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Abstract In order to build social robots that can coexist
with human beings, it is necessary to understand the mech-
anisms of how communication protocols are developed in
human–robot interactions. Our main goal is to explore how
a communication protocol can be established incrementally
between a human and our minimally designed robot which
is called sociable dining table (SDT). SDT integrates a dish
robot put on the table and behaves according to the knocks
that a human emits. To achieve our goal, we conducted two
experiments: a human–human experiment (Wizard-of-Oz)
and a human–robot interaction (HRI) experiment. The aim
of the first experiment was to explore how people build a
protocol of communication. Based on the first experiment,
we suggested an actor-critic architecture that simulated in
an open-ended way the adaptive behavior which we deter-
mine in the first experiment. After that, we demonstrated in
the HRI experiment how our actor-critic architecture enabled
the adaptation to individual preferences in order to obtain a
personalized protocol of communication.
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1 Introduction

As robots move from the research lab to the real world, it is
interesting that users, including those without programming
skills, can teach robots customized behaviors [1,2]. If sophis-
ticated methods were developed in order to allow users to
transfer their knowledge, we may be able to guarantee long-
term communication and mutual understanding. Developing
robots with mutual understanding skills and exploring the
meaning acquisition process in the human–human interac-
tion is a cornerstone to build robotswhich canwork alongside
humans. By using human adaptation capability adequately,
robots are capable of adapting to humans and will be easily
adaptable as well. Such a process can commonly be observed
in a pair who can communicate smoothly, such as a child and
a caregiver.

Understanding how a caregiver behaves with a child is
required to achieve key ideas about the behaviors, that can
be used to design intuitive robots [3–6]. Many issues have
been of interest to the HRI community, such as how children
learn to talk [7], grasp an object [8], and navigate [9], etc.
Understanding how such issues occur helps roboticists build-
ing intuitive robots. During a child-caregiver communication
scenario, the child and the caregiver try to adapt to each other
using a limited number of communication channels which
they initially do not master in the same way. Incrementally,
they become familiar to each other’s patterns of communi-
cation. The meaning decoding of each other’s behavior is no
more difficult for both parties. In fact, each party implicitly
infers the meanings of the other party’s most commonly used
patterns and links the most often used patterns to the context
of the interaction. Such linking leads to an implicit forma-
tion of (patterns-meanings) cartography, which in our study
is called a “communication protocol”. A non-expert user and
a minimally designed robot also try to customize a commu-
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nication protocol which depends on the patterns emerging
from limited communication channels that are not mastered
in the same way during the initial communication stages.

In this vein, the purpose of this study is to explore hownon-
expert users can cooperatewith aminimally designed robot in
order to acquire a communication protocol. The challenge is
to investigate howpeople aggregate communication patterns.
Wewant also to investigate how to adequately take advantage
from the adaptation ability of humans in order to enable our
minimally designed robot SDT to adapt to new situations
during a novel interaction scenario that integrates minimal
communication channels. Understanding how to take advan-
tage from the human’s adaptation strategy helps us to tailor a
control model forminimally designed robots that have amin-
imal number of communication channels. The final designed
control model has to guarantee the establishment of flexi-
ble communication protocols just as in the child-caregiver
interaction context.

Therefore, we draw a scenario inspired from the child-
caregiver interaction and opt for knocking as the only one
communication channel usedbyhumans.Knocking is a novel
communication channel that had not been used in a similar
task. This guarantees that the user and the robot have the
same amount of knowledge about the communication sce-
nario. Thus, to have a successful interaction both parties need
to adapt to each other. To explore how the adaptation occurs,
we conduct our first experiment. It is a human–human (H–
H) experiment. For each instance of interaction during the
H–H experiment, we engage two participants. The first par-
ticipant is the one that knocks on the table while watching
the robot moving on the table [room (A)]. The second partic-
ipant is the one remotely controlling the robot according to
the knocking sounds. Thereby, the robot is controlled via an
interface. The second participant is located in another room
[room (B)].

Both parties have to cooperate in order to make the robot
visit different checkpoints marked on the table. We informed
each new pair (knocker-controller) that the robot can use
4 behaviors (going forward, going back, going left, going
right). Based on this experiment, we want to investigate
whether the task can be achieved using our only communica-
tion channel. In the case of a successful interaction, we want
to explore what are the stages that the communication went
through andwhat are the best adopted practices that led to the
emergence of a communication protocol? After that, wewant
to implement in the robot the components and the functional-
ities that may guarantee to make our robot adaptive. Finally,
we conduct another experiment (HRI experiment) to verify
whether our robot was adaptive like in the H–H experiment.
Also, we compare theH–H and theHRI experiments in terms
of performance, emergent communication protocols, and the
way the task is solved in each experiment.

2 Background

Adaptation is a term referring to the ability to adjust to new
information and experiences, track the new facets of the envi-
ronment and adopt the most convenient strategies based on
the sequentially gathered information. Many studies point
out the robot and human’s adaptation to each other as being
a very attractive and promising solution for the HRI [10,11].
Robot and human’s adaptation to each other consists of the
fact that if the human changes his behavior, the robot must
adapt to this new behavior. Humans also have to change their
behavior patterns to adapt to the robot’s new proposed behav-
iors during an instance of an HRI [10]. Yamada et al. [12]
investigate the capability of the human and the agent to detect
each others’ state of mind based on few social cues such as
facial expressions [13]. The concept of adaptation is explored
in many other HRI studies [13–15].

Some studies use many modalities integrated into the
robot [16–18] in order to design an adaptive artifact. Other
studies [19,20] examine how a speaking robot can infer the
adequate speech by combining words to particular contexts
through observing different situations. Kanda et al. use the
robot Robovie in HRI studies to investigate children’s inter-
action in a museum [21] and a school [22]. Thomaz and
co-workers [23] investigate the active learning to refine the
robot’s knowledge where multiple types of queries are used
by the robot to demand an explicit spoken answer facilitating
the robot’s concept learning process. Subramanian et al. [24]
use the explicit answer of Pacman game users concerning
the best interactive options that they imagine are effective
for the agent teaching. These interactive options are learned
in an offline mode and introduced later into the robot. These
studies [20–22,24] explore the explicit verbal communica-
tion to implement adaptive systemswhile themeaning can be
inferred in real time implicitly based on the behavioral inter-
action.We do not address the general problem of multimodal
communication channels and instead we focus on a minimal
communication channels concept which we expect can guar-
antee the emergence of simple communication patterns and
is suitable for minimally designed robots.

Minimal Design Policy is first proposed by Matsumoto
et al., who conclude that the robot’s appearance should be
minimized in its use of anthropomorphic features so that
the humans do not overestimate or underestimate the robot’s
skills [25]. Byminimal design, wemean eliminating the non-
essential components and keep only the most fundamental
functions. We expect that in the future minimally designed
robots will be affordable. People will use such minimally-
designed robots for many tasks such as cleaning, and here
we may mention the Roomba robot [26] or to engage more
with autistic children through therapeutic sessions of inter-
action while cooperating with Keepon the robot [27], etc.
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Minimal design policy is applied to develop many other
robots such as Muu [28], ROBOMO [29], CULOT [30],
etc. The simple nature of minimally designed robots allows
humans to interact easily with such robots on a daily basis.
On the other hand, we must pay attention to sociability and
adaptation factors. In fact, interactingwith an affordablemin-
imally designed robot may represent the first experience of a
human interacting with a robot. This, lead us to assume that
people will possibly have high expectations about the robot’s
adaptive capabilities.

