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Abstract The application of social robots to the domain
of education is becoming more prevalent. However, there
remain a wide range of open issues, such as the effective-
ness of robots as tutors on student learning outcomes, the
role of social behaviour in teaching interactions, and how
the embodiment of a robot influences the interaction. In this
paper, we seek to explore children’s behaviour towards a
robot tutor for children in a novel guided discovery learning
interaction. Since the necessity of real robots (as opposed to
virtual agents) in education has not been definitively estab-
lished in the literature, the effect of robot embodiment is
assessed. The results demonstrate that children overcome
strong incorrect biases in the material to be learned, but with
no significant differences between embodiment conditions.
However, the data do suggest that the use of real robots carries
an advantage in terms of social presence that could provide
educational benefits.

Keywords Social robotics · Embodiment · Human–robot
interaction · Child–robot interaction · Child learning

1 Introduction

Child education is emerging as one of the many promis-
ing application domains for social human–robot interaction
(HRI). In this context, robots have the potential to both
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support and augment existing educational strategies by, for
example, increasing children’s motivation to learn, or sup-
plementing teacher-led learning with more targeted support
for individuals. In this paper, we seek to provide evidence in
support of the role of social robots as tutors, facilitating the
learning progress of the child.

The use of robots in education has been the subject of some
prior exploration, with some prominent studies discussed in
[28]. The majority of these studies have been primarily con-
cerned with the social presence of the robot. However, there
have been recent attempts to explore responses to a robot’s
social cues and the impact that this can have on learning. An
early example by Kanda et al. studied a robot placed in a
classroom for a 2 week period [21]. The results provided an
indication that robots could successfully be used to improve
children’s learning, although most of the effect observed is
attributed to the presence of the robot increasing motivation,
rather than to specific behaviours of the robot. Regarding
the role of social behaviour more specifically, Huang and
Mutlu have studied the impact of robot gestures on informa-
tion recall [19], finding that the types of gestures that a robot
uses can influence how much human participants could recall
from a presentation.

This paper seeks to assess how the embodiment of a robot
tutor influences children’s behaviour during an interaction in
which they aim to learn novel information. The focus is on
single robot–single child interactions, with the robot taking
on the role of a tutor. After deriving a suitable robot tutoring
behaviour from observations of human tutor–learner interac-
tions in the same interaction context [23], the purpose of the
present study is to evaluate whether the resulting robot system
can facilitate child learning. While constrained compared to
that of the human, the robot tutor behaviour demonstrates
sensitivity to the behaviour of the child, and emphasises the
structured self-discovery of the subject matter to be learned
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by the child. A novel set of information for the children to
learn was devised to ensure that the children involved would
have no prior knowledge and so would start at the same expe-
rience level. There are two primary aspects of interest: firstly,
whether the embodiment of the robot impacts on how much
children learn, and secondly, how the children behave in the
interaction in response to the tutoring strategy of the robot.

The remainder of this paper is organised as follows. In
reviewing the literature in robot-supported learning, the issue
of robotic embodiment versus virtual agents is raised as a pri-
mary point of consideration, with an examination of teaching
styles showing the benefit of a learner self-guided approach
(Sect. 2). We then describe the hypotheses, experimental
setup and methodology used for the present study (Sects. 3
and 4). A number of different aspects of the results are exam-
ined in detail. Firstly, the overall learning effects are analysed,
taking into account an apparent bias in the unfamiliar subject
matter (Sects. 5 and 5.1). Secondly, the interaction behav-
iours of the child in response to the robot behaviour is exam-
ined in greater detail, demonstrating the differential effect
of real robot embodiment (Sect. 6). Finally, we conclude by
examining the support (or otherwise) for the experimental
hypotheses (Sects. 7 and 8).

2 Embodiment and Tutoring in HRI

Learning has been used as a metric in a multitude of HRI
experiments. These experiments are often focussed on the
embodiment of the robot, or on comparing the robot with
other educational media, such as computers or paper-based
resources. This section will review a number of these studies,
which are later used as a basis for the experimental design
used in the study presented in this paper. This section will
also serve as a background to some of the decisions made
about how learning is measured in this paper.

2.1 Agent Embodiment in Tutoring Interactions

It remains unclear how a robot’s embodiment will impact
upon the social interaction which takes place and, ultimately,
on learning. Social interaction consists of many different ele-
ments; some verbal and some nonverbal [8]. These cues have
been shown to influence the impression we have of an inter-
action partner [42]. Real and virtual robots provide different
affordances which mean that they can greatly differ in the
way that they provide nonverbal cues.

Whilst the measurements used are somewhat unclear, Han
et al. suggest that robots can be more effective educators than
equivalent web-based instruction or books with audio [16].
These findings have recently been supported by Leyzberg et
al. who compared an embodied robot tutor with video and
voice conditions [29].

Previous child-robot interaction (cHRI) studies compar-
ing robot embodiments have found that children look more
often and for longer periods at a real robot than a virtual robot
[31]. Although not comparing embodiments, it has also been
found that task performance will improve when a real robot
provides subjects with more gaze [36]. Additionally, Bart-
neck found that people enjoyed playing a game no more or
less with a virtual or real robot, but that people scored higher
with a physical robot present [3]. In a drumming game, chil-
dren performed better with a real robot than when collabo-
rating with a virtual robot [25].

Conversely, Powers et al. found that participants remem-
bered less of their conversation with a robot after communi-
cating with a real robot when compared with a virtual robot
[40]. They postulate that this is because people are distracted
by the novelty of the physical robot. Similar effects have
been seen when comparing virtual agents with simple paper
media. Users remembered less about a healthy eating mes-
sage when it was delivered by a virtual agent than when it
was delivered on paper [9].

Real robots would appear to hold some advantages over
virtual robots in social interactions, provided that nonverbal
cues are used effectively. However, it is unclear whether the
real robot improves task performance, or distracts from a task.
Indeed, the varied results from previous literature suggest that
it is necessary to study the impact of the robot’s embodiment
in the experiment conducted here.

2.2 Teaching Styles

In many HRI studies there has been a focus on prescrip-
tive tutoring, with the robot providing instructional lessons
to subjects; a ‘teacher-centered’ approach to learning, for
example [30]. However, educational literature suggests that
a ‘learner-centered’ approach confers many advantages; for
example, learners can gain a deeper understanding of the
material and can be more motivated due to an increased
responsibility for their own learning [50]. Such an approach
is taken in [22], for example, where children undergo col-
laborative learning with a robot in a variety of group and
individual lessons.

