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Abstract A key skill for mobile robots is the ability to
navigate efficiently through their environment. In the case
of social or assistive robots, this involves navigating through
human crowds. Typical performance criteria, such as reach-
ing the goal using the shortest path, are not appropriate in
such environments, where it is more important for the robot
tomove in a socially adaptivemanner such as respecting com-
fort zones of the pedestrians. We propose a framework for
socially adaptive path planning in dynamic environments, by
generating human-like path trajectory. Our framework con-
sists of three modules: a feature extraction module, inverse
reinforcement learning (IRL) module, and a path planning
module. The feature extraction module extracts features nec-
essary to characterize the state information, such as density
and velocity of surrounding obstacles, from a RGB-depth
sensor. The inverse reinforcement learning module uses a
set of demonstration trajectories generated by an expert to
learn the expert’s behaviour when faced with different state
features, and represent it as a cost function that respects
social variables. Finally, the planning module integrates a
three-layer architecture, where a global path is optimized
according to a classical shortest-path objective using a global
map known a priori, a local path is planned over a shorter
distance using the features extracted from a RGB-D sen-
sor and the cost function inferred from IRL module, and a
low-level system handles avoidance of immediate obstacles.
We evaluate our approach by deploying it on a real robotic
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wheelchair platform in various scenarios, and comparing the
robot trajectories to human trajectories.
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1 Introduction

The ability to navigate in a crowded and dynamic environ-
ment is crucial for robots employed in indoor environments
such as shopping malls, airports or schools. When navigat-
ing in such environments, it is important for a robot to not
only avoid obstacles and move towards its goal, but also to
do so in a socially adaptive manner. Such behaviour is essen-
tial in assistive robots, as they interact with humans on a
daily basis. The goal of this research is to propose a local
path planner that generates such socially adaptive navigation
behaviour, integrated with a feature extraction method and
a planning architecture that combines global, local, and low
level behaviours.

A major limitation of the some of standard methods on
local path planners such as [13,34] is that they treat the
pedestrians merely as obstacles to be avoided, and do not
take account of social variables for navigation behaviours. As
such, the main technical challenge for developing a socially
adaptive path planner is the fact that the notion of what is
socially acceptable is not easily defined as an optimization
criteria, thus we cannot apply standard search techniques
using conventional cost functions (e.g. shortest path) to find
a good path.

In light of such challenge, we propose a local path plan-
ner that navigates through pedestrians by learning a socially
adaptive cost function from human navigation demonstra-
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tions. Our intuition is that while manually defining a socially
adaptive cost function is very challenging, inferring such a
cost function from a human, who is instinctively aware of
socially adaptive navigation behaviours, is an easier task.
To learn the cost function, we employ the inverse rein-
forcement learning (IRL) technique [24], which has proven
effective in inferring cost functions from human demonstra-
tions to accomplish tasks such as car parking [1], helicopter
piloting [2], and driving [42]. We also introduce the use
of a regularization method in IRL to eliminate unnecessary
features.

Our proposed framework consists of three modules: the
feature extraction module, the IRL module, and the plan-
ningmodule. The feature extractionmodule extracts the local
state features such as densities and velocities of pedestrians
observed via RGB-D sensor during a navigation. The IRL
module uses demonstrations from a human operator to learn
the socially adaptive navigation behaviours as a function of
these observed state features. The behaviour is represented
as weights (i.e. parameters) for the cost function, which are
combined with the features extracted from the feature extrac-
tion module to compute a socially adaptive cost function that
defines costs at local grid cells. In the planning module, a
global path is planned using a global map given a priori and
a local path is planned using the local grid cells associated
with the costs. It then chooses which of these two plans to
use, depending on the situation.

We evaluate our approach by considering different nav-
igation scenarios arising from the deployment of a smart
robotic wheelchair. We consider evaluation metrics pertinent
to socially adaptive navigation such as distance to nearest
pedestrian, overall path length, etc. We compare values of
these metrics under three control modes: our IRL approach
using RGB-D sensing, conventional control mode with a
human-controlled joystick, and more traditional path plan-
ning via the dynamic window approach (DWA) [13] using
laser rangefinder sensing. Our results show that the IRL
approach is able to generate trajectories that are closer to
the human driver, compared to the DWA planner, even when
the training datawas acquired under different conditions than
those observed during the evaluation. This is a particularly
attractive property of our approach, and is achieved because
the cost function is based on dynamic features of the envi-
ronment (e.g. speed, direction of surrounding pedestrians),
rather than on static features of the map.

2 Problem Statement

Westate the problemaddressed in our paper as follows.Given
a global path plan from the current position of the robot to
the global goal, determine the socially adaptive local path
plan from the current position of the robot to the sub-goal.

Fig. 1 Anexample of a typical planning scenario. The circle represents
the robot, and the grid cells represents the local grid cells defined by the
viewing distance and field of view of the RGB-D sensor. Black boxes
represent the obstacles, and the star represents the global goal. The red
line represents the global path. X denotes the sub-goal. Given the global
path, our local path plans a socially adaptive path when the local grid
cells are filled with people and their flows. (Color figure online)

A sub-goal is defined as the intersection of a global path
plan and a local grid cell at the maximum viewing distance
and field of view of the RGB-D sensor. This is described in
detailed in Fig. 1.

Addressing this problem involves challenges such as
developing a feature extraction method, learning a socially
adaptive cost function, and integrating the local path plan-
ner with a three-layer planning architecture similar to that of
[14].

As it is difficult to objectively define a socially adaptive
path plan, we consider a path plan to be socially adaptive if it
resembles the one that is planned by a human under similar
navigation conditions. Our work is motivated by the goal of
deploying our intelligent wheelchair in a large indoor shop-
ping centre, where autonomous navigation capabilities can
be used to navigate between stores and other points of inter-
est without requiring substantial human intervention, even in
crowded situations.

2.1 Related Work

There is a number of work on navigation in human envi-
ronment [12,15,18,19,31,33,37,41,43]. These are largely
divided into four sub-groups: those that involve training a
motion predictor [12,43], those that focus on path-planning
while assuming motions of dynamic obstacles are given
[31,37], those that focus on human-aware navigation using
social variables [18,19,29,32,33] with hand-designed cost
function, those that uses pedestrianmodels [29,32] and lastly,
one work on learning the cost function [15] for global path
planning.

In [12], a path planner based on Polynomial Neural Net-
work for human motion prediction is proposed. They trained
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the motion predictor using humanmotion data, which is used
with the Robot Navigation-Hierarchical Partially Observable
Markov Decision Process (RN-HPOMDP) to plan a path.
Another work that uses training data to predict the motions
of pedestrians is [43], where maximum entropy inverse opti-
mal control is used to train the motion predictor. Clearly,
the drawback of such motion learning approaches is that if
peoplemove in a significantly differentmanner than the train-
ing data, then the motion predictor cannot generalize to such
situations. More formally, this is due to the fact that the train-
ing data and test data are non-identically and independently
distributed (non-iid), whereas the iid is standard assump-
tion in supervised learning approaches. Unfortunately, for
the human motion prediction, different environments will
induce non-iid data.