In addition to humans having a natural tendency to for-
get quickly, there are not exact details of how an interaction
occurs and what are the instructions used. For this, a human
attempts to come up with any similar instructions to solve
the problem. A similar phenomenon occurs in the human-
pet interaction when the human forgets the exact instruction
taught to the pet [31]. Interestingly, the human in that case
does not recognize the difference and the pet tries to grasp
the meaning incrementally in order to satisfy the human’s
request. In this context, we believe that robots need an extra
capability which enables them to grasp the meaning of the
newly introduced instructions and satisfy the human’s new
request. Kiesler [32] concurs with our point of view while he
confirming in his studies that a minimally designed robot has
to integrate a process whichmakes it adaptive [33]. Thus, one
contribution of this paper is to determine how a minimally
designed robot can incorporate an adaptive process that helps
establishing a communication protocolwith non-expert users
and adapt to their different communication patterns.

To achieve the above goal, we chose to conduct a WOZ
experiment to explore how a communication protocol can
be established between the users and a minimally designed
robot. It is a well-known principle in robot design, that the
roboticist should involve humans early in the design process,
rather than in the final evaluation phase [34].ManyHRI stud-
ies [35–37] use the WOZ experiment in order to test early
aspects of the robot’s design. We agree with the fact that
WOZ can help in exploring the best features which can be
later incorporated in the robot’s design. Also, we believe that
robots are not sufficiently advanced to interact autonomously
with people in a socially appropriate way. Therefore, we
started our study by conducting a WOZ experiment that
helped exploring the best practices humans adopt in order
to establish a communication protocol. Based on the first
experiment, we gained some insights in order to incorporate
in our robot’s architecture the best adopted practices that can
get along with people’s communication patterns in the con-
text of the SDT interaction. Finally, we attempted to validate
our robot’s architecture through an HRI experiment in order
to compare the HRI performance to the WOZ experiment
performance.

We start by exposing the architecture of the SDT in Sect. 3.
In Sect. 4, we explain our H–H experiment. In Sect. 5, we

Fig. 1 A participant interacts with the sociable dining table

explain our proposed architecture. Finally, in Sect. 6 we val-
idate our minimal architecture based on an HRI experiment
(Figs. 1, 2).

3 Architecture of the SDT

Our system consists of a webcam to compute the robot’s
positions and its angle of orientation. The robot’s coordinates
are used only for further analysis purposes (Fig. 3). The robot
uses four microphones to localize the knock’s source based
on the weighted regression algorithm [38]. It communicates
with the host computer through Wi-Fi using a control unit
[a macro computer chip (AVR ATMEGA128)] and employs
a servomotor that helps to exhibit the different behaviors:
right, forward, left and back. Finally, five photo reflectors
are utilized to automatically detect the boundaries of the table
and avoid falling (Fig. 4).

4 Experiment 1: Human–Human Interaction

We expect that H–H experiment allows the envisioning of
future useful features that can be integrated into the robot’s
architecture in order to make our minimally designed robot
SDT adaptive.

4.1 Experimental Setup

Each time we conducted an instance of the H–H experiment,
we gathered a new pair of participants and assigned the first
one to the role of a knocker while the other to the role of a
controller. The knocker was the one that has to knock on the
table in order to help the robot visit different points marked
on the table. The controller was the one that has to remotely
control the robot based on the knocking.
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Fig. 2 In the first trial (left), the
controller tries to understand the
knocker’s patterns of knocking
in order to move the robot into
five decided places on the table
(start, 1, 2, 3, and goal) by
means of knocking patterns. In
the second trial (right), we
change the place of the former
points on the table, and then the
knocker and the controller have
to exploit the emerged rules of
communication of the first
experiment to guide the robot
into the newly defined points

Fig. 3 The overall architecture of the SDT: the human’s knock is
detected by four microphones while the robot executes the different
behaviors using the servomotor

Fig. 4 A close-up picture showing the inside of the SDT robot

Before a knocker enters the experimental room (A), the
instructor told him the purpose of the experiment is to help
the robot to land on different checkpoints marked on the
table. The knocker did not know that a human controlled the
robot when he knocked, while the controller did not know
that another person emitted the knocking. This helped us to
simulate convenient conditions guaranteeing that any possi-
ble emerging communication protocol would emerge if we

were in a real HRI. Also, by exploring how gradually a com-
munication protocol emerged we may find out the key ideas
that we needed to integrate in order to elaborate a convenient
adaptive architecture for our robot. The knocker was located
in a first room (A) and can visualize the robot as well as all the
checkpoints on the table. In another room (B), the controller
remotely controlled the robot while listening to the knock-
ingwithout seeing the predefined checkpoints. The controller
could only visualize an interface showing the robot moving
since he was in another room. We isolated each party in a
different room in order to make sure that no eye contact or
facial expressions could be exchanged between both parties.
The instructor told the controller that he needed to listen to
the knocking, guess the meaning and then choose the conve-
nient direction based on his own opinion. Finally, after the
experiment ended we interviewed both participants (knocker
and controller). Importantly, we asked them to describe their
experience with the robot through simple phrases.

In the first trial, the pair (knocker-controller) had to coop-
erate in order to lead the robot to different sub-goals (Fig. 2).
In the second trial, we changed the coordinates of the for-
mer points and the pair (knocker-controller) had to cooperate
to reach the new check points. We chose several different
configurations. At each time the goal position and the inter-
mediate check points were changed. This may guarantee that
the participants were not accustomed to the configuration.
Also, it helped us confirming the pairs (knocker-controller)
used their adaptation abilities and the emerging communica-
tion patterns rather than memorizing the different transitions
that helped to achieve the task in the previous trial. There are
two trials, each lasting 20minutes1 and video-recorded. Dur-
ing each new trial, the new controller and the new knocker
try to cooperate in order to achieve the task. We did not indi-
cate for the pairs that they must follow a special knocking
strategy so that they interact in a natural way with the robot
andwe can also see whether they aggregated some redundant
patterns to form a communication protocol with the robot.

1 We estimated this period based on a previous pilot study.
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Fig. 5 The first (left), second (center) and final (right) time segmen-
tations of an extract of the interaction from the first experiment where
in the first line we have action executed by the robot: F, R, L and B

stands for forward, right, left and back behaviors; in a second line, the
corresponding knocking patterns such as 2 or 3 knocks, etc.; and in a
third line the time progress in seconds

4.2 Subjects

We hired thirty Japanese students (ages: Mean (M) = 20.2,
StandardDeviation (SD)=2.0 [years]) fromdifferent univer-
sities. Sessions 1 and 2 were performed with thirty subjects
(eighteen males and twelve females). A written informed
consent was obtained from all the subjects.

4.3 Results

After the experiment was finished, we attempted to analyze
the interaction scenarios in order to verify whether a com-
munication protocol was established between the knockers’
knocking patterns and the chosen actions. We also attempted
to detect the components that led to the possibly emergent
communication protocols.

We analyzed the video data by annotating with a video
annotation tool called ELAN. Two coders, one of the authors
and one volunteer, analyzed the behavioral data captured in
the video camera using the same coding rules for the first
and the second trials. We picked ten data sets arbitrarily
from our entire data set which were coded based on rules.
We calculated the average of Cohen’s kappa to investigate
the reliability. As a result, we confirmed that there was a
reliability with κ = 0.98

4.3.1 Evaluation of the Command-Like and the
Continuous-Knocking Patterns Based on the Videos

We remarked that there are 2 types of patterns: continuous
- knocking patterns and command-like patterns. Command-
like pattern consisted of combining each behavior with a
different combination of knocks (e.g., 2 knocks forForward).
Continuous-knocking was used when there was contiguous
interruptions in the robot’s behavior.2 Wecounted the number
of both types of patterns based on the coded data for each
participant and for the two trials. We noticed that there was
a significant usage of the command-like patterns (90.26 %
of the patterns were command-like during trial 1 compared
with 89.47 % of the patterns during trial 2).

