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Abstract Estimating the engagement is critical for human–
robot interaction. Engagement measures typically rely on
the dynamics of the social signals exchanged by the part-
ners, especially speech and gaze. However, the dynamics of
these signals are likely to be influenced by individual and
social factors, such as personality traits, as it is well docu-
mented that they critically influence how twohumans interact
with each other. Here, we assess the influence of two factors,
namely extroversion and negative attitude toward robots, on
speech and gaze during a cooperative task, where a human
must physically manipulate a robot to assemble an object.
We evaluate if the score of extroversion and negative attitude
towards robots co-variate with the duration and frequency
of gaze and speech cues. The experiments were carried out
with the humanoid robot iCub and N = 56 adult participants.
We found that the more people are extrovert, the more and
longer they tend to talk with the robot; and the more peo-
ple have a negative attitude towards robots, the less they will
look at the robot face and the more they will look at the

B Serena Ivaldi
serena.ivaldi@inria.fr

1 Inria, Villers-lès-Nancy, 54600 Nancy, France

2 Loria, CNRS & Université de Lorraine, Loria, UMR n. 7503,
Vandoeuvre-lès-Nancy, 54500 Nancy, France

3 Intelligent Autonomous Systems, TU Darmstadt,
Darmstadt, Germany

4 LIP6, Paris, France

5 Max Planck Institute for Intelligent Systems, Stuttgart,
Germany

6 CNRS & Sorbonne Universités, UPMC Université Paris 06,
Institut des Systèmes Intelligents et de Robotique (ISIR)
UMR7222, Paris, France

7 CHARt-Lutin, Université Paris 8, Paris, France

robot hands where the assembly and the contacts occur. Our
results confirm and provide evidence that the engagement
models classically used in human–robot interaction should
take into account attitudes and personality traits.

Keywords Human–robot interaction · Social signals ·
Engagement · Personality

1 Introduction

Service and personal robots must be capable of cooperating
and interactingwith humans for a variety of tasks. The robot’s
social skills are crucial to prevent the interaction to become
cumbersome and the cooperation less effective. Social sig-
nals, i.e., verbal and non-verbal cues produced by the human
and directed towards the robot, may reveal the engagement
and ease of the person during the task, whether or not a phys-
ical interaction is entailed [4,11,27].

The ability to estimate engagement and regulate social
signals is particularly importantwhen the robot interactswith
people that have not been exposed to robotics, or do not
have experience in using/operating them: a negative attitude
towards robots, a difficulty in communicating or establishing
mutual understandingmay cause unease, disengagement and
eventually hinder the interaction.

It seems therefore necessary to study how individual and
social factors influence the issue of social signals during
human–robot interaction, together with their relations to
acceptance and engagement.

To evaluate the engagement during human–robot interac-
tion, the most common metrics are based on the temporal
dynamics of social signals, in particular gaze and speech
[4,42]. The exchange of gaze (mutual and shared), the con-
tingency of reactions to speech and gaze cues, the temporal
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Fig. 1 Conceptual representation of the experiment: we study the relation of extroversion and negative attitude toward robots on speech and gaze
during a cooperative assembly task

Fig. 2 The experimental setup.
The participant is standing in
front of the robot iCub; their
interaction is recorded by a
Kinect, two standard HD
cameras (front and side view of
the scene). The experimenter
monitors the interaction from
the side, not too far but close
enough to be able to push the
safety button and intervene in
case of emergencies. The
operator is hidden behind a wall,
and he controls the robot
monitoring the interaction
through a webcam placed over
the robot. The power supply and
cluster of the robot are hidden
behind a cabinet
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dynamics of speech (utterance number, frequency, duration)
are among the most common indicators of engagement dur-
ing dyadic tasks [27].

However, there is evidence from the psychology litera-
ture that the dynamics of these social signals can be altered
by individual factors [18,45,57]: we refer here to the set of
behavioral, emotional, and cognitive tendencies that people
display over time and across situations and that distinguish
individuals from one another, such as personality traits and
social attitudes. The influence of personality traits on human
behaviors during interactions with robots has been also doc-
umented in several studies [2,14,50].

Two individual factors seem particularly interesting for
HRI: extroversion, a personality traits that is associated to
positive emotions and social behavior [22], and negative atti-
tude towards robots [35], a personal attitude that captures the
projected anxiety of the person toward the interaction with a
robotic device. Recent studies showed that there is a correla-
tion between these traits/attitudes and the issue and dynamics

of social signals, in particular gaze and speech [37]. In this
case, if they impact the issue of such social signals, they also
affect the power of the metrics used as indicators of engage-
ment.

Following this line of thought, the goal of this work is to
study the relation between individual factors (extroversion
and attitude toward robots) and the dynamics of gaze and
speech produced by the human during an interaction with a
robot (see Fig. 1).

For this purpose, we designed a collaborative assembly
task between a human and a robot. We made video and
audio recordings (see Fig. 2) of the interactions between the
humanoid robot iCub and adult participants who previously
submitted their questionnaires for evaluating the extrover-
sion and negative attitude towards robots1. The questionnaire

1 In social psychology, there is a net distinction between personality
traits and attitudes. Here, we use methods from differential psychol-
ogy rather than social psychology: the distinction between the two is
not important, as long as the two factors are two characteristics of the
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scores were later used to study the issue (frequency and dura-
tion) of utterances and gaze towards the robot issued by the
human partner. Since our experiment also involved a physical
contact between the robot and the person during the assem-
bly, we distinguished between gaze towards the robot face
and gaze directed towards the robot’s hands, that perform
the assembly thanks to the human guidance.

Our study shows that, at least for the cooperative assem-
bly task, there is a correlation between extroversion score
and the speech frequency and duration, while the negative
attitude is related to the duration of gaze towards the robot.
To summarize:

– the more one is extrovert, the more he/she will talk to the
robot.

– the more one has a negative attitude towards a robot,
the less he/she will look at the robot face and the more
he/she will look at the robot hands, where the physical
interaction for the assembly takes place.

As gaze and speech are the main social signals used to
evaluate engagement [42], we provide significant results sup-
porting the idea that engagement models used in HRI should
take into account individual factors that can influence the
production of such social signals.

By gaining a deeper understanding of the inter–individual
factors that influence the exchange of gaze and speech during
cooperative tasks, we aim at improving the design of robot
controllers during social and physical interaction. More gen-
erally, wewould like to turn our findings into implications for
the design of robot controllers that can adapt to the individual
differences of the human partners.

2 Background

2.1 Social Signals: The Building Blocks for Assessing
Engagement

During interaction, a multitude of verbal and non-verbal sig-
nals are exchanged between the two partners. These so called
social signals and their dynamics are the main bricks for the
evaluation of the engagement in HRI.

The engagement is defined as “the process by which indi-
viduals involved in an interaction start, maintain and end

Footnote 1 continued
individual that are evaluated at a certain time prior to the interaction.
We measured the attitude towards robots with the NARS questionnaire,
a test that was created to capture the projected anxiety of the person
before its interaction with the robot. We used it to evaluate an individ-
ual attitude prior to the direct interaction with the robot (participants
filled the NARS questionnaire several days before the experiment—see
details about the experimental procedure in Sect. 4.4).

their perceived connection to one another” [47]. As discussed
in [4], the engagement is related to the user experience, to
the perceived control, feedback, interactivity, attention, and
the fluctuations of the engagement during interaction are
reflected into physiological changes and behavioral changes
through verbal and non-verbal communication.

A social signal may be defined as “a communicative or
informative signal, or a clue which, directly or indirectly,
provides an information about social facts, i.e. interactions,
emotions, attitudes, valuations or social behaviors, social
relations or identities” [39]. The scopeof social signals poten-
tially extends to a large variety of behaviors and expressions:
gestures, facial expressions, postures, gazes, etc. Anzalone
et al. [4] partition the set of metrics for engagement evalua-
tion into static and dynamic features. The first set comprises
focus of attention and gaze analysis, head and body postural
stability, with evaluation of pose and variance. The second
set comprises joint attention, reaction times to attention cues,
imitation, synchrony and rhythm of interaction.

To assess the engagement during HRI experiments and
tasks, researchers usually considers a subset of these social
signals (see Table 1), frequently focusing on gaze and speech.

Gaze is one of the most important cues and carriers of
information during the interaction. It is indeed well estab-
lished that mutual gaze and eye contact are crucial during
human–human interaction [21]: the absence of eye contact
at the right time, for instance at the end of a sentence, can be
perceived as a withdrawal from the conversation and a sign
of disengagement. Gaze in HRI can be analyzed differently
depending on its direction and target. For example, during
verbal interaction [26,42] or learning games [27] it can be
mutual (when the robot and the human partner look at each
other) or directed/joint (when the robot and the human look
at the same object or in the same direction). A third type
of gaze can be the one directed by the human towards the
robot, that the latter can return or not, depending on its joint
attention skills [46].

Speech, and more specifically the dynamics of verbal
exchange (e.g., turn-taking), is the other most important
social signal for interaction, and it is a crucial indicator in
the assessment of engagement [29,42]. The metrics used for
evaluating the engagement using this signal are for example
the number, frequency and duration of utterances [26,42], the
reaction time to utterance cues [27]. LeMaitre andChetouani
[29] also proposed a qualitative distinction between language
actions involving the locutions directed towards the robot,
and those towards oneself.