In [37], a path planner based on Rapidly-exploring
Random Trees (RRT) algorithm is proposed. The key insight
here is to rapidly plan a new path so as to avoid unforeseen
pedestrians, by executing only a small segment of initially-
planned trajectory while planning a new trajectory. While in
simulation, where noise-free pedestrian velocity is given, it
worked well, the authors did not attempt to extend their work
to real-life scenarios where velocity estimation is required.
Similarly in [31], a modification of DWA [13] that accom-
modates for dynamic obstacles is proposed. However, there
is an additional difficulty of estimating angular velocities of
dynamic obstacles, which alone is a difficult computer vision
problem.

In [18], the authors rightly points out that a path planner
should not simply guarantee a collision-free path, but should
also generate behaviour adhering to social rules for human
comforts. In support of this, they present a modification of
human-aware navigation planner [33], that considers humans
as static obstacles, for dynamic environments. Similarly in
[29,32], authors propose models that induces socially aware
navigation behaviors using pedestrianmodel and social force
model, respectively. For a comprehensive survey on human-
aware navigation, refer to [19]. An important distinction
between these works and ours is that our framework learns
the socially-adaptive cost function, while these works care-
fully hand-design it.

In [29,32], they specifically focus on social compo-
nents such as pedestrian body pose and face orientation for
navigation. They manually design pedestrian models that
incorporate such components, and consider them during nav-
igation. In contrast, our work attempts to learn social models
in the form of a cost function, and incorporate them into path
planning.

The closest works are [15]. In [15], human-like path
planning in crowded situations is learned from an expert.
However, their work is also limited to a simulated setting
and they focused on a global path planner that plans based
on the modelling of density and velocity of people using

Gaussian processes. In contrast, our work focuses on a local
path planner integrated with a feature extraction module that
extracts pedestrian movement, as well as the full planning
architecture that provides interactions with a global planner.

2.2 Challenges

There are a few challenges in developing a socially adap-
tive local path planner. The first challenge is in local feature
extraction, where the objective is to extract densities and
velocities of crowds around the robot. Previously, there has
been a number of attempts at tracking and predictingmotions
of dynamic objects using filtering methods [23], hidden
Markovmodels [5,30] or polynomial neural network [12]. In
our work, rather than tracking individuals in the crowd, we
propose to extract summary features using a RGB-D sensor.
We represent the future positions of crowds using the veloc-
ity features, which consists of pedestrian speed and direction,
and the current position of crowds using the density feature.
Our feature extraction module is fully online and does not
require any training. Note that in some of the earlier work on
navigation in dynamic environments, feature extraction was
not dealtwith as theseworks limited their experiments to sim-
ulations where the features are assumed to be given [15,37].
Incorporating accurate feature extraction proved to be one
of the major challenges of this work. The details of feature
extraction and its representation are discussed in Sect. 3.

The second challenge lies in learning the socially adap-
tive cost function for local path planner with IRL technique.
We show how to design a real-world navigation problem as
a Markov decision process, how to represent navigation fea-
tures, and how to define the feature function and cost function
for different sections of local area. These are discussed in
detail in Sect. 4.

The third challenge lies in developing the planning archi-
tecture. We had to address issues such as integration of local
path planner with a global path planner, determining when to
use the local or global planner, when to re-plan and when to
emergency stop. To address these issues, we develop a three-
layer planning architecture similar to that of [14] in which
all layers run in parallel to resolve the issues mentioned. The
architecture design is discussed in detail in Sect. 5.

Last but not least, there is a challenge in the evaluation
of our framework. To assess our approach, it is essen-
tial that we compare executed trajectories of human driver
and the robot under the same or similar conditions, other-
wise the trajectories will differ. The problem is that in an
uncontrolled environment, it is almost impossible to cre-
ate the same navigation situation because pedestrians often
move in an unpredictable manner. To address this issue and
reduce variance in our real-world evaluations, we first con-
sider scenario-based experiments, in which the robot and the
human driver both execute trajectories under similar initial
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Fig. 2 The Smartwheeler robotic wheelchair (left), and its virtual
representation (right)

conditions. We consider a variety of initial conditions and
scenarios. We then present results of deploying our socially
adaptive path planning approach in natural navigation con-
ditions, collected by running the robot in the busy hallways
of a building during normal business hours.

2.3 Robot Platform

We developed the hardware and software infrastructure to
assess our framework in real-world assistive navigation
scenarios. The hardware platform used is a robotic wheel-
chair [25], shown in Fig. 2(left), which is a modified power
wheelchair mounted with an RGB-D (Kinect) sensor at the
front, three Hokoyu laser range finders (2 at the front, 1 in
the back), and a laptop. For the work described here, we
use only the RGB-D sensor to observe the surroundings in
an attempt to investigate our ability to generate effective
navigation with low-cost sensing. As shown in Fig. 2, the
Kinect RGB-D sensor is placed on one of the handles on
the wheelchair, marked with white on the virtual represen-
tation. The sensor provides both RGB and depth images at
a resolution of 640 × 480. It has a horizontal field of view
of 57◦ and approximately 5m in depth. Conveniently, the
Kinect combines RGB and depth information, and repre-
sents them as a point cloud in 3D coordinates (x, y, z), in
which horizontal, vertical, and depth locations are respec-
tively represented.

Our framework was implemented as packages in the pop-
ular robot software platform, ROS [27]. When we plan a
local path, we represent it as a set of points to be traversed,
and send them to a navigation package in ROS, which then
calculates the velocity to be executed by the robot to reach
eachwaypoint.All our results and experiments are performed
using the wheelchair robot and ROS. It is worth noting that

our framework is particularly useful in wheelchair robots
because human control trajectories for this platform are easy
to gather (using the conventional joystick) and abundant
(assuming regular use of the platform by amobility-impaired
individual).

2.4 Outline of Our Approach

Our approach goes through three stages, consisting of two
off-line stages and the on-line execution stage. These stages
are summarized in Fig. 3. In the data gathering stage, a
human shows demonstrations by navigating in an environ-
ment. Throughout the demonstrations, we collect the state
features occurring in the trajectories of the demonstrator, as
well as the demonstrator’s action choices as a function of
these state features. The collection of these pairs of state and
action forms a demonstration dataset. During the learning
stage, we pass this demonstration dataset to the IRL mod-
ule to learn the navigation behaviour of the demonstrator,
which is succinctly represented as weights for the cost func-
tion. Finally in the on-line execution stage, the weights are
passed to the planning module. The feature extraction mod-
ule extracts features at the local area using theRGB-D sensor.
The features are represented as a set of feature vectors, where
each feature vector describes the feature values in different
parts of the local area. The event-driven planning module
waits for these feature vectors from the feature extraction
module. Once the feature vectors arrive, the planningmodule
combines the learned weights and feature vectors to compute
the costs. Using these costs, the planning module outputs a
path plan such that the cost is minimized, and the robot exe-
cutes this plan in the environment. As the robot executes the
plan, the feature extraction module continues to receive new
sensor data, and new feature vectors are again passed to the
planning module that is waiting for them. The cycle contin-
ues until the robot reaches the goal, or is manually stopped
by the operator.