To verify whether the usage of command-like was statis-
tically significant, we conducted a t test between the number

2 Continuous-knocking was related to the presence of contiguous dis-
agreements about the shared rules, and we defined a disagreement state
in the Sect. 4.3.2.

of command-like patterns and the number of continuous-
knocking patterns used by the participants during the trial 1:
(t= 6.973, d.f.= 14, p value <0.01) and trial 2: (t= 4.750,
d.f.= 14, p value<0.01). For both t tests, we found that there
was a significant difference between both types of patterns
usage during trials 1 and2, highlighting that participantswere
trying to simplify the input in each interaction cycle for the
robot.

Participants confirmed through most of their answers that
theywanted to simplify the input for the robot.One of the par-
ticipants indicated : “...I was confused initially but as time
goes by I start to compose simple redundant input to get
the regular intended output...”, another participant confirmed
that: “...The robot is smart, while there are some repetitive
combinations between my knocking and the chosen actions
and thus I started to track the best knocking that led to the
convergence to stable combinations. It has to be slow modu-
lated knocking...”

4.3.2 Evaluation of an Interaction’s Scenario

To investigate the different stages of pattern emergence, we
tried to explore the flow of the interactions. A sample flow
of pair 15 is depicted in Fig. 5 where in grey we have the
knocking while the corresponding action is represented by
the colorful line.

Figure 5 shows that most of the time when the controller
received aknockingpattern, the latterwaited a small periodof
time in order to choose the behavior that he thought the most
appropriate for the received knocking pattern.As an example,
we could see that when the knocker emitted a new knock-
ing pattern, the controller stopped for a while to think before
attributing the behavior according to his own assumptions (all
red circles). Consequently, if the knocker was satisfied with
the controller’s choice he would not knock, otherwise the
knockerwould knock again before 2 s (basedon the knocker’s
reaction time (KRT) distribution: [mean: 1.93; sd: 0.12] sec-
onds) elapsed in order to implicitly indicate to the controller
that he must change direction again. Some exploration was
adopted [55–57s] when encountering a new pattern. In fact,
the controller chose the correct behavior for the new pattern
(1 knock) even if the pattern was encountered for the first
time. Interestingly, if we track the mapping of the knocking
patterns and the robot’s behavior, we find that in some occa-
sions the rule wasmaintained for several times such as for the
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Fig. 6 The percentage of agreement and disagreement states during
the experiment 1

pattern (2 knocks) when it was associatedwith the left behav-
ior ([15–16s], [45–47s] and [79–81s]), and the (3 knocks)
pattern when it was associated with right behavior ([30–32s]
and [102–104s]). However, at other times there was a change
in the rule combination such as when (1 knock) was initially
associated with the forward behavior ([55–57s]) and later
with the back behavior ([114–116s]).

When the controller and the knocker shared the same
assumption about one of the knocking pattern-robot’s behav-
ior combinations that was maintained over time we call
that state an “agreement state”. If the combination knocking
pattern-robot’s behavior changed over time we call that state
a “state of disagreement”. The participants were then blend-
ing incrementally in a trial-and-error process the agreement
and disagreement states in order to establish shared rules
organizing the communication.

4.3.3 Adaptation’s Evaluation Based on the Agreement and
Disagreement States Comparison

To evaluate the different pair interactions’ convergence
toward a stable protocol, we counted the number of the agree-
ment and the disagreement states based on the coded data for
both trials and all the pairs. We computed the t test between
the agreement and the disagreement states of the trial 1.
The results were significant with t = 2.242, d. f. = 14,
pvalue = 0.033 < 0.05). Figure 6 shows the percentage of
the agreement states (blue color) as well as the percentage of
the disagreement states (red color) during the trials 1 and 2.3

By examining the percentage of the agreement and disagree-
ment states of the trial 1, we deduced that during the trial

3 As an example, the percentage of agreement states= number of agree-
ment states/(number of agreement states + number of disagreement
states).

1, disagreements (61.91 %) were more significantly frequent
than agreements (38.08 %) (Fig. 6).

We computed the t test between the agreement and the
disagreement states of the trial 2. The results were also sig-
nificant with (t = 2.067, d.f. = 14, p value = 0.048 < 0.05).
By displaying the percentage of the agreement and disagree-
ment states of the trial 2, we deduced that during trial 2,
agreement states (64.97 %) were more significantly frequent
than disagreement states (35.02 %) (Fig. 6). Finally, we cal-
culated the t test between the trial 1 and 2 disagreement states.
The results were statistically significant with (t = 2.948,
d.f. = 14, p value = 0.006 < 0.01). By displaying the per-
centage of the trial 1 disagreement states (61.91 %) and the
percentage of the trial 2 disagreement states (35.02 %), we
deduced that during the trial 1, disagreement states (61.91%)
were significantly more frequent than disagreement states of
the trial 2 (35.02 %) (Fig. 6).

4.3.4 Comparison of the Task Completion Time in Trial 1
and Trial 2

The time to reach the different sub-goals was estimated based
on the videos. The distribution of the task completion time
datasets of the trial 1 (first boxplot in grey) and 2 (second
boxplot in white) are represented in Fig. 7. Results showed
that there is a decrease on the task completion time during the
trial 2 (Fig. 7). A t test showed that there was a statistically
significant difference between the task completion time of
the trial 1 and 2 with (t = 2.143, d.f.= 14, p value= 0.041<

0.05). This highlighted that although during the second trial
we changed the configuration by changing the point coordi-
nates (which may imply that the pairs would have to adapt
to each other again in a new context), the pairs succeeded on
achieving the task more quickly during the trial 2.

4.3.5 Cooperative Communication for the Task
Achievement

To study the incremental adaptation to each others’ behav-
iors, we calculated the number of confusion states and the
remedial knocking states. Figure 8 helps to understand the
meaning of these two practices. As you may see in the Fig. 8,
the robot executed initially the forward behavior, and when
the controller detected that he received a knocking pattern
(2 knocks in red), he picked left as a new behavior. Within a
few milliseconds, we can see that the controller changed the
behavior to back. We called such situation a state of confu-
sion since the controller changed the behavior after recently
choosing an action and without being prompt by any knock-
ing. As a response the knocker, composed of a remedial
knocking pattern (2 knocks in orange: the same previous
knocking pattern) so as to help the controller overcome the
situation by resuming with the previous executed behavior.
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Fig. 7 Task completion time distributions during trials 1 and 2 (exper-
iment 1)

Fig. 8 A scenario showing an example of a state of confusion and a
remedial knocking pattern

The presence of states of confusion indicated that the con-
troller tried to establish the rules of communication but may
go through some confusing states. Consequently, the knocker
also tried to adapt to the controller’s state of confusion by
composing a remedial knocking pattern.

We calculated the Pearson correlation between the confu-
sion states and the remedial knocking of the first and second
trials. The value of R during the trial 1 is 0.6149 with (p
Value from Pearson (R) = 0.014; d.f. = 13; The result was
significant at p < 0.05) and during the trial 2 with R value
(p value from Pearson (R) = 0.00019. d.f. = 13; The result
was significant at p < 0.01). This meant that there was a
tendency for high confusion states values went with high
remedial knocking values (and vice versa). Consequently, if
the confusion states occured more frequently, the knocker
would try to cooperate most of the time with the controller
in order to maintain the rules which he thought they were
shared between him and the controller.

4.3.6 Communication Protocol Analysis

The subjective results and the previously discussed objective
analysis showed that there was a cooperation between the
knockers and the controllers in order to adapt to each other
and establish communication protocols. To visualize the
emergent communication protocols, we used the correspon-
dence analysis. Correspondence analysis is an exploratory

technique that helps analyzing the two-way frequency cross-
tabulation tables containing measures of correspondence
between the knocking patterns and controllers’ interpreta-
tions of these patterns. The results provide informationwhich
is similar in nature to those produced byFactorAnalysis tech-
niques, and they allow us to explore the structure of our two
variables (knocking patterns and controllers’ interpretations
to these patterns) by means of derived dimensions F1, F2,…,
Fn.

