the pro-group I-mode thus face a coordi-
nation problem, but agents acting in thewe-modemay invoke
a transformation of reasoning from that of game-theoretic
best-reply reasoning to team reasoning [6]. As explained
above, in team reasoning the agents consider themselves as
a group agent trying to maximize its expected utility. In this
particular case they would reason as follows:We intend to do
what is best for the group. It is best for the group if the human
takes the brick and the robot waits. The robot then infers:
Hence, I will wait. And the human infers: Hence, I will take
the brick. Such team reasoning leads to the human taking
the brick and the robot waiting. When followed by all group
members this method of reasoning leads to them reaching
optimal outcomes (in terms of the group utility) when such
an outcome exists. If there are several optimal outcomes, the
agents still need communication or other means to solve the
coordination problem.

4 We-Mode Planning

4.1 The Basic Idea

The main idea of the paper is (1) to apply the above kind of
team reasoning to multi-agent planning, thereby leading to
an account of we-mode planning, and (2) use that method in
human–robot interaction. The general idea of we-mode plan-
ning has been described in [47], and a closely related idea
is presented in [16]. An earlier attempt to apply we-mode
decision-making, basically team reasoning, to the selection
single actions in multi-agent systems is given in [49]. Apply-
ing the idea of team reasoning to multi-agent planning would
go as follows: The agents conceive themselves as constituting
a group agent, find the group plan that is evaluated as the best
one for the group, and then extract, or derive, their sub-plans
from the group plan and execute them. In contrast to ordinary
team reasoning, the agents are not selecting merely the best
action. Rather the idea is that groups are planning agents as

well: If we accept that groups can be agents, Bratman’s [12]
argument for the need for future-directed intentions and plan-
ning seems to apply to groups too. It seems clear that they
are resource-bounded planning agents similarly to the indi-
viduals who constitute them. Groups have an even stronger
need for coordination of actions than individuals because
they consist of several individuals who will have to be able
to act together. Planning groups select the best plan and then
individual group members refine and execute their parts in
it.

Note the difference between ordinary decision theory and
decision-making based on planning. In the former, the agent
selects between single actions: The best action is the one that
is expected to lead to the best outcome. In the latter, the agent
selects between plans consisting ofmultiple actions. The best
plan is the one that is expected to lead to the best outcome
where the expected costs are taken into account. The action
to be performed is the first action of the best plan found
and it may lead to a worse outcome than the best action,
but its rationality is taken to derive from the rationality of
the best plan. There is a sense in which planning and team
reasoning are closely related decision-makingmethods:They
both involve selecting acts on the basis of evaluation of larger
units than the acts themselves. Team reasoning selects acts
based on the evaluation of the joint action of which the act
is a part. Planning selects acts based on the evaluation of
the long-term plan of which the act is a part. In this respect
they both differ from standard decision and game theories
which evaluate individual acts. Because of this they go well
together and the possibility of planning group agents should
be considered (for a more detailed argument and discussion,
see [47]).

4.2 Elements of We-Mode Planning

In order to give an account of planning for group agents, we
can apply the main elements of Bratman’s planning account,
but now there are two levels to consider: the level of the group
agent (meaning the agents’ joint deliberation together) and
the level of individual group members. Some of the roles
Bratman identifies function mainly at the level of the group.

At the level of the group agent, the reasoning-centred roles
are important: Once the groupmakes a decision concerning a
course of action, it is committed to it, and rationality demands
it to exclude from consideration other plans that are incon-
sistent with it. This applies also to the individual agents: The
groupmembers are collectively committed to the collectively
formed intention, and ought to abstain from making plans
that are inconsistent with or make it difficult for them to con-
tribute to the execution of the adopted plan. If circumstances
change during the execution of the plan, adjustments must be
made. Small changes can usually be made at the individual
level, but in some cases a need to reconsider the adopted plan
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may arise and, due to the collective commitment, such recon-
sideration must take place at the group level. For example,
Pollock [60, pp. 201–203] notes that reconsideration may be
rational if the agent discovers an alternative, possibly prefer-
able, plan that has not previously been given consideration.
In such cases reconsideration will take place when the situa-
tion allows it. If the discovery has beenmade by an individual
group member but the discovered plan affects the parts of the
others, she will have to inform them and the reconsideration
will be performed only when the group has had a chance
to evaluate the alternative plan. Similarly, other agents will
have to be informed if one agent finds out that a goal has
been reached or it has become impossible to reach (see [53]
for discussion on such social conventions in multi-agent sys-
tems and [10,20,61] for discussion on various commitment
strategies).