The learner-centered approach taken in this study, ‘guided
discovery learning’, has overlaps with the collaborative
learning seen in [21], but also some important differences. In
collaborative learning, interacting partners are often peers.
However in guided discovery learning, one of the interact-
ing partners has more knowledge and can therefore guide the
learner towards a correct solution. Learners must generate
their own hypotheses, which they then test, and analyse the
results, which uses skills that would not be developed when
the necessary information is simply presented by a teacher
[13]. It has also been suggested that this type of learning can
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promote a better understanding of a domain when compared
to teacher-centered learning [1,55].

In a similar manner to collaborative learning, the teacher
initially delivers enough instruction for problem solving to
commence. However, instead of providing a lesson when
learners get stuck, the teacher will help to guide the learner
towards the correct solution by scaffolding analysis of the
decisions the learner made surrounding hypothesis gener-
ation and analysis, with the aim of improving in the next
“hypothesis–test–analyse” cycle [13,17].

This application of a different teaching style contributes
to the novelty of the work conducted here. The teaching style
requires the programming of a robot behaviour which does
not deliver a complete instructional lesson to participants,
but instead guides the child by making them analyse their
own approach to solving the problem. To the authors knowl-
edge, the specific application of this teaching context has
previously been unexplored in HRI.

The age of the subjects used in this experiment had to
be carefully selected in order to make sure that the children
had the cognitive skills to direct the exploration and motivate
themselves to solve the problem presented. With the assis-
tance of teaching professionals, it was decided to use children
of around 8 years old. This age is quite novel in educational
interactions, with most studies using subjects aged 10 and
older (for example [22,30,39,45]).

3 Experiment Hypotheses

The purpose of the study conducted here was primarily to
explore children’s responses to robot behaviour across differ-
ent embodiments in a novel guided discovery learning task.
This means that the central hypotheses are based around the
child’s behaviour. Given that the interactions are educational,
part of the validation also lies in how well the children learn,
particularly with regards to differences between embodi-
ments. The hypotheses for the study are enumerated below:

1. It is hypothesised that the real robot will attract more gaze
than the virtual robot from the children. Other work, such
as [31], has found differences in gaze behaviour between
embodiment conditions and it would be reasonable to
predict that the same will be found in this study, despite
substantial differences in context.

2. If the robot behaviour is sufficiently socially contingent
then the children will remain engaged with both the robot
and the task throughout the interaction.

3. Prior studies with a similar task structure and hardware
configuration (robot with a large touchscreen), for exam-
ple [5], have found that the children will gaze more
towards the touchscreen than the robot, but they will still

pay attention to, and respond to, the robot’s behaviour.
The same is expected to occur here.

4. We hypothesise that there will be a difference in learning
gains between the two embodiment conditions. This is
based on the findings of other studies, which have found
that the physical presence of a robot causes an increase
in learning gains, for example [29].

4 Methodology

The study design was informed by numerous pilot studies
which explored the assessment of children’s learning when
interacting with each other and an interaction mediator, the
Sandtray [4]. It was decided that the most appropriate task
to assess learning would be an adaptation of the sorting task
with which several other experiments have been run [5,23].
Previous experience of using this task for cHRI has led to
the development of a practiced experimental protocol which
serves as a solid foundation for use in this work.

4.1 Participants

Full permission to take part and be recorded on video was
acquired for all participants. In total, 37 interactions took
place, however, nine of these were not suitable for analysis.
One child asked to stop before the interaction was completed,
whilst in the other eight cases the experimental protocol was
not followed. The breaks in protocol included technical issues
with the robot/mediator, one child leaving to go to the toilet
and one instance of Wizard error. As a result, 28 child-robot
interactions were completed and recorded (11M, 17F, aver-
age age = 7.9, SD = 0.31; 15 real robot, 13 virtual).

A further two interactions could not be included in the
learning assessment because an incorrect dataset was dis-
played, or logging did not complete correctly during either
the pre- or post-test. 26 pairs of pre- and post-tests were
analysed in terms of learning and correlating social behav-
iour to learning outcomes (11M, 15F, average age = 7.9,
SD = 0.33; 14 real robot, 12 virtual).

4.2 Experimental Conditions

A two-condition, between-subject design was employed
for the study. The embodiment of the robot was swapped
between the two conditions. In one condition, children were
presented with the real, physical robot, in the other they were
presented with a large monitor displaying the virtual robot.
The use of these two embodiment conditions allows eval-
uation of the experiment hypotheses (Sect. 3), which all
assume the presence of an agent (be it real or virtual) to
interact with the child. The virtual robot acts as a control for
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Fig. 1 Side-by-side images of the virtual (left) and real (right) robots used for this study: the Aldebaran NAO. The images are stills taken from
one of the cameras used for filming. Scaling has been kept consistent between the two images so that size comparisons can be made

the real robot, making it possible to explore the differences
between the embodiments.

The robots in the two different conditions were made as
close to the same size as possible (Fig. 1). It has been found
previously that when children interact with a virtual robot
with the same morphology as a physical robot that they have
already interacted with, they can see this as the same char-
acter [48]. Although the children were interacting with the
robot in only one of the embodiment conditions, there was
a concern that their peers could tell them about the robot in
the other condition. As such, the robots used were arbitrar-
ily given different identities, using different gender-neutral
names and different colours. The real robot had grey fea-
tures and was named ‘Pop’, whilst the virtual robot had blue
features and was named ‘Crackle’ (Fig. 1).

4.3 Experimental Set-Up

The experiment took place in a primary school in the U.K.
The room used was a classroom that the children were famil-
iar with, but was not in use by a regular class. As such, there
was a large amount of space available to the experimenters
who were also in the room at the time of the interaction. The
experiment involved two pieces of novel technology for the
children: the Sandtray and the Aldebaran NAO robot. The
behaviour of these two devices are outlined in Sects. 4.4 and
4.5 respectively. Both the child and the robot can manipulate
objects on the Sandtray. The Sandtray and robot were posi-
tioned such that children passing by the room could not see
them and the child taking part in the interaction could not
see the hallway or the experimenters, who were sat behind
the child on the other side of the room. Two cameras were
positioned around the Sandtray so that the behaviour of both
the child and the robot could be recorded (Fig. 2).

Fig. 2 Schematic overview of the mediation device-centered interac-
tions under investigation in this paper. Two interactants (the child and
the robot) face one another over the touchscreen. Two video cameras
record the interactants during the studies. The experimenters are also in
the room, but out of view of the child. Figure not to scale

4.4 Alien Sorting Task

Pilot studies showed that overriding children’s prior knowl-
edge in a relatively short (5–10 min) interaction time is
extremely challenging; prior knowledge can play a large part
in learning [49]. It has been shown that differing knowledge
levels lead to different interpretations of a problem [11] and
also require substantially different teaching formats to cope
with this [20]. To remove these factors, a task with which
all children have the same level of knowledge is therefore
desirable. As such, the most practical solution is a task that
the children have no prior knowledge about. To this end, a
novel sorting dataset was created using aliens (as inspired by
Lupyan et al. [32]).