Body language,which includes non-verbal behaviors such
as facial expressions, posture and gestures, can also convey
the intention and the engagement of the human partner. For
example, Sanghvi et al. [43] analyzed the individual postures
(the inclination and curve of the back) and their changes to
assess the engagement of children playing chess against a

123



66 Int J of Soc Robotics (2017) 9:63–86

Table 1 Social signals used in literature as metrics for the assessment of engagement

Study Social signals used to assess the
engagement

Castellano et al. (2009) [10] Gazes towards the robotSmiles

Ishii et al. (2011) [26] Gazes towards the object the agent is talking about

Gazes Towards the agent’s head

Gazes Towards anything else

Ivaldi et al. (2014) [27] Reaction time to the robot attention utterance stimulus

Time between two consecutive interactions

Le Maitre and
Chetouani (2013) [29]

Utterance directed to the robot
Utterance directed to self

Rich et al. (2010) [42] Gazes focused (man and robot are looking at the same object

Gazes mutual (man and robot look at each other)

Utterance adjacent (two successive locutions, produced one by the robot, the other by
the human, separated by a maximum interval)

Utterance responses (the subject responds to the robot through a gesture or a very short
verbal intervention)

Sanghvi et al. (2011) [43] Postures (curve and inclination of the back)

Sidner et al. (2004) [46] Gazes shared (mutual or directed)
Gazes directed towards the robot without the latter looking at the human

Sidner et al. (2005) [47] Gazes Shared (mutual or directed)
Gazes directed towards the robot without the latter looking at the human

humanoid robot. The engagementwas also studied in relation
to positive facial expressions (e.g., smiles rather than grins)
[10], head movements such (e.g., nodding) [48] and gestures
responding responding to a robot cue [42].

To summarize, there are numerous studies that character-
ize the engagement and the interaction between humans and
robots through the analysis of verbal and non-verbal signals.
However gaze and speech are the most common social sig-
nals used to evaluate the engagement, as clearly showed in
Table 1.

Since the engagement is a sort of emotional “state” of the
humanpartner during the social interaction, and itmayfluctu-
ate over the interaction, it is interesting to study the temporal
dynamics of the social signals and the salient events associ-
ated to their evolution during the interaction. To estimate the
engagement in HRI using the exchanged social signals, there
are two main approaches in the literature.

The first approach consists in assessing the engagement
of the human partner in real time. For instance, with a prob-
abilistic approach Ishii et al. [26] demonstrate that a certain
sequence of three gazing primitives (towards the object des-
ignated by the agent, towards the agent and towards any
other direction) can reliably predict the human subject’swith-
drawal from an interaction. In their experiment, the robot was
introducing a newmodel of mobile phone, and a sequence of
gaze towards the robot then twice towards unrelated objects
was linked to a disengagement.

In the second approach, that we may consider as “global”,
the engagement is neither measured in real time, nor on time
intervals, but on the interaction as a whole. For instance,
Sidner et al. [46,47] suggest a metric combining the shared
gazing time and the time spent by the subject looking at
the robot for the whole duration of the interaction on one
hand, and the assessment of the number of gazes that the
participant returns to the robot during the same period of
time on the other hand. With a similar approach, Rich et
al. [42] developed a composite index defined by the aver-
age time intervals between two social connection events
between the robot and the user in the course of an inter-
action, where the robot had to teach the participant how to
prepare cookies. According to the authors, the events were
divided into four sorts: (1) directed gaze, (2) mutual gaze,
(3) adjacent utterances when two are produced in succes-
sion, one by the robot and one by the participant, with a
maximum time gap between them, and (4) the replies to the
robot with a gesture or a very short utterance. In the afore-
mentioned studies, the researchers also observed the effect
of various cues of the robot (e.g., robot nodding vs. not nod-
ding) on the engagement of the user during the interaction.
A specific approach on the whole interaction was proposed
by Le Maitre and Chetouani [29]: they proposed the ratio
between the talking time directed towards the robot and the
one towards oneself as indicator of engagement, with the
rationale that an increased verbalization directed towards the
robot can be interpreted as a stronger engagement (whereas
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the more the people talked to themselves, the lesser the
engagement).

To summarize, both considering the whole interaction and
thin slices of interaction, measuring the engagement in HRI
relies on the dynamics of the exchanged social signals, par-
ticularly gaze and speech.

However, there are no models that take into account con-
text, task, social or individual factors that may affect the
production of such signals, and subsequently the evaluation
of the engagement.

To the best of our knowledge, the HRI literature con-
sidering the inter-individual differences (concerning the
personality) or the attitude (positive or negative) towards
robots in the production of those signals is scarce. When
discussing models of engagement, the human individual is
considered as “abstract”, expected to produce the same social
signals at the same rhythm, despite any inter-individual dif-
ference thatmay affect the communication, the establishment
and the continuation of the social interactions.

It is however rational to consider that there can be per-
sonality traits, dispositions or attitudes that can make people
talk, look and behave in a different way when facing the
same interaction, especially with a device such as a robot.
For example, an introvert individual may talk less to or
look less at the robot than an extrovert individual, without
however being necessarily less engaged than the other. An
individual with negative attitude towards robot may look
less at the robot face, and look more at the robot’s body,
especially during close or physical interactions with the
robot. In short, the effect of personality characteristics and
of the attitudes towards robots could impact the dynamics
of social signals, and subsequently undermine the metrics
and models used in the literature to assess the engagement
in HRI.

2.2 Personality Traits and Attitudes

As explained by Ajzen [1], “attitudes and personality traits
are latent, hypothetical dispositions that must be inferred
from observable responses”. Their effect should be therefore
observable on the overt actions of the individual. The bound-
ary between traits and attitudes is under debate; however it is
acknowledged that both attitudes and personality traits influ-
ence our actions and behaviors, together with other social,
contextual and individual factors [45]. To make it simple, a
personality trait is a characteristic of the human personality
that leads to consistent patterns of behaviors, and is assumed
to be almost invariant for an adult. An attitude is a behavior
tendency, directed towards people, objects, situations, and is
generally determined by the social context, the background
and experiences of the individual [55].

2.2.1 Personality Trait: Extroversion

The personality of an individual consists of several character-
istics and dispositions, each being described as a “gathering
of attitudes obviously linked to each other, or as patterns of
cognitive treatment of the information or underlying psycho-
physiological mechanisms generating specific dispositions
towards some behaviors” ([45], p.116).

Among the existing personality models, the most well-
known and studied is the Big Five [13], which owes its name
to the five traits descriptive of a personality: Extroversion,
Neuroticism, Agreeableness, Conscientiousness, Openness
to Experience. This model is widely used in psychology to
predict human behavior and cognition [41,56], and is more
and more also used in human–robot interaction [50,51].

The extroversion dimension is the personality trait that
notably (i) shows up more clearly during interaction, and
(ii) has the greater impact on social behavior with respect
to the other traits [58]. It is linked to positive emotions, and
identified through the tendency to be sociable, talkative, and
self confident [13]. It seems to be fundamental to shape the
way people interact [17] and to establish and maintain social
relations [56]. Beatty et al. [7] suggest that extroversion is
one of the three major factors, together with neuroticism and
psychoticism, that have some bearing on communication.
Moreover, it would also have an impact on the way individu-
als behave, and even on the quality of new social relations [8].

Although there is evidence in social psychology about
potential links between the emission of various social sig-
nals (verbal and non-verbal) and the personality profile [5],
quantitative evidence is still needed. In particular, the cur-
rent knowledge about extroversion and the issue of verbal
and non-verbal signals is mostly limited to verbal dyadic and
group interactions where there is typically no physical con-
tact.

Generalizing and characterizing the influence of individ-
ual differences and extroversion on verbal and non-verbal
behaviors (e.g., gaze, headmovements) is difficult [18]; how-
ever, the literature in human–human interaction reports some
evidence that the production of gaze and speech correlates
to the level of extroversion of the individuals. For example,
the level of extroversion has an effect on the frequency and
duration of gazes towards a person during face-to-face con-
versations [57]: extroverts gaze longer than introverts. In a
similar way, Wu et al. [56] showed that extrovert individuals
tend to focus their attention on the area of the eyes on pic-
tures of human beings longer than introverts. The influence
of personality traits, especially extroversion, on the gaze is
also reported for non-social tasks such as fixating abstract
images [41].

With regards to verbal communication, Costa et al. [13]
noted that one of the most clear signs of extroversion for an
individual is to be more talkative, which also leads to a lesser
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number of pauses during conversation [45]. Extrovert people
would also tend to use shorter sentences at an increased rate
than introvert people in informal situations involving another
language [15]. The link between extroversion and speech
dynamics was exploited for automatic classification of per-
sonality from videos of interaction between small groups of
people: in [30,38] the authors showed that the talking and
interaction timing ratio are positively correlated to the level
of extroversion.

To summarize, there is evidence from the literature on the
influence of the extroversion trait on the dynamics of gaze and
speech inhuman–human interaction.This certainly biases the
currentmetrics andmodels for assessing engagement, that do
not take into account such individual factors [4,42].