As in traditional grid-cell based local path planners [20],
our approach associates a numerical cost to each grid cell.
However, unlike these planners that use occupancy grids to
calculate costs, our planner uses environmental features that
all contribute to the cost of a cell. During runtime, the feature
extraction module takes RGB-D inputs and extracts environ-
mental features at each of the cells, thus producing a set of
feature vectors where each feature vector contains the feature
values of a cell.

Wewould like to note that the demonstration data gathered
off-line can be collected in a different environment than the
environment in the execution stage, unlike . Due to the nature
of the IRL framework, the cost function is expected to gener-
alize well to different environments with similar pedestrian
patterns. This is explained in depth in Sect. 4.2.5.
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Fig. 3 Different stages of our approach and module interaction during the execution stage. Square blue boxes indicate the three modules. The
human demonstrator is denoted with the stick figure. Arrows indicate the information flow. (Color figure online)

Fig. 4 Example of feature extraction and its correspondingRGB image
(bottom-right corner)

3 Feature Extraction

The RGB-D sensor uses a 3D point cloud to represent the
observed scene. We use this information to extract the fea-
tures. In the current work, we consider four distinct features
to characterize dynamic aspects of the scene: crowd density,
speed, velocity (i.e. speed and direction of a crowd), and dis-
tance to the goal. The density feature estimates where the
crowds currently are by counting the number of points in
each cell. The speed and direction features estimate where
the objects will be in the future, by estimating the velocity
of each point in a point cloud. The velocity of each cell is
calculated by averaging the velocities of points in the cell.
The distance to the goal is calculated based on the distance
between each cell and the global goal. An example of feature
extraction in a crowded environment is shown in Fig. 4.

While estimating the density and distance features is triv-
ial, calculating velocities using 3D point clouds is more

complicated. In the field of computer vision, this problem
is known as optical flow [16], in which the problem is lim-
ited to calculating themovement of pixels amongRGB image
sequences. We now introduce an algorithm that extends an
RGB optical flow algorithm to the RGB-D setting.

3.1 RGB-D Optical Flow

In essence, the problem of determining the flow using 3D
point clouds is finding the correspondence between each
point at frame t to a point at frame t + 1. Once this problem
is solved, the velocity can be simply inferred by subtracting
the coordinates of corresponding points. While it is diffi-
cult to determine the correspondence using only the point
cloud coordinate information, the problem of finding the cor-
respondence, or an optical flow, is a well studied area in RGB
images. Thus we first estimate RGB optical flow, and then
use the flow information to infer the RGB-D optical flow.

3.2 Farneback Optical Flow

Various RGB optical flow algorithms have been examined in
the last three decades [6,16,35]. In robot navigation, how-
ever, the computational cost for flow estimation is crucial as
it determines how quickly a robot can respond to changes
in the environment. Hence we employ an RGB optical flow
algorithm known as Farneback optical flow, which entails a
fast flow estimation algorithm [11].

The Farneback optical flow algorithm is a tensor based
algorithm in which an estimated orientation tensor is used to
infer a velocity [17]. Imagine several image frames stacked
together. What we obtain is a 3D image volume in which we
have two spatial dimensions, and a third describing the tem-
poral dimension. Intuitively, a movement (i.e. translation of
a pixel) in the sequences of images would give a vector with
a particular orientation in this 3D image volume, describing
the velocity direction. Such orientation can be represented
using the orientation tensor [17], which is a 3× 3 symmetric
positive semidefinite matrix T for the case of 3D image vol-
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ume. The quadratic form of the orientation tensor, ûTTû, is a
measure of howmuch the image varies in the direction given
by the vector û.

In [10], a method for estimating the orientation tensor T
is proposed. The idea is to project the image signal into a
second degree polynomial, whose parameters are estimated
using least-squares estimation. Using these parameters, the
orientation tensor matrix can be approximated. The details
of orientation tensor estimation are in [10]. Clearly, once the
orientation tensor is estimated, then we can treat the vector
û as a velocity vector. Hence we estimate the velocity by
solving the following equation, where we denote v̂ for our
velocity vector:

v̂TTv̂ = 0 (1)

v =
⎛
⎝

vx
vy
1

⎞
⎠ , v̂ = v

||v|| . (2)

The intuition in Eq. (1) is that the image intensity in the
direction of v̂ should remain the same, as it is the same pixel
moving according to the direction given by v̂. In practice, we
cannot require v̂TTv̂ to be zero, due to the aperture problem
that only allows us to detect the velocity that is normal to the
surface, and subsequently causes T to have two zero eigen-
values. However, it is sufficient to minimize the expression
[11].

Instead of estimating the velocity of each pixel, we assume
the velocity field occurs across a region in an image according
to an affine model [11]:

vx (x, y) = ax + by + c (3)

vy(x, y) = dx + ey + f (4)

where x and y are image coordinates. Now Eq. (2) can be
represented as:

v̂ = Sp (5)

S =
⎛
⎝
x y 1 0 0 0 0
0 0 0 x y 1 0
0 0 0 0 0 0 1

⎞
⎠ (6)

p = (
a b c d e f 1

)T
(7)

To estimate p, a cost function is minimized:

d(v̂, T̂) = v̂TTv̂ (8)

= dtot =
∑
i

d(v̂i, T̂i) (9)

where the summation is over all points of the region. Com-
bining Eq. (9) with Eq. (5), we have

dtot (p) =
∑
i

d(v̂i, T̂i) =
∑
i

pTSTi TiSip (10)

= pT (
∑
i

Qi )p = pTQtotp (11)

whereQi = STi TiSi . We require that Eq. (11) be minimized
with the constraint that the last element of p is 1.We partition
the matrices and vectors to achieve a closed form solution:

p =
(
p̄
1

)
,Qtot =

(
Q̄ q
qT α

)
(12)

dtot (p) = p̄T Q̄p̄ + p̄Tq + qT p̄ + α. (13)

Eq. (13) is minimized when

p̄ = −Q̄−1q, (14)

which gives us the velocity vector v if substituted to Eq. (5).

