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Abstract Lower limb exoskeletons have gained consider-
able interest in recent years as a research topic for creating
aids for people with walking disabilities and strength aug-
menters for pilot walkers. A crucial practical problem, how-
ever, is generating the reference trajectory of the joints. In this
paper, we solve the reference trajectory problem by a novel
approach which obtains the angle trajectories of knee joints
from the hip joints. The relationship between the angle trajec-
tories of the knee and hip joints is acquired through kinematic
models of the lower limb exoskeleton. In these models, the
parameters of the joint position trajectories are optimised
by a swarm fish algorithm with variable population. The
proposed approach is validated in virtual simulations and a
physical prototype of an exoskeleton system. The experimen-
tal results confirm that the reference trajectory generation
approach accurately reproduces human walking.

Keywords Lower limb exoskeleton · Kinematic model ·
Trajectory generation · Swarm fish algorithm

1 Introduction

Lower limb exoskeletons can provide a wide range of human
assistance, from standing/walking aids for people with lower
limb disabilities to strength augmentation for pilot walkers.
As such, they have become increasingly promoted in recent
years. A group of researchers headed by Sankai have devel-
oped the robot suit hybrid assistive limb (HAL) exoskeleton
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at Tsukuba University [1,2]. The numerous functions on the
HAL exoskeleton assist doctors and physical therapists with
their training, the disabled with their standing/walking activ-
ities, and nurses with transporting heavier patients. Argo
Medical Technology has been developing a rehabilitation
exoskeleton named ‘Rewalk’, designed for patients who are
completely disabled in lower limbs [3]. With the operator
affixed to their upper bodies, patients can operate ‘Rewalk’ to
accomplish actions such as walking, climbing stairs, shifting
from sitting to standing and self-support. Another rehabili-
tation exoskeleton system, the exoskeleton lower extremity
gait system (eLEGS; later known asEkso), has been designed
by Berkeley Bionics (Berkeley University, California, USA)
[4,5]. eLEGS intelligently interprets patients’ intents from
their motion information and translates them into appropri-
ate action. Various lower limb exoskeletons have also been
designed for military use [6,7], the most successful of which
is Berkeley lower extremity exoskeleton, also designed at
Berkeley [8,9].

There are two challenge problems in control of lower limb
exoskeleton, controller design and motion trajectories gen-
eration. On the control of lower limb exoskeletons, many
adaptive control methods were proposed to achieve better
performance [10–13], especially in the applications of reha-
bilitation robots [14,15]. In the study of this paper, we focus
ongenerating the reference trajectory of lower limb exoskele-
tons. Most of the reference trajectory generation methods in
humanoid robot control systems are based on zero moment
point and centre of gravity (COG) [16–18]. However, the
balance control of an exoskeleton is executed by the pilot,
and accurate COG parameters are not easily obtained. In
addition, many learning-based online trajectory generation
methods are proposed, which based on the physical human–
robot interactions [19,20]. Thus, these online generation
algorithms are not suitable for rehabilitation lower exoskele-
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tons, since the paraplegic patients can not provide active
physical interactions with the lower exoskeleton. Therefore,
reference trajectory generation in applications of rehabilita-
tion requires kinematic information of the lower exoskeleton.
Especially, most paraplegic patients can be trained to gener-
ate movement in their hip joints by using the inertia of their
pelvises. However, obtaining the optimal gait trajectories of
a lower extremity exoskeleton from hip joint movements has
seldom been considered.

In this paper, we propose a novel technique for reference
trajectory generation, which obtains the angle trajectories
of knee joints from the hip joints. The angle relationships
between the knee and hip joints are obtained from the kine-
matic models of the lower limb exoskeleton. The kinematic
models require the position trajectories of the hip and ankle
joints, whose parameters are optimised by an artificial fish
swarming algorithm with a variable population. The pro-
posed approach is validated on a simulated prototype and a
physical prototype of the exoskeleton system named AIDER
(AssistIve DEvice for paRalyzed patient).