The case of the other reasoning-centred role is similar:
Once the group makes a decision concerning an end, it has
to consider means to the end. The adopted intention poses
problems for further deliberation. To an extent this can be
done at the level of the group: The preliminary steps and sub-
tasks have to be identified, their dependencies and resource
demands have to be analysed in order to come up with a
partial order of tasks, and some kind of agreement on how
they will be allocated to group members must be reached.
Detailed planning can then be carried out at the level of indi-
viduals. Of course, the individuals need to take care that the
mesh between the sub-plans is maintained in the process.

Here the evaluation of plans plays a crucial role.Assuming
that the group has agreed on a method of evaluating plans,
the individual groupmembers neednot negotiate aboutwhich
plan to adopt unless there are ties between alternative plans.
If there is just one group plan that is optimal and the group
members are able to find it, they can apply team reasoning to
identify it and to derive their own partial plans out of it. What
we get is a we-mode theory of planning which is top-down
in contrast to bottom-up theories: In the we-mode theory, the
planning starts from a group intention which is first specified
to the level of detail that provides the roles for the members
who are then able to infer their sub-plans from the general
group plan. In I-mode or bottom-up theories in contrast the
agents start from their individual intentions and then try to
combine their sub-plans in a meshing way.

The feasible plans are evaluated using a group utility func-
tion. Generally, utility functions measure the goodness of
outcomes, that is, possible states of the world. The utility of
plans derives from the utility of the expected outcomes that
follow their execution, taking into account the cost and uncer-
tainty involved in the execution [60, Ch. 5–6]. The factors
that affect the evaluation of plans may vary. The satisfaction
of goals is a major consideration. (See [46] for the relation
between utilities and goals in planning.) Other typical things
to consider are the number of steps in a plan or the time taken

to implement it, use of resources, individual abilities, qual-
ity of result, probability of success, possible effects on other
goals, conformity to social norms, deliberation costs, and so
on. The form of the utility function is highly dependent on
the application. For instance, in cases of robotic assistants
for elderly people, human comfort and “legibility” of robot
behaviour (meaning that the behaviour is intuitively under-
stood as part of joint action between human and robot) are
the primary evaluation criteria instead of efficiency consid-
erations [54].

In the case of resource-bounded agents like humans,
robots and groups, the deliberation costs play a role. Typ-
ically in planning literature evaluation of alternative plans is
not even considered because of the high computational com-
plexity of finding just one solution to a planning problem
even in the single-agent case [63, p. 372]. And, of course,
the space of all possible plans is infinite, so some limits must
be imposed to the exploration. For instance, the agents may
search for a fixed time limit in a distributed fashion and then
communicate the best plan found or set a new limit in case
there is no solution. If there is no opportunity for communi-
cation during the search they may agree beforehand on the
search method or the part of the search space to be explored
in the hope that all the agents will be able to find the same
solution. For instance, they may use iterative deepening on
the number of actions, and once the first solution is found
they can continue searching the remaining plans with the
same number of actions and select the best solution of those
that have been found.

Assume for the moment that there is only one plan with
the highest utility value and it is fully specified, including
the allocation of the sub-plans to the agents. Applying the
idea of team reasoning [5,72], the agents can then derive
their sub-plans from the group plan. In principle, there is
no need to negotiate or bargain about their individual parts,
nor is there need to worry about meshing or potential con-
flicts because the plan is already fully specified at the group
level. The individuals can then simply start executing their
parts.

Of course, this is a highly idealised situation. In reality:
(i) the agents’ sub-plans may be only partially specified, (ii)
only agent roles may be specified but not which agent takes
which role, (iii) there may be contingencies requiring re-
planning during the execution, (iv) there may be ties and no
unique best plan, and (v) the agents may employ different
search algorithms and fail to converge to the unique best
plan. Resolving such situations generally requires commu-
nication.

Case i is often a desideratum because it is more efficient to
coordinate actions on a higher level and leave the refinements
to the individuals. Also it allows for a higher level of privacy
because the agents need not reveal detailed information about
their procedures of implementation. However, it may happen
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that an agent cannot find a refined plan that is independent of
other agents and then communication is needed (e.g. asking
for help or suggesting coordinated action). Case ii requires a
method for assigning tasks to agents which may have differ-
ent capacities and resources. Because there may be several
ways to allocate the tasks to the agents, the team reason-
ing idea requires that the allocation is done in a way that
is best from the group’s perspective. As to iii, dealing with
contingencies requires monitoring of others’ action, com-
munication and re-planning, which should lead to helping
behaviour in a way that is optimal to the group.

