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Abstract For efficient social interactions, humans have
developed means to predict and understand others’ behav-
ior often with reference to intentions and desires. To infer
others’ intentions, however, one must assume that the other
is an agent with a mind and mental states. With two experi-
ments, this study examined if the human perceptual system
is sensitive to detecting human agents, based on only subtle
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behavioral cues. Participants observed robots, which per-
formed pointing gestures interchangeably to the left or right
with one of their two arms. Onset times of the pointingmove-
ments could have been pre-programmed, human-controlled
(Experiment 1), or modeled after a human behavior (Experi-
ment 2). The task was to determine if the observed behavior
was controlled by a human or by a computer program, with-
out any information about what parameters of behavior this
judgment should be based on. Results showed that partici-
pants were able to detect human behavior above chance in
both experiments. Moreover, participants were asked to dis-
criminate a letter (F/T) presented on the left or the right side
of a screen. The letter could have been either validly cued by
the robot (location that the robot pointed to coincided with
the location of the letter) or invalidly cued (the robot pointed
to the opposite location than the letter was presented). In this
cueing task, target discriminationwas better for the valid ver-
sus invalid conditions in Experiment 1 where a human face
was presented centrally on a screen throughout the experi-
ment. This effect was not significant in Experiment 2 where
participants were exposed only to a robotic face. In sum,
present results show that the human perceptual system is
sensitive to subtleties of human behavior. Attending to where
others attend, however, ismodulated not only by adopting the
Intentional Stance but also by the way participants interpret
the observed stimuli.

Keywords Turing test · Agency · Human–robot
interaction · Pointing · Spatial cueing

1 Introduction

In everyday lives, humans are almost always embedded in
a social context, which involves various types of interac-
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tions. This in turn necessitates understanding and predicting
others’ behavior. The human brain has developed mecha-
nisms, which use various hints that others provide as cues for
explaining their behavior: facial expressions, gaze behavior
or gestures. Several authors, e.g., [1,2] postulate that based
on such hints, humans infer mental states underlying the
observed behavior, which allows for explaining the behavior.
For example, if I see someone seated at a table and gazing
in the direction of a glass with orange juice, I might infer—
thanks to gaze being a social cue—that the observed person
is intending to grasp the glass, presumably with the desire of
drinking the orange juice. I, therefore, predict that the person
will next grasp the cup, lift it and bring it to his/her lips. This
sort of reasoning—the so-called mentalizing [2] or Theory
of Mind [1]—allows for explaining behavior and predicting
subsequent action steps.

However, it is important to note that before one can acti-
vate the process of mentalizing, i.e., attributing particular
mental states to the observed behavior, one needs to assume
that the observed entity is capable of having mental states.
In other words, one needs to treat the observed entity as a
rational agent with a mind. Dennett [3] conceptualizes this
as adopting the Intentional Stance. According to Dennett,
Intentional Stance is the best strategy for explaining behavior
of intentional systems. That is, when I want to explain and/or
predict the behavior of another human, I will be much more
successful when I refer to his/her mental states which might
underlie the observed behavior, rather than, e.g., low-level
physical states. For example, if I want to predict what a soc-
cer playerwill do in the nextmove, Iwill bemore successful if
I assume the soccer player is an intentional agent and refer to
his mental states such as “desire to win the game”, “intention
to score a goal”, etc. rather than when I refer to the current
state of particle dynamics in his body and environment. In
contrast, when I want to explain a certain chemical reaction
in a laboratory, I better refer to the physical properties of
particles, rather than assume their intentionality and refer to
their mental states. Dennett distinguishes three stances: the
physical, the design and the Intentional Stance; each being
best suited to the level of description at which one operates
in a given context.

Adopting the Intentional Stance has been shown to acti-
vate specific brain regions [4,5] and, importantly, modulate
mechanisms of social cognition, such as joint attention (i.e.,
attending to where others attend) [6,7]. That is, participants
were more ready to engage in joint attention (i.e., attended
where the observed entity gazed) when they believed that
the observed entity’s behavior was controlled by a human
(Intentional Stance adopted), rather than by a computer pro-
gram. This was also reflected in a modulation of an early
component of the EEG signal [7], namely the P1 occurring
around 100 ms post stimulus onset, indicating that the way a
stimulus is processed at the sensory level is affected by atten-

tional processes, which in turn are influenced by higher-order
cognition.

Adopting the Intentional Stance seems to be a plausible
adaptive mechanism, as in the course of interacting with
others, one needs to know and understand if the observed
behavior results from operations of the mind (and there-
fore can potentially carry intentional and socially informative
content) or is just a consequence of non-intentional behavior.
Tomasello [8] accounts for this with his distinction about two
types of intentions being communicated by social gestures: a
referential intention (where attention is oriented) and a social
intention (what is the reason to direct an interaction partner’s
attention to that location). Obviously, social intention ismiss-
ing in non-intentional systems, as an entity without a mind
cannot have intentional reasons to direct others’ attention to
a location of interest. Therefore, it seems indeed very impor-
tant to know whether the observed entity is an agent with a
mind, and thus, whether the entity’s behavior provides some
social meaningful content. To give an example, imagine that
you are driving a car and you observe that a car behind you
started blinking with its right blinker. You know that the car
behind you is being operated by your friend with whom you
are going on vacation, and that this way your friend signals
to you that she would want to turn right in the next crossing.
Your attention is therefore oriented towards the right—and
towards the location in which the next exit would appear. In
a different scenario, you might imagine that the car behind
you is actually pulled by your car on a rope, because it broke
down, and the electrical circuit controlling the blinkers is
broken. The blinkers randomly turn on or off. In this situa-
tion, you will probably not orient your attention towards the
direction indicated by the blinker. In fact, you might learn
to ignore the blinking completely. This example shows that
assuming intentionality is extremely important for the way
humans interpret behavior and for the way they react upon
the observed behavior.

1.1 Aim of the Present Study

In the previous studies [4–7] adopting the Intentional Stance
was the result of explicit instructions that participants
obtained from the experimenter. One of the key questions
that remains to be answered is: underwhat conditions humans
spontaneously adopt the Intentional Stance (attribute mind)
towards other agents. In other words, what are the specific
characteristics of behavior of an agent with a mind, and how
much is the human’s perceptual system sensitive to them.