Extending such studies to human–robot interaction, with
the variability of tasks, situations and robots, it is certainly
challenging. In this paper, we provide evidence that the
dynamics of gaze and speech is related to the extroversion
during a human–robot assembly task.

2.2.2 Negative Attitude Towards Robots

As the literature seems to allege, extroversion may bring
up inter-individual communication differences during social
interactions between humans. While aversion towards other
people may be identified through the personality models,
there is currently nomodel that allows us to assess the dislike
of technology, and more specifically robots. An individual
may appear to be very sociable, while very wary of technol-
ogy. For robots, this evaluation seems particularly critical.
Currently, robots are diffused in factories and service and are
mostly used or operate by skilled people that received some
robotics training (i.e., experts).However, robots are gradually
becoming available and accessible outside the classical set-
tings, to ordinary people that have not received any robotics
training (i.e., non-experts). Ordinary people without a proper
knowledge of the platform are not typically aware of the lim-
its and the real capabilities of the robots, because of their
lack of prior experience with them and frequently limited
background knowledge. Some people might be technopho-
bic, some might have developed an anxiety towards robots,
influenced by some recent trends in the public media2, some
may be influenced positively or negatively by movies3 and
literature [31]. This a priorimay reflect in differences in their

2 See for example the press article: “Will workplace robots cost
more jobs than they create?” http://www.bbc.com/news/technology-
27995372.
3 We interviewed our participants after the experiments. Some reported
that they “do not like robots because they are going to take our jobs”.
Some reported to have enjoyed the experiment with the robot and made
explicit reference to their expectations being influenced by “the robots
of Star Wars”.

behavior and communication, and not be dependent neces-
sarily by their personality traits.

It seems therefore necessary to take into account a person-
ality characteristic that is related more to technology rather
than human beings, and more particularly to social robots
and humanoids.

This category of robots has been recently studied to bet-
ter understand the reasons that may cause negative attitudes
towards this “too human-like” technology [44]. The most
known negative effect linked to the robot appearance is the so
called “Uncanny Valley” effect: described by Mori in 1970,
it describes the fact that a robot excessively “human-like”
arouses a sense of unease and repulsion, whereas robots with
a moderate level of human likeness or humanoids that can
be clearly identified as machines arouse more affinity [33].
While numerous studies show that the humanoid appear-
ance is accountable for opinions and attitudes towards the
robots [23], other factors also seem to affect these attitudes:
movements speed and profiles, distance during the inter-
action, voice and temporal dynamics of verbal exchanges
between the human and the robot. From a methodologi-
cal point of view, attitudes towards the robots are usually
assessed through free verbalization (e.g., interviews) and
attitude scales. Nomura and colleagues [35,36] developed a
questionnaire for the valuation of negative attitudes towards
humanoid robots: the Negative Attitude towards Robots
Scale (NARS). In a series of studies, they could demonstrate
the effect of a negative attitude towards robots on the com-
munication, in particular on the time of the verbal response,
which increases with the more the negative attitude of an
individual.

It appears that a negative attitude towards robots has there-
fore an impact on the way people interact verbally with a
robot. Someone with a more negative attitude towards robots
may talk less to the robots: this could be misinterpreted as
a sign of disengagement. Since speech dynamics is one the
main indicators for engagement assessment, it should be rec-
ommended to take into account the impact of attitudes in the
models for assessing the engagement based on the interpre-
tation of social signals emitted by the human during HRI.

Incidentally, the influence of the negative attitude towards
robots on social signals has been studied during interaction
tasks with a significant verbal component, but not yet in tasks
with physical interaction. However, since this attitude cap-
tures the worry of the person projected towards an interaction
with a robot, we expect that its influence on the social sig-
nals will be more visible in tasks with contacts between the
robot and human. In this case, the close proximity with the
robot and the touch should highlight the unease and anxiety
of the human. This effect was observed by Chen et al. in the
robot nursing experiments [11], where the authors showed
that people with negative attitude towards robots responds
less favorably to robot-initiated touch. Our intuition is that
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touching the robot in particular should produce more dis-
tress, therefore making the humans gaze more at the body
parts where the interaction occurs.

3 The Study

3.1 Rationale

There are several studies on the influence of individual factors
on the production of social signals during human–human
interactions (for example, [30,53]). Recent studies on the
link between personality traits and social signals have also
appeared in the HRI community (for example, [2,51]).

However, to the best of our knowledge there is no study
yet examining the relation of individual factors to gaze and
speech during an assembly task. In this type of cooperative
tasks, the interaction between the human and a robot entails
a physical and a social dimension. The contact with the robot
(at the level of the hands, in this case) and the close proximity
between the partners may induce variations of the produc-
tion of gaze and speech with respect to simple face-to-face
interactions with a predominance of verbal exchange. The
alterations of the dynamics of the signals could be due to
the task and/or to some characteristics of the individual, for
example its personality or attitude towards robots.

The engagement models do not currently differentiate
between tasks with or without contact, and do not take into
account individual factors that may induce changes in the
dynamics of social signals.

It is therefore necessary to provide evidence of the relation
between these elements to improve the classical models of
engagement. We do it in this paper for a dyadic task that is
fundamental for robotics in service and industry: the coop-
erative assembly. Furthermore, it seems necessary to take
a comprehensive approach with respect to the individual
factors, considering personality traits and attitudes towards
robots, as the personality traits alone could not be sufficient
to explain the variation of the social signals during an inter-
action with a robot.

3.2 Research Hypotheses

Based on the literature review discussed in Sect. 2, we expect
that participants that havehigh scores of extroversionwill talk
more to the robot; we also expect that participants with a very
high negative attitude towards robots score will avoid gazing
at the robot. Due to the specificity of the task, involving a
contact between the human and the robot, we expect that
participants with a high negative attitude towards robots will
gaze more at the robot hands (area of contact between the
human and the robot).

Therefore, we pose five research hypotheses:

Hypothesis 1 If the extroversion dimension is related to
the frequency and duration of utterances addressed by the
human to the robot, then we should find a positive correlation
between the questionnaire score of extroversion and these
variables.

Hypothesis 2 If the extroversion dimension is related
to the frequency and duration of gazes directed towards
the robot’s face, then we should find a positive correlation
between the questionnaire score of extroversion and these
variables.

Hypothesis 3 If the negative attitude towards robots
is related to the frequency and duration of the utterances
addressed by the human to the robot, then we should find a
negative correlation between the questionnaire score of the
negative attitude towards robots and these variables.

Hypothesis 4 If the negative attitude towards robots is
related to the frequency and duration of gazes directed
towards the robot’s face, thenwe should find a negative corre-
lation between the questionnaire score of the negative attitude
towards robots and these variables.

Hypothesis 5 If the negative attitude towards robots is
related to the frequency and duration of gazes directed
towards the areas of contacts between the human and the
robot, then we should find a positive correlation between the
questionnaire score of the negative attitude towards robots
and these variables.

The hypotheses were tested through an interaction task
where humanparticipants had to cooperatewith thehumanoid
robot iCub [34] to assemble an object. We made video and
audio recordings of the interactions between the humanoid
iCub and adult participants who previously submitted their
questionnaires for evaluating the extroversion and negative
attitude towards robots.4

This task was part of a set of experiments within the
project “Engagement during human–humanoid interactions”
(EDHHI)5, to investigate the acceptance [20], engagement
and spontaneous behavior of ordinary people interactingwith
a robot. The experimental protocol used in this work (Ivaldi
et al., “Engagement during human–humanoid interaction”,
IRB n.20135200001072) received approbation by the local
Ethics Committee (CERES) in Paris, France.

4 In social psychology, there is a net distinction personality traits and
attitudes. Here, we use methods from differential psychology rather
than social psychology. We measured the attitude towards robots with
the NARS questionnaire, a test that was created to capture the projected
anxiety of the person before its interaction with the robot. We used it
to evaluate an individual attitude prior to the direct interaction with the
robot (participants filled theNARSquestionnaire several days before the
experiment—see details about the experimental procedure in Sect. 4.4).
5 http://www.loria.fr/~sivaldi/edhhi.htm.
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4 Materials and Methods

4.1 Questionnaires

To evaluate the extroversion and the attitude towards robots
of the participants, we used two questionnaires: the Revised
Personality Inventory (NEO-PIR) [12] and theNegativeAtti-
tude towards Robots Scale (NARS) [35].

The first is used to assess the personality traits according
to the Big Five model [22]. The official French adaptation of
the questionnaire was used [13]. We retained only the ques-
tions related to the assessment of the extroversion dimension,
that is 48 questions divided into six facets: Warmth, Gre-
gariousness, Assertiveness, Activity, Excitement seeking and
Positive emotions6. The order of the questions followed the
original questionnaire; answers were on a Likert-type scale
from 1 (Totally disagree) to 5 (Totally agree).