If there are ties (case iv), they need to be broken, and direct
communication is often the best way to do it: Each agent may
either suggest one plan or ask the other agents which plan to
adopt. If there is disagreement, negotiation and persuasion
may take place. Sometimes communication can be in terms
of non-linguistic actions that are perceived by others: If plans
can be distinguished by the first action, one of the agents may
simply communicate the selection by initiating thefirst action
in the plan. The others will then realise that the other plans
are no longer compatible with the actions taken so far and can
discard them. If the plans cannot be distinguished by the first
action, the selection may be postponed to a later moment in
which either the draw may have been resolved or one of the
agentsmay then take initiative and communicate the selection
of the plan. Similar communication is also needed in case the
agents fail to converge to the same plan (case v).

In summary, we-mode planning proceeds typically as fol-
lows:

1. The group of agents finds the best plan for the group to
satisfy its goal (taking into account previously adopted
plans).

2. The agents derive their sub-plans from the group plan.
3. Each agent implements their plan, monitors others,

adjusts to changes, and helps if needed.

4.3 Human–Robot Teams

The case of human–robot teams differs from multi-agent
planning with artificial agents in that the human behaviour
cannot be programmed in advance. That creates challenges
for both robots and humans who have to adapt to each other’s
behaviours. There are two basic ways to apply the we-mode
planningmethod in the case of human–robot teams: Oneway
is that the agents form real groups in which they make deci-
sions concerning principles of plan selection together. This
will require ability to communicate either in restricted nat-
ural language or via a suitable communication interface, and
specific procedures for decision-making. The other way is
that the robot (or robots) simulate a group situation and try
to predict which plan would be selected. Here the robot may
use a pre-programmed plan evaluation function and observe

whether the human’s (or humans’) actions are consistentwith
the plan ranked highest according to the function. Whenever
a human’s observed behaviour deviates from the predicted
plan, the robot should find a new plan consistent with the
actions taken and adjust the plan evaluation function so as
to lead to better predictions in the future. With respect to the
human side, the suggestion is not to educate people to behave
in the way specified by the theory in order to be able to inter-
act with the robot. Rather the assumption is that the we-mode
theory and team reasoning tell something about how people
actually make decisions in social situations, and therefore
robots simulating similar decision-making mechanisms will
be acting in ways that people find familiar and predictable.

For instance, in the tower building case, there may be a
unique optimal plan that minimizes time by favouring taking
closest objects and employing interleaving of actions. This
would be a natural way for humans to go about building such
a tower. Given the shared evaluation function the robot and
the human can figure out the best plan independently, derive
their parts, refine them, and start execution. In such a case
there is no need for negotiation as long as the refinements do
not introduce conflicts (like potential collisionswhenmoving
their arms in the shared space).

In case there are more than one optimal plan, one can
be selected by communication or by initiating action: In the
tower building case, for instance, if both are ready to take
a pyramid and finish the tower, either agent may just start
doing it enabling the other to recognize the intention, drop
the inconsistent alternative and continue.

As another example scenario, consider collaborative
human–robot exploration for search and rescue operations
(see, e.g. [40]). There the objective for the team is to explore
an area and, for instance, locate a missing person. The team
members should choose their paths in a way that maximises
the area to be thoroughly explored. For example, they should
choose different routes around an obstacle. In order to do that,
the area can be divided into topological classes and the robots
can wait for the humans to have made their first moves and
then select their trajectories in complementary classes [40].
This is consistent with the idea of selecting the best group
plan, but it is not necessary to wait for the humans; instead
robots may use initiation of action to signal that they have
identified an optimal plan. They may then take initiative and
select their homotopy classes as specified in the best group
plan and start moving accordingly. The assumption behind
this is that the human team members will be able to recog-
nise the robots’ intentions and choose their trajectories in
complementary classes.

Monitoring of the other’s actions is usually needed to
ensure that the chosen plan is properly implemented. Con-
flicts have to be avoided and, in case one agent deviates from
the best plan, either communication or replanning must take
place and a new best plan consistent with the actions taken so
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far will be adopted. Applying team reasoning in replanning
can automatically initiate helping behaviour. For instance, a
robot may realise that the human has problems in doing its
part in placing an object to a tower because the action takes
longer than estimated. This may trigger replanning and lead
to finding out that an alternative plan in which the robot sup-
ports the tower while the human places the object is better
than waiting as in the original plan. In the exploration case,
for example, if the human has not appeared from behind an
obstacle as expected, the robot can reason that not everything
has gone according to the plan. The robot can then change
its plan in order to find out what has happened and possibly
offer help. Of course, in the case of multiple robots, they
should team reason to find out which one of them is in the
best position to do that in order to minimise the costs for the
group.