We aimed at addressing this question with the use of a
type of “Turing test”. The concept of the Turing test was
first proposed [9] as a criterion for intelligence. Accord-
ing to Turing [9], attribution of intelligence to any entity
arises from observed behavioral cues; and this should con-
stitute a sufficient criterion for an intelligent mind. More
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recently, Pfeiffer et al. [10] developed an actual experiment
in which the logic of the Turing test was used. In their
study, participants observed an avatar and were told that
their interaction partner can be a computer or a human. Par-
ticipants’ task was to discriminate human behavior from a
computer program, although in reality, the avatar’s behavior
was always controlled by a computer program. The results
showed that humans attribute humanness to the avatar based
on assumptions they have concerning other humans’ behav-
ioral patterns. The study of Pfeiffer et al. [10], however,
did not test whether humans are sensitive to other humans’
behavior, as the authors always used a computer program that
controlled the behavior of the avatar.

Our study, in contrast, aimed at answering the question of
whether humans are sensitive to other human’s behavior and
if so,what are the parameters (even if very subtle) that provide
hints for detecting other humans through only observation of
behavior.

1.2 Design

To examine human ability to discriminate between behav-
ior of an agent from a mechanistic behavior, we introduced
a paradigm in two experiments in which participants inter-
acted with a robotic platform that had arms pointing in
various directions. In the two experiments, we used two
different robots to test the ability of participants to dis-
criminate human-like behavior. In the first experiment, two
robotic arms were placed in front of a static picture of a
human face, while in the second experiment we used a NAO
robot (AldebaranRobotics)with a fully robotic yet humanoid
appearance. A previous paper [11] investigated the effect of
the agent’s nature, and used images of a human face as well
as of a NAO robot for a gaze cueing task. They reproduced
an effect of validity on reaction times (RTs) for both agents,
as well as increased RTs when using the robotic face, which
they interpreted as a difficulty to disengage attention from a
novel stimulus. In our experiment, we investigated the effect
of the nature of agency (human vs. mechanistic) within the
same type of appearance (Human in Experiment 1; Robot in
Experiment 2).

In the present design, in some blocks, the onset time of the
armmovementwas controlled by a computer program, and in
someother blocks itwas controlledby an experimenter seated
in a separate room (Experiment 1) or modeled after human
behavior (Experiment 2). Participants performed a “Turing
test” by determining (at the end of the block) whether they
had interacted with a human or with a computer-controlled
interface. The only hint participants had concerning whether
the arms were controlled by a human or by a program was
variability in movement onset times in the human condition.
Importantly, the arm movements themselves and all other
factors were exactly identical across conditions. Participants

were not explicitly instructed regarding the hint they could
use to perform this judgment, which allowed testing how
sensitive the human perceptual system is to subtle human-
like behavioral characteristics.

Apart from the “Turing test”, participants performed a
task in which they discriminated a letter “T” or “F”. Before
the letter appeared, the robot arm would point either in the
direction of where the letter would then be presented (valid
trials) or in the opposite direction (invalid trials). The proce-
dure, therefore, followed the logic of a gaze-cueing paradigm
([6,7,12,13], see also [14] for a review). In gaze cueing para-
digms, a face stimulus is typically presented in the middle of
a computer screen. In the course of a trial sequence, the face
shifts gaze direction towards one of the sides of the visual
field. Subsequently, a target is presented (e.g., a letter), and
participants’ task is to detect, localize or discriminate the let-
ter. It is assumed that if attentional focus follows the direction
of the gazer’s eyes, target-related performance should be bet-
ter for the conditions in which the gazer looked towards the
side at which a target subsequently appeared (validly cued
condition), as compared towhen the gazer looked at the oppo-
site side (invalidly cued condition). Results typically show
this pattern [6,7,12,13].

The present paradigm followed a similar logic with the
only difference that instead of gaze direction, we used point-
ing movements. Pointing gestures are strong behavioral cues
in human interactions, showing readiness to interact with
another person [15], emerge in early developmental stages
as a declarative gesture in order to share attention [16,17]
and are a stronger cue than lexical information in early
childhood [18]. Even when pointing gestures are made by a
telepresence robot, human observers can better comprehend
spatial information provided by pointing gestures and ver-
bal instructions, as compared to when instructions are only
provided verbally [19,20]. Taken together, pointing gestures
are socially as important as gaze/head direction [21]; with the
crucial difference being that pointing inherently presupposes
an intention to direct others’ attention to some location, while
gaze can reflect a reflexive process of attention being oriented
to a location upon a salient environmental signal. Therefore,
we hypothesized that pointing gestures should be socially
more involving than gaze direction, and hence were better
suited to examiningmechanisms of social cognition in amore
naturalistic social interaction scenario. We expected partici-
pants to covertly attend the location where the robot pointed
and therefore discriminate target letter better (faster or with
higher accuracy) in the valid, relative to the invalid condition.
Moreover, we reasoned that participantsmight bemore likely
to covertly attend where the robot points (show larger valid-
ity effects) when the robot behavior would be perceived as
human-controlled, relative to when it would be perceived as
pre-programmed, because in the pre-programmed condition
participants would not adopt the Intentional Stance towards
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the robot behavior, and thus theywould not assume any inten-
tions and social content involved in the pointing gestures.

2 Experiment 1

2.1 Methods

2.1.1 Participants

Twenty-four participants (Mean age 22.21, SD 4.94; four
men) took part in this experiment for an honorarium. All
participants were healthy volunteers and had normal or
corrected-to-normal vision. Three participants were left-
handed. The experiment was conducted with the full under-
standing and written consent of each participant. Data of
two participants had to be discarded due to technical prob-
lems during data acquisition, which resulted in insufficient
amount of recorded data points.

2.1.2 Ethics Statement

The experiments were conducted at the Social Robotics Lab-
oratory, National University of Singapore. All participants
were healthy and adult. The experimental procedures con-
sisted of purely behavioral data collection (RTs and error
rates), and filling out a questionnaire. The procedures did
not include invasive or potentially dangerous methods and
were in accordance with the Code of Ethics of the World
Medical Association (Declaration of Helsinki). Data were
stored and analyzed anonymously. Participants gave written
consent and received monetary compensation for participat-
ing. These standard procedures are approved by the ethics
committee of the Department of Psychology, LMUMunich.