3.3 RGB-D Optical Flow Algorithm

As mentioned above, we solve the correspondence problem
by RGB optical flow algorithm using sequences of RGB
images, then map the pixels in these images to the point
clouds. Conveniently, ROS provides an API in which the
index of a particular pixel in the pixel vector for an image
frame corresponds to the point with the same index in the
point-cloud vector. This is represented as MapPixelToPt-
Cloud function. Since the velocity information is extracted
on a per-point basis, we average the velocities of points in
each cell to calculate the velocity of that cell. The procedure
is given in Algorithm 1.

Note that the algorithm is provided for the case of a static
sensor. When the sensor is moving with the robot, such as
is the case with our robotic wheelchair, it is necessary to
adjust for the camera’s velocity by subtracting the camera’s
(estimated) velocity vector from the extracted velocities.

3.4 Feature Vector

We represent our features in binary feature vectors. This rep-
resentation is common in IRL [3,15,42] for its simplicity,
but also produced robust results as shown in these papers.

In each grid cell, there is an associated binary feature
vector that describes pedestrian velocities, which consists
of pedestrian speed and direction, density, and distance to
the goal in that cell. Speed, density, and distance features are
represented using high, medium and low bins depending on
some thresholds. For instance, if the number of points in a
grid cell falls into a range that is specified as “high”, then
the binary value for high density bin is set to one. Same for
speed and distance features.
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Algorithm 1 RGB-D optical flow algorithm
Input: RGBImgt1, RGBImgt2, PtCloudt1, PtCloudt2

//Get correspondence information at each pixel in //RGBImgt1
2Dflow = FranebackOpticalFlow(RGBImgt1 , RGBImgt2)

//Loop through all the pixels in the RGBImgt1
for it1 = 1 to 640 do
for jt1 = 1 to 480 do
//Get the index of corresponding pixel in frame t2
it2 = it1 + 2Df low[it1, jt1].x
jt2 = jt1 + 2Df low[it1, jt1].y

//Map the pixels to the 3D points
[x1, y1, z1] = MapPixelToPtCloud(RGBImgt1[it1, jt1])
[x2, y2, z2] = MapPixelToPtCloud(RGBImgt2[it2, jt2])

//Infer RGB-D optical flow at the point (x1, y1, z1)
[vx, vy, vz] = [x2, y2, z2] − [x1, y1, z1]
save vx , vy, and vz in vectors Vx,Vy,Vz

end for
end for

Return Vx,Vy,Vz

Pedestrian direction feature describes whether there are
points (i.e. pedestrians) moving into or out of a cell. We also
represent these situations with three bins, each indicating
high, medium, or low risk of a cell. A high risk cell is a
cell with points flowing in from direct neighbouring cells, a
medium risk cell is a cell with points flowing in from second-
degree neighbouring cells (i.e. neighbour of neighbours), and
a low risk cell is a cell with points in the cell moving out of
it. If a cell has points moving out and points moving in from
its direct neighbours, then it is considered to be a high risk
cell. Note that these are absolute orientations indicating the
future positions of the points.

For a given cell, we consider a 12 dimensional feature
vector (four environmental features, density, speed, direction
and distance to the goal, represented in high, medium and
low binary values = 3∗4). The motivation behind employing
the binary feature representation is to mitigate the noise in
feature measurements. This is described in detail in Sect. 7.

4 Inverse Reinforcement Learning

To learn a socially adaptive cost function,we consider Inverse
Reinforcement Learning (IRL), a sub-field of Reinforcement
learning (RL). The traditional problem of RL is to infer an
optimal plan from a sequence of trajectories [36]. The IRL
problem, on the other hand, is to infer the cost function from
demonstrations of an expert [24], assuming that the expert is
unconsciously minimizing this (unknown) cost function for
planning its action sequence. The inferred cost function is
then used by an AI agent, such as a robot, to plan in new

situations in such a way as to achieve performance similar to
that of the expert.

The framework is particularly appealing for domains
where it is difficult to specify a cost function analytically,
and easier to provide demonstrations from an expert. In our
case, it is difficult to specify a socially adaptive cost function,
sowe resort to learning it fromdemonstration data.Variations
on the IRL concept have been examined in the last decade
[3,24,28]. We focus on the maximum-a-posteriori Bayesian
inverse reinforcement learning (MAP-BIRL), which was
shown to perform well in navigation-type scenarios [7].

We now formally define Markov decision processes and
IRL, and explain how these are used in our navigation frame-
work.

4.1 Markov Decision Processes

A Markov Decision Process (MDP) [4] is defined as a tuple
< S, A, T,C, γ >, where S represents the finite set of states,
A represents the finite set of actions, T (s, a, s′) represents
the state-to-state transition function, C(s, a) represents the
cost received when action a is taken in state s, and γ ∈ [0, 1)
represents the discount factor. The objective is usually to find
an optimal plan π∗ : S → A that minimizes the expected
sum of future costs, or the value function:

Qπ (s0, a0) = E

[
C(s0, a0) +

∞∑
t=1

γ tC(st , π(st ))|π
]

(15)

The above function defines a expected sum of future costs
executing a plan π after executing a0 at the current state, s0.
We denote the value function obtained by the optimal plan
π∗ as Q∗. The typical approach to solving for Q∗ is to use
dynamic programming [26].

4.2 MDP Formulation for Navigation

4.2.1 State and Action Sets

The state set, S, is defined as the local grid cells in front of
the robot. This gives the cardinality of S to be equal to the
number of local grid cells. Thus, each cell defines a state, and
a cell is reachable if the cell is one cell away from the current
cell. The action set, A, for our navigation system includes a
discrete action for moving into each cell that is adjacent to
the current cell, according to the state space defined above.
So for example if we assume a 3×5 local grid cells, there
are 3 possible motion actions for the robot (directly in front,
diagonally to the left, diagonally to the right). This action
space is somewhat specific to our wheelchair robot that uses
differential drive. However, a larger action set can easily
be accommodated for other types of robots, such as holo-
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nomic robots. The transition function, T (s, a, s′), between
each state is deterministic.

4.2.2 Cost Function

We define the feature function that maps a state and an action
to a twelve-dimensional binary feature vector:

φ : S × A → {0, 1}12 (16)

This feature function φ(s, a) tells us what is the feature of
the state that the robot will transition into by using action a
in state s. The cost function for an action a in state s cell is
calculated using a linear combination of associated features
in the next state:

C(s, a) =
d∑

i=1

wiφi (s, a) (17)

= w · φ(s, a), (18)

where d represents the dimension of the feature vector, wi

represents the weight on the i th feature, and φi (s, a) repre-
sents the value of the i th feature at state s. Upon the transition,
the robot will suffer the cost C(s, a). Intuitively, the weight
wi determines if a particular feature value is preferred over
another feature value. For instance, if the high density feature
has higher weight than low speed feature, then the robot suf-
fers a lower cost when moving into a cell that has low speed
feature than moving into a cell that has high density feature.
Manually setting these weights to come up with a socially
adaptive path planner is clearly not trivial. Hence the benefit
of the IRL algorithm, which allows us to learn these weights
from human demonstrations.