4.4 Conditions of We-Mode Planning

There are several conditions that are assumed to hold in we-
mode planning. The scenario is assumed to be cooperative:
The agents must have shared goals instead of private ones.
In AI terms, it means that we are focussing on cooperative
problem solving (CPS) rather than proper multi-agent sys-
tems in which the agents have their private goals or utility
functions. Of course, the existence of private goals or utility
functions does not make we-mode planning impossible, but
the agents need to be able to put them aside and cooperate
for the shared goal. One potential problem for the we-mode
theory is that it may be difficult for human beings to work
for shared goals without any concern for private goals. In the
case of robots, however, the situation may be easier because
we can design and implement whichever kinds of robots we
want, for example, robots that act in the we-mode.

Whenviewed in terms of intentional states presupposed by
the account, we-mode planning does not require “intentions
that” that Bratman’s theory employs. Instead it relies on the
notions of group intention and we-intention [80,81]. These
notions are controversial as well but, again, they are quite
easy to understand in terms of plans: Group intention means
a group agent’s plan that specifies what each group member
will do, and a we-intention means an individual’s sub-plan
that specifies what that agent will do as her part in the group
plan. If we-mode planning is implemented in robots with an
ability to reason about mental states (see, e.g., [19]), they
will need to represent not only their own intentions and the
other agents’ intentions, but also intentions in the first person
plural, that is, “our intentions”.

If the aim is to usewe-mode planning in away that enables
the agents to make decisions independently then it is nec-
essary to assume that there exists a shared plan evaluation
function that is known by all the individual agents together
with a shared (and restricted) space of possible plans. There

are many possible ways to arrive at such a function. For
instance, the agents may agree on a function in a preliminary
phase by using argumentation or voting or some other group
decision-making methods (e.g. those discussed in [42]), or it
may be given to them from an external source.

We-mode planning can also be usedwithout a pre-existing
evaluation function, but then the agents will need to commu-
nicate and agree on the plan (and the refinements later on) to
be adopted. Again, there are many ways to do that. One way
is to employ something like Tuomela’s bulletin boardmethod
[80, pp. 85–92] in which the agents propose plans and others
accept or reject these proposals. This is still different from
I-mode planning: The agents suggest candidate plans to be
considered by the group instead of offering plans to which
they are already committed to.

In a bit more detail, we-mode planning can be presented
schematically as follows:

1. Agreement on the plan evaluation criteria, or plan eval-
uation function, and the constraints on acceptable plans
(this happens at the group level and it may also be left
implicit and combined with step 2).

2. Finding the best plan and committing to it (this may
happen jointly or sometimes, given that step 1 has been
carried out in sufficient detail, also individually).

2.1 Finding a partial action plan (consistentwith previous
plans).

2.2 Refining the plan (applying team reasoning when
applicable).

2.3 Scheduling and allocating actions to agents.

3. Derivation of individual sub-plans (either at the level of
group or individuals).

4. Refinement of individual sub-plans (remembering that
mesh must be maintained).

5. Execution of individual sub-plans,monitoring, adjusting,
helping others, replanning when needed.

4.5 Expected Benefits

There are some anticipated benefits of we-mode planning: In
principle, via the use of team reasoning, we-mode planning
guarantees optimality of plans because the best plan is always
selected. In practice, however, time constraints and possi-
ble changes during execution complicate matters. We-mode
planning is expected to lead to reduced need for communi-
cation, bargaining and argumentation, because it relies on
shared goals and because team reasoning resolves coordina-
tion problems in cases in which there is only one optimal
equilibrium. The assumption of shared evaluation function
also guides coordination in case of emerging situations that
require new decisions to be made.
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One important benefit of we-mode planning is that imple-
menting team reasoning in robots may lead to more human-
like behaviour and therefore make it easier for humans to
interact with robots. There are some social psychological
studies that provide some evidence that human beings in
fact sometimes use team reasoning in decision-making situ-
ations involving multiple agents [22,23]. If team reasoning
is in fact used by humans, then arguably robots that use
similar decision-making procedures in situations of human–
robot interaction have an improved ability to coordinate
their actions with human beings leading to more human-like
behaviour that is predictable and appears familiar to human
partners. In many simple everyday situations, it is obvious to
people what each team member should do, and team reason-
ing is an attempt to operationalise such obviousness.