2.1.3 Stimuli and Apparatus

Stimuli were presented on one 17-inch monitor (Dell
E178FPC, 75 Hz refresh rate) and on two LCD displays
(84 × 48 pixels; diameter: 45 × 45 mm; Nokia 5110; with a
PCD8544 controller by Philips), see Fig. 1. Throughout the
entire experiment a picture of a static human face with a fixa-
tion cross between its eyes was displayed on themonitor. The
LCD displays were attached to the monitor, one on each side
of the monitor (15 cm from the middle of the screen, which
amounted to 7.1◦ of visual angle). The target stimuli, either
the capital letter F or T in black color, were presented on the
LCD displays, covering 0.71◦ in height and 0.62◦ in width
of visual angle. The participants were seated 120 cm from
the monitor and a chin rest ensured that participants were sit-
ting centered towards the monitor. Two approx. 15 cm long
robot arms were fixed below the monitor and could point
via two servo motors (continuous rotation servo motor, Par-

Fig. 1 Experimental setup of Experiment 1. In this example, the left
robot arm is pointing to the left LED display. The static face in the
middle was always the same and presented throughout all trials. The
LED displays on which target letters were flashed are visible as little
rectangles on the left and right side of the computer screen

allax Inc.) towards the LCD displays. A breadboard with 2
response keys (one marked as F and one as T) and a tone
burst generator was positioned on a table in front of the par-
ticipants.

In a separate room, a breadboard with a glowing LED
and a response key that was also connected to the experi-
mental setup was positioned in front of an experimenter. The
setup was controlled by a microcontroller board (Arduino
Mega 2560) with Hex-Schmitt-trigger-inverter (SN7414N,
Texas Instrument), Hex-non-inverting buffer (HEF4050BP,
NXP semiconductors) and voltage regulator (LM7805CT,
Fairchild semiconductors).

2.1.4 Procedure

Before the experiment, participants were shown the setup,
including the experimenter’s room. Participants were briefed
that they would engage in four blocks of the experiment
and that after each block they had to distinguish whether
the experiment was pre-programmed or human-controlled
by an experimenter. Each block consisted of 80 trials,
two of the blocks were human-controlled and two were
pre-programmed. The order of human-controlled versus pre-
programmed condition was randomized across participants.
During the experiment participants were seated in front of
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Fig. 2 Example trial sequence. Human-controlled condition (left) and
the pre-programmed condition (right). A trial always started with a
preparatory event lasting for 500 ms with robot arms in a “resting”
position, face presented centrally and fixation cross between the eyes
of the face. Subsequently, a beep was played for 1000 ms, signaling
beginning of the trial. In the human-controlled condition, subsequent
to the beep, a 600 ms break was introduced and then an LED lit up
in the experimenter’s room. The experimenter was asked to press the
control key as fast as possible upon detecting the LED signal. In the
pre-programmed condition (right), the break between the offset of the

beep and the onset of the movement lasted for 1000 ms. Immediately
after the experimenter’s response (or after the 1000 ms break), a robot
arm started moving either towards the left or towards the right LED dis-
play. The armmovement lasted for 500ms until the arm reached its final
position. After the armmovement ended, an F or T letter was flashed on
one of the LED displays (either the one that the arm pointed to—valid
trials; or the opposite display—invalid trials). The letter was present
on the display for 200 ms. Participants responded to letter identity, and
upon their response, the robot arm returned to the initial position and a
trial ended

a computer monitor, wearing headphones to filter out back-
ground noise. The beep of the burst generator in front of
them, however, was audible through the headphones. To
start the experiment participants were instructed to press
any key as soon as they were ready. Figure 2 presents the
trial sequence. The trial started with a beep of 1000 ms. In
the pre-programmed condition a pause of 1000 ms followed,
after which either the right robot arm moved to point to the
right LCD screen or the left robot arm moved to point to
the left LCD screen (the right vs. left arm moved pseudo-
randomly throughout a block of trials). After 500 ms the
robot arm reached its final position and either the letter F
or T flashed on one of the LCD displays for 200 ms (letter
identity and side of presentation were pseudo-randomized
throughout a block of trials). Participants were instructed to
respond to the target stimulus as fast as possible by press-
ing left key for the letter “F”, and right key for the letter
“T”. Reaction times (RTs) of participants were calculated
from onset of target’s appearance to onset of participants’
response. As soon as the response was given, the robot arm
moved down towards its starting position and the next trial
started. Participants were told to keep their eyes fixated on
the fixation cross displayed on the monitor throughout the
whole trial and not to look at the LCD screens. They were
instructed that they would have a high likelihood of missing
the appearance of the target, if theymoved their eyes to one of
the LCD screens. With this instruction and manipulation, we

aimed atmeasuring effects of covert attention, and not effects
related to eye movements. The human-controlled condition
differed from the pre-programmed condition in that 600 ms
after the beep, an LED in the experimenter’s room glowed,
signaling the experimenter to press the key which triggered
an arm movement of the robot. Hence, the experimenter’s
task was to perform a simple reaction time task, by pressing
the response key as fast as possible upon detecting the LED
flash. As the whole room of the experimenter was occluded
from the view of the participants, participants did not see
the LED flashing. As soon as the experimenter pressed the
response key, the robot arm moved. It was programmed such
that the right or the left arm would move pseudo-randomly
upon the response of the experimenter, similarly to the pre-
programmed condition, in which the left or right arm also
moved pseudo-randomly with equal likelihood for either of
the two moving on a given trial. Mean RTs of the experi-
menter were estimated as amounting to ca. 400 ms, based on
a pilot experiment. Therefore, in the human-controlled con-
dition, the overall delay between the beep and the onset of the
robot arm movement amounted to ca. 1000 ms on average,
and thus was comparable to the pre-programmed condition.
After the 1000 ms delay (relative to the beep) and the arm
movement onset, the human-controlled condition continued
in the same fashion as in the pre-programmed condition, see
Fig. 2. RTs of the experimenter were recorded from onset of
the LED glowing to onset of the experimenter’s response.
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After each block, participants had to fill out a brief ques-
tionnaire, in which they had to indicate if the block had been
human-controlled or pre-programmed. As this experiment
aimed at examining cognitive mechanisms involved in social
interactions, an autism quotient (AQ) questionnaire [22]—
which measures general social aptitude and autistic traits not
only in clinical but also healthy populations—was adminis-
tered in order tomeasure participants’ social aptitude.Data of
one participantwere excluded from analyses due to an unusu-
ally high AQ score (AQ = 34; mean AQ score of remaining
participants amounted to 20.05, SD = 5.6).