The contributions of our research are threefold. First,
we propose a novel reference trajectory generation algo-
rithm that obtains the angle trajectories of knee joints from
the hip joints. Second, we optimise the parameters of the
reference trajectories by applying the artificial swarm fish
algorithm with variable population (AFSAVP). Third, we
evaluate the proposed reference trajectory generation algo-
rithm on AIDER exoskeleton designed for this purpose.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the kinematic models of the lower limb
exoskeleton. The position trajectory descriptors of the hip
and ankle joints and the optimization algorithm are described
in Sect. 3. Section 4 introduces the AIDER exoskeleton sys-
tem. Experimental results are presented in Sect. 5. The paper
concludes with Sect. 6.

2 Kinematic Models

The relationship between angle and position of the exoskele-
ton joints are obtained from the kinematic models of the
exoskeleton in the sagittal plane. Since the inverse kinematic
problem yields multiple solutions, constraints are added by
automatically selecting segment points. Ultimately, the kine-
matic exoskeleton model derives the angular relationships
between the hip and knee joints.

2.1 Forward Kinematic

Since the double support phase is very much shorter than the
swing and stance walking phases, walking can be modelled
as a two-phase cycle of alternating swings and stances. Fur-
thermore, the balance of the exoskeleton is controlled by the

Fig. 1 The coordinates frames of the lower limb exoskeleton in the
sagittal plane. Origins and coordinates axes of reference frames 1 − 6
are denoted Oi and (xi , yi ), respectively

wearer or peripheral equipment; thus, we consider motion in
the sagittal plane alone. The reference frames and segment
properties of the kinematic exoskeleton model in the sagittal
plane are presented in Fig. 1. Two assumptions are made in
this study, the trunk of the exoskeleton torso is vertical and the
plantar of the exoskeleton is parallel with the ground during
walking. Figure 1 also shows the coordinate systems of the
lower limb exoskeleton. The inertial reference frame (Frame
0; origin denoted by O) is fixed on the ankle joint in the
stance leg, which depends on the system state. Frame i and
Oi (where i = 1, 2, . . . , 6) denote the reference coordinate
systems and their origins, respectively, fixed on the joints of
the lower limb exoskeleton. The coordinate axes of frame i
and the rotation angle between frames i and i − 1 are repre-
sented by (xi , yi )(i = 1, 2, . . . , 6) and θi (i = 1, 2, . . . , 6),
respectively.

The kinematic model of the exoskeleton shown in Fig. 1
is implemented by transformation matrices. Since motion
occurs in the sagittal plane, the forward kinematic transfor-
mation matrices from frame i − 1 to i are given as follows:

T i−1
i = Rot (z; θi ) · Trans(x, y;αi , βi )

=
[
Ri−1
i Pi−1

i

O1×3 1

]
, (1)

where (αi , βi ) represent the coordinate displacement of
frame i relative to frame i − 1, and θi represents the rotation
of frame i relative to frame i − 1 around the z coordinate.
Ri−1
i is a 3× 3 matrix of the orientations of frame i relative

to frame i − 1, Pi−1
i expresses the 3 × 1 position vector of

frame i relative to frame i − 1.
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The transformation matrix between frame i and frame
k (k − i > 1) is given as follows:

T i
k = T i

i+1 · T i+1
i+2 · . . . · T k

k−1(i < k). (2)

The relationships between each joint are determined from
the position vectors of the hip and ankle joints in both stance
and swing legs (P0

3 and P3
6 , respectively). From Eqs.(1) and

(2), we observe that the position vector Pi
k (i < k) is part of

the transformation matrix T i
k (i < k). Therefore, we obtain

the relationships between hip and ankle joints by calculating
T 0
3 and T 3

6 . The position vectors P0
3 and P3

6 are calculated
as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P0
3 =

⎡
⎢⎣

−Ls · sin(θ1) − Lt · sin(θ1 + θ2)

Ls · cos(θ1) + Lt · cos(θ1 + θ2)

0

⎤
⎥⎦

P3
6 =

⎡
⎢⎣

Ls · sin(θ4 + θ5) + Lt · sin(θ4)
−Ls · cos(θ4 + θ5) − Lt · cos(θ4)

0

⎤
⎥⎦

(3)

The angular trajectory of the hip joints is assumed avail-
able in the kinematic models, because trained paraplegic
patients can generate hip movement from the inertia of their
pelvises. In calculating the angular trajectory of the knee
joint, we impose additional constraints by focusing on the y
coordinate of the sagittal plane, enabling easier computation
of the position trajectories’ descriptors.