An online ‘alien creator’ associated with a children’s tele-
vision programme was used to produce aliens of different
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Fig. 3 From left to right: (1) the ‘orange planet’ category image, (2) an outline of one of the aliens with shading to differentiate the body parts
which can be manipulated (an actual image has not been used due to copyright restrictions), (3) the ‘purple planet’ category image

morphologies and colours. Each alien consisted of six main
body parts: a torso, a head, two legs, two arms, wings and a
tail. There were three body types which each had different
options for the body parts. Approximately 220,000 different
combinations could be created. Each body part can then be
coloured using the full RGB colour space. From this, a ran-
dom subset of 96 unique alien images were created. These
were split into six training sets and two test sets of equal sizes
(12 images per set).

The sorting task required the children to make a binary cat-
egorisation on the Sandtray touchscreen. A sorting rule was
formulated that was based on one feature: given the wide
range of possible features (and indeed combinations of fea-
tures) that the rule could be based on, it is unlikely that the
rule would be discovered by chance in the short period of the
interaction. In this case, aliens with yellow legs would be cor-
rect if placed in the ‘purple planet’ category; all aliens which
did not have yellow legs belonged to the ‘orange planet’ cat-
egory (Fig. 3). Twelve aliens would be presented to the chil-
dren in each image set for categorisation and would be split
equally between the categories; six aliens of each set would
belong to each category. Children could drag an alien across
the screen and release it over the category that they thought it
belonged to. The category icon would then change to display
either a large green tick, or a large red cross depending on
whether the categorisation was correct or not.

4.5 Robot Behaviour

A behaviour for the robot was created by analysing the behav-
iour of a human teacher when guiding a student unknown to
them through a sorting task on the Sandtray, as in [23]. The
human teacher was told that they would be assisting the child
in guided discovery learning and that they could use any tech-
nique to guide the child, provided that they did not explicitly
state the categorisation rule (as this would then no longer
constitute discovery learning).

Two interactions with different children underwent video
analysis in order to get an objective measure of particular

movements and vocalisations made in the interaction. The
most common verbal phrases, along with the timing and types
of screen movements made were used as a basis for the robot
behaviour. The result was a script that the robot would fol-
low to introduce itself and the task to the child (full transcript
available in Appendix), along with a guiding behaviour for
the discovery learning part of the task. The guided discovery
assisting behaviour of the robot consisted of the following
elements:

1. Verbal feedback specific to the image categorised by the
child whenever a categorisation was made.

2. Advancing the screen library when all of the images in a
particular set had been categorised, along with a general
hint about the pattern.

3. If the child did not make a categorisation for 6 s, the
robot would select an image, move it to the centre of the
screen and make a verbal comment to the child about the
item. This will be referred to as the robot ‘highlighting’
an image.

4. A gaze towards the child was also made when making a
comment and highlighting a possible move.

Given that these child-responsive robot behaviours are
directly inspired by the behaviour of the human teacher, we
contend that it therefore demonstrates some key aspects of
social behaviour in a tutoring context. The robot was provided
with information about images by the mediator, allowing it
to make comments such as “why don’t you try this one with
purple wings?”, or “pink legs worked in that one”. This was
the mechanism by which children were encouraged to think
about the properties of the aliens that they were categorising
and to lead them towards the correct solution. Of course, it
would be straightforward to inform the children of the pat-
tern and then see how well they recall it, but the benefits from
guided learning, as outlined in [26,34] and Sect. 2.2, would
not be leveraged in this case.

The robot behaviour was structured such that the speech
could be blocked depending on its importance and events on
screen. The aim was for the robot to provide feedback on
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every move made by the child, however if the child then cat-
egorised images at a very quick rate, the robot speech would
not be able to keep up. To solve this, a blocking period of 2 s
was put in place after each robot vocalisation. In cases where
the child was making extremely fast categorisations (approxi-
mately one per second), two phrases could follow one another
before the blocking period would begin. The speech block-
ing period could be ignored if the intended speech had been
marked as important in the code. Speech which was part of
the robot script and the general comments made at the end
of each library (often key hints for solving the task) were
classed as important speech which could ignore the block-
ing period in order to ensure equality across conditions and
interactions. This speech planning strategy ensured that all
children experienced the same structure to the interaction,
whilst the robot remained adaptive to individual behaviour.

At the start and end of the interaction, alongside the
scripted speech, the robot would make a number of prede-
fined gestures and gaze upwards, towards the child, in a sim-
ilar way to the human teacher. For the rest of the interaction,
the robot would randomly move its head and body to give
it a ‘lifelike’ feel. The random gaze was restricted to oper-
ate within a rectangular volume roughly directed towards the
touchscreen while the child was moving images, as seen in
previous human–human and human–robot studies with this
task and the touchscreen [5,23].

The robot behaviour was almost fully autonomous, with
input required only to start the interaction and to start the post-
test at the appropriate time. Following the protocol for a large
number of HRI studies, a Wizard-of-Oz (WoZ) experimen-
tal technique was adopted to serve this purpose (definitions
and descriptions of WoZ use in HRI can be found in [41]).
A Wizard was needed simply to click a button to start the
interaction once the child was present and to start the post-
test once the time limit had been reached for the teaching
behaviour (see Sect. 4.8 for more details of this). The Wiz-
ard was one of the experimenters located in the room with
the child, as described in Sect. 4.3.

4.6 The Learning Task

The learning task required children to explore the images
presented on-screen and discover, through trial and error, the
rule that yellow legged aliens belonged on the purple planet.
The robot would assist by making suggestions and providing
hints about features to test, as described in Sect. 4.5. With-
out the robot’s assistance, the children would only have ticks
and crosses displayed on screen for each categorisation as
feedback. This would make the task one of reinforcement
learning; the screen providing the positive or negative rein-
forcement on each categorisation. Children do not respond
to feedback as effectively as adults and take many more trials
to incorporate feedback into their strategy-making [12].

Additionally, given the balancing of the task, half of the
information they see belongs in one planet, and half in the
other. With no knowledge of the rule before they start, they
are likely to get some categorisations wrong. This can lead
to acquisition of erroneous information simply because they
have had that thought before, even if negative feedback is
provided; the ‘mere-exposure’ effect [7,43].

Section 4.4 showed that there are around 220,000 alien
body combinations that could be created, with each of the six
body parts on each alien coloured differently, and each alien
of a different size. This presents an overwhelming number of
possible features on which to categorise the aliens. If utilised,
the hints from the robot substantially reduce this search space,
making the solution then possible to reach within the time
provided. Given the short interaction time, the complexity of
the dataset and the way children learn with just reinforcement
feedback, it would be highly unlikely for them to find the
correct solution without the help of the robot.