To understand how the dimensions are derived, we need
to consider the Chi-square statistic for two-way tables like in
our example (knocking patterns and the related controllers’
interpretations of these behaviors). Any deviations from the
expected values (expected under the hypothesis of complete
independence of the knocking patterns and the controllers’
interpretations) would contribute to the overall Chi-square.
Thus, anotherway of looking at correspondence analysis is to
consider it a method for decomposing the overall Chi-square
statistic (or Inertia = Chi-square/Total N) by identifying a
small number of dimensions in which the deviations from the
expected values can be represented. This is similar to the goal
of Factor Analysis, where the total variance is decomposed,
so as to arrive to a lower-dimensional representation of the
variables that allow us to reconstruct most of the variance
matrix of variables.

For a matter of illustration, we chose to depict the associa-
tions between knocking patterns and controllers’ interpreta-
tions of pair 9 (Fig. 9). It appeared that based on the two-way
frequency table associating the pair 9’s knocking patterns to
the controllers’ interpretations, we had two derived dimen-
sions. With a single dimension F1 (trial 1: F1 = 53.163 %
and trial 2: F1 = 55.550 %) as we represented in Fig. 9
53.163 % in trial 1 and 55.550 % in trial 2 of the inertia
can be “explained,” that is, the relative frequency values can
be reconstructed from a single dimension and reproduced
53.163 % of the total shi-square value (and, thus, of the
inertia) for the case of our two-way table. Two dimensions
allowed us to explain 100 % of the data with F2 (trial 1:
F2 = 46.837 % and trial 2: F2 = 44.450 % (Fig. 9).

Basedon the (Fig. 9 (right)),we remarked that right behav-
ior is materialized by 1 knock, forward was represented by 2
and 3 knocks, and left by 4 knocks. In the second trial (Fig. 9
(left)), the protocol was slightly ameliorated where we could
see a clear categorization of forward that was represented by
only 2 knocks while left was represented by 3 knocks and
right was always represented by 1 knock.

4.3.7 Performance Evaluation Based on the Convergence
Metric Values

We wanted to explore whether there was a statistically sig-
nificant difference between the convergence level to a stable
communication protocol during trials 1 and 2. For this pur-
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Fig. 9 Correspondence analysis for both trials for the pair 9 (Left first trial, Right second trial) in the first experiment where Ni represents the
knocking patterns; e.g.,: N2 represents 2 knocks

Fig. 10 The convergence metric values of the first and second trial
(experiment 1)

pose and based on the correspondence analysis results, we
calculated the Euclidean distance between each of the robot’s
behaviors (red triangles as presented in the Fig. 9) and the dif-
ferent patterns (blue circles as presented in the Fig. 9). Thus,
for each behavior we calculated the n possible Euclidean dis-
tances (assuming thatwe have n possible patterns).After that,
we picked for each behavior the most minimal distance. We
summed up the 4 most minimal distances and the resultant
value afforded information about the most minimal distance
that the pair knocker-controller achieved to form stable rules.
We called this value the convergence metric which evaluated
the system’s performance. We repeated the same procedure
for the 15 pairs and for the two trials.

We computed the t test between the convergence metric
values of the trial 1 and 2 which revealed significant dif-
ferences: t = 2.503, d.f. = 14, p value = 0.018<0.05. We
displayed the results of the trial 1 and 2 convergence metric
values where in bluewe had the convergencemetric values of
the first trial and in red the convergence metric values of the
second trial (Fig. 10). Figure 10 showed that 12 out of the 15
pairs (80 %) succeeded in reducing the convergence metric

values during the second trial, indicating that the pairs were
closer to the convergence to stable protocols’ formation.

4.3.8 Consistent Protocol Formation Evaluation

To statistically measure the relationship between the knock-
ing patterns and the different behaviors, we computed the test
of independence (Chi-square) between the knocking patterns
and different behaviors as well as the Cramer’s V-values.
Tables 1 and 2 exhibited the results of the first and second
trials for the different participants. Based on the Table 1
we deduce that 7 out of 15 pairs (46.66 % of the pairs)
succeeded in establishing a stable communication protocol
during trial 1, where the chi-square values were significant
for 7 pairs, with a Cramer’s V-values ranging from 0.331 to
0.823, indicating a strong relationship between the knocking
patterns and the controller’s interpretations of these patterns.
We noticed that during the trial 2 (Table 2), the number of
pairs that succeeded in establishing a communication pro-
tocol increased to 11 out of 15 pairs (73.3 % of the pairs)
with high Cramer V-values, indicating that there was also a
strong relationship between the knocking patterns and the
controller’s interpretations of these patterns. Consequently,
we deduced that gradually there was a strong relationship
between the knocking patterns and the controller’s interpre-
tations of these patterns.

4.4 Discussion

We started with a H–H experiment to evaluate the knockers’
and controllers’ adopted behaviors that led to the emergence
of communication protocols. Understanding both parties’
strategies facilitated for us the tailoring of a control model
that could be integrated into the robot and may lead to a
similar flexible communication protocol formation.
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Table 1 The test of independence (Chi-Square) between the knocking
patterns and the robot’s behaviors as well as the Cramer’s V (CV) values
of the trial 1 (experiment 1)

Pairs Chi-square CV

Pair1 χ2 = 55.515, d.f. = 18, ***p value < 0.01 0.446

Pair2 χ2 = 21.978, d.f. = 18, p value = 0.233 –

Pair3 χ2 = 12.394, d.f. = 9, p value = 0.192 –

Pair4 χ2 = 18.6565, d.f. = 12, p value = 0.097 –

Pair5 χ2 = 9.828, d.f. = 12, p value = 0.631 –

Pair6 χ2 = 26.345, d.f. = 15, **p value = 0.035 0.331

Pair7 χ2 = 10.222, d.f. = 3, **p value = 0.017 0.698

Pair8 χ2 = 2.475, d.f. = 6, p value = 0.871 –

Pair9 χ2 = 12.634, d.f. = 8, p value = 0.125 –

Pair10 χ2 = 50.068, d.f. = 18, ***p value < 0.01 0.590

Pair11 χ2 = 5.528, d.f. = 9, p value = 0.786 0.166

Pair12 χ2 = 19.307, d.f. = 9, **p value = 0.023 0.529

Pair13 χ2 = 9.828, d.f. = 12, p value = 0.631 –

Pair14 χ2 = 14.215, d.f. = 2, ***p value < 0.01 0.823

Pair15 χ2 = 17.071, d.f. = 18, p value = 0.518 –

∗ confidence interval is 90%
∗∗ confidence interval is 95%
∗∗∗ confidence interval is 99%

Table 2 The test of independence (Chi-Square) between the knocking
patterns and the robot’s behaviors as well as the Cramer’s V (CV) values
of the trial 2 (experiment 1)

Pairs Chi-square CV

Pair1 χ2 = 31.640, d.f. = 12, ***p value = 0.002 0.568

Pair2 χ2 = 28.119, d.f. = 8, ***p value < 0.01 0.404

Pair3 χ2 = 0.877, d.f. = 2, p value = 0.645 –

Pair4 χ2 = 10.297, d.f. = 12, p value = 0.590 –

Pair5 χ2 = 4.422, d.f. = 4, p value = 0.352 –

Pair6 χ2 = 18.033, d.f. = 8, **p value = 0.021 0.308

Pair7 χ2 = 4.6, d.f. = 4, p value = 0.331 –

Pair8 χ2 = 8, d.f. = 2, **p value = 0.018 0.9

Pair9 χ2 = 12.036, d.f. = 4, **p value = 0.017 0.501

Pair10 χ2 = 26.813, d.f. = 12, ***p value = 0.008 0.829

Pair11 χ2 = 22.610, d.f. = 6, ***p value < 0.01 0.408

Pair12 χ2 = 17.714, d.f. = 4, ***p value < 0.01 0.859

Pair13 χ2 = 23.517, d.f. = 6, ***p value < 0.01 0.637

Pair14 χ2 = 34.476, d.f. = 15, ***p value = 0.003 0.384

Pair15 χ2 = 32.799, d.f. = 9, ***p value < 0.01 0.594

∗ confidence interval is 90%
∗∗ confidence interval is 95%
∗∗∗ confidence interval is 99%