To more specifically describe the angel of each joint, we
represent the angel of each joint in the stance and swing leg
by θaj , θk j , θh j ( j = 1, 2) instead of θi (i = 1, 2, . . . , 6) in
Eq. (3). The substitutions are presented in Table 1.

Therefore, the angular trajectory of the knee joint is
obtained from the following relationship between the tra-
jectories of the hip and ankle positions; it is given as follows:

Ls ·
[

cos(θa1)

cos(θh2 + θk2)

]
+ Lt ·

[
cos(θa1 + θk1)

cos(θh2)

]

= (Yh − Ya) ·
[
1

1

]
, (4)

Table 1 The substitution of θi (i = 1, 2, . . . , 6) in angular determina-
tion of stance and swing legs

θi (i = 1, 2, . . . , 6) θaj , θk j , θhj ( j = 1, 2)

θ1 θa1

θ2 θk1

θ3 θh1

θ4 θh2

θ5 θk2

θ6 θa2

where Yh and Ya represent the vertical distance from the hip
joint and the ankle joint to the ground, respectively.

From the assumption of vertical trunk and ground-parallel
plantar during walking, we impose an extra constraint on the
joints angle:

θh j − θk j − θaj = 0, ( j = 1, 2) (5)

We can now compute the relationship between the angular
trajectories of the hip and knee joints. Given constraint (5),
Eq. (4) can be rewritten as the following single equation:

Ls · cos(θh + θk) + Lt · cos(θh) = Yh − Ya, (6)

where θh and θk denote the angles of the hip and knee joints,
respectively, throughout the walking cycle. Note that Eq. (6)
relates the hip and knee joint angles for both the swing leg
and the stance leg.

2.2 Eliminating Singular Solutions of the Inverse
Kinematic

Because we focus only on the vertical coordinate of the sagit-
tal plane, the inverse kinematic problem formulated in Eq.
(6) leads to multiple solutions. To obtain a suitable solu-
tion to this nonlinear equation, we impose further appropriate
constraints. A geometric description of the multiple solution
problem (which admits Cases 1 and 2) is presented in Fig. 2.
Cases 1 and 2 are determined from the constraints, which
switch when the shank of the swing leg becomes perpendic-
ular to the ground.

Singular solutions of the inverse kinematic equation are
eliminated by an off-line training method. A flowchart of the
off-line training is shown in Fig. 3. Input data are the whole
gait cycle data, comprising the angular trajectories of the

x

y

O

1O
5O

2 3 4O ,O ,O

6O '
6O

Case 1 Case 2

Fig. 2 Geometric description of the multiple solution problem
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Fig. 3 Off-line training process for eliminating the singular solutions
of the inverse kinematic

hip joints and the position trajectories of the hip and ankle
joints. Singular solutions are removed by the additional two
constraints:

{
θh + θk ∈ [0, π ], 0 < t < S1 && S2 < t < tc

θh + θk ∈ [π, 2π ], S1 < t < S2
(7)

where S1, S2 are set as two segment points and tc represents
the time of a whole gait cycle.

The initialization step calculates the angle trajectories of
the knee joints by Eq. (6), imposing the first constraint in Eq.
(7). The segment points are automatically chosen from the
differential between the initial and generated angular veloci-
ties of the knee joints (velocity error E). The off-line training
process outputs the angle trajectories of the knee joints out-
side the segment points (0 < t < S1 and S2 < t < tc)
and applies the second constraint in Eq. (7) to obtain the
angle trajectories of knee joints inside the segment points
(S1 < t < S2). Finally, the angle trajectories of the hip and
knee joints are correctly related throughout the gait cycle.