2.1.5 Data Analysis

2.1.5.1. Sensitivity to Human Behavior Sensitivity to human
behavior was tested by comparing the accuracy of responses
in the humanness judgment against chance, which in this
case, i.e., two-alternative forced-choice task, was at the
level of 50 %. Subsequently, we performed an analysis on
the experimenter’s mean, median RTs and standard devia-
tions for each separate block in order to examine whether
any of these would be predictive of participants’ accuracy
with respect to detecting the human behavior. We compared
experimenter’s mean, median RTs and SDs for blocks in
which participants correctly detected human behavior vs.
blocks in which participants responded erroneously claim-
ing that the behavior was pre-programmed. For the analyses
related to sensitivity to humanness, data of one participant
were excluded due to presence of extremely long RTs of
the experimenter (MaxRT = 16 s) and thus very large
standard deviation (MSD = 1999). Note that for the compar-
ison between human-controlled blocks in which participants
responded correctly versus erroneously, we could analyze
data only of those participants who had responses in both
types of blocks. That is, data of participants who were 100 %
correct or 0 % correct could not be analyzed. Hence, data of
only 9 participants entered these analyses.

2.1.5.2. Target Discrimination Performance First, the RT
data were tested for normality through visual inspection
of frequency distributions as well as through Kolmogorov–
Smirnov (K–S) tests. The raw RT data were not normally
distributed, as indicated by the positive skewness (67) of the
distribution (Fig. 3) as well as a significant difference from
the normal distribution, according to the K–S test: D (5245)
= .451, p < .001. After exclusion of outliers (RTs shorter
than 200 ms and longer than 1200 ms) the data remained not
normally distributed (Fig. 4), D (3954) = .122, p < .001.1

1 Note that after additional exclusion of RTs +/− 2 SD from means
of individual participants or log-transformation of the data (after exclu-
sion of RTs > 200 and < 1200), the RT data remained not normally
distributed, D (3912)= .089, p< .001, and D (3912)= .027, p< .001,
respectively.

Fig. 3 Frequency distribution of participant RTs, Experiment 1

Fig. 4 Frequency distribution of participant RTs in Experiment 1 after
exclusion of RTs < 1200 and >200 ms

The distribution of experimenter’s RTs was also analyzed
with respect to normality.Also these datawere not distributed
normally, D (2840) = .278, p < .001, Fig. 5.

As the RT data were not distributed normally (were
positively skewed), we calculated median RTs for each par-
ticipant, and each validity condition. Medians represent the
central tendency better than means for skewed distributions.
Before we calculated the median RTs, we excluded RTs <

200 ms, as they constituted erroneous key presses rather
than actual reaction times. Two separate analyses were per-
formed on the median RTs: one for the actual humanness
(actual human-controlled vs. pre-programmed conditions,
independent of participants’ response in the humanness judg-
ment) and the other for the perceived humanness (perceived
human-controlled vs. preprogrammed, independent of actu-
ally presented condition) with validity (valid vs. invalid)
and humanness (human-controlled vs. pre-programmed) as
within-participants factors. Analogous analyses were per-
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Fig. 5 Frequency distribution of experimenter’s RTs in Experiment 1

Fig. 6 Scatter plot of the relationship between participants’ median
RTs and experimenter’s median RTs. In line with the result of Pearson’s
correlation analysis, there is no trend for a linear regression between
the scores

formed for error rates in the target discrimination task. To
test the relationship between experimenter’s RTs and par-
ticipants’ RTs, we correlated median experimenter’s RTs
with median participant RTs for each individual participant
(Fig. 6).

2.2 Results

2.2.1 Sensitivity to Human’s Behavior

Participants were able to detect human behavior with the
average accuracy level of 64 %. This level of performance
was significantly above chance, t (19) = 2.85, p = .01, two-

Table 1 Average median RTs (ms) as a function of validity and
actual humanness together with the mean differences (MDiff ) between
the validity conditions, and standard errors of the mean differences
(SEMDiff )

Human Pre-programmed

Valid 425 383

Invalid 462 432

MDiff 37 49

SEMDiff 20 26

tailed. Neither the experimenter‘s mean RTs nor the median
RTs did predict participants’ response (“Mean/Median Per-
ceived as human” = 441 ms/356 wms vs. “Mean/Median
Perceived as pre-programmed” = 442/365 ms, p > .94 for
the mean experimenter’s RTs and p > .52 for the median
experimenter’s RTs). Interestingly, the standard deviations
in experimenter’s responses for an entire block were numer-
ically larger (MSD = 267 ms) when participants responded
“human-controlled” than when they responded “pre-
programmed” (MSD = 210 ms), and this difference was
marginally significant, t (8) = 1.423, p = .096, one tailed,
MDiff = 57 ms, SEMDiff = 40.

2.2.2 Performance in Target Discrimination Task

2.2.2.1. RTs in Actual Humanness Conditions A 2 × 2
ANOVA with the factors validity (valid vs. invalid) and
actual humanness (human-controlled vs. pre-programmed)
on median RTs in the target discrimination task revealed the
main effect of validity (RTvalid = 404 ms, SEM = 26 vs.
RTinvalid = 447 ms, SEM = 36, MDiff = 43 ms,SEMDiff =
18.83), F(1, 20) = 5.215, p = .033, η2p = .207. The
effect of actual humanness (RThuman−controlled = 443 ms,
SEM = 32 vs. RTpre−programmed = 407 ms, SEM = 32,
MDiff = 36 ms, SEMDiff = 21), was not significant, p =
.107. The interaction between these two factors also did not
reach the level of significance, p = .693, see Table 1.

2.2.2.2. RTs in Perceived Humanness Blocks A separate
ANOVA with the factors validity (valid vs. invalid) and per-
ceived humanness (human-controlled vs. pre-programmed)
showed no significant effects or interactions, all Fs < 3,
ps > .1. However, the median RTs in the blocks in which
behavior was perceived as human were numerically faster on
average (408 ms), relative to the blocks in which the behav-
iour was perceived as pre-programmed (431 ms), MDiff =
32 ms,SEMDiff = 18.