4.7 Measuring Learning

As is commonly applied in HRI studies examining learning,
pre- and post-tests (as described in [14]) were used to measure
the learning of the child. The children were given as long as
they liked to complete the pre- and post-tests, so that there
was no time pressure. The pre- and post-tests were novel from
the learning data and from each other. Using two different
tests, the images of which were not present in the training
data, means that learning is measured on novel data in both
pre- and post-test conditions. This eliminates any biasing
because of familiarity with the data.

The tests used each consisted of 12 aliens which had to
be categorised into either the purple or the orange planet, as
per the alien sorting task described in Sect. 4.4. Prior to the
pre-test, the children had been introduced to the task by the
robot; for the full script used here, please refer to Appendix.
The children had been instructed as to the nature of the task
- sorting aliens into planets - but had no further indications
as to what the categorisation rule may be based on.

The two tests were used in a cross-testing strategy; test ‘A’
was administered to half of the children as a pre-test, who then
took test ‘B’ as a post-test. The other half of the children took
the tests the other way around. The test used for the pre- and
post-test was swapped between each interaction, i.e. Child
1 would take Test A as a pre-test and Test B as a post-test,
then Child 2 would take Test B as a pre-test and Test A as
a post-test. Given the novelty of the material to be learned,
this strategy allows analysis to determine whether learning
gains can be attributed to differences in difficulty between
tests, should any such differences unintentionally arise due to
unknown aggravating factors. The category positions would
also switch between tests (and indeed in the training sets) to
avoid any conditioning to spatial locations.
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4.8 Interaction Scenario

The interaction is largely unstructured and the children are
free to work at their own pace. The robot provided verbal
feedback on moves that the child made, and would suggest
a move to the child if 6 s passed without the child making
a categorisation. This allowed the child to involve the robot
as much, or as little, as they desired based on how long they
waited between moves.

The following interaction scenario was created by com-
bining the human teacher model with the lessons learnt from
earlier work:

1. The robot and touchscreen are introduced to the child by
the experimenter. The child is told that they are free to
stop at any time, or ask questions of the experimenters.

2. The robot introduces itself to the child and outlines the
task to be completed.

3. The child completes the pre-test on the Sandtray.
4. The robot provides a ‘clue’ for the child and begins the

guided discovery behaviour while the child categorises
further image libraries.

5. After 5 min, the robot brings the guided session to a
close and asks the child to complete the post-test, again
on-screen.

6. Once the child has completed the post-test, the robot
thanks the child and says goodbye.

7. The child is debriefed by the experimenters.

Due to the unstructured nature of the task, strict time limits
could not be set for the interaction. As the guided discovery
behaviour of the robot was the main variable being measured,
an effort was made to keep this a consistent length of time.
The target length of time was set at 5 min, as this was esti-
mated to make the total interaction around 7–10 min long;
an appropriate length as identified in the pilot studies. The
Wizard would have a button to click once the child was near-
ing the end of an image library in the fourth minute of the
learning phase. This would then trigger the post-test script at
the end of the current library.

The average length of an interaction was 533 s, SD =
58 s. This was measured from the moment the child entered
the experiment room, until the moment that they left. The
average length of the learning phase was 308 s, SD = 45 s.

4.9 Video Data

All 28 videos were coded by one coder; the tracks coded
were as follows:

– Interaction stage
– Child gaze
– Child gestures

Table 1 Inter-coder agreement by track coded

Track Cohen’s Kappa

Overall agreement 0.78

Child gaze 0.89

Child gestures 0.84

Robot gaze 0.63

Robot gestures 0.76

– Child vocalisations
– Robot gaze
– Robot gestures
– Robot vocalisations

The coding scheme used was as objective as possible,
based solely on overt child or robot behaviour. It is not
practical to second code all of the video due to the amount
of time this takes. Therefore, a proportion (18 %) of the
videos were second coded to validate the first coder, follow-
ing the example set by [35,38] and [51]. The videos were ran-
domly selected from groups which ensured proportional rep-
resentation between experimental conditions, experimental
days, and genders. The overall inter-coder agreement level,
Cohen’s kappa, across all tracks was an average of 0.78,
which indicates substantial agreement [27]. Table 1 shows
the agreement for the tracks which will be used for analysis
in Sect. 6 of this paper.

5 Learning Results

Twenty-six pairs of pre- and post-tests were logged during
the interactions for analysis of learning. Two different tests
were used as described in Sect. 4.7, named Test A and Test B
for ease of discussion here.

When considering the population as a whole, a signifi-
cant learning effect is found between the pre- and post-tests.
The post-test score (M = 9.12, SD = 2.44) was significantly
higher than the pre-test score (M = 7.08, SD = 1.83), t(25)
= 3.016, p = 0.006. However, when the learning effect is
examined in more detail, a more complex story is revealed.
Children who completed Test A as a pre-test and Test B as
a post-test did not exhibit significant learning, whereas for
the reverse (Test B to A), extremely significant learning was
found (Table 2). This complication is due to the comparative
‘difficulty’ of the tests given no knowledge of the data and
biases which are present, to be discussed in Sect. 5.1.

When considering the calculated bias values in the context
of the tests, if the biases are followed, then a child would get
9 out of 12 correct on Test A and 7 out of 12 correct on Test
B. This is reflected in the actual pre-test scores acquired:
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Table 2 Learning effect t-test results, comparing many different variables

Condition A Condition B t-test used A mean (n, SD) B mean (n, SD) p value t (df )

Pre-test A Post-test B Two tailed, paired 7.93 (14, 1.82) 8.43 (14, 2.93) 0.627 t(13) = 0.498

Pre-test B Post-test A Two tailed, paired 6.08 (12, 1.31) 9.92 (12, 1.44) <0.001∗ t(11) = 6.823

Virtual gain Real gain Two tailed, unpaired 2.42 (12, 2.78) 1.71 (14, 4.01) 0.614 t(24) = 0.510

Male gain Female gain Two tailed, unpaired 1.45 (11, 3.11) 2.47 (15, 3.72) 0.471 t(24) = 0.733

Pre-test A Post-test A Two tailed, unpaired 7.93 (14, 1.82) 9.92 (12, 1.44) 0.005∗ t(24) = 3.051

Pre-test B Post-test B Two tailed, unpaired 6.08 (12, 1.31) 8.43 (14, 2.93) 0.017∗ t(24) = 2.558

‘Gain’ refers to the increase in score between pre- and post-tests. The maximum score for all conditions is 12
* Indicates a significant p value at the 0.05 level

children scored an average of 7.93 (SD = 1.82) for Test A
and an average of 6.08 (SD = 1.31) for Test B. This explains
why learning effects measured from Test A to Test B may be
hidden, but may be amplified from Test B to Test A.