4.2.3 MAP-BIRL for Robot Navigation

Generally, in IRL the expert’smth demonstration is provided
to the agent in the form of H -step state and action sequences,
Xm = {(sm1 , am1 ), ..., (smH , amH )}. The expected cumulative
cost of executing action a in state s and following a pol-
icy π afterwards is given by the function Qπ (s, a), as in a
standard MDP. The goal in the MAP-BIRL framework is to
determine the cost function by computing the weight vector
w that maximizes the probability of the given demonstration
data X . We model the probability of a particular action â
using the soft-max function:

P(â|s,C) = exp(Q∗(s, â))∑
a∈A exp(Q

∗(s, a))
(19)

We assume that each action is independent of another, and
model the probability of the given M trajectories as follows:

P(X |C) =
M∏

m=1

H∏
h=1

exp(Q∗(smh , amh ))∑
a∈A exp(Q

∗(smh , a))
(20)

In this traditional IRL setting, the features associated with
each state are be fixed. Under this assumption, we can solve
for M different MDPs using dynamic programming, get M
different Q∗, and define our likelihood as:

P(X |C) =
M∏

m=1

H∏
h=1

exp(Q∗
m(smh , amh ))∑

a∈A exp(Q
∗
m(smh , a))

(21)

where Q∗
m denotes the optimal value function for mth MDP.

This is similar to the assumption made in [15].
Tofind theweight vectorw,maximum-a-posteriori (MAP)

inference is used on the log-likelihood of this model.

L(w) =
M∑

m=1

H∑
h=1

log

[
exp(Q∗

m(smh , amh ))∑
a∈A exp(Q

∗
m(smh , a))

]
(22)

The optimization target is then:

w∗ = argmax
w

{L(w)} (23)

Any optimization package can be used to solve this as the
target is convex [8].

4.2.4 Regularization

When trying to imitate the behaviour of the expert, it may
not be necessary to utilize all the features of the environ-
ment. For instance, in our experiments, we observed that the
speed feature surprisingly had almost no effect in navigation
behaviour, and only density, flux direction, and distance fea-
tures mattered (it is possible that in the case of navigation in
a crowd, people walk at very similar speeds, so the informa-
tion is not useful). In such cases, using all features may lead
to over-fitting the cost function, especially when we do not
have a lot of training data. Moreover, this reduces the num-
ber of features needed to be estimated. To mitigate this, we
employ a regularization technique within our IRL method.
This model selection technique prevents over-fitting by elim-
inating those features that are unnecessary given the dataset
using a penalty term. The popular choice for the penalty term
formodel selection is the L1 norm [39]. The optimization tar-
get then becomes:

w∗ = argmax
w

{L(w) + λ||w||1} (24)

Here, λ is the regularization parameter; higher λ means
fewer features are considered, and vice versa. Any optimiza-
tion package for L1 regularization can be used to estimate
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Table 1 Inferred weights for the cost function

Den Speed Dir DistGoal

High 1.0 0.0 1.7 0.3

Medium −0.5 0.0 1.2 −0.1

Low −1.2 0.0 −2.3 −0.4

the weights under this new objective, with a slight modifi-
cation to incorporate to solve for M number of MDPs. We
used the modification of Newton-Raphson method as shown
in [9], where at each iteration we solve the MDPs to get
Q∗

m,m = 1 . . . M with the cost function estimated for that
iteration.

4.2.5 Understanding the Cost Function

In our feature design, we associate a binary feature vector
to each grid cell which succinctly represents the flow and
density information for that cell. For instance, a cell could
have a binary feature vector that indicates high density and
speed moving towards the robot. During human demonstra-
tions, we compute the feature vector from the observable
quantities (Kinect readings, human controller choice). The
collection of such feature vectors defines our demonstration
data.

Now consider the Eqs. (18) and (21). The likelihood
in Eq. (21) is the likelihood of the demonstration data
defined using the value function based on the cost func-
tion in Eq. (18). As such, maximizing the likelihood via
Eq. (23) will find the weights of cost function such that
it will make the likelihood of feature vectors seen in the
demonstration data higher in the optimal plan obtained via
Q∗. In other words, our feature design allows the IRL mod-
ule to learn to prefer particular features, rather than learning
every possible mapping from Kinect sensor reading to an
action. As a consequence, our framework only needs to learn
the preferences from demonstrations, instead of all possible
appropriate actions under all possible navigation scenarios
and environments. We indeed show this capability in the
experiment section, by testing our framework under scenar-
ios that were not explicitly included in the demonstration
data.

As a consequence of learning from demonstrations, the
weights determined by the IRL module specify the priority
among features in determining a path. As noted in Sect. 4.2.3,
we calculate the cost of a cell s using Eq. (18). Table 1 shows
an example of typical weights as found during our experi-
ments.

Since we use binary feature vectors, we can associate an
intuitive meaning to each weight. Consider a case where the
robot has two reachable cells, one cell having high density,
low risk direction, and high distance to the goal, and another

Fig. 5 Planner architecture

cell having low density, high risk direction, and high distance
to the goal. Using (1), weights from the table 1, and the fact
that our features are binary, the first cell would have a cost
of 1 − 2.3 + 0.3 = −1.0, and the second cell would have
a cost of −1.2 + 1.7 + 0.3 = 0.8. These costs suggest that
from human demonstrations, we learned that it is safer to
move into a cell that has high density at the moment but the
obstacle in that cell willmove away, than into a cell thatmight
be unoccupied at the moment but an obstacle is moving into
that cell, given that these cells have the same distance to the
goal.

5 Planning

5.1 Planning Architecture

Since the RGB-D sensor has a limited range of view, two cost
maps are considered simultaneously to achieve a full plan-
ning architecture: a global one anda local one.Theglobal cost
map, given a priori, is in an absolute reference frame where
the goal is specified. The local cost map is in a local reference
frame where features and costs are constantly updated based
on the features as defined above. We define a path planning
architecture that handles these two maps simultaneously, as
shown in Fig. 5.

The architecture consists in fact of three layers: the global
and local path planners, and a low-level collision detec-
tor. This is similar to the idea of a three-layer architecture
suggested in [14], where you have several layers running
in parallel, each responsible for different tasks simultane-
ously. Like the architecture suggested in [14], we have a
fast-running collision detector that checks for obstacles in
front of the robot several times a second based on simple
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hand-coded rules. The higher layers are responsible for the
actual automatic path planning.

The specific role of each layer is as follows. Once the
global goal is specified by the wheelchair robot user, the
global path planner plans a path from the initial position to
the goal using the map known a priori. Then, the local path
planner, Algorithm 2, is executed to plan a path from the cur-
rent position to the sub-goal (Recall Fig. 1). The local path
planned is represented as a set of points, which we call way-
points, that needs to be followed in order for the robot to get
to the sub-goal. The next destination for the robot therefore
is the closest waypoint from the current robot position. The
robot either reaches for this waypoint or executes the global
path if the situation permits. While all of this is happening,
the low level collision detector runs in parallel and can stop
the robot if an obstacle is too close to the robot (e.g. < 1m).
This prevents collisions caused by unforeseen risks, such as
sudden appearance of obstacles or planning failure.