The relationships between the angle trajectories of the hip
and knee joints are evaluated in the online experiments, as
discussed in Sect. 5.

3 Trajectory Generation and Parameter
Determination

Recall that the hip and ankle joint positions are assumed to
be known in the kinematic models. Therefore, to solve the

inverse kinematic problem described in Sect. 2.2, we first
compute the position trajectories of the hip and ankle joints
by trajectory generators. Next, the best description of these
trajectories is selected by the AFSAVP.

3.1 Trajectory Description

In solving Eq. (6), the available parameters are the hip and
ankle position trajectories along the vertical coordinate of
the sagittal plane. Because the hip and ankle positions are
difficult to measure, their trajectories are generated by two
generators. These trajectory generators are suitable for wear-
ers of different heights.

To simplify the problem, the ankle position trajectory gen-
erators are based on sinusoidal functions. The ankle motion
generator proposed by Silva and Machado gives the follow-
ing trajectory of the ankle position [21]:

⎧⎨
⎩Ya = Ha

2
[1 − cos(2π · f · t)] + La, Swing Phase

Ya = La, Stance Phase
(8)

where f is the step frequency and Ha and La represent the
highest and the lowest position of the ankle during walking,
respectively.

While walking, the vertical hip trajectory is treated as an
inverted pendulum [22]. Yoon et al. approximated the path
of the hip by three continuous differentiable polynomial seg-
ments [23]. The trajectory generator proposed in this paper is
based on three sinusoidal functions, representing three com-
ponents of the walking cycle. These functions are described
as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Yh = Hh + a1 · sin
(
π · t · tc

ts1

)
− b1, 0 < t < ts1

Yh = Hh + a2 · sin
(
π · t · tc

ts2−ts1

)
− b2, ts1 < t < ts2

Yh = Hh + a3 · sin
(
π · t · tc

tc−ts2

)
− b3, ts2 < t < tc

(9)

where Hh represents the distance from the hip to the ground
when standing, ts1 and ts2 are separate points of the walking
cycle, ai and bi (i = 1, 2, 3) are the adaptive parameters. In
Eq. (8) and Eq. (9), Ha , La and Hh are related to height of
the wearer [24].

3.2 Trajectory Parameter Determination using a Fish
Swarming Algorithm

In order to achieve optimal parameters inEq. (8) and (9), opti-
mization methods should be employed. Genetic Algorithm
(GA) is powerful in solving theoptimizationproblems,which
has already been applied in humanoid robots for biped loco-
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Fig. 4 The AFSAVP flow chart and states of AF individuals

motion [18]. However, the Genetic Algorithm would easily
converge into the locally optimal solutions since the models
are separated in various parts along timeline. Moreover, GA
also get less efficiency in our cases, some simulation results
will be discussed later. In this study, artificial swarm fish
algorithm with variable population (ASFAVP) is employed
to obtain global optimums and convergence faster.

Inspired by the collective intelligence of fish schooling
behaviour, researchers have developed the basic artificial fish
swarm algorithm (AFSA) an artificial intelligence algorithm
that simulates the behaviour of an individual artificial fish
(AF) and then constructs an AF school. We adopt the vari-
able population AFSA (the above-mentioned AFSAVP) to
generate the optimal parameters for the trajectory determi-
nation [25–27]. The AFSAVP converges more rapidly than
the basic AFSA and is suitable for optimising the trajectory
of the developed AIDER exoskeleton system.

The AFSAVP, which simulates optimal food searching
under given initial conditions, is shown as a flowchart in Fig.
4. The five steps of the AFSAVP are (1) behaviour selec-
tion, (2) following behaviour, (3) searching behaviour, (4)
swarming behaviour and (5) bulletin. The AFSAVP termi-
nates under the condition ‘max-generation’a commonly used
criterion for terminating evolutionary processes.