The second questionnaire consists of 14 questions divided
in three sub-scales: “Negative attitude towards situation of
interaction with robots” (S1), “Negative attitude towards
social influence of robots” (S2) and “Negative attitude
towards emotions in interaction with robots” (S3). The order
of the questions followed the original questionnaire; answers
were on a Likert-type scale, from 1 (Strongly disagree) to 7
(Strongly agree). To the best of our knowledge, an official
French adaptation of the NARS questionnaire does not yet
exist. For the experiments, we therefore proposed our French
adaptation of the NARS questionnaire, taken from [36]. Our
questionnaire was produced with a double translation made
by three different researchers, fluent in both English and
French, andwas validated by a group of ten external people to
ensure that the French translation was properly understood7.
We report the questions in both French and English in Table
6 in Appendix 1.

The participants also filled up a post-experimental ques-
tionnaire for subjective evaluation of the assembly task
with the robot. The questionnaire was designed to catch
the impressions and feedback of the participants about the
task, their interaction experience and in particular the way
they perceived the physical interaction with the robot. We
report the questions in both English and French in Table 7 in
Appendix 2. The order of the questions followed the original

6 We cannot report the questions, as the questionnaire is not publicly
available: we refer the interested reader to the English manual [12] and
the official French adaptation that we used [13].
7 A recent paper from Dinet and Vivian [16] studied the NARS and
validated it on a sample of French population. Their study was pub-
lished only after our work and experiments. They employed their own
translation of the questionnaire, which has some slight differences with
ours, mostly due to some nuances of the French language. These do
not preserve the original meaning when translated back into English. In
their paper there is no mention of a double translation mechanism for
validating the French adaptation of the questionnaire.

Fig. 3 Colored paper rolls used in the assembly task

questionnaire; answers were on a Likert-type scale from 1
(Totally disagree) to 7 (Totally agree).

4.2 Experimental Setup

The experiments were conducted in the Institut des Systèmes
Intelligents et de Robotique (Paris, France), in the laboratory
room of the iCub robot.

The experimental setup was organized as depicted in
Fig. 2. The robot was standing on a fixed pole, so that it
could not fall. The robot was semi-autonomous, i.e., it was
controlled by an operator hidden behind a reflective wall (a
plastic divider with reflective surface), built to prevent the
participants to see the operator and the experimenter, while
giving the experimenter the possibility to monitor the inter-
action and intervene promptly in case of problems8.

Two cameras were recording the participants, as shown in
Fig. 2. One camera was placed behind the robot on its left
side, in such away to observe the human face and upper-body
during the close interaction with the robot, while the other
one was placed laterally to take the scene as a whole.

The colored rolls used for the assembly task are shown in
Fig. 3.

The experimentswere carried outwith the humanoid robot
iCub [34]. The robot is approximately 104 cm high, weights
about 24 kg, and has the shape of a 4 years old child.

To facilitate the control of the robot by the operator, we
developed a graphical user interface (GUI) to quickly send
high-level commands to the robot in a wizard-of-Oz mode
(WoZ). The operator was constantly monitoring the status of
the robot, and could intervene to send high-level or low-level
commands to the robot, in prompt response to unexpected
actions or requests of the participants, using a dedicated
graphical interface (see Appendix 3).

8 Thiswas done as a safetymeasure.However, nothing happenedduring
the experiments: the experimenter never had to push the safety button,
Footnote 8 continued
and she never had to stop the physical interaction between the robot and
the subject.
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The robot was always controlled in impedance [19], to
make it compliant in case people would touch it accidentally
or intentionally before the construction task. When people
had to physically manipulate the robot to move its arms and
accomplish the task, the operator was switching the robot
into a zero-torque control mode that allowed the arms to
be driven lightly by the participants. For safety issues, the
operator could stop the robot motion at any time simply
switching the robot to position control, and at the same time
the experimenter monitored the whole interaction and was
able to intervene and stop the robot in case of urgency at
any time using the robot safety button. Facial expressions
and speech were enabled (more details in Appendix 3). The
robot always assumed the same neutral/positive expressions,
to avoid confusing the participant or suggest an underlying
robot “emotional status”.

4.3 Participants

Prospective participants were recruited through a generic
announcement for HRI studies, diffused on a mailing-list.
Participants that volunteered in the study received a 10 euros
voucher as a symbolic reimbursement for travel expenses.
They signed an informed consent form to partake in the
study and granted us the use of their recorded data and
videos. N = 56 voluntary healthy adults took part in this
study: 37 women, 19 men, aged 19 to 65 (mean = 36.95,
σ = 14.32). The participants were all native French
speakers.

4.4 Experimental Procedure

After volunteering to take part in the experiment, the par-
ticipants received an ID number to preserve anonymity
during the study. The personality traits of the partici-
pants were retrieved by questionnaires that were filled up
through an online web form two weeks before doing the
experiment, to avoid influences of the questions on their
behavior.

The day of the experiment, participants were welcomed
by the researcher and informed about the overall procedure
before signing an informed consent form granting us the use
of all the recorded data for research purposes.

Before the experiment, the participants had to watch a
short video presenting the iCub, its body parts and some of
its basic movements9. The video did not provide any infor-
mation about the experiments. It was instrumental to make
sure that the participants had a uniform prior knowledge of
the robot appearance (some participants may have seen the
robot before on the media).

9 It is a dissemination video from IIT showing the iCub, available on
Youtube: http://youtu.be/ZcTwO2dpX8A.

Fig. 4 Demonstration on how to safely grab the robot arms for kines-
thetic teaching in the assembly task: the hands of the experimenter
grasp the robot forearms on a part covered by the skin. On the left, the
distributed tactile sensors underneath the cover

After the video, each participant was equipped with a
Lavalier microphone to ensure a clear speech data collec-
tion, then was introduced to the robot. The experimenter did
not present the experimental setup (e.g., show the location of
the cameras) except showing the robot, and she did not pro-
vide any specific instruction to the participants about what
to do or say and how to behave with the robot. Most impor-
tantly, she did not say anything about the fact that the robot
was not fully autonomous: since the operator was hidden
behind a wall, mixed with other students of the lab, the par-
ticipant had no cue that the robot was controlled by someone
else10. The robot was in a standing position, gently waving
the hands and looking upright, while holding a colored toy
in its right hand. Once the participants were standing and
looking in front of the robot, they were free to do whatever
they wanted: talk to the robot, touch it, and so on.

The experimenter explained that the goal of the task was
to create an object in collaboration with the robot. To create
the object, they simply had to assemble two paper rolls and
fix themwith some tape. The participant could grab the robot
arms to demonstrate the bi-manual movement necessary to
align the two rolls, as shown in Fig. 5.

As the task required a physical interaction with the robot,
for safety reasons the experimenter had to provide a short
demonstration to show the participant how to grab the robot
arms in a safe manner and how to “move” the robot arms
by guidance to teach the robot a desired movement11. This
demonstration was necessary to make sure that the partici-
pantswould grab the robot forearmon the cover parts covered
by the skin, for their own security and to prevent damaging
of cables and robot hands (see Fig. 4). All the participants
received the identical demonstration. To show a movement
to the robot, the experimenter gently grasped the robot fore-

10 In the post-experiment interview, we asked the participants if they
thought or had the impression that the robot was controlled by someone:
all the participants thought that the robot was fully autonomous.
11 The demonstration was also part of the safety measures required by
the Ethics Committee to approve our protocol.
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Fig. 5 Demonstration of the assembly task: (1) the participant asks the
robot to grasp the two cylinders; (2) the participant grabs the robot arms
and demonstrates how to move them to align the two cylinders; (3) the

participant fixes the cylinders with some tape while the robot is holding
them; (4) the participant retrieves the assembled object from the robot

Fig. 6 Some participants gazing at the robot face. From left to right when the participant meets the robot, handing the cylinders, during the
alignment of cylinders, and when the object is built

arms touching the skin and saying “Be compliant”. The robot
operator then switched the control mode of the robot arms
to zero-torque control, so that the experimenter could gen-
tly move the arms. To make the arms hold the position, the
experimenter said “Hold on”. The operator then switched

the control mode of the arms to impedance position con-
trol12.

12 The operator could switch the control mode without the need of the
verbal command, since he had a direct visibility of the interaction zone
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Fig. 7 Some participants
performing the assembly task
(screenshots from the front
camera). The three images show
the participants giving the
cylinders to the robot (left),
grabbing the robot arms (center)
then moving the arms to align
the cylinders (right)

The short demonstration was necessary for safety reasons,
because the participantswere not robotics experts. The exper-
imenter precised that the demonstration was not to be used
as a template on how to perform the task with the robot,
as neither the task nor the interaction were scripted and the
robot would follow the participant’s guidance and commands
(Figs. 6, 7).

To accomplish the assembly task, the experimenter pre-
cised that it was necessary to explain to the robot how to
realize the assembly step by step, even if no scripted proce-
dure was provided. No explicit instructions were given to the
participants on how to explain the procedure to the robot.

We remark that the interaction between participant and
robot was not scripted, and our aim was to let it be as much
as spontaneous as possible for a first human–humanoid inter-
action.

The experimenter then gave the participants the first two
colored paper rolls and invited the participant to start the

in front of the robot through an additional camera that was centered on
the workspace in front of the robot (see Fig. 2).

assembly task with the robot; the task had to be repeated
three times with three pairs of paper rolls, so as to build
three objects. The paper rolls and the tape were conveniently
placed on a table next to the participants. The participant was
free to start at his/her own convenience, and to make each
trial last how much he/she wanted to. Some paper rolls used
in the experiments are shown in Fig. 3.