Whilst the ‘gain’, the improvement in the score from pre-
to post-test, is higher on average for the virtual robot than the
real robot, this is not statistically significant (Table 2).

5.1 Learning Bias

Significant learning effects are observed when Test B was
used as the pre-test, but the same was not found for Test A
as the pre-test. To explore why this occurred, every pre-test
image categorisation was analysed. It became apparent that
whilst the datasets used had been carefully designed to be
novel and to prevent children having preconceptions, they
were not immune to biasing effects. Clear patterns emerged
in the way that the children categorised the aliens in the pre-
test; the point at which they had no knowledge of the dataset
material.

Upon further investigation of the literature it was discov-
ered that children start to use colour as a predictor of category
membership from an early age, as shown in [33]. Utilising
this indication from the literature and examining the consis-
tently incorrectly categorised aliens, the following hypothe-
sis was formulated about the bias of colour in the dataset:

– Given no knowledge of the dataset, the greater the pro-
portion of purple on an alien, the more likely it is to be
categorised on the purple planet.

– Similarly, the same is true for orange on an alien and the
orange planet.

Children were consistent at applying this bias and it was
concluded that a bias-free dataset would be almost impossible
to create. If the bias could be quantified then learning effects
in spite of the bias, or on minimally biased images, could
be evaluated. The equation shown in 1 was formulated as a
measure of bias.

bias = %P − %O (1)

where %P is the the percentage of pixels perceived to be
purple out of the total number of coloured pixels in the image.
%O is the the same as the above for orange pixels.

This results in a bias value between −1 and 1. A value
of 0 represents no bias, a negative value is a bias towards
the orange planet and a positive value is a bias towards the
purple planet. The greater the magnitude of the number, the
greater the bias effect. This equation assumes no bias when
neither purple or orange are present in an image and takes
into account the relative balance between purple and orange
in an image; if they are equal then they will cancel each other
out.

In order to evaluate the effect of the colour bias, a series of
paper-based tests were given to a different group of children.
Three different tests were used: two were the test sets from the
main study and a third test was created to investigate aspects
of the biasing hypothesis. Each test had twelve images of
aliens in a vertical line in the centre, with the planets aligned
to the right and left edges of the page. The side on which the
purple and orange planets were placed was varied between
the tests. A total of 54 tests were completed; 18 of each
different test. 24 male and 30 females completed the tests,
on average, the children were 7.2 years old, SD=0.54.

The percentage of pixels which were purple and orange
was counted for each of the 36 images used across the three
tests. These values were then inserted into Equation 1 to pro-
vide a bias value for each of the images. Correlation between
the calculated bias values and the actual percentage of chil-
dren which categorised the image as purple or orange was
then measured. Pearson’s product-moment correlation coef-
ficient shows a very strong correlation of 0.761 between
bias value and percentage categorised as purple, and −0.761
between bias value and percentage categorised as orange.
The correlations are the inverse of one another due to the
inverse relationship between the percentage categorised as
purple and orange.

As the bias value holds a strong correlation to the actual
child behaviour, this can be used to divide the test sets into
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Fig. 4 Calculated bias value for each of the images used in the exper-
imental pre- and post-tests using Eq. 1

groups based on their relative biasing. This is useful because
it allows learning effects to be considered in the context of
the bias. There are some clear clusters and a division of 0.2
and −0.2 was used to split the groups (Fig. 4):

– bias > 0.2 = 9 images biased towards purple
– –0.2 < bias < 0.2 = 9 minimally biased images
– bias < –0.2 = 6 images biased towards orange

5.2 Accounting for Bias

Table 2 shows a significant increase between those children
taking pre-test A and those taking post-test A and a sig-
nificant increase between pre-test B and post-test B. This
cross-comparison could be used to make an argument for
overall significance of learning effects in spite of differences
between the tests. However, it is more convincing to con-
sider learning effects taking into account the known biases.
The children’s tests will now be evaluated in the context of
the bias groups as laid out in Sect. 5.1. If learning is indeed
present, the following hypotheses would be true:

– H0: Images with minimal biasing will be categorised
more correctly in the post-test than the pre-test.

– H1: Images with large biasing towards a correct category
remain unchanged.

– H2: The bias of images with large biasing towards an
incorrect category will be reversed.

H1 and H2 make it necessary to divide the images with
a large bias into two smaller groups: those where the bias
leads to a correct categorisation and those where it leads to
an incorrect categorisation. In regard to H1, the number of
correct categorisations will not change if learning is present,
but it is hoped that the reasoning behind the categorisation
changes from bias-influenced to knowledge-based. Unfortu-
nately, it is not possible to measure the reasoning behind a
classification given the current task.
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Fig. 5 Pre-test and post-test percentage of correct answers for images,
grouped by bias type and direction. Error bars show the standard devi-
ation

In order to test these hypotheses, the percentage of cor-
rectly categorised images in the pre- and post-tests were
grouped together based on the strength and direction of the
bias. Four images are biased towards an incorrect categori-
sation, 11 images are biased towards correct categorisation
and 9 images are minimally biased. Each image is categorised
between 12 and 14 times.

The increase for minimally biased images is not signif-
icant, which does not support hypothesis H0. The increase
for images with a large bias towards a correct classification
is also not significant, meaning that H1 is supported. H2 is
also supported; a significant effect is found between pre- and
post-test scores for those images biased towards an incorrect
categorisation (Fig. 5; Table 3). The bias groupings were
considered across the two embodiment conditions, but no
significant differences were found.

6 Behaviour and Embodiment

This section will analyse the relationship between the behav-
iour of the children, behaviour of the robot and the embod-
iment condition. Previous work suggests that embodiment
will have an effect on the children’s behaviour, as stated
in Sect. 2. This analysis is necessary in order to explore
Hypotheses 2 and 3. This section will first analyse the chil-
dren’s compliance with the robot’s suggestions, which relates
to Hypothesis 2. The two subsections after will consider dif-
ferent aspects of the gaze behaviour of the child, which both
relate to Hypothesis 3.

6.1 Compliance

The children clearly complied with the robot’s suggestions
for moves, as the percentages of responses below show. Even
when the children were in the process of completing a move
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Table 3 Learning effect t-test results, grouped by bias. All t-tests are two tailed, unpaired tests

Bias group Pre-test (SD) Post-test (SD) p value t (df )

Minimal 62 % (24.3) 72 % (25.7) 0.195 t(25) = 1.330

Bias to correct 72 % (20.3) 79 % (19.4) 0.216 t(25) = 1.268

Bias to incorrect 9 % (20.1) 77 % (36.2) <0.001∗ t(25) = 9.657

Average percent correct is shown for both pre- and post-tests
* Indicates a significant p value at the 0.05 level

themselves, they were significantly more likely to stop their
current move and follow the robot’s suggestion than not [24].