As shown in the flowchart, the variable population P of
the AF school comprises the replaceable school PR and the
non-replaceable school PN , i.e. P(t) = PR(t)+ PN (t). This
division of the population enhances the computational effi-
ciency of the algorithm. The right part of Fig. 4 illustrates
the behaviours of the fish school. During Step 1,these behav-
iours are selected by the fooddensity; inStep 2, anAF follows
his peers who have found the area of highest food density;
in Step 3, he randomly moves from Si to S j and updates

Table 2 Parameters of fitness function

Trajectory Parameter(s)

Hip position ai , bi (i = 1, 2, 3)

Ankle position f

Table 3 Parameters of the SwarmFish optimization

Max generations 50

Test number 50

Experiment number 50

Visual factor 2.5

Crowd factor 0.618

Population 30

Try number 5

α [−1,1]

β [−1,1]

γ [300,500]

ζ [1,6]

his environmental conditions; in Step 4, he remains close to
his neighbours within his visual field; in Step 5, the bulletin
operation compares the current state Si of each AF with the
historical states and replaces the current state with a better
state. To minimize the error in the generated trajectories, we
set the fitness function F of the optimal trajectory to the
following negative error function:

F(ai , bi , f ) = −
3∑

i=1

|Gt (ai , bi , f ) − Ot |, (10)

where Gt represent the generated trajectories with parame-
ters ai , bi , f (i = 1, 2, 3), and Ot represents the original
trajectories. The parameters of the fitness function to be opti-
mised byAFSAVP are listed in Table 2. TheAFSAVP-driven
hybrid modelling of the trajectory parameter behaviours
are simulated by the SwarmFish [27] toolbox. The para-
meters for the trajectory prediction are listed in Table 3.
Maxgenerations specifies the termination condition of
each test, and experimentnumber is the number of tests
performed. Other parameters are the visual and crowd
factors; the population size (comprising the numbers of non-
replaceable PN and replaceable population PR individuals)
and the trial number. Figure 5 shows the time course of
the optimisation process of the fitness function. The ‘max’,
‘mean’ and ‘min’ fitness curves plateau during Genera-
tions 1–8. Note that all lines converge in generation 10,
demonstrating the efficiency and accuracy of the proposed
optimization algorithm.

In order to evaluate the efficiency of the proposed
AFSAVP, we compared the proposed algorithm with basic
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Fig. 5 Temporal progress of the optimisation of the fitness function by
AFSAVP

Table 4 Comparison of AFSAVP, basic AFSA and Genetic Algorithm
(GA)

Generations AFSAVP AFSA GA

Hip trajectory 9 16 24

Ankle trajectory 10 16 28

AFSA and Genetic Algorithm (GA) [18]. Comparison of
optimisation efficiency of these algorithms are demonstrated
in Table 4. In the simulation experiments, the original ankle
and hip trajectories are utilized as reference trajectories. The
experimental results indicate that the proposed AFSAVP can
obtain the optimal parameters faster than other algorithms.

Figure 6 compares the AFSAVP-generated and original
(experimental) ankle and hip trajectories. The AFSAVP gen-
erated trajectories remain close to the real trajectories, and
the error range is acceptable for practical use. As showed in
Fig. 6a, there is a light difference between the original (exper-
imental) and AFSAVP-generated ankle position trajectories,
since themodel of AFSAVP-generated the ankle position tra-
jectory. As discussed in Sect. 5, this difference exerts little
effect on the generated angular trajectories of the knee joints.

4 The AIDER Exoskeleton System

4.1 Mechanical Structure of the AIDER Exoskeleton

To assist human walking, we have constructed an exoskele-
ton system called ‘AIDER’ (AssItive DEvice for paRalyzed
patient). The AIDER exoskeleton is presented in Fig. 7. The
rigid spine of the exoskeleton provides a tight connection to
the wearer’s upper body (‘A’ in Fig. 7). The three segments
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Fig. 6 Comparison of generated and original position trajectories a
ankle trajectories b hip trajectories

are analogous to the wearer’s lower limbs, and they retrieve
analogous joint positions when the exoskeleton is worn by
the wearer. The AIDER exoskeleton has ten single degrees-
of-freedom (DOF) revolute joints, allowing five DOFs for
each leg. An active torque at the hip?Cknee flexion of each
exoskeleton leg (‘D’, ‘E’ in Fig. 7) is provided by a harmonic
driver system comprising a DC servo motor and harmonic
diver reduction. Additional passive DOFs are set at the hip
abduction, ankle flexion and ankle abduction points (‘C’, ‘F’,
‘G’ in Fig. 7).