In the analysis of trials in which experimenter’s RTs
were > 350 and < 80 ms (mean RT of the experimenter
= 401.09 ms, and not significantly different from the pre-
programmed condition), none of the effects were significant,

123



774 Int J of Soc Robotics (2015) 7:767–781

all Fs < 1, ps > .35. Numerically, however, the perceived
human-controlled blocks yielded faster median RTs (M =
409, SEM = 39) than the perceived pre-programmed blocks
(M = 438, SEM = 26, MDiff = 29 ms,SEMDiff = 47, N
= 9), which is in line with the pattern of results when all
the trials were analyzed. Thus, analyzing only those trials, in
which the experimenter’s RTs were on average similar to the
timing in the pre-programmed condition did not yield differ-
ent results than analyzing all trials—a result similar to the
“actual humanness” condition.

2.2.2.3. Relationship Between Experimenter’s RTs and Par-
ticipants’ RTs. To test if the experimenter’s RTs did not
influence the participants’ RTs, we conducted an analysis
of correlation between the median RTs of the experimenter
and median RTs of the participant for each individual par-
ticipant. Pearson’s correlation coefficient revealed that the
experimenter’s RTs were not significantly correlated with
participants’ RTs, r (19) = .204, p = .375, cf. Fig. 6.

2.2.2.4. Error Rates An analysis on error rates in the actual
humanness condition revealed no significant effects or inter-
actions, all Fs < 3.5, ps > .08. Numerically, the pattern
of error rates paralleled RT results: less errors were com-
mitted in the valid trials (M = 5.7 %, SEM = 1.1) as
compared to invalid trials (M = 8.6 %, SEM = 1.9, MDiff =
2.9 %, SEMDiff = 2.22); and less errors were committed
in the pre-programmed (M = 5.7 %, SEM = 1.6) as com-
pared to human-controlled condition (M = 8.6 %, SEM =
1.6, MDiff = 2.9 %, SEMDiff = 2.23). Analogous analysis
on error rates in the perceived humanness blocks revealed
no significant effects or interactions, all Fs < 3, ps > .1.
Numerically, the pattern of error rates paralleled RT results:
less errors were committed in the valid trials (M = 4.5 %,
SEM = .9) as compared to invalid trials (M = 9.4 %,
SEM = 2.7, MDiff = 4.9 %, SEMDiff = 2.84); and less
errors were committed in the pre-programmed (M = 7.2 %,
SEM = 1.2) as compared to human-controlled condition
(M = 7.9 %, SEM = 1.9, MDiff = 0.7 %, SEMDiff =
0.66).

3 Experiment 2

Experiment 2 was designed in order to control for the appear-
ance of the social agent. By substituting the static human face
with a robot, we sought to test whether there might be any
biases in Experiment 1 caused by the human face. Further-
more, in Experiment 2, the experimenter did not control the
onset of the arm movements of the robot online, as in Exper-
iment 1, but was only believed to do so (through instruction
manipulation). In reality, the “human-controlled” condition
was implemented through pre-recorded reaction times of an

experimenter, in order to have same onset variability across
all participants.

3.1 Methods

3.1.1 Participants

Eighteen adult participants (Mean age: 24.6, SD: 3.47; six
men) took part in the second experiment. All participants
were healthy volunteers and had normal or corrected-to-
normal vision. The experiment was conducted with the full
understanding and written consent of each participant.

3.1.2 Ethics Statement

Experiment 2 was conducted at the Institute of Cognitive
Systems, Technical University of Munich. All participants
were healthy and adult. The experimental procedures con-
sisted of purely behavioral data collection (RTs and error
rates), and filling out two questionnaires. The procedures did
not include invasive or potentially dangerous methods and
were in accordance with the Code of Ethics of the World
Medical Association (Declaration of Helsinki). Data were
stored and analyzed anonymously. Participants gave written
consent and receivedmonetary compensation or course cred-
its for participating. These standard procedures are approved
by the ethics committee of the Department of Psychology,
LMU Munich.

3.1.3 Stimuli and Apparatus

Stimuli were presented on a 23-inch LCD monitor (iiyama
ProLite B2409HDS, 60 Hz refresh rate). The target stimuli,
either the capital letter F or T in white color, were presented
on the monitor, covering 0.71◦ in height and 0.62◦ in width
of visual angle. The participants were seated 125 cm from the
monitor, and a chin rest ensured that participants were sitting
centered towards the monitor. The participants responded by
using a keyboard in front of them. A NAO robot (Aldebaran
Robotics) was positioned in a sitting pose 20 cm in front
of the screen with the head being positioned exactly in the
middle of the screen. The robot’s arms were used to point
to the screen for the cuing paradigm, Fig. 7. In the resting
position, both armswere raised up (as in Fig. 7, left arm). The
cueingwas performed by one of the arms bending backwards
towards the respective part of the screen (Fig. 7, right arm).
The target letter would appear between the location pointed
by the arm and the head (so that the location of the target
(left/right) would be cued by the arm, but the arm would not
occlude the target), see Fig. 7. The robot’s eyes were made to
blink to signal the beginning of each trial. The experimenter
sat in the same room as participants, but was occluded from
the participants’ view.
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Fig. 7 Experimental setup of Experiment 2. In this example, the robot
is pointing to the right part of the screen with the right arm (left arm
from the robot’s perspective) by bending it backwards. The left arm
(right arm from the robot’s perspective) is in its “resting” position. This
is an example of a valid trial, in which the target letter (F) appears also
on the right side (same side as NAO’s arm is pointing to)

3.1.4 Procedure

Before the experiment, participantswere shown the setup and
were briefed on both tasks of the experiment. They were told
they would run 21 blocks where the robot movements might
either be pre-programmed or online controlled by an exper-
imenter. In reality, all movements were pre-programmed.
Blocks labelled as “human-controlled” differed only in the
variability of the timing of the movement onset of the robot’s
arms. For these blocks, we used a list of reaction times
recorded before the experiment (mean RT = 465 ms, median
RT= 438ms, SD= 140ms), while “pre-programmed” blocks
used a single value (465 ms), corresponding to the mean of
the human reaction times. As in Experiment 1, we added a
fixed pause of 600 ms to these times before movement onset.
During the experiment, participants were seated in front of
the robot and the monitor, wearing headphones to filter out