It has been noted that teams composed of human beings
are able to cooperate and perform complicated joint actions
in pursuit of shared goals with relative ease as compared
to human–robot teams. One line of research suggests that
robots should be better equippedwith so calledmind-reading
capacities that enable them to recognise human intentions,
beliefs, and other attitudes, and thereby adjust their actions
in response to the anticipated actions of humans. However,
such approaches, which build on an idea that human beings
have a “theory of mind” that allows them to reason about
each others’ mental states and eventually activities, have
been criticised as well. Arguments against theories employ-
ing “folk-psychological” concepts like beliefs, desires and
intentions have been presented [17,62], and one alternative
way of conceptualising interaction situations claims that the
contextual features of the social situation play a much larger
role than attribution of mental states: We predict other peo-
ples’ actions based on their social roles: In a supermarket I
do not need to construct complicated practical syllogisms to
be able to predict that some people will collect stuff and then
go to the cashier and that one person will collect their money,
because based on my experiences I already know that some
people are customers and some people are working at the
supermarket and they will do what people in these roles as
customers and employees generally do in supermarkets.

The question whether or to what extent people rely on
reasoning about mental states or social roles is empirical,
and this paper does not take a stand on that issue. However,
the proposal given in this paper can be seen as making rel-
atively small demands in terms of mind-reading capacities
(even though it was presented in terms of relatively compli-
cated collectively intentional concepts like group intentions
and we-intentions). This is because the actual reasoning that
it postulates, team reasoning, does not require people to
make complicated predictions about other peoples’ doings,
as argued, e.g., by Elisabeth Pacherie [58,59]. The selection
of actions can often be done without any mind-reading, on
the basis of the social situation, in particular, the features of

the shared goal and the various means of attaining that goal.
It suffices to understand that we are doing something and
then to figure out what that requires of me. I need not reason
about all the possible action alternatives of other agents; I
can just presuppose that they will do their parts in the plan
that best serves our shared goal. In the supermarket case, the
shared goal is that I manage to get the things I need and the
seller gets the adequate payment and all this happens in the
most convenient way for all of us. Of course, I may have to
change my actions in case other people turn out not to be
doing theirs but such situations will typically arise when I
observe the behaviour of others, not as a result of reasoning
about their mental states.

The method may also give efficiency gains in compli-
cated human–robot situations in which it is not obvious
which multi-agent action combination leads to best results.
This is because the proposed method not only allows the
robot to select appropriate actions in response to human
beings’ anticipated actions which is the common intention-
recognition approach often adopted in HRI research. The
we-mode method also allows the robot to take initiative
towards the shared goal. This may improve the efficiency of
human–robot joint action because robotsmay be faster in cal-
culating the optimal multi-agent action whereas the human
beings may be more skilled in recognizing the intentions of
the robot: Instead of the robots trying to figure out what the
humans are up to, in some cases it might be better to reverse
their roles and let the robots take the lead and let the humans
follow.

5 Related Work

The distinction between I-mode and we-mode planning is
related to but distinct from the more familiar distinction
between distributed and centralised methods of multi-agent
planning (see, e.g. [53]). In I-mode planning the individual
plans are constructed by the individual agents, but combining
and revising them can be done either in a distributed or cen-
tralised fashion. In we-mode planning the group plans can,
but need not, be constructed by a central controller. They
can be constructed in a distributed fashion, for instance, by
agents’ proposing partial solutions to a global planning prob-
lemwithout necessarily committing to these partial solutions
as their plans (in a related fashion as in blackboard systems
[25]), or they may search for complete solutions in parallel
and then find out which one is the best. In cases in which
the group cannot plan together it is possible that each agent
plans in isolation but for thewhole group.Assuming that they
employ the same planning method (same search algorithm
in the same restricted search space using the same plan eval-
uation function), they may expect to converge to the same
plan and start executing their subplans in it. In any case,
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in we-mode planning the individuals’ plans concerning the
satisfaction of the shared goals are always derived from the
group plan.