Once the participants finished the assembly task, repeated
three times, the experimenter led the participant back to a
computer to make him/her fill a post-experiment question-
naire and then get feedback and impressions through a short
interview.

4.5 Data Analysis

The questionnaires scores for extroversion and NARS were
computed according to their authors’ recommendation.

The audio-video recordings were analyzed with CowLog
software [24]. Six events were annotated: beginning of the
interaction, end of the interaction, beginning of a gaze by the

123



74 Int J of Soc Robotics (2017) 9:63–86

Fig. 8 Some participants showing the final object to the robot, after the collaborative assembly

participant towards the robot’s face or hands (i.e., the contact
area), end of that gaze, beginning of an utterance addressed
to the robot, end of that utterance. The gaze direction was
approximated by the head orientation, as it is often done in
literature [6,27]. We considered a pause of at least 500ms to
segment two consecutive utterances.13

We computed from the events’ timestamps the follow-
ing six dependent measures: frequency and duration of
gaze towards the robot’s face, frequency and duration of
gaze towards the robot’s hands, frequency and duration of
utterances addressed to the robot. These indicators were nor-
malized by the total duration of the interaction, to take into
account inter-individual variability in terms of task dura-
tion.

We used Pearson’s correlation to test of correlation of the
extroversion and attitude towards robots on the frequency
and duration of gaze and utterances14.

5 Results

The average time to complete the task was 246.10 s (σ =
75.45). On average, the participants talked to the robot
for 69.92s (σ = 38.38), addressing to it 57.54 utterances
(σ = 25.65); they looked at the robot’s face for 42.55s (σ =
29.25), gazing at the face of the robot 12.13 (σ = 6.57) times;
they looked at the robot’s hands for 162.46s (σ = 57.14),
gazing at the hands 11.30 (σ = 5.70) times.

13 Utterances are units of speech that begin and end by a pause. To
determine the beginning and the end of each utterance, we consider
pauses greater than 500ms.
14 Correlation is frequently used to study the link between personality
and behavior, as discussed in [18], a survey on the link between extro-
version and behavior where all the cited studies use correlations to test
their hypothesis.

5.1 On the Individual Factors

To ensure that the two questionnaires capture two different
individual factors, we computed the correlation between the
scores of extroversion and negative attitude towards robot
obtained by our population of participants. We did not find
a significant correlation between the two (r = −0.213;
p = N.S.), neither between extroversion and each of the three
sub-scales: negative attitude towards interaction with robots
(r = −0.156; p = N.S.), negative attitude towards social
influence of robots (r = −0.156; p = N.S.), and negative
attitude towards emotions during the course of interactions
with robots (r = −0.254; p = N.S.).

These results seem to indicate that both questionnaires
represent a fair valuation of the different individual traits of
the participants.

5.2 Relation of Extroversion to Gaze and Speech

The participants’ average extroversion score was 111.77
(σ = 22.86; min = 61, max = 160), which is, according
to [13], a neutral level of extroversion15.

Table 3 reports the Pearson’s correlation between the
extroversion score of the participants and their gaze and
utterance frequency and duration. The extroversion score is
significantly and positively correlated to the frequency and
duration of utterances (see Table 3). This can also be seen in
the scatter graphs in Fig. 9. Conversely, the results indicate
that extroversion does not influence the gaze signal, as there

15 According to the NEO-PIR, a participant obtaining a score bigger
than 137 is considered extrovert, while one with a score below 80 is
introvert.
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Table 2 The scores of the post-experimental questionnaire for evalu-
ating the perception and interaction with the iCub in the assembly task
of this work

Post-experimental questionnaire for human–humanoid collaborative
tasks with physical interaction

Questionnaire item Subjective evaluation
(score mean ± SD)

Questions related to the task

The assembly task was easy to do. 5.49 ± 1.39

The assembly task was interesting to
do

5.75 ± 1.61

Someday I could work with this robot to
build something of interest

5.03 ± 1.67

Someday I could work with a robot to
build something of interest

5.87 ± 1.07

Questions related to the physical interaction (e.g., touching the
robot)

I was worried to must touch the robot
to assembly the objects with it

2.13 ± 1.46

I was afraid to touch the hands of the
robot

2.36 ± 1.72

I was afraid to damage the robot 3.57 ± 1.91

The robot does not look dangerous 6.00 ± 1.57

The robot is not threatening 6.02 ± 1.49

Questions related to the cognitive/social interaction

During the assembly, I would have
preferred that the robot tells me what
it thinks, if it understands well

5.19 ± 1.61

The robot understood what I explained
to it

5.38 ± 1.39

The robot should be more reactive 4.65 ± 1.56

The robot was nice 5.49 ± 1.37

Questions related to the robot features

The robot moves its head too slowly 3.32 ± 1.41

The robot moves its arms too slowly 3.55 ± 1.33

The facial expressions of the robot
trouble me

2.03 ± 1.29

The voice of the robot is pleasant 4.51 ± 1.84

The second column reports the mean and standard deviation of the
scores attributed on a 7-items Likert scale (from 1 = totally disagree to
7 = totally agree) by the N = 56 participants in this study. We highlight
in bold the questions where the average score is close to the maximum
or the minimum score

is no significant correlation between the personality trait and
the gaze frequency or the duration of gaze.

To summarize, the more an individual is extrovert, the
more he/she will tend to talk to the robot during an assembly
task to provide instructions. On the contrary, an individual
with a high score of extroversion will not look at the robot’s
face or hands more than individuals with lower scores.

Therefore, with reference to the research hypothesis
expressed in Sect. 3.2, we confirm Hypothesis 1, and reject
Hypothesis 2.

Table 3 Correlation between the participants’ extroversion score (com-
puted by NEO-PI-R [13]) and their gaze and utterance frequency
(number/s) and duration (normalized ratio) during the assembly task

Variable Extroversion score

Gaze towards face frequency r = −0.13; p = 0.927 (N.S.)

Gaze towards face duration r = 0.098; p = 0.471 (N.S.)

Gaze towards hands frequency r = 0.058; p = 0.671 (N.S.)

Gaze towards hands duration r = 0.215; p = 0.875 (N.S.)

Utterance frequency r = 0.318; p = 0.017 (<0.05)

Utterance duration r = 0.321; p = 0.016 (<0.05)
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Fig. 9 Scatter graphs showing the frequency (number/s) and duration
(normalized ratio) of utterances of the participants (N = 56), in function
of their extroversion score

5.3 Relation of Negative Attitude Towards Robots to
Gaze and Speech

The participants’ average score for the negative attitude was
45.55 (σ = 12.74; min = 20, max = 77), which is a neutral
value for the attitude towards robots16.

Table 4 reports the Pearson’s correlation between the
NARS scores of the participants and their gaze and utterance
frequency and duration. The results indicate that the neg-

16 According to the NARS, a score over 65 is a sign of negative attitude
towards robots,while a score below35 indicates a rather positive attitude
towards robots.
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Table 4 Correlation between the participants’ negative attitude towards
robots score (computed byNARS [35]) and their gaze and utterance fre-
quency (number/s) and duration (normalized ratio) during the assembly
task

Variable Negative attitude towards robots
score (NARS)

Gaze towards face
frequency

r = −0.174; p = 0.201 (N.S.)

Gaze towards face
duration

r = −0.331; p=0.013 (<0.05)

Gaze towards hands
frequency

r = −0.111; p = 0.413 (N.S.)

Gaze towards hands
duration

r = 0.355 ; p=0.007 (<0.05)

Utterance frequency r = −0.137; p = 0.314 (N.S.)

Utterance duration r = 0.033; p = 0.807 (N.S.)

ative attitude does not influence the verbal signal, as there
is no significant correlation with the utterance frequency or
duration. There is, however, a partial effect on the gaze signal.
Precisely, the negative attitude is significantly and negatively
related to the duration of gaze towards the robot’s face, and
positively related to the duration of gaze towards the robot’s
hands, as visible in Fig. 10.

To summarize, the more an individual has a negative atti-
tude towards robots, the less he/she will tend to look at the
robot’s face during an assembly task, and the more he/she
will tend to look at the robot’s hands (area of physical con-
tact). The gaze frequency, on the contrary, will not change
in relation to different positive or negative attitudes. Nothing
can be concluded regarding the verbal communication: an
individual with a more negative attitude towards robots will
not speak more or less to the robot than other individuals
with a more positive attitude.

Therefore, with reference to the research hypothesis
expressed in Sect. 3.2, we reject Hypothesis 3 and partially
confirm Hypothesis 4 and 5, since the NARS score relates to
the gaze duration but not to the gaze frequency.

As explained in Sect. 4, the NARS questionnaire is based
on three sub-scales. The participants’ average scores of
negative attitude towards interaction situations (S1), social
influence of robots (S2) and emotions during interaction (S3)
were respectively 15.18 (σ = 5.83), 18.80 (σ = 5.83) and
11.70 (σ = 3.82), whereas the mean values of the three
sub-scales were 24, 20 and 12. We performed a thorough
investigation of the effect of each of the three sub-scales on
gaze and utterances. For the gaze signal, we did not find any
significant correlation between the sub-scales values and its
frequency; however, we found a significant and negative cor-
relation between the gaze duration and S1 (r = −0.311;
p < 0.05) and S2 (r = −0.334; p < 0.05). For the verbal
signal, we did not find any significant correlation between
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Fig. 10 Scatter graph showing the duration of gaze (normalized ratio)
of the participants (N = 56) towards the robot hands and face, in function
of their NARS score

the sub-scales values and the utterance duration, however we
found a significant negative correlation between S3 and the
utterance frequency (r = −0.323; p < 0.05).