5.2 Local Path Planner

The local path planner, Algorithm 2, is an event-driven algo-
rithm that returns the next destination to be reached. It
proceeds as follows. It first waits for the set of feature vec-
tors associated with each cell to be passed in by the feature
extraction module. Once the feature vectors are received,
it calculates the cost at each cell using the feature vector,
weight vector, and Eq. (18). The algorithm then first checks
if a safe zone is reached. The safe zone is defined as a small
(e.g. 0.25 m) radius around the current waypoint, and the test
returns true if the robot reaches this circle. If the safe zone
test returns true, it then checks if an obstacle is detected. If
the safe zone test returns false, the local planner continues to
work towards the current waypoint. Note that the safe zone
test automatically returns true if the current waypoint cor-
responds to the global goal. The second test (for obstacle
detection) is true if one of the cells within the local action
radius (e.g. 4 m) has high density. This is a check to see if we
need to use our learned IRL cost function. Obviously this is
not necessary if there are no dynamic obstacles in the vicinity
of the robot, in which case a simple shortest path cost func-
tion (as optimized by the global planner) is quite sufficient. If
the safe zone test and the obstacle detection test are both true,
then the local planner optimizes a local path using Djkistra’s
algorithm over the learned feature-based IRL cost function.
Figure 6 shows an example of local path planning.

6 Experiments

We assess our socially adaptive navigation framework by
comparing the trajectories it produces with trajectories of
human drivers, and trajectories obtained by the Dynamic

Algorithm 2 Local Path Planning Algorithm
Input:FeatureVectors, WeightVector, GlobalPath,
CurrentWayPt
while RobotRunning do
// Waiting for feature vectors
WaitOn(FeatureVectors)

// Calculate cost at each cell using Eqn. (1)
GetCostAtEachCell(FeatureVectors, WeightVector)

if SafeZone Reached then
if Obstacle Not Detected then
// Reach for the global goal
return GlobalPath

else
// Plan a local path to the sub-goal
LocalPath = DjkistraGraphSearch()
NextDestination = ExtractWaypoint(LocalPath)
return NextDestination

end if
else
return CurrentWayPt

end if
end while

Window Approach (DWA) [13], a shortest-path type plan-
ning method that uses laser data. We use scenario-based
experiments, where the robot and human driver execute a
similar scenario (using the same initial conditions) and repeat
it many times, to objectively compare different measures of
social adaptivity. We consider three metrics to measure the
social adaptivity: closest distance to the pedestrian, avoid-
ance distance to the pedestrian, and average time to reach
the goal. Closest distance is calculated by measuring the dis-
tance from the center of the robot to the center of the closest
pedestrian, when they are closest throughout the execution of
a trajectory. Avoidance distance is measured by calculating
the distance from the center of the robot to the center of the
pedestrian when the angular velocity of robot is increased
to a particular threshold, in an attempt to avoid the pedes-
trian. Closest distance to the pedestrian is a good measure
of social adaptiveness because humans prefer to keep a par-
ticular distance to unknown individuals during a navigation.
Avoidance distance is an important factor of social adaptivity
because pedestrians expect the wheelchair to start avoiding
them from a certain distance. Besides these two metrics, we
also measure the average length of time to complete the tra-
jectory.We first describe the experimental setup, and then the
target scenarios. The rationale for selecting each scenario is
also provided in the corresponding section.

6.1 Setup and Navigation Scenarios

We deployed our algorithm on the Smartwheeler robotic
wheelchair [25]. To acquire the initial training data neces-
sary to estimate the weights, we asked an expert to manually
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Fig. 6 Example of planning and its corresponding black and white
image (bottom-right corner). The sub-goal is marked with a red cube,
and a waypoint marked with a white cube. In an attempt to avoid the
approaching pedestrians, the robot plans a path to join the pedestrians
on the right, who are moving in the direction of the goal

drive the Smartwheeler within our university building to
gather human trajectories for the IRL module. Specifically,
we recorded log files while driving, which included features
extracted and actions taken (i.e. choosing to moving into a
particular cell) during the drive. We collected 17 log files,
each of 1–3 min. The log files were collected in conditions
where there were multiple pedestrians approaching or mov-
ing away from thewheelchair, from various directions. These
were collected mostly in a lab, which is an open space filled
with people, and never in a hallway or through doors. These
were sent to the IRL module as state and action sequences;
the weights were then calculated offline. Note that the condi-
tions in which the data were collected are not identical to the
conditions for the experiments below. This is intentional, to
show robustness of the approach to a variety of conditions.
The same training set is used for the three test scenarios listed
below. For each of the scenarios, we also used the same initial
conditions (start positions and goals). For each path planning
approach (IRL, human driver, and DWA), we repeated each
scenario ten times and then calculated the average executed
trajectory length, and the mean and 95 % confidence inter-
val for the two metrics of social adaptivity. The robot was
operating at a constant speed, for both training and testing.

Fig. 7 Average trajectories executed by IRL (solid), human
driver (dashed) and DWA (circle-dashed). Left figure depicts the case
in which the pedestrian approached the robot and turned right (w.r.t to
the robot) to avoid the robot, and the right figure is when the pedes-
trian approached the robot and turned left to avoid the robot. Yellow
cube represents the goal that is approximately 7 m away. (Color figure
online)

6.2 Scenario 1: Pedestrian Walking Towards the Robot

In this scenario, a pedestrian and the robot start ten meters
apart, facing each other. Their respective goals are seven
meters directly forward of their initial position. We consider
this scenario because this passing behaviour is a common one
in everyday situations. Also, it is the type of scenario where
the robot can learn socially adaptive behaviours by observing
how human drivers use the pedestrian’s pose to determine in
which direction to turn, and by how much. For instance, we
noticed that when a pedestrian notices our robot approach-
ing, s/he often decideswhich direction to turnbefore the robot
turns. Consequently, the robot learns to turn in the opposite
direction to avoid the pedestrian. However, the robot needs to
turn enough so that there is a comfortable distance between
the pedestrian and the robot. Moreover, the robot needs to
turn from a good enough distance so that the pedestrian can
feel comfortable with the robot’s navigation behaviour, by
confirming the robot is indeed trying to avoid him.