background noise. The trial started with the robot blinking its
eyes for 300ms. In the “pre-programmed” condition, a pause
of 1065ms followed, after which one of the arms of the robot
(pseudo-randomly selected before the beginningof the exper-
iment) would move to point to the screen behind him. In the
human condition, this pause varied as explained above, with
a mean of 1065 ms. 1000 ms after onset, the movement was
finished, and either an F or a T (pseudo-randomly selected)
would flash for 200 ms on the monitor. Participants were
instructed to respond to this as fast and accurately as possi-
ble by either pressing the left key for F, or the right key for
T. Their reaction times were measured from the onset of let-
ter appearance to the pressing of the key. After the response,
the robot moved its arm back into position, and the next trial
started. As in Experiment 1, participants were asked to keep
their eyes fixated on the face of the robot for the entire trial.
After 24 trials, they were asked whether they believed the
robot had been controlled by the experimenter or had been
pre-programmed, and they answered by pressing a key (P
for pre-programmed; H for human-controlled) on the key-
board. The keys were covered with colored stickers (with
H/P written on them) for clarity. At the end of 21 blocks,
participants filled a questionnaire where they indicated what
cues led them to their choices. Additionally, an autism ques-
tionnaire [22] was administered, similarly to Experiment 1
(mean AQ score of participants: 15.83, SD = 5.59).2

3.1.5 Data Analysis

The first block for all participants served as practice, and was
thus excluded from all analyses. Data of one participant were
excluded from all analyses due to abnormally high reaction
times in the target discrimination task (median RT = 1122,
mean of other participants: 586 ms, SD = 116 ms). Data
of an additional participant were excluded due to very high
error rates in the letter discrimination task (10.8 % for the

2 On a subset of eleven participants, a control condition was conducted
after the end of the experiment (2 × 24 trials), to control for the over-
all performance in the letter discrimination task. In this condition, the
robot did not move its arms and always remained in a neutral position
after its eyes blinked to signal the start of a trial. There was also no
question about the perceived humanness of the block; participants were
instructed to only respond to the appearance of the letters in the screen.
The same participant that was excluded from other analyses was also
excluded from the analysis of the control condition data. Results showed
that—when compared to the experimental conditions on the same sub-
set of participants—the level of accuracy was similar and the RTs
were slightly higher (MRT = 763 ms, MAccuracy = 97%) versus “pre-
programmed” condition (MRT = 685 ms MAccuracy = 97 %) or the
“human-controlled” condition (MRT = 674 ms, MAccuracy = 97 %),
but not significantly different, F < .2, p > .8, meaning that the cueing
procedure did not impair overall performance in the target discrimina-
tion task.
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Fig. 8 Frequency distribution of participant RTs, Experiment 2

excluded subject, mean of other participants: 2.5 %, SD =
1.8 %).

3.1.5.1. Sensitivity to Human Behavior As in Experiment 1,
we compared judgments of humanness against chance, and
analyzed whether the mean/median reaction times or stan-
dard deviation in the “human-controlled” condition were
predictive of participants’ accuracy, by comparing blocks
correctly identified as human to those falsely identified as
“pre-programmed”.

3.1.5.2. Target Discrimination Performance As in Experi-
ment 1, RT data were tested for normality. Both subjects’
and the experimenter’s RT distributed were found to be
significantly different from a normal distribution and had
positive skewness. For the experimenter’s RT: D (240) =
.107, p = .008. For the raw participants’ RT data: D (7860)
= .177, p < .001. Outliers (RTs < 200 ms and > 1200 ms)
made up 2.8 % of data. After excluding them, the RT data
remained significantly different from a normal distribution:
D (7464) = .090, p < .001. Figures 8 and 9 show the aggre-
gated reaction time distributions of subjects before and after
exclusion of outliers, respectively. Figure 10 shows the dis-
tribution of experimenter reaction times, as presented to the
participants.

Median RTs as well as error rates were calculated for each
participant and each validity condition, as in Experiment 1.
Separate analyses were conducted for perceived humanness
(“human-controlled” vs. “pre-programmed”, as selected by
the participants, independent of actual humanness condition)
and for actual humanness (“human-controlled” vs. “pre-
programmed”, as presented to the participants, independent
of their responses). We excluded trials where participants
made a discrimination error, as well as those trials where
RTs were below 200 ms or above 1200 ms (Fig. 9).

Fig. 9 Frequency distribution of participant RTs in Experiment 2, after
exclusion of outliers below 200ms and above 1200ms

Fig. 10 Frequency distribution of experimenter’s RTs

3.2 Results

3.2.1 Sensitivity to Human’s Behavior

In Experiment 2, participants were also able to detect human
behavior above chance, the average accuracy level being
57 % (SEM = 2.7). This level of performance was sig-
nificantly above 50 % (chance level), t (15) = 2.55, p =
.022, two-tailed. The accuracy in the humanness judgment
(identifying the “human-controlled” condition correctly vs.
perceiving it incorrectly as “pre-programmed”) could be
significantly predictedby themean reaction timeof the exper-
imenter in the “human-controlled” blocks: (mean RT for
error blocks: 454 ms, mean RT for correct blocks: 476 ms,
t (15) = 3.062, p = .008). It was also significantly pre-
dicted by themedianRT (averagemedianRT for error blocks:
434 ms, mean RT for correct blocks: 444 ms, t (15) = 2.217,
p= .043). In addition, it was alsomarginally predicted by the

123



Int J of Soc Robotics (2015) 7:767–781 777

Table 2 Average median RTs (ms) as a function of validity and
actual humanness together with the mean differences (MDiff ) between
the validity conditions, and standard errors of the mean differences
(SEMDiff ) in Experiment 2

Human Pre-programmed

Valid 589 611

Invalid 594 609

MDiff 6 2

SEMDiff 28 28

Table 3 Average median RTs (ms) as a function of validity and per-
ceived humanness together with the mean differences (MDiff ) between
the validity conditions, and standard errors of the mean differences
(SEMDiff ) in Experiment 2

Human Pre-programmed

Valid 601 596

Invalid 598 602

MDiff 5 4

SEMDiff 29 29

standard deviation of the “human-controlled” blocks (mean
ofRT standard deviations for error blocks: 126ms, for correct
blocks: 147 ms, t (15) = 1.877, p = .04, one-tailed).

In summary, shorter reaction times of the experimenter
and a lower variance during the block seems to have
induced subjects to incorrectly categorize the block as pre-
programmed.