Besides establishing a tight connection with the wearer’s
torso, the exoskeleton forms flexible connections at the
thighs, shanks and feet (‘B’ in Fig. 7). The torso is con-
nected by a type of vest that distributes the forces between
the AIDER exoskeleton and the wearer. The vest is made
of rigid structures that support the wearer’s upper body, and
thick fabric that compliantly connects to the wearer.
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Fig. 7 Mechanical structure of
the AIDER exoskeleton,
showing the degrees of freedom

Since the exoskeleton is a wearable robot, its kinematics
should mimic human kinematics, and the motional ranges of
each DOF should be approximated from physiological data
[24]. Slight kinetic differences between the exoskeleton and
human are acceptable because of the flexible connections
between the AIDER exoskeleton and its wearer.

To provide effective physical support and walking assis-
tance, the AIDER exoskeleton is installed with a real-time
control system. The physical support provided by the control
system depends on the weakness of the wearer’s lower limbs,
which is evaluated from the motion information detected by
various sensors; namely, the encoders, posture measuring
instruments and plantar sensors. For thewearerswhose lower
limbs are completely disabled, the control system provides
the desired functional motion from the detected motional
information.

4.2 Control Scheme of the AIDER Exoskeleton

Figure 8 shows the overall architecture of the AIDER
exoskeleton control system hosting the control algorithm.
This control system is divided into various networks, enabling
effective integration of the information sent from the distrib-
uted sensors, thus reducing the complexity of the wiring.
Consequently, the whole system achieves a high-speed, real-
time control.

As shown in Fig. 8, the whole control system is divided
into four sub-systems; a back control network, a control net-
work for each leg and a graphic user interface (GUI) on a
personal computer (PC). The principal network links are the
connections between the control networks of the back and
legs. Each link comprises two node controllers. The GUI can
monitor the AIDER exoskeleton and replace the main con-

troller as the control network when the wearer requires more
specific operations, which can be programmed on the PC.

5 Experimental Results and Discussion

5.1 Simulations

The availability of the generated angle trajectories is vali-
dated using the co-simulation platform written in ADAMS
and MATLAB/Simulink. The ADAMS and MATLAB/
Simulink software enable a versatile co-simulation platform,
which not only accurately implements themechanical system
of the lower limb exoskeleton but also handles the trajectory
generation algorithm in real-time [28]. A flowchart of the
trajectory generation algorithm is presented in Fig. 9.

As depicted in Fig. 9, the relationship between the angle
trajectories of hip and knee joints is determined in the off-
line training module. In the simulation experiments, input
data were obtained from a 180 cm-tall pilot walking through
10 gait cycles. Input data to Simulink are the kinematic para-
meters of the pilot and the angle trajectories of the hip joints
throughout whole gait cycles. Figure 10 plots the average hip
angle trajectory over the ten gait cycles, and the kinematic
parameters are listed in Table 5. The thigh and shank lengths
are given by 0.245 ∗ H [24], where H is the height of the
human body.

Afterwards, the position trajectories of the hip and ankle
joints presented in Sect. 3.2 are obtained by the AFSAVP.
From the optimised trajectories, we derive the relationship
between the angle trajectories of the hip and knee joints.
Finally, we relate these trajectories by the reference trajec-
tory generation algorithm proposed in Sect. 2. The results
are presented in 11. Figure 11a presents the error range of
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Fig. 8 Overall architecture of
the control system of the
AIDER exoskeleton
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Fig. 9 The simulation procedure of trajectory generation algorithm in
ADAMS and MATLAB/Simulink

the generated hip-knee angle relationships throughout the
ten gait cycles. The error range is large because different
step lengths taken by the pilot affect the motional limits at
each joint. The average generated relationships are compared
with the original relationships (obtained from the 180-cm
tall pilot) in Fig. 11b. The difference between the two plots
is attributed to the model assumptions, which restrains the
plantar of the pilot to remain parallel with the ground.