To summarize, the more people display a negative attitude
in the interaction (S1) with the robot and are concerned by
the social aspect (S2) of the interaction, the less they will
look at the robot. Conversely, the more people are negative
about the emotions during the interaction (S3), the less they
will talk to the robot.

5.4 Post-Experiment Evaluation

The post-experimental questionnaire for subjective evalu-
ation was designed by the experimenter to get a simple
feedback on the user experience, retrieve the global impres-
sion and the personal evaluation of the participants on some
aspects of the task. Table 2 reports on the average score for
each item in the questionnaire. We highlighted in bold the
most significant questions, which have an average score that
is close to the maximum (7) and minimum (1).
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Table 5 Correlation between the scores of the NARS sub-scales (computed as in [35]) of the participants and their gaze and utterance frequency
(number/s) and duration (normalized ratio) during the assembly task

Variable NARS-S1 NARS-S2 NARS-S3

Gaze towards face frequency r = −0.160; p = 0.238 (N.S.) r = −0.215; p = 0.111 (N.S.) r = 0.009; p = 0.947 (N.S.)

Gaze towards face duration r = −0.311; p=0.020 (<0.05) r = -0.334; p=0.012 (<0.05) r = −0.120; p = 0.377 (N.S.)

Gaze towards hands frequency r = −0.073; p = 0.592 (N.S.) r = −0.138; p = 0.310 (N.S.) r = −0.043; p = 0.754 (N.S.)

Gaze towards hands duration r = 0.381; p=0.004 (<0.05) r = 0.334; p=0.012 (<0.05) r = 0.094; p = 0.491 (N.S.)

Utterance frequency r = 0.018; p = 0.895 (N.S.) r = −0.093; p = 0.497 (N.S.) r = −0.323; p=0.015 (<0.05)

Utterance duration r = 0.172; p = 0.203 (N.S.) r = 0.058; p = 0.673 (N.S.) r = −0.249; p = 0.063 (N.S.)

6 Discussion

As discussed in Sect. 2, the literature in psychology high-
lights an effect of personality traits, particularly of the
extroversion dimension, on the dynamics of speech and gaze.
Likewise, a negative attitude towards robotswill influence the
time of the verbal response during interactions. These results
induced us to question the reliability of the metrics used for
the estimation of the engagement in HRI, classically based
on the dynamics of social signals, as their dynamics may be
altered by individual factors that are not taken into account
in the models of engagement.

In the following we discuss here the results on the cor-
relations between two individual factors (extroversion and
negative attitude towards robots) and the dynamics of speech
and gaze observed during the human–robot assembly task.
We argue about the implications of our study for the HRI
community and consider the limits of our study.

6.1 Extroversion and Social Signals

As detailed in Sect. 5.2, we found that there is a positive
and significant correlation between the extroversion score
and the frequency and duration of utterances. The more the
individual is extrovert, the more often and longer he/she will
tend to address the robot during the interaction. This result is
consistent with observations of human–human interactions,
showing that introverts tend to talk less than extroverts [45].
Conversely, we did not find a significant correlation between
the extroversion and the gaze frequency or duration. This
finding is partially contrary to what has been observed in
[57],where the author found a relationship between the extro-
version and the amount of time spent gazing while listening.
However, the author also observed that the gaze duration was
not related to extroversionwhen people were speaking. Since
in our task, the participants were supposed to talk to the robot
to explain the task, we can presume that this could be one
possible cause of the non-effect of the extroversion on gaze
duration. Furthermore, our assembly task induced the partic-
ipants to focus their attention also on the robot hands, while
we can presume that a different task will let people gaze at

the robot face more frequently. Another element that might
explain this result is the lack of a proper joint attention system
implemented on the robot for this experiment, particularly for
mutual gaze: once the human touched the robot arms to start
its kinesthetic demonstration, the robot was simply shifting
its gaze from the human face to its own hands, and was not
seeking eye-contact during the teaching phase. In summary,
we were expecting to find a correlation between gaze and
extroversion, coherently with [57], but probably the differ-
ent nature of the tasks has an influence on the gaze behavior.
This question has to be further investigated.

6.2 Negative Attitude Towards Robots and Social
Signals

As presented in Sect. 5.3, we found that the negative attitude
towards robotics tends to be related to the time spent looking
at the robot’s face and the robot’s hands during the interaction
(Table 4).

Overall, the participants were probably not apprehensive
facing the interaction, while they were likely mildly con-
cerned regarding the social and emotional aspect of the
interaction.With a deeper look at theNARSsub-scales (Table
5), we found that themore one has a negative attitude towards
the interaction situation (S1) and the social influence of the
robot (S2), the shorter it will look at the robot face. These
results may indicate that looking less at the robot is symp-
tomatic either of the aversion towards the robot as social
agent, or of the anxiety facing a physical and a social inter-
action. This is consistent with the duration of gaze directed
towards the robot’s hands: it makes sense that the more one
has a negative attitude towards interacting with a robot, the
more he/she will spend time looking at the robot’s hands in a
task where there is physical interaction with the robot occur-
ring at the hands level. Interestingly, these dimensions (S1
and S2) do not seem to have influence on the speech produc-
tion. Conversely, people concerned with emotional robots
(S3) will tend to have less verbal exchange with the robot.

We found significant correlations for the gaze duration,
but not for the gaze frequency: this result could be slightly
biased by the lack of mutual gaze exhibited by the robot.
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We expected that an individual with positive attitude would
look more at the face trying to engage and get the robot’s
attention, while an individual with negative attitude would
have the tendency to avert his/her look towards the robot
face. However, the lack of a joint attention mechanism can
explain the lownumber of gazes towards the robot face (12.13
± 6.57) and the fact that they do not seem to be correlated
with the negative attitude.

We did not find any significant correlation with the ver-
bal signal. Our results seem to contradict those of [37], that
brought evidence that a negative attitude towards robots had
repercussions on the timing of the verbal response. How-
ever, in their study the authors were focusing on reaction
times to robot’s stimuli, not on the frequency or duration
of utterances. Looking at the NARS sub-scale, we found a
significant correlation between the negative attitude towards
emotions (S3) and the utterance frequency. This result is in
line with [35], where the authors highlight the stronger neg-
ative attitude towards emotions (S3) for individuals dealing
with small-sized humanoids robots (such as our robot iCub).

Overall, we expected the negative attitude to have a
stronger influence on the amount of verbal and non-verbal
signals exchanged during the interaction. We expected that
the physical contact with the robot and the close interaction
would particularly highlight the effect of the negative atti-
tude. We speculate that this result could be influenced by a
social desirability bias: the participants maybe tried to per-
form better as subjects in the study, eventually behaving in
a forced way. The positive evaluation that we retrieved from
the post-experimental questionnaire (Table 2) could also be
partially related to that.

As we found few studies dealing with attitude towards
robots and social signals, this part of our work may be con-
sidered as exploratory.

6.3 Subjective Impressions

Overall, the subjective evaluations and the feedback from the
interviews encourage us to think that the interaction with the
robot was pleasant and the participants were spontaneous in
their behavior. With reference to the subjective evaluations
scores in Table 2, the participants evaluated positively the
experimentwith the robot and the robot itself.We highlighted
in bold the questions where the average score is close to the
maximum (7) or minimum (1) score: this provides a rough
indication of the tendencies of the participants. They found
the task quite interesting and easy to do, and they also had a
positive impression of the robot. Interestingly, they were not
afraid to touch or interact physically with the robot (e.g., not
worried to touch the robot, not afraid to touch the hands).Also
the robot was not looking dangerous to their eyes. Consid-
ering that the experiment was their first live interaction with
the robot, this score was quite surprising for us: we expected

the novice/naive people to report some anxiety in front of
the robot. However, when we interrogated the participants
about this, most of them said that the safety demonstration
reassured them about the fact that it was possible to touch the
robot without problems; others said that the robot size and
child-like appearance made them suppose that it was safe to
touch it as the robot “won’t hurt”. We asked to the partici-
pants if they thought or had the impression that the robot was
operated by someone else: all the participants denied this
possibility. Almost all the participants asked us if the robot
had learned correctly what they had been teaching.

6.4 Implications for Automatic Personality Assessment

Social robots should be able to adapt their behaviour tak-
ing into account the unique personality of their interacting
partners [3]. To this end, they need to learn a model of
their behaviour, that can be built using multimodal fea-
tures extracted during online interaction, physical features,
social context, psychological traits of the partner such as
personality or attitudes etc. Currently, a crucial challenge
in HRI is the automated online estimation of these individual
factors: for personality traits, in the personality computing
literature this is called Automatic Personality Recognition,
which aims at “inferring self-assessed personalities from
machine detectable distal cues” (see [53] for an exhaus-
tive review). Since personality and individual traits influence
the production of verbal and non-verbal signals, it is impor-
tant to gain more quantitative knowledge on their relations
to be able to produce predictive models that can be used
to improve the HRI experience. For example, Tapus et al.
[51,52] showed that an adaptive robot matching the person-
ality of the patient is beneficial for assisted therapy, and that
extrovert/introvert people prefer to interact with robots that
exhibit extrovert/introvert personality features [2].