3.2.2 Performance in Target Discrimination Task

3.2.2.1. RTs in Actual Humanness Conditions A 2 × 2
ANOVA with the factors validity (valid vs. invalid) and
actual humanness on median RTs in the target discrimina-
tion task revealed a main effect of humanness, F(1, 15) =
16.46, p = .001, η2p = .523 with short median RTs
in the “human-controlled” condition (Mhuman−controlled =
591 ms, SEM = 14) relative to “pre-programmed” con-
dition (Mpre−programmed = 610 ms, SEM = 14, MDiff =
18 ms, SEMDiff = 20). Other effects and interactions failed
to reach the level of significance (all Fs < 1.9, all ps > .19).

3.2.2.2. RTs inPerceivedHumannessBlocksA2×2ANOVA
with the factors validity (valid vs. invalid) and perceived
humanness showed no significant effects or interactions (all
ps > .3).

Planned comparisons between the valid and invalid tri-
als showed no significant differences for either the actual or
the perceived humanness condition, ps > .148, one tailed
(Tables 2, 3).

Table 4 Error rates (%) as a function of validity and actual human-
ness together with the mean differences (MDiff ) between the validity
conditions, and standard errors of the mean differences (SEMDiff )

Human Pre-programmed

Valid 2.92 2.19

Invalid 2.19 2.81

MDiff 0.73 0.62

SEMDiff 0.7 0.7

Fig. 11 Average of median RTs across all subjects against experi-
menter’s median RTs for each of the 10 human-controlled blocks. As
in Experiment 1, there is no trend for a linear regression between the
scores

3.2.2.3. Error Rates Analyzing error rates in the target dis-
crimination task revealed no significant effects in either
perceived humanness (all Fs < .21, all ps > .65) or actual
humanness (all Fs < 4.5, all ps > .05), cf. Table 4.
3.2.2.4 Relationship Between Experimenter’s RTs and Par-
ticipants’ RTsAs in Experiment 1, we correlated the median
RTs of the experimenter and those of the participants.
Because every participant was exposed to the same stim-
uli sequence, the analysis was conducted with the median
RT for each block and the average of median RTs across all
participants (Grand Average). No significant correlation was
found, r (10) = −.205, p = .569, Fig. 11.

4 Discussion

Our study aimed at examining whether the human percep-
tual system is sensitive to subtle hints observable in behavior
of others that can indicate that the behavior results from the
operations of a human mind, rather than a non-intentional
mechanistic device. This study was the first step to investi-
gate the more general question of what types of information
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humans use when they attribute mind and intentionality to
an observed agent. In two experiments, we used a paradigm
in which participants interacted with robots, which had two
extensible arms. In Experiment 1, in some blocks the onset
time of an arm movement was controlled by a computer pro-
gram, in other blocks it was controlled by an experimenter,
who was seated in a different room and was occluded from
participants’ view. In Experiment 2, the “human-controlled”
condition was implemented through blocks in which the
onset times of a movement were programmed but modeled
after human reaction times, and participants were made to
believe that an experimenter occluded fromviewwas control-
ling the robot behavior is some blocks. In both experiments,
participants were asked to perform a “Turing test”, namely to
determine whether they interacted with a human-controlled
or a pre-programmed machine. Importantly, the only hint
that participants could have possibly had regarding whether
the behavior was human-controlled or pre-programmed was
variability in onsets of the arm movements in the “human-
controlled” condition (in the “pre-programmed” condition,
the onset times were always fixed). The movement itself
was, however, identical across conditions. Participants were
not informed about what type of hints they should look for
and base their judgment on. The crucial difference between
Experiment 1 and Experiment 2 was that in Experiment 1,
a human face was presented in the middle of the screen
throughout the entire experimental procedure. In Experi-
ment 2, participants observed the NAO robot performing the
pointing gestures, and thus were not presented with human
characteristics of appearance.

Results showed that in both experiments participants
were able to detect the “human-controlled” condition with
accuracy that was significantly above chance. This was
independent of whether a human face or a robot face was
presented in the middle of the setup, and thus the humanness
judgment was not biased by characteristics of appearance of
the stimuli. This suggests that the human perceptual system
is sensitive to subtle characteristics of behavior (indepen-
dent of appearance) that is typically human, i.e., behavior
with a certain degree of variability. Interestingly, although in
Experiment 1,mean reaction times of the experimenter (onset
times of the pointing movements) did not predict whether
the humanness judgment would be correct or not, in Exper-
iment 2, the accuracy in humanness judgment did depend
on mean/median onset times of the pointing movements and
standard deviations. Interestingly, it was not the similarity
of the mean/median onset times to the “pre-programmed”
condition that made participants respond incorrectly as
“preprogrammed” in the “human-controlled” condition (the
correctly and erroneously judged blocks were equally simi-
lar to the preprogrammed condition in terms of mean/median
onset times) but the actual onset delay. That is, participants
were more likely to judge the “human-controlled” condition

as preprogrammed if the mean/median onset delay was short
(Mean 454 ms; Median 434 ms), relative to when it was
longer (Mean 476 ms; Median 444 ms). This shows that par-
ticipantsmight have certain pre-assumptions (not necessarily
at a conscious level) regarding what a “pre-programmed”
condition would be like (faster), and this influenced their
responses in the humanness judgment. Regarding the stan-
dard deviation within blocks (which was actually the hint
that participants should have used for the humanness judg-
ment), in Experiment 1, the standard deviations tended to
predict participants’ accuracy in the humanness judgments,
while in Experiment 2, the standard deviations significantly
predicted accuracy. More specifically, blocks in which the
onset of the arm movement was more variable were more
likely to be judged as “human-controlled” than blocks in
which the variability was smaller. This suggests that partic-
ipants might have made their humanness judgments based
on how variable the movement onset was across trials within
a block.

The finding that humans are able to detect subtle charac-
teristics of other human behavior provides striking evidence
that the human brain has certain assumptions and expecta-
tions concerning what a human-like behavior typically looks
like, and can use these assumptions to discriminate human
agents from non-agents. Similar results have been previously
obtained with the use of dynamic stimuli that displayed bio-
logical motion [23–25], see [26] for a different account. In
these studies, however, whole movement patterns and kine-
matics are typically available for participants’ judgments. In
contrast, our study is the first to show that very subtle hints
and extremely reduced information in the pattern of behav-
ior is enough tomake participants discriminate human agents
from non-agents.