The distinction is more akin to the division of multi-agent
planning methods into ones in which coordination is prior to
local planning and ones in which local planning is prior to
coordination [32]: Representatives of the former aremethods
based on social laws and conventions [53,68], methods based
on organizational structuring [29,69], and methods that use
predefined protocols, such as the contract net [70]. These
methods are similar to the we-mode method in that they
have been inspired by the study of coordinationmechanisms,
like norms and practices, that are at work in actual human
societies [79], and they are compatible with, and sometimes
even required by, the we-mode theory. However, as in actual
human societies, social structures like laws, norms, and con-
ventions, guide, regulate, and enable various human actions,
but they still leave open the possibility that people, when
they act in concordance with these social structures, may
think and act in the I-mode or in the we-mode. For instance,
an individual may follow a social norm for prudential and
self-interested reasons, for instance to avoid a sanction, not
because she takes it to be best for her group. Hence, we can
say that we-mode planning entails priority of coordination to
local planning but not vice versa.

Many of the proposed approaches to multi-agent planning
within distributed artificial intelligence (DAI) and multi-
agent systems fall in the category of I-mode planning in this
classification because they employ a bottom-up strategy of
starting from the plans of individual agents and then use some
sort of plan merging method to coordinate them into a global
plan [34] or into a set of coordination plans that functions as
if there were a global plan [2]. Multi-agent plan coordina-
tion is a closely related I-mode approach: A multi-agent plan
coordination problem, as defined by Cox and Durfee [26],
is a problem of transforming a set of individual agent plans
into a consistent multi-agent plan by identifying and resolv-
ing interactions between the plans. They present a search
algorithm that searches through the space of possible resolu-
tions of inconsistencies to produce an optimal solution that
minimises the total number of action steps in the multi-agent
plan. Similarly, [77] defines a plan coordination method that
takes the agents’ separate plans and revises them in a way
that improves either the agents’ joint profit or their individual
profits. Then these revised plans are used to construct a new
distributed plan that replaces the agents’ old plans.

Also partial global planning (PGP) methods [32,33] start
from the agents’ individual plans: The agents exchange infor-
mation about their local plans on the level of abstraction
required for coordination. They then combine the informa-
tion received from others’ plans with their own to obtain a
representation of all agents’ activities in the form of partial
global plans.

Nissim et al. [57] present a method that combines local
planning of actions with constraint satisfaction where the
constraints specify consistency requirements between the
agents’ public actions. The agents first find relaxed local
plans (with a limit to the number of public actions) that sat-
isfy their sub-goals but ignore dependencies to other agents’
plans (in particular, preconditions). The agents then use these
plans to define the constraints (preconditions and tempo-
ral dependencies), and a distributed constraint satisfaction
algorithm is used to find a consistent assignment for the vari-
ables, employing backtracking and iterative deepening on the
allowed number of public actions in the local plans.

Dimopoulos et al. [30] present µ-SATPLAN, which
extends the classical propositional satisfiability planner SAT-
PLAN. The agents aim at finding a joint plan by first building
a plan that satisfies their individual goals (which are taken to
be necessary for satisfying the global goal) and then send-
ing that to other agents, who will then build plans that satisfy
their goals and are consistent with the plan of the other agent.
Once a solution has been found, the agents still try to improve
it by taking turns in suggesting the initial plan and the other
agents filling in their parts.

In the FMAP method [78], the agents jointly construct a
partially-orderedmulti-agent plan by exploring amulti-agent
search tree in which the partial plans of the nodes are itera-
tively built by agents proposing refinements over unexplored
nodes. This cooperative method of plan construction seems
closely related to the we-mode approach even though it is
not conceptualised in terms of group agents. Also it does not
employ team reasoning. Instead, the agents use a heuristic
evaluation function to select which of their alternative refine-
ments to propose. This may effect the quality of the resulting
plan since a refinement is evaluated only by the proposing
agent who may not have a complete view of the plan. For
reasons of privacy this may be necessary, and the situation
may be similar also in we-mode planning when the agents’
sub-plans are refined locally.

Other approaches closer to the spirit of we-mode plan-
ning are those in which the agents jointly construct and
commit themselves to a multi-agent plan and then go about
implementing their parts in it. A well-known example is
the SharedPlans approach developed by Barbara Grosz and
her collaborators [41–44]. Also methods employing the idea
of joint intentions are similar in this respect [20,21,75,86].
However, these approaches do not conceptualise planning in
termsof a group agentwhich has beliefs, goals, and intentions
of its own. In the SharedPlans, the group’s decision-making
process starts from the individuals’ intentions concerning
shared activities (Bratmanian “intentions that”), and the indi-
viduals are committed to reaching an agreement about a
shared plan and updating their individual plans accordingly
[42]. Alsomany teamwork accounts based on joint intentions
ultimately define joint intentions in terms of individuals’ atti-
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tudes [21,86]. As a result these approaches do not apply team
reasoning to the selection of actions or plans as is suggested
in this paper.