4.4.1 Evaluation of the Command-Like and the
Continuous-Knocking Patterns Based on the Videos

Based on the coded videos, we remarked that the communi-
cation was patterned. It was crucial for the pairs to scaling

the problematic to a small number of entry states (1 knock,
2 knocks, etc.). The use of continuous-knocking was a way
to overcome the contiguous disagreements. By examining
the percentages and the t test results, we remarked that there
were potential trend to use the command-likemore frequently
during the trials 1 and 2. The objective of the pairs was to
minimize the expected infinite horizon of states to a small
number of states in order to easily track each of the states
successful combinations with the controller’s interpretations
of these patterns. Thus, during the communication protocol
establishment, users restricted the number of states to facil-
itate inferring the communication rules (even if we do not
impose for the human a way of an interaction with the mini-
mally designed robot).

4.4.2 Evaluation of Interaction Scenarios

Interrupting the controller’s executed action was associated
with the presence of knocks (negative reward for the con-
troller), while no knocks implied the controller was doing
well (positive reward). Based on this trial-and error process,
the pairs were incrementally establishing communication
protocols by mainly going through multiple agreements and
disagreements about the shared rules as the Fig. 5 showed.

4.4.3 Adaptation Evaluation Based on a Comparison of
Agreement and Disagreement States

Based on the t test results and Fig. 6 we concluded that dis-
agreement states decreased significantly from trial 1 to trial
2. We deduce also that the agreement states were signifi-
cantly inferior than the disagreement states during the trial 1
in addition to the fact that the same thing occurred during the
trial 2. These results suggested that even though the pairs nor-
mally had to adapt again to each other during trial 2 in order
to share the communication rules (since we had a new con-
figuration with different checkpoint coordinates), there was
a better convergence during the trial 2. We deduced implic-
itly that there were some first trial rules which facilitated the
convergence during trial 1 and that were transferred to trial
2. As an example, we saw in Fig. 9 that the rule combining
the behavior right with the pattern 1 knock was maintained
during the trial 2.

4.4.4 Cooperative Communication for the Task
Achievement

Byexamining the data andPearson correlation test values,we
maintained that there was a significant correlation between
the confusion states and the remedial knocking. On the one
hand, this indicated that the controller was trying to maintain
stable rules that he thought organizing the interaction. On the
other hand, this indicated that the knocker cooperated with
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Fig. 11 Cooperative behavior between the controller and the knocker
during the communication protocol formation

the controller in order to altogether shape a stable protocol
of communication (Fig. 11).

During the interaction, the controller tried to establish the
communication rules by choosing the behavior that was pre-
viously more frequently (greedy policy4) associated with the
received knocking pattern. He also auto-criticized his strat-
egy based on his own assumptions and this was proved by the
presence of some confusion states. He refined his assump-
tions according to the new rules that he imagined shared with
the knocker. Finally, he chose a new behavior. His choice
might lead to an agreement or a disagreement state. These
insights led us to think about a model which integrated two
components during the communication protocol formation,
one related to the action choice and the other to the criticism
of the executed action.

4.4.5 Performance Evaluation

Shared rules formation led to a significant decrease (as the
t tests and Fig. 7 shows) of the task completion time during
trial 2. We also noticed that there was a decrease in the con-
vergence metric values during trial 2 (Fig. 10). We deduced
then that the pairs were growing closer to the stable commu-
nication protocol formation. This decrease was revealed by
the elaboration of clear rules. As an example, pair 9 in Fig. 9
succeeded on associating for the forward behavior 2 knocks
during trial 2 after being confused during trial 1 between two
patterns (2 knocks, 3 knocks). By applying the chi-square and
Cramer’s V (Tables 1 and 2) tests, which evaluated the rela-
tionship between the knocking patterns and the controller’s

4 It consists of choosing the most frequent behavior that was previously
associated to the same number of knocks previously received and led
to an agreement state; e.g.,: choosing the left behavior when we have
3 knocks led most probably to an agreement state while choosing back
may have led to a disagreement because it has led less frequently used
for an agreement state based on the previous interactions.

interpretations of these patterns, we found that the number of
pairs showed a statistically significant relationship between
the patterns, and that the behaviors increased from 7 out of 15
pairs (46.6 %) to 11 out of 15 pairs (73.3 %), indicating our
scenario helped the users to acquire the meaning of the dif-
ferent emergent patterns and form communication protocols
incrementally based on the previous interactions.

5 Modeling the Architecture of the Robot

5.1 Insights from the Human–Human Experiment

We seek to enable non-expert users to shape a communi-
cation protocol with a minimally designed robot. The fact
that the robot used a novel minimal communication channel
caused some confusion for the human. It required adapta-
tion from him in order to understand how to provide the
most convenient input for the robot while guaranteeing the
intended output. In this vein, we noticed that people aggre-
gated a small number of redundant patterns (such as 1 knock,
2 knocks, etc.) in order to guarantee a systematized output
(e.g.: 1 knock for the left direction, 3 knocks for the back
direction, etc.). For each instance of interaction, the con-
troller chose an action based on the received knocking while
he tried to affect for the gathered pattern the most frequently
successful action that was tested previously. Afterward, the
knocker would judge the controller’s choice. If the chosen
action did not converge with the knocker’s desired direc-
tion, the knocker would compose another knocking pattern
in 2 s (approximated value based on the KRT distribution)
indicating that the controller’s choice was incorrect. Since
the controller tried to track the best combinations between
the knocking and the robot’s action, any new knocking that
disrupted the execution of the newly chosen action (action
interrupted before 2 s elapse) would lead to a disagreement
with the controller’s assumptions about the knocking pattern-
action combinations. However, if no knocking was received
the action is correct and consolidated the controller’s assump-
tions about the knocking pattern- action combinations. We
also found there were times that when the controller chose
the action, he got confused and changed the action without
being prompt by any knocking. This indicated that the con-
troller chose the action but also criticized his choices. The
knocker sometimes detected the controller’s confusionwhich
confirmed again that there were rules shared between both
parties. The knocker then tried to cooperate by composing
the same previous knocking pattern, indicating that the con-
troller (or the robot here since the knocker did not know that
a controller wizarded the robot) had to return to the other
recently executed action.

In parallel to our insights, Reinforcement Learning (RL) is
“ learning through a trial-and-error process how to associate
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states to actions in order to maximize a numerical reward.
The learner has to discover which actions yield the most
rewarding state using the greedy policy and finally reach a
meaningful state-action combinations” [39]. Therefore, if we
suppose that:

– Command-like patterns referred to the states in the RL
while we had different states such as 1 knock state, 2
knocks state, etc.

– The different robot’s behaviors were the actions for the
RL (4 actions: right, left, back, forward).

– The controller’s choice that consisted of choosing themost
frequently used action previously tested corresponded to
the greedy action chosen based on the greedy policy.

– The presence of knocking after the robot started the exe-
cution of the chosen action and before 2 s elapsed is the
negative reward.

– The absence of knocking (for 2 s) after the robot started
the execution of the chosen actionwas the positive reward.

– The fact that the interaction went through agreement and
disagreement states indicated that the adaptation corre-
sponded to a sequential trial-and-error process just like in
the RL.