– 87 % of the moves which the robot suggested were taken
immediately by the children

– 4 % were taken after the child had finished any move that
they had already begun

– 4 % of the suggested moves were ignored by the children
– 5 % were occluded in the video analysis

There were no significant differences between the two
embodiment conditions for the number of moves taken
immediately (p = 0.129, t(26) = 1.568), although the real
robot had a slightly higher average of 89.5 % (SD = 21.3),
compared to 77.7 % (SD = 17.9) for the virtual robot. The
lack of significant difference here is not surprising as the
robot suggestions are simple and not unusual [2]. No corre-
lation was found between the number of suggested moves
by the robot and the improvement in score between pre- and
post-tests; Pearson’s r = −0.1369.

The high level of compliance with the robot’s suggestions
provides an indication that the children were engaged with
the robot as well as the task throughout the interaction. This
provides partial support for Hypothesis 2, although further
evidence is required to fully support this hypothesis.

6.2 Gaze and Embodiment

When considering the full length of the interaction, there
were a number of significant findings in the differences
between the children’s gaze and touchscreen gestures towards
the real and virtual robot. Children interacting with the real
robot (M = 5.19, SD = 1.29) make significantly more gazes
towards the robot per minute than those in the virtual robot
condition (M = 4.13, SD = 1.12), t(26) = 2.296, p = 0.030.
The length of each individual gaze is similar between condi-
tions, so those in the real robot condition (M = 9.40, SD =
1.88) spend significantly more seconds per minute of inter-
action gazing towards the robot than those interacting with
the virtual robot (M = 7.53, SD = 1.93), t(26) = 2.586,
p = 0.016. This result confirms findings from [31] in a new
context, and also supports Hypothesis 1.

A one-way between subjects ANOVA was conducted to
compare the effect of interaction time on the child’s gaze
towards the virtual robot. There was no significant effect of
interaction segment on child gaze towards the robot at the
p <.05 level for the three segments [F(2,36) = 2.445, p =
0.101]. A one-way between subjects ANOVA was conducted
to compare the effect of interaction segment on the child’s
gaze towards the real robot. There was a significant effect
of interaction segment on child gaze towards the robot at
the p < .05 level for the three conditions [F(2,42) = 5.676,
p=0.007]. Post-hoc comparisons using the Tukey HSD test
indicate that the mean score for the first segment (M = 6.64,
SD = 3.26) was significantly different to the second segment
(M = 4.26, SD = 1.06) and to the third (M = 4.42, SD =
1.50), with p values of 0.012 and 0.020 respectively. The
second and third segments had no significant difference, p =
0.976. This means that the gaze significantly dropped from
the first to the second interaction segment for the real robot
and then remained at roughly the same level as the second
for the third. For the virtual robot, the same pattern is seen,
but the changes are not as large. The comparison of these two
curves can be seen in Fig. 6.

It is suggested that the drop in gaze for the virtual robot
is not significant because the starting level is lower than that
of the real robot. Because of this lower starting point there is
less of a reduction in gaze which is possible (a floor effect),
whereas the relatively high starting point for the real robot
gaze level allows for a greater drop. In the third segment,
the gaze remains at roughly the same level as in the second
segment for both conditions. This is an indication that once
the children become accustomed to the social behaviour of
the robot their interest in the robot drops off, reflected by their
reduced gaze towards it [6]. When novel social behaviour is
re-introduced for the post-test, the engagement level then
rises again, in agreement with [52].

6.3 Gaze and Robot Behaviour

Considering the interaction as a whole reveals a number of
interesting results, but considering the interaction in terms of
its component parts, as laid out in Sect. 4.8, allows a more
thorough analysis and the exploration of behaviour over time.
This has previously been suggested for use as a “proxy for
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engagement in the interaction or for the human’s attribution
of social agency to the robot” [6]. Gaze can be converted
into seconds per minute values in order to normalise between
individuals and allow for direct comparison.

The amount of gaze towards the robot varies a lot between
the different segments (Fig. 7). When the robot is directly
addressing the child, the child gazes more towards the robot
than when the robot is not addressing the child at all; a good
example is the difference between when the robot is provid-
ing instructions and when the child is completing the pre-test.
The gaze for the learning phase appears to be quite low in
comparison to some of the other sections; whilst it is, this
does not mean that the child is not paying attention to the
robot. It is possible for the child to observe the robot’s actions
on screen and to get feedback from the screen, whilst also
listening to the robot; this could explain the relatively low
level of gaze towards the robot throughout this phase of the
interaction. Another notable difference is seen between the
gaze towards the robot during the pre- and post-tests; this
will be discussed further in Sect. 7.2.

Of particular interest is the behaviour of the child dur-
ing the main learning phase. A one-way between subjects
ANOVA was conducted to compare the effect of interaction
time on the child’s gaze towards the robot (both conditions
combined). The learning phase was split into thirds for com-
parison [6]. There was a significant effect of interaction seg-
ment on child gaze towards the robot at the p < .05 level
for the three thirds [F(2,81) = 6.968, p = 0.002]. Post-hoc
comparisons using the Tukey HSD test indicate that the mean
score for the first segment (M = 5.63, SD = 2.98) was sig-
nificantly different to the second segment (M = 3.56, SD =
1.85) and the third segment (M = 3.73, SD = 1.91), with
p values of 0.003 and 0.008 respectively. No significant dif-
ference was found between the second and third segments,
p = 0.961. Therefore, children look at the robot significantly
more in the first third of the learning phase, before dropping
for the rest of the interaction.

Fig. 7 Seconds per minute that the child spends gazing towards the
real and virtual robots, split by interaction segment. Error bars show
standard deviation

7 Discussion

This section will discuss the overall learning significance
in relation to the task and the robot, the lack of learning
differences between the real and virtual robot conditions,
and the significant behavioural differences in the response of
children to the real and virtual robots. Addressing these points
allows conclusions to be made in response to the hypotheses
laid out in Sect. 3.

7.1 Embodiment and Learning

No significant differences were found in learning between
those children who interacted with the real robot and those
who interacted with the virtual robot. Other studies have
found significant differences between different robot embod-
iments, for example [19,29]. In this case these effects were
not found; thereby not supporting Hypothesis 4. However,
this is in line with some work, for example [18]. Given
the context of the interaction, we suggest that the robot’s
behaviour had a greater impact on learning than its embodi-
ment.