Boella et al. [9] consider cooperation to the group’s utility
extending the decision-theoretic planning methods of [46]
with shared plans and a group utility function. The agents
intend to do their parts in the shared plan and consider the
shared group utility in selecting their actions and may also
engage in helping behaviour. All this is similar to we-mode
planning, but their idea is less idealised, because the agents
may have mixed motives: They are not considering only the
group utility but rather a combination of group utility and
private utilities. The agents can give up the cooperation in
cases it becomes too costly in terms of personal goal sat-
isfaction. This also entails that the actual planning process
cannot be done fully from the group’s point of view. Instead,
the agents add actions to a plan by predicting how the other
group members would continue from the results of alterna-
tive actions and then by evaluating possible results in terms
of how they contribute to the group’s goal.

Dunin-Kȩplicz andVerbrugge present a very sophisticated
formal framework for teamwork [31, pp. 37–39]. Their def-
initions of collective intentions differ from the definitions
used in the methods mentioned above in that they involve
infinitely nested individual intentions and beliefs. Hence col-
lective intention for them is an infinitary concept, but still
reducible and thus conceptually different from the concept
of group intention adopted here. Nevertheless, their approach
to planning seems quite similar to the we-mode approach at
least in the broad outline: The group starts from a collective
intention to reach a goal. The goal is divided into a sequence
of subgoals. For each subgoal, a means-end analysis pro-
vides actions needed to realize them. Finally, the actions are
allocated to the group members and a temporal structure for
the actions is devised [31, pp. 85–86]. They do not discuss
team reasoning but they do analyze potential failures and
present a method for re-planning and adjusting collective
commitments as a response to changes in a dynamic envi-
ronment.

Finally, there are some approaches that share with the we-
mode approach the idea that a group of agents with a shared
goal can be seen as a single agentwhich is trying to find a plan
that satisfies its goal [27] or maximises its utility [11]. Under
such an understanding, themulti-agent planning problem can
be mapped into a single-agent planning problem, after which
more efficient standard planning algorithms can be applied.
Boutilier [11] presents the idea in the framework of decision-
theoretic planning where uncertainty is present, whereas
Crosby et al. [27] consider a more traditional setting with
deterministic actions. In the latter, the multi-agent planning
problem is first transformed, taking into account concurrency
constraints arising fromseveral agentsmanipulating the same
object, into a single-agent planning problem in which agents

perform actions individually, one at a time. Once a solution
to that problem is found, concurrency is re-introduced to the
plan by combining consecutive actions into parallel or joint
actions in accordance with the constraints. In the decision-
theoretic setting, the problem is modelled as a multi-agent
Markov decision process, andmethods are presented for con-
structing an optimal policy for the group given the joint utility
function. Boutilier [11] discusses coordination problems but
only in the case of pure of pure coordination problems (in
which there are several optimal outcomes) suggesting that
cases like Hi-Lo are not problematic, similarly to the we-
mode approach. As potential solutions to pure coordination
cases, predefined social conventions or learned coordination
are suggested. Pure coordination cases are similarly prob-
lematic for we-mode planning and the same methods can be
applied.

In addition to work on teamwork and planning in DAI
and MAS, there is another field that is closely related to the
present work, namely human-aware task planning (HATP)
[1,18,45]. Whereas multi-agent planning typically assumes
that the actions of all agents can be planned, the idea ofHATP
is that only the actions of artificial agents can be planned
but the possible actions of human beings must be taken
into account already at the planning stage. Such approaches
emphasise methods of action prediction and intention recog-
nition. Current HATP methods fall in the I-mode category,
because the plans for the robot and the human beings are
strictly separated and there are no group plans. As the term
implies, the planning is made only for the robot but possible
plans of human(s) are considered and used as input for the
planner. A we-mode approach to HATP would construct a
plan for the human–robot team (even if the plan would only
be followed by the robots).

HATP methods may be used in various situations: the
human and the robot may have a shared goal, the robot may
assist the human to achieve her goal, or the robot may have
a goal of its own that it tries to achieve in the presence of
humans (without preventing them to achieve their goals). In
this paper the focus is on cases in which the robots and the
human beings have a shared goal that they are all aware of.
The human beings are autonomous and cannot be controlled
by the planning algorithm, but they are not independent of
it either: The robot or robots can use the planning algorithm
to find ways to achieve the shared goal and suggest them to
the human beings. Hence the task for robots is not only to
predict and recognise human actions but possibly to suggest
alternative actions as well.