Thanks to the findings of our work, we now have a quan-
titative indicator for estimating the extroversion of a human
interacting with a robot in a collaborative assembly task, by
looking at the his/her speech dynamics. At the same time, we
can derive a simple linear model for estimating the NARS
based on the duration of gaze towards the robot face.

We are extending these findings to the other experiments
of the EDHHI project, for example we already showed that it
is possible to predict extroversion from non-verbal features
during a thin slice of simple face-to-face interaction [40].

6.5 Implications for Measuring Engagement

Our goal in this paper is not to measure the engagement of a
particular HRI situation, but to provide quantitative evidence
that the computational models of engagement should take
into account individual factors. Such models are commonly
based on the dynamics of signals such as gaze and speech
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[4,42,46]. The engagementmetricsmaybebiasedby individ-
ual factors such as extroversion and negative attitude towards
robots, factors that we have not met in the engagement liter-
ature for an assembly task such as the one presented in this
paper. Our results indicate that extroversion and negative atti-
tude towards robots are related to the temporal dynamics of
gaze and speech during a human–robot interaction. If the
engagement depends on the frequency or rhythm of such
social signals [42], then an introvert individual or one with
negative attitude towards robots will be considered as less
engaged than an extrovert or one with a positive attitude,
simply because the first is more likely to produce less signals
(gaze or utterances) than the second. The design of robust
models of engagement should therefore take these individ-
ual factors into account.

We further notice that the models for evaluating the
engagement refer mostly to dyadic tasks without physi-
cal interaction. For tasks such as the one of this paper,
the cooperative assembly may induce the people to gaze
more at the hands and at the objects than in other tasks
where there is no co-manipulation. Therefore, there is a
potential risk that the estimated engagement of the HRI
may be partially biased by the “task engagement”. We will
perform the study with other tasks to verify, because the
current results are not sufficient to provide conclusions on
this matter. This problem actually highlights a weakness
of the models used for the evaluation of the engagement
which are uniquely based on the dynamics of social sig-
nals.

6.6 Implications for Human–Robot Physical Interaction

Theunderlying idea in ourwork is that by studying the factors
that influence the production of social signals and physi-
cal signals, one can improve the design of robot controllers
during physical interaction and, for example, achieve better
performances during cooperative tasks.

More and more people are going to interact physically
with robots, for a variety of tasks: from co-working in man-
ufacturing, to personal assistance at home. This requires for
the robot the ability to control precisely the interaction forces,
but also to be able to interact in a “social” way, adapting to
the reaction of each individual, so that people can trust the
robot, accept it and be engaged interacting with it.

Together with the contact forces17, it is therefore neces-
sary to study the other verbal and non-verbal signals that
are exchanged during the physical interaction, such as gaze,
prosody, gestures, etc. All these signals can be used to study
the comfort and the engagement of the people interacting

17 Contact forces are the forces due to the physical interaction between
the human and the robot, originated at the contact location where the
interaction occurs.

with the robot, providing the necessary feedback for the robot
to adapt its action. Researchers studying cooperative tasks
usually focus on sequencing and patterns of cooperation [54],
adaptation of roles and physical forces [49], while the social
signals emitted during such tasks are not fully explored. Con-
versely, the dynamics of social signals, such as gaze and
speech, is mostly studied during tasks that do not involve
a direct physical interaction, such as dialogues and games
[4,9,10].

In this paper, we provide some evidence about the dynam-
ics of speech and gaze during a cooperative assembly task
with physical interaction. To the best of our knowledge, this
is the first work analyzing social signals during a cooperative
assembly task with a humanoid robot.

6.7 Limits of the Study

The present study brings significant new results to the field
of human–robot interaction and engagement. However, we
discuss the limitations of our study.

6.7.1 Ordinary People

In our study, participants interacting with the robot are
not experts “robot-users”. Our findings could change if
we considered people with different levels of exposure to
robotics and technology and expertise with iCub or other
robots. Our intuition is that the prior exposure to robot-
ics is likely to appear in the dynamics of verbal and
non-verbal signals. This question is currently under inves-
tigation.

6.7.2 HHI versus HRI

It would have been interesting to have a control study about
human–human physical interaction for the same assembly
task. This kind of study would enable to compare if the
dynamics of the social signals emitted by the human change
when interacting with a human or with a robot during a
physical collaboration, in function of the individual factors
of the human. However, the same experiment done by two
humans would have been too different in our view, and not
only because the engagement of human–human and human–
robot interaction is different. In our experiment, iCub is a
child-like robot, and the task is very simple: it would have
been difficult to make it engaging for two adults, and would
have made sense to do it with an adult and a child. How-
ever, the child should have been constrained to be basically
not too reactive. We actually did, in a preliminary investiga-
tion, record the assembly task performed by a father and his
child, two sisters (one older than the other) and two adults.
Despite our instructions to the children, we found very dif-
ficult to reproduce the experiment with similar conditions
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to the ones of the HRI experiment. For example, it was dif-
ficult for one to not to react to the action of the other: we
observed anticipatory gaze, joint gaze, anticipatory move-
ments of the arms before and during the kinesthetic teaching,
etc. These mechanisms were not implemented in our robot.
Empathy, personality traits and other factors linked to the
human partner acting as the robot should also have been taken
into account.

6.7.3 Generalization

In this study, we focused on an assembly task requiring
physical interaction. The situation addressed in this study
is extremely relevant to the robotics community and par-
ticularly to those studying collaborative robots and robotic
co-workers. It is difficult to predict whether our results can
be generalized to other tasks. This question is currently under
investigation.

6.7.4 Human-like and Child-like Appearance

Another limit of our study is given by the human-like appear-
ance of the robot, which may influence the production of
social signals. This question was equally raised in other
studies with human-like robots, for example by Huang and
Thomaz with the Meka robot [25]. As we already remarked
in our previous studies with iCub [27], the anthropomor-
phic appearance may induce a biased perception of the robot
and ultimately influence the dynamics of speech and gaze,
especially the one directed towards the robot face. However,
differently from the previous study, before the experiments
we told the participant that the robot had a limited knowledge
and they had to teach the robot how to build the object. As
their expectations about the robot intelligence were lower,
their subjective evaluation of the robot resulted to be glob-
ally more positive than the one of the previous experiment
(see Table 2). The type of task could also play a role:
here the participant had a very close interaction with the
robot, and had to use the hands of the robot for building
an object. The task implies manipulation skills and cognitive
skills that are usually attributed to humans and intelligent
agents. For example, learning to “align” the cylinders means
learning the proper arm movements but also understand-
ing the concept of “to align” and “to assemble an object
made by two parts.” Some participants were so engaged
with the robot and the task that spent time to make sure that
the robot could learn these concepts, showing the assem-
bly gesture before engaging the kinesthetic teaching, and
showing the final object explaining the result of the action
after the kinesthetic teaching (see Fig. 8). It is also possi-
ble that the child-like appearance of the robot facilitated the
emergence of these behaviors. However, we did not consider
in our study the attitude towards children or having chil-

dren as possible individual factors: this is a limitation of the
study.

Would the results be different with another type of robot?
For example a collaborative industrial robot without an
anthropomorphic head? We are currently investigating this
question.

7 Conclusions

In this paper we reported on the influence of extroversion and
attitude towards robots on the temporal dynamics of social
signals (i.e., gaze toward the robot’s face and speech), during
a human–robot interaction task, where a human must physi-
cally cooperate with a robot to assemble an object.

We conducted the experiments with the humanoid robot
iCub and N = 56 adult participants. We focused on extrover-
sion and negative attitude towards robots, and reported on
their effect on gaze and speech.

We found that the more people are extrovert, the more
they tend to talk and longer to the robot. We also found that
the more people have a negative attitude towards robots, the
less they tend to look at the robot’s face.

The assembly task entailed a physical contact between the
human and the robot: we found that the more people have a
negative attitude towards robots, the more they look at the
area where the physical contacts occurred and the assembly
task was executed (in this case, the robot’s hands).

Our results provide evidence that among the metrics
classically used in human–robot interaction to estimate
engagement [42], one should also take into account inter-
individual factors such as extroversion and attitude towards
robots, because these individual factors influence the dynam-
ics of social signals, hence the dynamics of the interaction.
Furthermore, we highlight a potential risk for the classical
models of engagement, that do not provide a solution to the
problem of decoupling the engagement towards the robot and
the engagement towards the task. These two are not easily
discernible from the study of social signals, for many coop-
erative tasks.

To summarize, we propose an original way to deal with
engagement and social signals during HRI: with a more
comprehensive and multidisciplinary approach, we explic-
itly consider the exchanged social signals and the individual
factors that may influence the production of such signals.
Particularly, we do not only consider the personality traits
of the humans, but also their attitudes towards robots that
may be critical for their behavior during the interaction with
a robot.