The length of the interactions may have caused the lack of
difference between the embodiment conditions. The learn-
ing phase of the interaction was an average of 309 s; just
over 5 min. This is a very short amount of time for learn-
ing, meaning that the task had to be simple. Additionally,
the social behaviour of the robot was limited. The scripted
elements of the interaction were relatively rich, but the main
learning phase was repetitive and it indeed appears that the
children lost interest in the robot as they became aware
that the robot was not socially contingent (Sect. 6.3). If
the robot could exhibit richer social behaviours, more con-
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tingent on the behaviour of the child than at present, dur-
ing the learning phase then it may be that a greater dif-
ference between the children’s reactions towards the robot
would be observed, which may improve the learning out-
come.

The learning differences between the real and virtual
robots may also have been influenced by the novelty effect.
Not only were the children facing a novel robot, in whichever
form that may take, but also a large touchscreen. It is likely
that even if there are differences in how children would
respond to either of the robot embodiment conditions, they
would be excited by the novel technology in either condition
and therefore more likely to give the task their maximum
attention, reducing any potential for difference between con-
ditions in task performance.

One way to disentangle the novelty effect would be to
carry out the experiment over a longer length of time so that
the effect wears off. However, this would certainly require
a change in the complexity of the task to prevent it quickly
becoming boring for the children. Although a study of this
nature could be interesting, it may not yet be as useful as it
could be. It would be beneficial to establish the importance
of a more socially contingent behaviour for the robot, and
then consider the impact of this over time.

With a larger sample size it is possible that learning differ-
ences may then become more pronounced and could also be
generalised. The difficulty would then be in recruiting enough
subjects of the correct age, particularly given the challenges
in recruiting subjects and running studies outside of the lab,
as highlighted in [44] and [56].

7.2 Social Behaviour and Embodiment

When considering the social behaviour exhibited by the chil-
dren between the two conditions, the main difference was in
the amount of time the children spent looking at the real
robot; they look at the real robot significantly more than the
virtual robot. An increased amount of gaze towards a real
robot when compared to a virtual one has been seen in other
studies as well, for example [31], and the increased mobility
of the real robot has been suggested as an explanation, as in
[10].

The ability of the real robot to enter into the child’s field
of vision whilst they are looking at the touchscreen is a great
advantage. This can be used as a technique to direct the child’s
attention during the task, or to make sure that the child is
paying attention [52]. This could be particularly useful in a
more complex task where the robot’s input is more tightly
coupled to the learning outcome.

Because of the differences in embodiment and the subse-
quent lack of depth information when looking at the virtual
robot, the virtual robot (M = 15.4, SD = 4.2) appears to
gaze at the child significantly more than the real robot (M =

10.5, SD = 4.2) when normalised to s/min, t(26) = 3.029,
p = 0.005. It is surprising that this does not cause the child
to look at the virtual robot more often in order to recipro-
cate this gaze. The real robot attracts significantly more gaze
from the child than the virtual robot and if the robot behaviour
were to be more socially contingent then it is possible that
the heightened levels of gaze seen at the start of the learning
phase could be maintained. This could be used to argue that
the real robot has the potential to be more socially engaging
than the virtual robot and that this may lead to increased task
performance in the future.

The mediator has a large effect on the social interaction
which takes place; the mediator attracts the majority of the
gaze from the child and in its current form, the children
can get all the information they need to play purely from
the screen once the task has started. Something which may
reduce the large disparity between gaze towards the robot
and the touchscreen could be to remove any feedback ele-
ments from the touchscreen. If the feedback on the screen
were to be removed, then the robot would be the child’s only
source of feedback, which may facilitate social engagement.
An increased reliance on the robot for feedback could lead to
more engagement with the robot from the child, which could
improve learning gains.

Additionally, once the child understands the concept of
the task, the robot’s input is not necessary for completing the
task presented here because of the mediator. The children
can choose to exclude the robot from parts of the learning
phase by taking moves quickly and preventing the robot from
suggesting a move. If the coupling between the task and the
robot were tighter, it is likely that the behaviour of the robot
would have a greater impact on the outcome of the task. From
this perspective, the impact may also be more consistent, as
the robot involvement would likely be more consistent as
well, as opposed to the current setup where the robot input
varies depending on how the child behaves. It should be noted
that it is not being suggested that this consistency would result
in a higher average performance increase; the authors would
still hypothesise that a more adaptive robot would result in
greater child performance.

The results show that the children spend more time looking
at the real robot than the virtual robot. It is likely that if
the task was more spatially oriented, or required more joint
reference, the real robot would hold an advantage. In the task
used, when the robot suggested a move, it was clear on the
touchscreen which image the robot was suggesting, so the
gaze of the robot was not needed to identify the object of
reference. It may be that if the touchscreen did not make it
clear which of the images the robot was pointing to, then
the increased gaze towards the real robot may play a more
important role in the learning outcome.

The amount of time per minute that the children gaze
towards the robot during the pre- and post-tests was pre-
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viously highlighted as an interesting difference to discuss.
Figure 7 suggests that there would be a significant differ-
ence between the amount of time the children spend looking
towards the robot during the two testing phases. This is due
to the inclusion of the post-test instructions from the robot
to the child in the post-test segment. When splitting out this
instructional phase, there is very little difference between the
gaze towards the robot during the tests. During the pre-test,
the children spend an average of 1.01 seconds per minute
(s/m) gazing towards the robot (SD = 1.27); this rises very
slightly to 1.31 s/m (SD = 1.36) during the post-test. The
post-test gaze towards robot value had been inflated by the
inclusion of the instructions in this phase. Whilst the instruc-
tions are being given by the robot, the child spends 24.99 s/m
(SD = 9.93) gazing towards the robot. This is almost half of
the time and further supports the point made in Sect. 6.3 sug-
gesting that the children gaze more towards the robot when it
is directly addressing them and exhibiting novel behaviour.

Schermerhorn and Scheutz have demonstrated the com-
plex interactions which occur between embodiment and other
elements of robot behaviour [46]. Whilst the analysis of an
integrated system is always desirable, we would suggest that
first varying just one of the dimensions at a time (either
embodiment or behaviour) affords the ability to establish a
hierarchy between factors which are hypothesised to have
an impact on the results and also to make direct attributions
between variables and outcomes.

In a similar way, Huang and Mutlu adopt a multivariate
analysis approach to study the impact of a specific behav-
ioural variable, in this case gesture, on knowledge recall
[19]. This attractive approach affords the ability to study
several variables whilst keeping subject numbers low; often
a great challenge for HRI research. However, when deal-
ing with social behaviour, it remains to be seen whether
these specific sub-behaviours being varied can be statistically
extracted from a more complex behaviour and then success-
fully implemented into a new ‘optimised’ model, due to the
way that social cues may be perceived [57].