Such behaviours are well illustrated in the average trajec-
tory execution shown in Fig. 7. Note that in this scenario,
the pedestrian randomly decides to turn left or right to avoid
the robot. We separated these two cases for the average tra-
jectory. As can be observed from the average trajectory, the
trajectory of the DWA planner is far from that of the human
driver, while the trajectory of the IRL planner is very close
to that of the human driver.
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Table 2 Metrics and their 95 %
confidence interval for social
adaptiveness for Scenario 1

Average vals Human DWA IRL

Closest distance (m) 1.64 ± 0.12 1.16 ± 0.13 1.62 ± 0.15

Avoid distance (m) 3.04 ± 0.33 2.64 ± 0.22 3.21 ± 0.17

Time to goal (s) 10.53 ± 0.38 11.01 ± 1.05 11.57 ± 0.78

The metrics for navigation performance are shown in
Table 2. The average value of closest distance measured in
the IRLplanner pedestrian is very similar to that of the human
driver, and much more conservative than the DWA planner.
The avoidance distance is a bit further than the human. The
time to reach the goal is a bit more than that of the human
driver.

6.3 Scenario 2: Pedestrian Walking Horizontally
to the Robot

In this scenario, the pedestrian approaches the robot from
the right side and moves towards the left, with respect to
the robot. The robot is moving perpendicularly to the pedes-
trian’s motion, trying to get to a goal that is seven meters
from the current position. This scenario illustrates well how
a human driver will trade-off the density feature of the pedes-
trian (represented in his current position), with the direction
feature (representing the pedestrian’s future position). Unlike
traditional path planners that try to simply avoid obstacles,
our planner can select a path to move to the pedestrian’s cur-
rent position, such as to avoid the pedestrian’s future position,
similar to what a human driver would do.

Figure 8 shows the comparison of average trajectory exe-
cuted by the human and the robot. In the DWA planner’s
trajectory, the robot tried to avoid the incoming pedestrian
by trying to avoid him at his current position. However, as
the avoidance trajectory interfered with the pedestrian’s tra-
jectory, the robot often had to repeatedly stop to wait until the
pedestrian passed. In contrast, the trajectories of the human
driver and IRL planner took into account the pedestrian’s
direction and avoided his future position. Such trajectories
are possible because the weights learned from the IRL mod-
ule prioritize the direction feature (future position) over the
density feature (current position).

Table 3 shows the results for the objectivemeasures. These
suggest that the DWA planner again gets very close, within
0.75 m to the pedestrian, while the IRL and human driver
trajectories maintained a 1.5 m distance to the pedestrian.
Also in terms of avoidance distance, DWA started avoiding
the pedestrian relatively later than the human driver and the
IRL planner. The avoidance distance of the IRL planner was
a bit closer than that of the human driver. This is likely due
to the limited field of view of the Kinect, compared to that of
human vision, which makes horizontally approaching obsta-
cles harder to detect. The time to reach the goal was almost

Fig. 8 Average trajectories executed by IRL (solid), human
driver (dashed) and DWA (circle-dashed). when a pedestrian
approached the robot from the right side. The IRL and human driver
moves towards where the pedestrian is, while DWA moves away from
him

the same for the IRL planner and human driver. The DWA
planner required more time, due to its repeated stop-and-go
behavior.

6.4 Scenario 3: Multiple Pedestrians

In this scenario, we have multiple pedestrians approaching
the robot from the front at a distance of 3–4 m, and a pedes-
trian that is moving parallel to robot to its left (and in the
direction of the goal). The goal is set 6m away from the front
of the robot. This scenario shows the robot’s ability to join a
flow direction that is in the direction of the goal, while simul-
taneously avoiding an opposing flow direction. As argued in
[15], this is one of the essential abilities of socially adaptive
path planners.

The average trajectories are shown in Fig. 9. We observe
that the trajectories of the human and IRL planner initially
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Table 3 Metrics and their 95 %
confidence interval for social
adaptiveness for Scenario 2

Average vals Human DWA IRL

Closest distance (m) 1.49 ± 0.17 0.75 ± 0.05 1.50 ± 0.15

Avoid distance (m) 1.77 ± 0.15 1.15 ± 0.14 1.54 ± 0.10

Time to goal (s) 11.60 ± 0.25 13.24 ± 0.38 11.63 ± 0.30

Table 4 Metrics and their 95 %
confidence interval for social
adaptiveness for Scenario 3

Average vals Human DWA IRL

Closest distance (m) 1.00 ± 0.06 0.86 ± 0.13 1.13 ± 0.15

Avoid distance (m) 3.46 ± 0.07 3.05 ± 0.14 3.55 ± 0.12

Time to goal (s) 9.54 ± 0.50 12.10 ± 1.70 8.60 ± 0.30

Fig. 9 Average trajectories executed by IRL (solid), human
driver (dashed) and DWA (circle-dashed). It initially turns left to avoid
the incoming crowds that moves towards the robot, and to join the
pedestrian that is moving away from the robot. After the incoming
crowds are avoided, it moves towards the goal

avoid the incoming crowd and join the pedestrian moving
towards the goal, following him for a while until the crowd
is avoided. After the avoidance, both trajectories approach
the goal. The DWA planner’s trajectory also initially avoids
the incoming crowd, but it abruptly stops when the lateral
pedestrian appears in front of the robot. As the pedestrian
approaches the goal, the DWA planner tries to avoid him by
making an unnecessary turn right before reaching the goal.
The IRL planner shows a trajectory that is a bit different from
the human driver, in that it reaches the goal sooner than the

humandriver does. This is because once the crowd is avoided,
the high density feature in the corresponding cells are set to
low, and the distance feature (which is more important than
the low density feature) contributesmore to the cost function.
As a result, the robot immediately tries to approach cells that
are closer to the goal.

The objective metrics are shown in Table 4. We observe
that despite the disparity in the average trajectory shown in
Fig. 9, the measured closest distance and avoidance distance
of the IRL planner are very close to that of the human driver.
Moreover, the IRL planner actually reaches the goal faster
than the human driver, by reaching for cells that are closer to
the goal cell. The DWA planner in this scenario performed
worse than the other two planners. It got closer to the pedes-
trian, sometimes within 0.6 m, and avoided the incoming
crowd relatively later than the human driver. Its average time
to reach the goal is also significantly longer than the IRL
planner.

6.5 Crowded Hallway

We place the robot in a busy hallways of a university building
during normal school hours, as shown in Fig. 10.Note that the
robot has never seen this environment before (i.e. no expert
demonstrations are performed in this setting.) The goal for
the robot is to get from one end of the hallways to the other
while avoiding pedestrians as well as a few static obstacles
such as stairs and garbage cans along the way. The purpose
of this experiment is to show that the method is sufficiently
robust for non-controlled environments, and in particular that
the cost function learned can be used in previously unseen
settings.

For this scenario, we do not provide trajectory compar-
isons. Since the pedestrians were not moving in a predefined
manner as they did in our previous scenarios, crowd situa-
tions from one run to another varied significantly, making
direct trajectory comparisons meaningless.