6 Future Work

The method of we-mode planning presented here is merely
a sketch and needs to be further refined in order for it to be
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implemented and evaluated in practical scenarios. In addi-
tion there are several ways to extend the idea further. One
way would be to allow the robot to learn the cost func-
tion from its experiences with the human collaborator. This
would alleviate the need to have a previously made agree-
ment on the evaluation function and it would also be more
flexible because humans are often expected to deviate from
the best plan in selecting their own actions and find innova-
tive solutions in the course of plan execution. As we have
sketched the method, the robot would be able to detect
these situations and adjust its behaviour accordingly, but
it would be a further step to learn from systematic devia-
tions and adapt its behaviour to the human’s way of doing
things. This would require a learning algorithm to adjust
the weights of the parameters in the evaluation function so
as to have a better match between the suggested plan and
the observed human behaviour. There are several alternative
learning methods that could be used for such a purpose. One
interesting approach is to train the robot with repeated inter-
actions with a person whose evaluation of the quality of the
interaction is then used as a feedback for the robot’s training
[51]. This kind of adaptability could also be used for per-
sonalising the robot behaviour relative to the collaboration
partners.

The idea of using team reasoning in plan selection can
also be employed in context of intention recognition. Most
work on intention recognition has focussed on intentions in
action, that is, on recognizing one action only. If we can
reliably recognize one action, we can use the plan evaluation
function to select the most plausible plan (or a set of most
plausible plans) with a matching first action. This would lead
to a method of recognizing future-directed intentions, that is,
a method of plan recognition.

Another interesting future prospect would be to try to find
a way of combining action learning and high-level planning
methods like the one proposed here. The idea would be that
instead of starting by a preprogrammed set of action descrip-
tions, the robot would learn what kinds of consequences its
actions have. A possible way to do that would use some sort
of action-based or process-based representations that keep
track of the changes in terms of the agent’s action possibili-
ties, or affordances [37], instead of traditional representations
that try to directly model changes in the environment and are
thus more vulnerable to frame problems [8]. There are now
promising approaches that try tomodel an agent’s learning of
the consequences of its actions, for instance, a method called
developmental learning [36]. These methods try to model
the agent’s development and are based on the idea of internal
motivation inwhich the agent’s curiosity leads it to try various
actions which then differ in the way the agent finds perform-
ing these actions, and eventually action-sequences, internally
rewarding.These ideas of internalmotivation and affordance-
based representation distinguish the approach from more

familiar reinforcement learningmethods [74]. An open ques-
tion that remains is how to bridge the gap between a method
of learning the consequences of actions in concrete interac-
tion with the environment guided by internal motivation and
building abstract action plans targeted to satisfy a goal which
is possibly externally given or collectively accepted by sev-
eral agents. One possible starting point would be to build
sociality in the agents so that they would be internally moti-
vated to do things together with others, similarly to human
beings.

7 Conclusions

There are several connections between philosophical theories
of action and AI accounts of planning. Traditional theories
of action were belief-desire accounts but they have to a large
extent been replaced by belief-desire-intention accounts that
aremore amenable to planning thanmere selection of the next
action. However, decision theory and game theory still build
on traditional desire-belief accounts, and there is no straight-
forward way to model intentions in decision-theoretic and
game-theoretic formalisms. These theories have also been
criticised for their inability to account for group actions.
Team reasoning is one attempt to incorporate group action
to game theory (see esp. [5]). Team reasoning is designed
for the selection of the next action in a group context: The
group members figure out the best joint action for the group
and then perform their parts in that action. In the context
of planning, the idea of team reasoning can be extended to
the selection of plans: The agents figure out the best group
plan, derive their sub-plans from that plan, and start executing
them.

This leads to a planning method that can be called
we-mode planning, employing Tuomela’s [80] distinction
between I-mode and we-mode. In contrast, many traditional
planning accounts can be called I-mode accounts as they start
from the plans of individual agents who then try to com-
bine their plans by negotiating and adjusting their individual
plans in order to make them mesh. I-mode planning is nec-
essary for competitive scenarios in which the agents may
have their private goals in addition to shared goals, we-mode
planning suits well for cases with shared goals with no com-
petition.
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