Apart from the non-verbal Turing test, participants were
also asked to discriminate target letters, which could either
be validly or invalidly cued by the pointing movement of
the robot. This manipulation was done in order to examine
whether participants would be more ready to engage in joint
attention with the robot when they perceived it as human-
controlled (i.e., when they adopted the Intentional Stance),
relative to when they perceived it as pre-programmed. This
reasoningwas based on previous studies [6,7] inwhich it was
found that humans attend to where others gaze to a larger
extent when they believe that the observed gaze behavior
is controlled by a human (Intentional Stance adopted), rel-
ative to when they believe it is pre-programmed. The idea
in the present paradigm was that if participants engage in
joint attention with the robot, they should attend to where it
points, and therefore discriminate the target letter better in
valid trials, relative to invalid trials.

This was indeed what we observed in Experiment 1. Par-
ticipants discriminated the target letter better (with faster
RTs) when the robot pointed in the same direction (valid
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trials), relative to when it pointed in the opposite direction
(invalid trials). Interestingly, however, in Experiment 1, this
validity effect was not modulated by whether the pointing
movements were controlled by a human or by a computer
program. Moreover, perceived humanness also did not affect
the validity effects. Hence, it suggests that in Experiment
1, participants were equally likely to engage in joint atten-
tion with the robot, independent of whether its behavior was
resulting from the operations of the human mind, or just a
computer program.

This however, might have been due to the human face that
was presented centrally throughout the experimental pro-
cedure. This might have biased participants into attending
to where the robot arms pointed. This interpretation was
partially confirmed by Experiment 2 in which a robot was
observed and we did not find a significant effect of valid-
ity either in the actual or perceived humanness analyses.
Therefore, the readiness to engage in joint attention might
have been—to some extent—biased by whether participants
observed stimuli with human appearance or not, which is
in contrast to previous findings [11,27] in which validity
effects were observed for both human and robot stimuli. The
discrepancy between the present results in those reported
in [11] might be due to the fact that in the present study,
participants were exposed to an actual embodied robotic sys-
tem, while in [11], participants observed only robot/human
face stimuli presented on the screen. According to [28], an
essential aspect of social cognition is real-time interaction,
and therefore stimuli presented on a computer screen might
not capture all aspects of social cognitive mechanisms. On
the other hand, in [27] also an embodied robot was used
and validity effects were observed for gaze-guided atten-
tional orienting. Therefore, it might be that gaze is a stronger
attention-guiding social hint than pointing gestures. Alterna-
tively, the robot used in [27] was closer in appearance to a
human.

In sum, theremight be two differentmechanisms influenc-
ing the process of attentional orienting in response to social
directional cues exhibited by a robot. On the one hand, phys-
ical appearance might play some role in whether participants
attend to where the robot points. On the other hand, the type
of social cuemight play a role, with gaze being a stronger cue
than pointing. Future research needs to address these factors
in more detail in a systematic manner.

In addition to the main effects of interest, we also
observed that in Experiment 1, participants responded overall
faster in the pre-programmed condition than in the human-
controlled condition. This might have happened because
the onset of movement was always at a fixed interval in
the pre-programmed condition (relative to the offset of the
preparatory beep), while this interval varied with the RTs
of the experimenter in the human-controlled condition. This
might have caused participants to have temporal expectations

about when the target would appear, and hence the reac-
tion times were overall faster in the condition in which they
could have expected the target to appear. Importantly, how-
ever, longer RTs in the human-controlled condition (relative
to pre-programmed) were presumably not due to that in some
trials the experimenter might have responded very fast, and
therefore might have not left enough time for participants to
prepare for responding. This possibility has been excluded
with analyzing data of those trials, in which RTs of the exper-
imenter were on average not significantly different from the
delay in the pre-programmed condition. In these trials, the
pattern of results remained similar to the analysis of all trials.
Interestingly, in Experiment 2, the main effect of humanness
in the actual humanness analysis showed that participants’
RTs were shorter in the “human-controlled” condition, rela-
tive to the “pre-programmed” condition (an opposite pattern
of results than in Experiment 1). This therefore does not
support the idea that variability in movement onsets was in
general detrimental to target performance due to lack of pre-
cise temporal expectations. It might be that in Experiment
2, the “human-controlled” condition attracted attention to
a higher degree or was in general more alerting than the
“pre-programmed” condition, and hence shorter RTs. There-
fore, multiple factors might have played a role in the general
differences betweenRTs to target presentation in the “human-
controlled” versus “pre-programmed” conditions; but there
was no evident influence of any of these factors on the validity
effect.

To conclude, the present results indicate that humans
are tuned to detecting humanness in others’ behavior—
even when the hints concerning the human-like behavior are
extremely subtle. This shows that the human brain has devel-
opedmechanisms for distinguishing other humans among the
abundance of various dynamical systems that can behave in a
manner very similar to humans. This is presumably a socially
and evolutionarily important skill, as it might have allowed
humans to detect other conspecifics based on characteris-
tics of their behavior and movements, even when the entity’s
appearance was not visible.

These findings are of significance not only for theoretical
considerations but also in terms of application for the emerg-
ing domain of social robotics. In this field, researchers aim
at designing robots that are to interact with humans in daily
lives [29–33]. Therefore, robot designers aim at producing
robots that would be treated as true social interaction partners
and not only as simple automata. Hence, one of the crucial
questions in social robotics is whether robots need to look
and behave very similarly to humans in order to be treated
as socially acceptable interaction partners. Most attempts in
social robotics go in the direction of creating robots whose
appearance is very human-like [33–35]. However, Masahiro
Mori has postulated the so-called uncanny valley hypothe-
sis [36], according to which the rate of acceptance of robots

123



780 Int J of Soc Robotics (2015) 7:767–781

should be increasing with increasing resemblance of robots
to humans up to a point, beyond which repulsive reactions
might be observed, due to the uncanny feeling of “very sim-
ilar to human” but still very different.

In any case, our findings show that in the attempts of
making robots more and more similar to humans, social
roboticists might need to focus more on subtleties of behav-
ior rather than physical appearance of robots. This is in line
with [37], where it has been shown that a combination of
a human-like appearance with mechanical (non-biological)
motion elicited specific response in a distinct brain region in
the left posterior lateral temporal cortex, compared to con-
ditions in which participants observed a human agent with
biological motion or a robot with mechanical motion. The
authors concluded that the human brain expects a human-
like appearing entity to exhibit biological motion. Hence,
movement characteristics of a robot are equally important
as its physical appearance. Our findings extend the results
reported in [37] by showing that introducing only simple
variability to robot behavior might make the robots appear
more human-like.
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