We repeated the experiment ten times using each of the
three methods (IRL controller, DWA planner, and a human
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Table 5 Metrics and their 95 %
confidence interval for social
adaptiveness for the Crowded
Hallway scenario

Average vals Human DWA IRL

Closest distance (m) 0.97 ± 0.06 0.73 ± 0.02 1.06 ± 0.08

Avg avoid distance (m) 1.06 ± 0.14 1.01 ± 0.07 1.32 ± 0.11

Time to goal (s) 41.25 ± 2.15 45.33 ± 2.61 49.40 ± 3.56

Human intervention (%) 100 ± 0 68.22 ± 0.68 18.18 ± 1.58

Fig. 10 A picture of the hallway

controller). These repetitions were used only for evaluating
each approach, not for re-training the system (we used the
IRL system that was trained in the lab without any modifi-
cation). In all cases, the robot was required to travel from
one end of the hallway to the other and back. The results are
shown in Table 5. For this scenario, we allowed a human, sit-
ting on the wheelchair, to intervene when deemed necessary
during the navigations.Wemeasured the human intervention
percentage during the autonomous navigations computed by
counting the number of velocity commands that human sent
via remote controller, and divide it by the total number of
velocity commands executed by the robot.

As the results show, IRL was very similar to the human
driver in terms of closest distance to a pedestrian. How-
ever, IRL showed several conservativemotionswhenmaking
avoidance motion; compared to human, the avoid distance
was higher on average. Most of human interventions for IRL
was due to the limited sensing. In other words, because of
limited field of view of Kinect, it could not see the people
behind or right between the robot. However, we believe this
problem can be resolved by fusingmultiple sensor inputs (i.e.
having Kinect at the back and sides, not just at the front). For
DWA, the human often had to intervene when the robot was
stuck in a human crowd, as it does not have the ability to join
and follow the crowd. As for time to goal, DWA was able to
get to the goal faster than IRL as the human operator was in
control most of the time.

In addition to the social adaptiveness metric, we provide
the video recorded from the on-board Kinect on the robot
during a sample of this experiment.1

7 Discussion

In this paper, we proposed a socially adaptive path planning
framework that closely resembles the navigationbehaviour of
a human operator. Our work was motivated by the realization
that for assistive robots that interact with humans on a daily
basis, it is crucial to take into account the social variables
to provide seamless navigation in environments filled with
humans.

There were several challenges involved in this work. The
main challenge was in defining the cost function over social
variables. Our intuition was that while it is hard to manually
define a cost function based on such social variables, it is
easier to learn the cost function from a human demonstrator,
who is instinctively aware of such variables.We employed an
IRL framework to resolve this challenge. The other challenge
was the integration of the IRL framework with a real robot
navigation system. This involved developing an optical flow
algorithm based on the RGB-D sensor, designing an MDP
and an appropriate navigation architecture, and proposing a
new local path planning algorithm that works in accordance
with the designed architecture.

Unlike previous works [15,37], our framework was sub-
mitted to a thorough empirical evaluation with a robot
platform. Using scenario-based experiments, we showed that
the behaviour achieved by our framework closely resem-
bles trajectories produced by a human operator, as illustrated
by the social adaptivity metrics and average trajectories
presented in the experiment section. Specifically, in the
first scenario we observed that trajectories of DWA, which
employs a standard cost function based on occupancy of grid
cells, are not socially adaptive as it drives too closely to the
pedestrian and avoids the pedestrian too late. The IRL tra-
jectory, in contrast, closely resembled the human driver’s
trajectory which likely made both pedestrian and the person
on the robot feel more comfortable and safe. In the second
scenario, ourmethod successfully avoided the future position

1 http://www.youtube.com/watch?v=T9p-prVXr0M
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of the pedestrian, whereas the DWAplanner tried to avoid the
current position of the pedestrian and had to repeatedly stop
and restart. This again shows that our navigation algorithm
is socially adaptive as it learned from the human demonstra-
tions that the future positions of moving pedestrians is more
important than their current position. In the third scenario, we
showed the essential ability of socially adaptive path planner
- joining the flow of the crowd moving in the direction of the
goal. We hypothesize that the pedestrians will also feel more
comfortable with this behaviour, compared to the DWAbehi-
avor which tried to actively avoid the crowd. It is noteworthy
that our IRL approach used a low-cost RGB-D sensor, com-
pared to the expensive laser range-finder used for the DWA
strategy.

There are a few limitations in the work we described.
First, the estimated RGB-D optical flow is inherently noisy
and does not account for occlusions. This complicates the
well-known correspondence problem (i.e. identifying which
points from two different RGB scans correspond to the same
physical item). Another limitation is the fact that the IRL
framework performs best when given precise feature mea-
surements. As the cost function is linear in the features, if
these features are not measured precisely, the cost estimates
can be noisy, which can lead to poor planning. We employed
a binary feature vector representation with regularization to
alleviate this problem; however, the choice of base features
remains an open problem.

We performed experiments in three well-defined con-
trolled scenarios, as well as in an uncontrolled dynamic
human environment. The controlled experiments allowed us
to perform an objective comparison of the performance of
the three navigation planning approaches, while the uncon-
trolled experiment allowed us to demonstrate the ability of
our navigation framework in a real-world human environ-
ment. However, the noteworthy caveat is that due to the
limitations of ourRGB-Doptical flowmentioned in the previ-
ous paragraph, our approach could not be fully autonomous.
For instance, occlusions make our framework to avoid a per-
son right in front, but not the person occluded by the person
that is behind the person that the robot just avoided. However,
we believe that by employing more sophisticated approaches
for pedestrian movement tracking, such as [21], that our
approach can be fully autonomous.

In our experiments, we primarily compared our method
with a DWA planner. The original DWA has mostly proven
successful in static environments, and thus did not perform
very well in our domain. And although there are extensions
of the original DWA proposed for dynamical environment,
such as [31], these typically assume full observability of the
linear and angular velocities of all the dynamic obstacles in
the environment, which is infeasible in most human environ-
ments, such as those used in our evaluations. As mentioned
in Sect. 2.1, computing the velocity flow is already a diffi-

cult computer vision problem. One of the advantages of our
approach is that it can use any available feature, including
noisy, partially observable ones. While we consider a lim-
ited set of features in the current implementation, extending
the learning framework to a richer feature vector is trivial.

In future work, we also hope to combine natural language
commands tomake the navigation easier forwheelchair robot
users. Currently, the wheelchair uses a tactile interface to
allow users to specify the global goal; this poses limitations
for severely disabled individuals that cannot use the touch
interface [40]. In the short term,we should be able to facilitate
navigation via voice commands, by specifying the global
goal, or using commands such as “follow the right wall” in a
very crowded environmentwhere the robot cannot find avalid
path. There has been significant work in the area of language
grounding,where the goal is tomap themeaning of semantics
of natural language sentences with physical systems [22,38],
which suggests promising opportunities in this direction.
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