– Both parties established different combinations of (knock-
ing pattern - controller’s interpretations) corresponded to
the (state - action) cartography that emerged during a RL
process.

Wemay deduce then that RL algorithms fitted to our prob-
lematic adequately. In addition, the decision making should
be in a real time5 because we obtained different commu-
nication protocols for the different pairs, indicating that any
hand-programming of a possibly supposed same protocol
adopted by all the pairs would fail. We should therefore
reduce the scope of useful RL algorithms to only the online
RL algorithms. Finally, and based on the first experiment’s
insights, we found that the controllers at times were auto-
criticizing their strategies. This made us think about the
actor-critic as an online RL algorithm that fitted to our prob-
lematic. An actor-critic algorithm integrates a critic and an
actor. The critic uses a temporal difference learning (TD)
to criticize the action that has been chosen, and the actor
is updated based on the information provided by the critic
[40]. Incrementally, the actor chooses the greedy actionwhile
the critic observes the relevance of the actor’s choice after
receiving the feedback. The relevance of an executed action

5 Real time: Because the communication patterns emerge in a sequen-
tial fashion and we remarked that communication protocols were
personalized to the pairs, any attempt to integrate a batch learning
method to the robot’s architecture could not succeed in establishing the
same customized protocols that we had seen in the first experiment, and
that it is why we needed an online machine learning method. An online
machine learning method gathers the data and learns incrementally.

is materialized in our case, by the presence (negative reward)
or the absence (positive reward) of the knocking and leads to
an agreement or a disagreement state. The proposed actor-
critic model should lead to similar performance (decrease in
the disagreement states, the task completion time and the con-
vergence metric values) as in the H–H experiment. It should
also guarantee transfer learning of the shared rules during
trial 2 (while some combinations knocking-action of the first
trial’s communication protocol should be used during trial 2)
so that stable communication protocols emerge.

5.2 Actor-Critic Algorithm

5.2.1 Actor Learning

Each knocking pattern (state) has its own distribution.
X (st ) ≈ N (μX (st ), σX(st )

)where X (st ) is defined as the num-
ber of knocks, μX (st ) and σX(st )

are the mean value and the
variance while Π(st ) is the corresponding probabilistic pol-
icy associated to X (st ). We also assigned a distribution for
the continuous-knocking pattern6 that also helps in learning
what behavior should be chosen once a continuous knock-
ing is received by the robot. Initially, the action is chosen
according to the probabilistic policy Π(st ). The state of the
interaction changes to the state st+1 according to the user’s
knocking presence (disagreement)/absence (agreement). If
the human interrupts the robot’s behavior execution before
2 s7 by composing a new knocking pattern, we have a dis-
agreement state about the previous pattern’s meaning (which
was received from about 2 s). Consequently, the action that is
chosen based on the probabilistic distribution in an attempt of
exploiting the emerged knowledge failed. The actor updates
the probabilistic policyΠ(st )nbknocks and chooses the action
henceforth (until we meet an agreement state as a closure for
the current pattern meaning’s decoding process) by a pure
exploration based on the equation

A(st ) = μX (st ) + σX(st )

√−2log(rnd1)Sin(2Πrnd2) (1)

where rnd1 and rnd2 are random equations that are designed
to bring the values of the action between 0 and 3.

5.2.2 Critic Learning

After each action selection, the critic evaluates the new state
to determine whether things has gone better or worse than
expected. The action is evaluated based on the presence or
absence of knocking (positive or negative reward). This eval-
uation process is called the temporal difference (TD) error.

6 We suppose that a knocking pattern that involves a number of knocks
superior than 4 knocks.
7 We calculated approximately the value based on a pilot study.

123



78 Int J of Soc Robotics (2016) 8:67–84

(a) (b) (c) (e) (f)(d)

Fig. 12 Figure shows the re-adjustment procedure of state parameters;
(1) the decided action value is outside of the standard deviation inter-
val (a, b, c); a current shape of the state distribution and decided action
value,bmean shifting has started, and c the state parameters are updated
and a new shape of the distribution is established; (2) Re-adjustment

procedure of state parameters when the decided action value is inside
of the standard deviation interval (d, e, f): d the current shape of the
state distribution and decided action value, e indication the shifting has
started, and f the state parameters are updated and a new shape of the
distribution is established

The critic calculates the TD error (δt ) as the reinforcement
signal for the critic and the actor where

δt = rt + γ V (st+1) − V (st ) (2)

with γ is the discount rate and 0 ≤ γ ≤ 1. According to
the TD error, the critic updates the state value function V (st )
based on the equation:

V (st ) = V (st ) + α ∗ δt (3)

where 0 ≤ α ≤ 1 is the learning rate. A positive TD error
indicates that the tendency to select at when receiving the i-th
current pattern should be strengthened for the future. A neg-
ative TD error indicates that the tendency to use that action
with the gathered current pattern should be weakened, and in
our case we weaken the possibility to choose the action at for
the i-th current received pattern. As long as the current pat-
tern meaning’s decoding is not achieved (exploration phase),
(exploration phase), the critic will each time it encounters
a disagreement state updates δt , V (st ) and the distribution
N (μX (st ), σX(st )

):

μX (st ) = μX (st ) + A(st )

2
(4)

σX (st ) = σX (st ) + |A(st ) − μX (st )|
2

(5)

The modification during the update process helps to read-
just the shared rules according to the previous interactions
and assigns the most frequently correct behavior for the ith
current pattern received.

The idea here is to attempt to obtain the correct action
inside the interval that represents the possible actions which
should be executed when gathering the ith pattern. The cho-
sen behavior can be inside (when the action is chosen based
on the probabilistic policy) or outside of the distribution
(when the previously chosen action fails). If the behavior was
outside of the distribution of the pattern, this means that the

human has changed the rule concerning the ith pattern. We
operate in this case themean shifting and the variance enlarg-
ing to recuperate the value inside the distribution (Fig. 12c).
As the decided action value is already inside the standard
deviation interval and theTDwaspositive (Fig. 12d), thenour
approach attempts to shift the mean value (Fig. 12e) toward
the action value while minimizing the standard deviation
(Fig. 8f). Shifting occurs when TD is positive by choosing
the correct behavior as a part or the center of the distribu-
tion. In fact, if the action was outside the distribution then
we assume that we are not sure that it is the new sustained
rule (we only know that it was correct for one time) so we
recuperate it inside. If that same action was combined with
the same knocking pattern to which it was previously asso-
ciated (ith pattern), it becomes the mean because the robot is
more certain it is the new rule of the ith pattern.

6 Experiment 2: Human–Robot Interaction

Through this experiment, we tried to validate the robot’s
implemented architecture and verify whether the human and
the robot can establish stable communication protocol.

6.1 Experimental Protocol

Each time we had a new participant, the instructor told him
that he had to lead the robot to different checkpoints marked
on the table before reaching the final goal point using knock-
ing (Fig. 2). We had two different configurations for the
two trials of the experiment 2. We asked the participants to
describe their experience when they finished the task.

In the first trial (Fig. 2 (left)), we expected the knocker
to cooperate with the robot to invent his own protocol of
communication by focusing on the most successful patterns
that ledmostly to agreement states just like in the first experi-
ment. Meanwhile, we expected that the robot would focus on
the rules’ acquisition. The robot has to keep on guessing the

123



Int J of Soc Robotics (2016) 8:67–84 79

Fig. 13 Correspondence analysis for both trials for the participant 3 (Left first trial, Right second trial) in the first experiment where Ni represents
the knocking patterns, e.g.: N2 represents 2 knocks

most possibly correct behavior that must be combined with
the right knocking pattern. It has also to refresh it assump-
tions in real time so that a stable communication protocol
could be finally established. In the second trial, we assumed
that the communication would become smoother as in the
second trial of the first experiment. In this experiment, we
had 10 participants (6 male, 4 female) ranging in age from
20 to 24 years old.