The online simulation process runs on the co-simulation
platform implemented by ADAMS and Simulink. The rela-
tionship between the angle trajectories of hip and knee joints
is applied to the online trajectory generation along with the
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Fig. 10 Average hip angle trajectory throughout one gait cycle (n=10)

Table 5 Kinematic parameters for exoskeleton model in simulation
environment

Parameters Value (centimeters)

Height of pilot (H ) 180

Length of thigh (Lt ) 44

Length of shank (Ls ) 44

hip joint angles that are measured by the virtual sensors in
ADAMS. The generated angle trajectories of the knee joints
are shown in Fig. 12.
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a Error range of the generated relationships throughout ten gait cycles;
b Comparison between average and original hip-knee angle relation-
ships. S1 and S2 indicate the segment points used to eliminate singular
solutions of the inverse dynamics

The error range of the knee angle trajectories generated
throughout ten gait cycles is shown in Fig. 12a. The differ-
ences in the swing phase result from the offline-determined
relationship between the hip and knee angle trajectories. Fig-
ure 12b compares the average generated and original knee
angle trajectories. Analysing the results, we find that when
the heel strikes during the stance phase of normal walking,
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Fig. 12 Generated angle trajectories of knee joints: a Error range of
the generated knee angle trajectories throughout ten gait cycles; bCom-
parison of the average generated and original knee angle trajectories

the ankle joint of the exoskeleton undertakes a redundant
movement that contradicts our assumption (that the plantar
of the pilot is parallel with the ground). The error in the
simulated trajectory generation throughout ten gait cycles
is summarised in Table 6. The average error rate, 3.5 %, is
within acceptable limits.
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Table 6 Error analysis of the trajectory generation algorithm through-
out ten gait cycles

Max error 0.33 (rad)

Average error 0.08 (rad)

Average error rate 3.5%

Fig. 13 Experimental results: a simulation and b real-time system. a
The animation results in ADAMS software b The snapshots of whole
gait cycle in real-time experiment on AIDER exoskeleton

To visualise the experimental results, we perform an ani-
mation in ADAMS software. The whole gait simulation
shown in Fig. 13a demonstrates good walking performance
of the exoskeleton. The error shown in Fig. 12b causes a ver-
tical drop of the exoskeleton model during the early double
stance phase in the animation results, but exerts little effect
on the walking gait throughout the whole gait cycle.

5.2 Experiments on the AIDER Exoskeleton

5.2.1 Experimental Setup

To validate the algorithm on the real-time system, theAIDER
exoskeletonwas trialled on a normal person of height 180 cm.
The pilot maintains balance but takes no active movement
throughout the experiment.

The angle trajectories of the knee joints are derived from
the relationship between the angle trajectories of the hip
and knee joints, which are trained off-line; specifically, the
average relationships plotted in Fig. 11. During the AIDER
exoskeleton trial, the hip joint angles were detected by angle
sensors (which measure the joint angle data) in real-time.
Based on the angle relationships between the hip and knee
joints, the main controller runs the online trajectory gen-
eration algorithm. The knee-joint node controllers retrieve
the knee angle trajectories from the CAN bus to control the
motors at the knee joints. At each node controller, the move-
ment accuracy is increased by a position control strategywith
a PID controller.

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time (s)

an
gl

e 
(r

ad
)

Reference trajectory of right hip joint

Fig. 14 Reference trajectory of right hip joint during normal walking

The experiment was performed through four gait cycles
of normal walking, and results were collected from the right
leg of the pilot and exoskeleton. The angle trajectory of the
right hip joint, measured by angle sensors affixed to the pilot
during normal walking, is shown in Fig. 14.