7.3 Task Characteristics

The task that the children completed will have had a large
effect on the learning which took place. The task is simple
so that it is possible to be learnt within the short interaction
time. As such, there is a very limited gradient in terms of
the learning which can take place; children either figure out
the pattern and do very well on the post-test, or they don’t
and they continue to sort the images according to the colour
biases identified in Sect. 5.1. This means that subtle differ-
ences in learning are unlikely; the learning is often binary,
which limits the variability between the post-test scores and
therefore between conditions. A task which has a greater gra-
dient of learning to measure on has a much greater resolution

of measurement and can therefore provide more variability
to make comparisons where subtle differences can be more
pronounced. Equally, learning could easily be assessed over
the full course of the interaction, rather than in just a pre-
and post-test; this type of continual assessment is supported
in educational literature [15,37].

Furthermore, the unit of measure for learning and how
learning is defined is important. Completion time of a puz-
zle has been used, as in [30]. Whilst time provides a good
resolution of learning steps, it is possibly too closely related
to motivation, rather than knowledge gain (although there is
an undeniable connection between the two) in the context of
the task used for the experiment in this paper. Evaluation of
skill over the course of the interaction, rather than just in a
pre- and post-test setup, may provide more insight into the
learning process.

The position of the robot around the mediator may also
impact upon the learning outcome. The position of people
around a surface has been studied elsewhere and correlations
between seating positions and interaction styles have been
made, e.g. [47], [53]. In this case it is proposed that the seat-
ing position has not made a significant impact as the studies
showing differences have been human–human and have been
ambiguous in the way that the interaction partners have been
presented to one another. In this experiment, the children
were expecting to play a game with a robot which would be
there to help them, so competitive behaviours seen elsewhere
when interactants face each other are probably overridden by
the context here. This is reinforced by the teacher and student
roles assumed by the robot and the child.

The task used in this study was designed so that it would
be completely novel to the children. The aim was to prevent
preconceptions from influencing the learning taking place,
as inspired by [32]. However, a side of effect of this was an
introduction of a colour bias which complicated the results.
Additionally, the development of an entirely novel task in
this manner removes a lot of the context from the learning.
It is thought that context has a great impact on learning and
transfer of knowledge [54]. It is possible that the removal of
a real-world context in the learning task inhibited the amount
that children could learn, possibly contributing to the lack of
learning difference between conditions.

The biases present in the dataset used highlight a trade-off
between development of a novel task and the introduction of
bias. A novel task was desirable here so that learning could
easily be measured independently of preconceptions. How-
ever, in creating a novel task, biases were inadvertently intro-
duced. In future work it will be ensured that any novel dataset
created will be tested and validated to remove, or at least bal-
ance, any possible bias. Moreover, it is more likely that future
work will instead move away from the use of a novel task due
to the complications that this introduces, and the lack of con-
text surrounding the learning. It would be preferable to find

123



306 Int J of Soc Robotics (2015) 7:293–308

a task which children could learn from in an interaction that
more closely follows their academic curriculum, whilst not
overlapping and confounding the measurement of learning.

8 Conclusion

It is clear that although the study was designed to prevent chil-
dren from having prior knowledge about the test sets, there
are still biases present in the test material. It is suggested that
in a sorting task of this manner, it would be almost impossible
to eliminate all of the possible biases. In this instance, a sig-
nificant cause of bias could be accounted for and quantified,
thus allowing robust analysis in spite of these biases. It is
important for HRI experimenters to consider the effect that
such biases and preconceptions may have on any learning
effects that they are trying to measure.

Varying the social behaviours exhibited by the robot dur-
ing the learning phase could be a useful extension to this
experiment. It was observed that the children seemed to lose
interest as the main learning phase progressed and it became
apparent to them that the robot behaviour was not socially
contingent. This drop-off in apparent engagement signifies
that the robot behaviour needs improvement, highlighted by
Hypothesis 2 from Sect. 3 (that a socially contingent robot
behaviour will keep the children engaged throughout the
interaction).

In support of Hypothesis 3, regarding gaze and attention,
children’s compliance with the robot’s requests (as shown
in Sect. 6) demonstrates that they were paying attention
to the robot despite most of their gaze being towards the
touchscreen. This was entirely as expected, as informed by
prior studies, e.g., [4,23].

Although no differences in learning between the embodi-
ment conditions were found in this study, a number of reasons
have been suggested as to why this was the case. These results
did not support Hypothesis 4, that significant learning differ-
ences would be observed between embodiment conditions.
This could be used as evidence for the robot behaviour over-
riding embodiment effects, or perhaps environmental factors
impeding learning. Alternatively, it is suggested that if the
task were to be more spatially dependent or have a greater
resolution for measuring learning then differences in learn-
ing between real and virtual robot conditions may become
more apparent.

To conclude, this paper has contributed to the existing
literature in the domain of HRI in educational interactions
by exploring the effect of embodiment in a novel learning
context. This learner-centered, ‘guided discovery learning’
approach requires a very different model of robot behaviour
when compared with the teacher-centered approaches previ-
ously applied and investigated in HRI. It is found that the
real robot attracts more gaze than the virtual robot, but that

there are no learning differences between these conditions.
Additionally, results here have confirmed the value in con-
sidering child behaviour over the course of an interaction as a
means of characterising the effectiveness of the robot behav-
iour. Further work needs to be done in order to improve the
socially contingent behaviour for the robot to maintain the
initially high levels of attention from the child throughout the
interaction. Nevertheless, the results provided initial support
for the effective application of the guided discovery learning
methodology to cHRI.
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Appendix: Robot Script

Below is a list of the robot scripted phrases and where they
occur in the interaction.

– Robot Instructions

– Hello! I’m Pop/Crackle.
– Right, what we are going to be doing today is sorting

out some aliens.
– We have two species of aliens that are lost in space and

we have to return them to their home planet. Okay?
– So here we have our different types of aliens and our

two planets, the purple and the orange.
– We need to sort them into their two different groups.
– I’d like you to see if you can guess which planets the

aliens are from.
– You can touch an alien and you drag it to the planet

you think it’s from, and it’ll tell you whether you are
right or not.

– I won’t help you on your first go. Let’s see how well
you can do on your own!

– Now you can start.

– Prior to Guided Discovery Phase

– Lovely, well done.
– Now I’ll give you a clue, the aliens from the purple

planet all have something in common.

– Prior to Post-Test

– Right, we’ll do just one more set of aliens.
– Using the practice we’ve just done, let’s see how well

you can do.
– I won’t help you this time.
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– Have a go.

– Robot Goodbye

– Well done. thank you very much.
– Thank you for helping me out today.
– You can go back to your class.
– Goodbye!
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