6.2 Results

After the experiment was finished, we tried to analyze the
interaction scenarios in order to verify whether a commu-
nication protocol was established between the knockers’
knocking patterns and the chosen actions.

We analyzed the video data by annotating with a video
annotation tool called ELAN. Two coders, one of the authors
and one other volunteer analyzed the behavioral data using
the same coding rules for the first and the second trials. We
calculated the average of Cohen’s kappa from six arbitrarily
selected videos in order to investigate the reliability. As a
result, we confirmed that there was a reliability with κ =
0.819.

6.2.1 Evaluation of the Command-Like and the
Continuous-Knocking Patterns Based on the Videos

Based on the coded data, we counted the number of
continuous-knocking pattern and the number of command-
like pattern for all the participants and for the two trials to
see whether participants had tendencies to use the command-
like mode just like in the experiment 1. We discovered the
participants were mainly using the command-like patterns
with percentages (trial 1: 91.14 % of the patterns were
command-like) and (trial 2: 95.46 % of the patterns were
command-like). We conducted 2 t tests to verify whether
there was a significant difference between the 2 patterns

usage: trial 1: (t = 4.596, d.f. = 9, p value < 0.01), and
trial 2: (t = 7.486, d.f. = 9, p value < 0.01). As a result,
we found a significant effect for usage of the command-like
patterns during both trials, while a new state in the interac-
tion cycle corresponded most of the time to a command-like
pattern just as in the first experiment.

Participants confirmed also the fact that they need to use
the simple command-like mode while one of the participants
said: “...I tried to knock slowly, to focus on the most use-
ful knocking that will lead the robot to execute the right
direction...”, another one said:“...It is clear that I have to
pay attention to the knocking and then I tried to affect 1,
2 knocks, etc. to facilitate remembering of the most conve-
nient knocks....”’

6.2.2 Communication Protocol Analysis

For a matter of illustration, we had chosen to depict the
associations between knocking patterns and robot’s chosen
behaviors of the participant 3 based on 2 dimensions for the
trial 1:(F1 = 51.523 %–F2 = 41.597 % ) and trial 2:(F1 =
45.872 %–F2 = 30.670 %)8, just as in the first experiment
(Fig. 13). Based on the (Fig. 13 (right)), we maintained that
right behavior was materialized by 1 knock, forward and
represented by 2 and 4 knocks, left by 4 knocks and back by
3 knocks. In the second trial (Fig. 13 (left)), the protocol is
slightly ameliorated where we can see a clear categorization
of forward that is represented by only 4 knocks, while left
is represented by 2 knocks, right is always represented by 1
knock, and back by 3 knocks.

8 Here we had actually 3 dimensions for each of the trials F1, F2 and F3
to reach 100 %, but the highest possible representation in 2 dimensions
consisted of choosing the F1 and F2 more so than either F1 and F3 or
F2 and F3.

123



80 Int J of Soc Robotics (2016) 8:67–84

Fig. 14 The agreement and disagreement percentage during trials 1
and 2 (experiment 2)

6.2.3 Adaptation Evaluation Based on the Agreement and
Disagreement States Comparison

We counted the number of agreements and disagreements
during trials 1 and 2 and for all the participants. A t test
showed that there were significant differences between the
number of agreements and the number of disagreements
usage during the trial 1 with a value: t = 2.37, d. f. =
9, p value = 0.028 < 0.05. We displayed the percentage of
the first trial’s agreements and disagreements in the Fig. 14,
where in blue we have the percentage of the agreements and
in red we have the disagreements during the trial 1 and 2.9

Based on the Fig. 14, we noticed also that the number of
disagreement states (73.15 %) was higher than the number
of agreement states (26.68 %) during the first trial. A t test
showed that there were statistically significant differences
between the number of agreements and disagreements dur-
ing the trial 1 with a value t = 2.37, d.f. = 9, p value = 0.028
< 0.05.

Based on Fig. 14, we also noticed that the number of
agreements exceeded the number of disagreements with a
percentage value respectively 62.63 and 37.37 % during the
trial 2. A t test between the agreement and disagreement
states during trial 2 showed that this excess was statistically
significant with (t test:t = 2.108, d.f. = 9, p value = 0.049 <

0.05). Finally, by calculating the t test between the number of
agreements of the first trial and the second trial, we obtained
the above value (t = 5.359, d.f. = 9, p value < 0.01). We
can therefore conclude then that even though the second trial
involved a configuration with new checkpoints, there were a
higher number of agreements during trial 2. This implies that
a transfer of learning occurred and facilitated the formation
of a communication protocol during the trial 2 just like in the
second trial of the first experiment.

9 The percentages were calculated based on the same formula used
during the experiment 1.

Fig. 15 Task completion time distributions during trial 1 and 2 (exper-
iment 2)

6.2.4 Comparison of the Task Completion Time of the Trial
1 and 2

The distribution of the task completion time datasets during
the trial 1 (first boxplot in grey) and 2 (second white box-
plot) were represented in Fig. 15. Figure 15 shows that there
was a decrease in the task completion time during trial 2. We
applied a two-tailed t test to verify whether there were sta-
tistically significant differences between the task completion
time of the first and second trial. The results were significant
with t test value:(t = 2.959, d.f.= 9, p value= 0.008< 0.01).

6.2.5 Performance Evaluation Based on the Convergence
Metric Values

We wanted to explore whether there was a statistically sig-
nificant difference between the system’s performance during
trials 1 and 2. For this purpose and based on the correspon-
dence analysis results, we calculated the Euclidean distance
between each of the robot’s behaviors (red triangles as pre-
sented in the Fig. 13) and the different patterns (blue circles
as presented in the Fig. 13). Thus, for each behavior we cal-
culated the n possible Euclidean distances (assuming that
we have n possible patterns). After that, we picked for each
behavior the most minimal distance. We summed up the
4 most minimal distances and the resultant value afforded
information about the most minimal distance that the pair
knocker-controller achieved to form stable rules. We called
this value the convergence metric which evaluated the sys-
tem’s performance. We repeated the same procedure for the
10 participants and for the two trials.

As in the first experiment, we display the results of trials
1 and 2 convergence metric values, where the convergence
metric values of the first trial are shown in blue and the con-
vergence metric values of the second trial are shown in red
(Fig. 16). Figure 16 shows that 70 % of the pairs (7 out of
10 pairs) succeeded in reducing the convergence metric val-
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Fig. 16 The convergence metric values during trials 1 and 2 (experi-
ment 2)

ues during the second trial, which indicated the pairs where
closer from the convergence to stable communication proto-
cols formation during the trial 2.

We computed the t test between the convergence metric
values of the trial 1 and 2 to verifywhether therewere statisti-
cally significant differences.We found then significant differ-
ences with t test result as follows (t = 2.776, d.f.= 9, p value
= 0.012<0.05), indicating that users attempts to converge to
stable protocols were more significant during the trial 2.

6.2.6 Communication Protocol Evaluation Based
on the Independence Test Results

To statistically measure the dependency between the knock-
ing patterns and the different robot’s behaviors, we computed
the test of independence (Chi-Square) between the knocking
patterns and the different behaviors as well as the Cramer’s
V values. Tables 3 and 4 exhibited the results of the first and
second trials for the 10 participants. Based on the Table 3, 7
out of the 10 participants (70 %) succeeded in establishing
a communication protocol with a Cramer’s V-values ranging
from 0.206 to 0.525 and thus ranging from a moderate to
very strong relationship. During trial 2 (Table 4), the num-
ber of pairs that succeeded in establishing a communication
protocol was almost the same despite the new configura-
tion (the point coordinates of the checkpoints have been
changed) which required adaptation for the human and the
robot. Cramer’s V-Values ranged from 0.283 to 0.387, which
meant the relationship between the behaviors and the knock-
ing patterns was moderately strong.