5.2.2 Results and Discussion

Figue 13b presents snapshots of the whole gait cycle during
the AIDER exoskeleton trial. The motion of the right knee
joint shows good performance during normal walking. As
shown in Fig. 15, the output angle of the right hip joint,
measured by the joint encoder on the AIDER exoskeleton,
was slightly delayed relative to the input reference measured
by angle sensors on the pilot. This delay is intrinsic, because
there is a 50 ms lag in the control system of the AIDER
exoskeleton. Figure 16 compares the input and output angle
trajectories of the right knee joint, where the input trajectory
is calculated by the trajectory generation algorithm running
in the main controllers of the AIDER exoskeleton, and the
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Fig. 15 Comparison of input and output angle trajectories of the right
hip joint in a real-time experiment on the AIDER exoskeleton
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Fig. 16 Comparison of the generated and output angle trajectories of
the right knee joint in a real-time experiment on AIDER exoskeleton

Table 7 Experimental results on the AIDER exoskeleton

Joint Name Control lag
(ms)

Max error
(rad)

Average
error (rad)

Average
error rate

Right hip 50 0.28 0.07 1.74 %

Right knee 75 0.64 0.2 4.52 %

Table 8 Performances of node controllers and trajectories generators
in the AIDER exoskeleton

Joint name Tracking errors in node
controller nMSE (rad)

Error with original
trajectories nMSE (rad)

Right hip 0.04 /

Right knee 0.06 0.12

output trajectory is measured by the joint encoder affixed to
the right knee.

As evidenced by the experimental results, the knee joint
angle trajectory computed by the trajectory generation algo-
rithm closely matches that of normal human walking. The
performance of the AIDER exoskeleton during the experi-
ment is summarised in Table 7. The error in the right knee
joint is larger than in the simulation platform because the
control lag in the real-time system introduces a time delay to
the gait cycles. Although the control lag and trajectory gener-
ation algorithm collectively delay the output angle trajectory
of the right knee joint by 75 ms, the whole system ensures
real-time control throughout the experiment. Tracking errors
of the node controllers which presented in Table 8 also indi-
cate that the controller can achieve good performance with
given trajectories. Moreover, the errors between the original
and generated trajectories are also provided in Table 8, the
results show that the generated knee trajectories are accept-
able for controllers. According to the above discussions, the
experimental results show that the proposed trajectory gen-
eration algorithm has a good performance on the AIDER
exoskeleton.

6 Conclusions and Future Work

This paper introduces a novel reference trajectory generation
algorithm based on the kinematics and inverse kinemat-
ics of human walking. The proposed algorithm obtains the
angle trajectory of the knee joints from the angle trajectory
of the hip joints. The optimal parameters for determin-
ing the hip and ankle position trajectories are computed
by AFSAVP. The algorithms are validated on an ADAMS
andMATLAB/Simulink co-simulation platform, which inte-
grates algorithms and accurate mechanical systems. Accord-
ing to the simulation results, the average error in the knee
angle trajectory is 4.5 %, and high performance was con-
firmed in an animation simulation. In theAIDERexoskeleton
experiment, the joint angle trajectories generated by the ref-
erence trajectory generation algorithm accurately replicated
those of normal human walking.

This paper investigated three main themes. First, the rela-
tionship between the angle trajectories of the hip and knee
joints was captured in a kinematic model of the lower limb
exoskeleton. Second, AFSAVP was proposed to obtain the
optimal parameters of the position trajectories of the hip and
ankle joints. Third, the reference trajectory generation algo-
rithm was validated on a custom-built AIDER exoskeleton.

In future versions of the algorithm, the optimal angle tra-
jectory of the hip and ankle should be acquired by online
parameter learning. Currently, the parameters that optimise
this trajectory are learned offline. Online learning will enable
adaptation to wearers of different sizes and application to
real-time systems. Future workwill also implement and eval-
uate the proposed algorithm in rehabilitation programmes for
paraplegic patients who can be trained to generate hip move-
ments from the inertia of their pelvises.
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