The influence of personality traits on social signals should
be taken into account if we wish to build robots capable
of automatically estimating the engagement of the human
partner–in tasks with or without physical interaction. Of
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course, other dimensions should be investigated, for instance
individual traits (e.g., other personality dimensions from the
Big-Five [22], such as openness or neuroticism), social atti-
tudes or environmental and contextual factors. Recent studies
show that it is possible to retrieve personality traits online
from audio or video streams [32]. It will be therefore feasi-
ble to pair the personality estimation with the social signals
analysis, to provide better models of human engagement.
Such models will be critical to adapt the robot’s behavior to
the single individual reaction.

Our insights can play an important role for letting the robot
adapt its behavior to the human response. For example, to re-
engage the dis-engaged partner into a cooperation by means
of relevant social signals or physical actions.
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Appendix 1: Questionnaire for Negative Attitude
Towards Robots (NARS)

See Table 6 for the questions in English and French.

Table 6 NARS questionnaire for evaluating the negative attitude towards robots

Negative Attitude Towards Robots Questionnaire (NARS)

N. Questionnaire item in English Questionnaire item in French Subscale

1 I would feel uneasy if robots really had
emotions

Je me sentirais mal à l’aise si les robots avaient
réellement des émotions

S2

2 Something bad might happen if robots
developed into living beings

Quelque chose de mauvais pourrait se produire si les
robots devenaient des êtres vivants

S2

3 I would feel relaxed talking with robots Je serais détendu(e) si je parlais avec des robots S3*

4 I would feel uneasy if I was given a job
where I had to use robots

Je me sentirais mal à l’aise dans un travail où je
devrais utiliser des robots

S1

5 If robots had emotions, I would be able to
make friends with them

Si les robots avaient des émotions, je serai capable
de devenir ami(e) avec eux

S3

6 I feel comforted being with robots that
have emotions

Je me sens réconforté(e) par le fait d’être avec des
robots qui ont des émotions

S3*

7 The word “robot” means nothing to me Le mot “robot” ne signifie rien pour moi S1

8 I would feel nervous operating a robot in
front of other people

Je me sentirais nerveux/nerveuse de manœuvrer un
robot devant d’autres personnes

S1

9 I would hate the idea that robots or
artificial intelligences were making
judgments about things

Je détesterais que les robots ou les intelligences
artificielles fassent des jugements sur des choses

S1

10 I would feel very nervous just standing in
front of a robot

Le simple fait de me tenir face à un robot me rendrait
trés nerveux/nerveuse

S1

11 I feel that if I depend on robots too much,
something bad might happen

Je pense que si je dépendais trop fortement des
robots, quelque chose de mauvais pourrait arriver

S2

12 I would feel paranoid talking with a robot Je me sentirais paranoïaque de parler avec un robot S1

13 I am concerned that robots would be a bad
influence on children

Je suis préoccupé(e) par le fait que les robots puissent
avoir une mauvaise influence sur les enfants

S2

14 I feel that in the future society will be
dominated by robots

Je pense que dans le futur la société sera dominée
par les robots

S2

The order of the questions follows the original questionnaire, proposed by Nomura et al. in [36]. The second column reports the original questions
in English. The third column reports our double translation of the questions in French.
* Reverse item

123



82 Int J of Soc Robotics (2017) 9:63–86

Appendix 2: Questionnaire for Post-experimental
Evaluation of the Assembly Task

See Table 7 for the questions in English and French.

Appendix 3: Software for Operating the Robot

The WoZ GUI was organized in several tabs, each ded-
icated to a specific task, such as controlling the robot
movements (gaze, hands movements, posture), its speech, its

Table 7 Post-experimental
questionnaire for evaluating the
perception and interaction with
the iCub in the assembly task of
this work

Post-experimental questionnaire for evaluation of the human–humanoid col-
laborative tasks with physical interaction

N Questionnaire item in English Questionnaire item in French

1 The assembly task was easy to do La tâche de constructions était
facile à faire

2 The assembly task was interesting
to do

La tâche de construction était
interessante à faire

3 I was worried to must touch the
robot to assembly the objects
with it

J’etais inquiet(e) de devoir toucher
le robot pour construire les
choses avec lui

4 During the assembly, I would have
preferred that the robot tells me
what it thinks, if it understands
well

Pendant la construction, j’aurais
préfèré que le robot m’informe
de ce qu’il pense, s’il comprend
bien

5 I was afraid to touch the hands of
the robot

J’avais peur de toucher les mains
du robot

6 I was afraid to damage the robot J’avais peur d’abimer le robot

7 The robot was nice Le robot était sympathique

8 The robot understood what I
explained to it

Le robot a compris ce que je lui ai
expliqué

9 The robot answers to questions too
slowly

Le robot réponds aux questions
trop lentement

10 The robot moves its head too
slowly

Le robot bouge la tête trop
lentement

11 The robot moves its arms too
slowly

Le robot bouge les bras trop
lentement

12 The robot should be more reactive Le robot devrait être plus réactif

13 The facial expressions of the robot
trouble me

Les expressions faciales du robot
me gênent

14 The voice of the robot is pleasant La voix du robot est agreable

15 The robot is not threatening Le robot n’est pas menacant

16 The robot does not look dangerous Le robot ne semble pas dangereux

17 Someday I could work with this
robot to build something of
interest

Un jour, je pourrais travailler avec
this robot pour construire
quelque chose d’interessant

18 Someday I could work with a robot
to build something of interest

Un jour, je pourrais travailler avec
un robot pour construire quelque
chose d’interessant

The third column reports the original questions in French (the participants were all native French speakers).
The second column reports our double translation of the questions in English
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Fig. 11 WoZ GUI. a The tab dedicated to the quick control of gaze,
grasps and hands movements in the Cartesian space. The buttons sends
pre-defined commands to the actionsServer module, developed in [28].
The buttons of the bottom row allows the operator to bring the robot
in pre-defined postures (whole-body joint configurations): they were
pre-programmed so as to simplify the control of the iCub during the

experiments, in case the operator had to “bring it back” to a pre-defined
configuration that could simplify the interaction for the participants.
They were useful also for prototyping and testing of the experiments. b
Part of the GUI dedicated to switching the control mode of the arms—
position, zero-torque, then impedance control with low, medium and
high stiffness

face expressions etc. The GUI events are elaborated by the
actionServer module and others developed by the authors in
previous studies [27,28]. All the developed software is open
source18.

Figure 11a shows the tab related to the control of head
gaze and hands movements. It is designed to control the
gaze direction in the Cartesian space, with relative move-
ments with respect to the fixation position (joints at zero
degrees in both eyes and neck). The hands can be quickly
controlled by a list of available pre-defined grasps, plus prim-
itives for rotating the palm orientation (towards the ground,
skywards, facing each other). It is also possible to control the
hand position and orientation in the Cartesian space, provid-
ing relative movements with respect to the current position
with respect to the Cartesian base frame of the robot (the
origin located at the base of the torso, with x-axis pointing
backward, y-axis pointing towards the right side of the robot
and z-axis pointing towards the robot head). Some buttons
allow the operator to control the whole posture of the robot
and bring it back to pre-defined configurations. Figure 11b
shows the part of the GUI dedicated to switching the con-
trol mode of the arms: position, zero-torque, then impedance
with high, medium and low stiffness. The default values of

18 See download instructions at http://eris.liralab.it/wiki/UPMC_
iCub_project/MACSi_Software.

the module demoForceControl19 for stiffness and damping
were used. During the experiments, the arms were controlled
in the “medium compliance” impedance mode, which allows
the robot to exhibit a good compliance in case of unexpected
contacts with the human participant. When the participant
had grabbed the robot arms to start the teaching movement,
the operator switched the control to zero-torque, which made
the armsmove under the effect of the human guidance. Figure
12a shows the tab related to the robot’s speech. It is designed
to quickly choose choose one among a list of pre-defined
sentences and expressions, in one of the supported languages
(currently French or English). It is also possible to generate
new sentences, that can be typed on-the-fly by the opera-
tor: this is done to allow the operator to quickly formulate
an answer to an unexpected request of the participant. The
operator can switch between the supported languages, but of
course in the experiments of this paper the robot was always
speaking French (as all the participants were native french
speakers). The text-to-speech in English is generated by the
festival library, while in French by the Pico library.
Figure 12b shows the tab related to facial expressions. The
list of facial expressions along with their specific realization
on the iCub face (the combination of the activation of the
LEDs in eyelids and mouth) is loaded from a configuration
file that was designed by the experimenter.

19 https://github.com/robotology/icub-basic-demos/tree/master/
demoForceControl.
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Fig. 12 WoZGUI. aThe tab related to the robot’s speech. The operator
can choose between a list of pre-defined sentences and expressions, or
he can type a new sentence on-the-fly: this is done to be able to quickly
formulate an answer to an unexpected request of the participant. The
operator can switch between french and english speech (at the moment,

the only two supported languages), even if in the experiments of this
paper of course the robot was always speaking french. b The tab related
to facial expressions. The list of facial expression along with their spe-
cific realization on the iCub face (the combination of the activation of
the LEDs in eyelids and mouth) is loaded from a configuration file
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