6.3 Discussion

6.3.1 Command-Like and Continuous Knocking Usage
Evaluation

We remarked that command-like was more frequently used
in comparison to the continuous—knocking mode. We

Table 3 The test of independence (chi-square) between the knocking
patterns and behaviors, as well as the Cramer’s V (CV) values of trial
1 (experiment2)

Users Chi-square CV

User1 χ2 = 51.977, d.f. = 10, ***p value < 0.001 0.425

User2 χ2 = 9.747, d.f. = 10, p value = 0.463 −
User3 χ2 = 20.531, d.f. = 8, ***p value = 0.009 0.206

User4 χ2 = 8.613, d.f. = 6, p value = 0.197 0.4194

User5 χ2 = 12.727, d.f. = 6, **p value = 0.048 0.477

User6 χ2 = 13.847, d.f. = 6, **p value = 0.031 0.397

User7 χ2 = 73.605, d.f. = 10, ***p value < 0.001 0.511

User8 χ2 = 11.563, d.f. = 3, ***p value = 0.009 0.525

User9 χ2 = 28.119, d.f. = 8, ***p value < 0.001 0.404

User10 χ2 = 6.111, d.f. = 6, p value = 0.411 −
∗ confidence interval is 90%
∗∗ confidence interval is 95%
∗∗∗ confidence interval is 99%

Table 4 The test of independence (chi-square) between the knocking
patterns and behaviors as well as the Cramer’s V (CV) values of trial 2
(experiment2)

Users Chi-square CV

User1 χ2 = 14.772, d.f. = 10, p value = 0.141 –

User2 χ2 = 31.977, d.f. = 10, ***p value < 0.001 0.381

User3 χ2 = 22.419, d.f. = 6, **p value = 0.001 0.387

User4 χ2 = 14.625, d.f. = 6, **p value = 0.023 0.355

User5 χ2 = 26.883, d.f. = 8, ***p value = 0.001 0.291

User6 χ2 = 13.073, d.f. = 6, **p value = 0.042 0.291

User7 χ2 = 17.885, d.f. = 8, **p value = 0.022 0.283

User8 χ2 = 3.583, d.f. = 8, p value = 0.893 –

User9 χ2 = 10.044, d.f. = 10, p value = 0.437 –

User10 χ2 = 15.714, d.f. = 6, **p value = 0.015 0.304

∗ confidence interval is 90%
∗∗ confidence interval is 95%
∗∗∗ confidence interval is 99%

concluded that the command-like mode was chosen spon-
taneously so that the problem can be decomposed into static
number of states without telling the participants that they
needed to modulate their knocking just like in the first exper-
iment.

6.3.2 Interaction’s Evaluation Based on the Agreement and
Disagreement

Based on the Fig. 14, we found that the percentage of dis-
agreement states exceeded the percentage of agreement states
during the trial 1 and that the percentage of the agreement
states exceeded the percentage of the disagreement states dur-
ing trial 2 as well just as in the first trial. The t test between
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Table 5 A comparison between
the first and second experiments
in terms of states of aggregation
and performance

H–H Exp, trial1 HRI Exp trial 1 H–H Exp, trial2 HRI Exp trial 2

%State Based
Input CL-CK

90.26–9.73 91.14–8.85 89.47–10.52 95.46–4.53

%Agreement–%
disagreement

38.08–61.91 26.68–73.15 64.97–35.02 62.63–37.7

%users with
stable protocols

40 70 73 70

%users
convergence
metric<0.25

20 50 40 90

agreement and disagreement states was significant during the
trial 1 and 2. This indicated that, even though the second trial
evolved a new configuration (former checkpoints coordinates
changed), the participants were able to achieve significantly
more agreement states during the second trial. This paved
the way to conclude that during the second trial the pairs did
not start from scratch again to establish the communication
protocol, although there were some previously shared prac-
tices which helped to facilitate the communication protocol
formation (transfer learning) just like in the first experiment.

6.3.3 Performance Evaluation

The rules sharing led to the significant decrease of the task
completion time (Fig. 15) with a significant t test between
the task completion time of the trial 1 and 2 where p value =
0.008<0.01.Wealso remarked that the interaction led to bet-
ter performance during trial 2 (Fig. 16). The t test showed that
there were significant differences between the trial 1 and trial
2 convergence metric values. These results indicated that the
participantswere growing closer to the stable communication
protocol formation. By applying the chi-square and Cramer’s
V tests, which evaluated the relationship between the pat-
terns and the behaviors, we found out that the number of
pairs showed a statistically significant relationship between
the patterns and the behaviors did not decrease. This indi-
cated that gradually there was a strong relationship between
the knocking patterns and the robot’s chosen behaviors.

7 Summary of the H–H and the HRI Experiments
Results

We may conclude based on the previous results of the
HRI experiment that most of the participants succeeded in
establishing personalized communication protocols. In the
Table 5, we attempted to compare the human–human exper-
iment (H–H Exp) and the human–robot experiment (HRI
Exp) results, while CL and CK correspond respectively to
command-like and continuous-knocking patterns. Based on

the Table 5, we can see that the number of disagreements
of the experiment 2 and during the two trials 1 and 2 (trial
1: 73.15 %–trial 2: 37.7 %), exceeded the number of dis-
agreements of the experiment 1 (trial 1: 61.91 %–trial 2:
35.02 %). We may explain this by the absence of an imple-
mented strategy in the robot that can decode the continuous -
knocking patterns which occurred less during the HRI exper-
iment and dropped during the trial 2 (trial 1: 8.85 %, trial
2: 4.53 %) versus a higher value during the H–H experi-
ment which increased during trial 2 (trial 1: 9.73 %, trial 2:
10.52 %). This increase during the H–H experiment can be
explained by the fact that the controller could detect the haz-
ardous continuous-knocking patterns anddecode them,while
the knockers detected in the first trial that the continuous-
knocking was handled by the wizarded robot. If we compare
the percentage of participants that reached a convergence
metric value under 0.25 during experiments 1 and 2,we found
that only 40 % of participants finally reached 0.25 as a con-
vergencemetric value versus 90%of participantswho finally
reached 0.25 as a convergence metric value during the HRI
highlighting. Even though we did not implement a strategy
that handled the continuous-knocking patterns that emerge
during the interaction, we still had better results in terms of
convergence to stable protocols formation. We may explain
this by the fact the participants during the HRI might had
detected that command-like was the best strategy to guar-
antee a systematized output and that continuous-knocking
led to a hazardous output, so they adapted themselves and
implicitly avoided that strategy.

8 Conclusion and Future Work

In this paper, we presented a human–human WOZ exper-
iment, an actor-critic architecture and an HRI experiment.
The WOZ experiment aimed at tracking down the interac-
tion between the knocker and the controller to identify the
best practices that may lead to the mutual sharing of the
communication rules and facilitated the tailoring of a flex-
ible control model which can be integrated in a minimally
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designed robot. We extrapolated these emerging patterns
and the pairs (knocker—controller) succeed by shaping their
adaptive strategies. In a second step, we implemented the
robot’s controlmodel. Finally,we conducted theHRI in order
to validate our architecture. Our work afforded a methodol-
ogy that helped bootstrapping how an adaptive model can be
tailored and integrated in a minimally designed robot as we
expect that it is a persuasive way of guaranteeing long-term
use and high sociability factor for such kinds of robots.

In our future work, we intend to integrate inarticulate
sounds to the robot’s feedback modalities to further investi-
gate whether a simple feedback channel, such as inarticulate
sounds, can communicate back to the user, increase expres-
siveness and boost the convergence toward a more stable
communication protocol on a long term basis.
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