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Abstract In social HRI context, the robot’s usefulness and
appropriate behavior plays an important role. A robot should
be able to understand the human’s internal state (i.e., physio-
logical and psychological states) so as to provide an adaptive
and thus efficient assistance within daily life activities. Mea-
suring stress and frustration of an individual while perform-
ing a certain task is a critical element that can help the robot
adapt its behavior so as to improve user’s interest and task per-
formance and to reduce his/her frustration. In this paper, we
designed an experiment called “Stress Game”. In our work,
stress is measured in terms of heart rate signal. The robot dis-
plays different behaviors as a function of user’s personality
and game condition. We conducted our experiments with the
NAO robot. The experimental results support our hypotheses
that the robot has a positive effect on stress relief.

1 Introduction

Motivation is considered as a critical “force” of energy that
leads to task engagement or sustained involvement. Psychol-
ogist Richard M. Ryan began his paper [20] by saying: “To be
motivated means to be moved to do something. A person who
feels no impetus or inspiration to act is thus characterized
as unmotivated, whereas someone who is energized or acti-
vated toward an end is considered motivated.” The work of
[10] demonstrates with excellence that robots can be a better
motivator than computer-based or paper-based methods. The
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authors developed a long-term HRI experiment focusing on
the role of social robots in motivating people for weight main-
tenance. Three kinds of weight loss coaching were examined,
including robot as coach, computer-based application, and
paper log (based on a methodology used in the “Nutrition
and Weight Management Center” at Boston Medical Cen-
ter). Their result reveals that people interacted longer with the
robot than with the other modalities, and experienced closer
relationship with the robot than with the other experimental
coach styles. In other words, people were more motivated to
interact with the robot than with a computer-based applica-
tion or a paper log. In their case, a simple robot appearance
and a vocal communication system really helped to motivate
people.

When focusing only on the human–robot interaction
(HRI), recent studies suggest that user’s motivation can come
from their appreciation of the robot’s social cues. For exam-
ple, in the the work of [23], where humans were exposed to
several attention styles of the robot, including: exploration,
interaction, interaction avoidance, and full interaction (i.e.,
a combination of the three previously mentioned attention
styles), it is found that users reacted more when they received
more feedback from the robot about their actions.

We posit that robots can motivate people and help improve
their task performance by employing some social and intel-
ligent behaviors. In this research, we focus on the role of
personality in improving the user experience during HRI.
We briefly present some related works about this subject in
the following sections.

1.1 Robotic Motivator with Personality Matching Strategy

Lee and collaborators [14] suggest that a robot can moti-
vate people during interaction by using its personality. The
authors modeled two kinds of behaviors for AIBO robot:
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an extroverted and an introverted behavior (generally mod-
ulated in the vocal sound and in the speed of actions made
by AIBO during the interaction with the human partner).
The participants were asked to play with AIBO robot and
evaluate its personality. The obtained results emphasized that
participants were more joyful when interacting with the robot
that had complementary personality to theirs. Their work also
suggested that by changing the robot’s behavior (in this case,
its personality), we could change the motivation level of peo-
ple interacting with the robot.

Another work focusing on socially assistive robotics,
and more precisely on post-stroke rehabilitation therapy
[25], examined the effects of robot’s customized behavior
on people’s motivation and task performance. The rela-
tionship between the extroversion–introversion personality
spectrum and the style of encouragement in a rehabilita-
tion task were explored and the role of adapting robot’s
behavior to the user’s profile was addressed. The three fac-
tor Psychoticism–Extroversion–Neuroticism (PEN) Eysenck
Personality model [5] was employed, with a particular focus
on the extroversion dimension. The study showed that users
preferred working and interacting with a robot with a simi-
lar personality as theirs during the therapy: extroverted users
preferred the robot that challenged them during the exercises,
while introverted users favored the robot that praised them.

The work in [1] explored the benefits of combining ver-
bal and non-verbal behaviors to generate robot’s personali-
ties appropriately during the interaction with a human peer.
The system estimates first the interacting human’s personal-
ity traits through a psycholinguistic analysis of the spoken
language, then it uses PERSONAGE natural language gen-
erator that tries to generate a corresponding verbal language
to the estimated personality traits. Gestures are generated by
using BEAT toolkit, which performs a linguistic and con-
textual analysis of the generated language relying on rules
derived from extensive research into human conversational
behavior. The results showed that individuals preferred to
interact more with the robot that had the same personality
with theirs. Participants also expressed their preference to
the mixed speech–gesture behavior of the robot, saying that
the robot’s speech was more engaging and more effective
when accompanied by appropriate gestures than when no
gestures were present.

Furthermore, similar results were also found in Human–
Computer interaction (HCI). In [18], the authors presented
an experiment where the influence of personality on human’s
task performance was tested. In their experiment, partici-
pants were taught to use HyperCard application [13]. By
testing several conditions during the experiment [in a 2 ×
2 × 2 factorial design as follows: personality of the inter-
face (extroverted/introverted), subjects’ personality (extro-
verted/introverted), task strength (low and high)], they found
that introverted participants made better performance when

using introverted interface rather than while employing the
extroverted interface. However, this effect was not observed
for extroverted participants. In terms of task strength, they
found that the extroverted participants realized tasks sig-
nificantly faster than introverted participants on low task
strength, however, no significant difference was found for
high task strength. This work also leads to believe that in
human–machine interaction, personality of the machine can
influence task performance in a certain manner.

1.2 Robotic Motivator with Ability to Adapt to Human’s
On-going State

By enabling a robot to understand the user’s current
internal state, we permit the robot to provide appropriate
behaviors in specific interaction scenarios. Recent research
in the field of HRI also aims to address robot’s capability
to understand the internal states of the human interaction
partner (e.g., [16,17,24,27]). An aware robot can be used
for example in clinical setups where monitoring a patient’s
physiological condition is a crucial factor in terms of the use-
fulness of a robot as an interaction partner [12]. On the other
hand, being able to make assumptions about user’s psycho-
logical condition enables the robot to do some efforts that aim
to change the user’s mental state in a positive and context-
dependent manner [8].

In [3], a robotic-based basketball game was designed to
alter the game difficulty level in terms of the player’s anxiety
level. The game consisted of a robot arm moving a basketball
hoop with variable speeds. The player’s task was to shoot a
number of baskets into the hoop within a given period of time.
By monitoring the player’s anxiety, the robot’s arm changed
the speed of the hoop in such a way that it could enhance
and/or maximize the performance of the player. Player’s anx-
iety level was deduced from his/her physiological signals. In
this experimental setup, the robot’s behaviour had a direct
influence to the game, and this could be seen as a coopera-
tion task where the robot and its human partner had to work
together so as to maximize the performance.

Some studies in social and cognitive sciences show a
strong link between the physiological signals (arousal), the
personality (extroversion–introversion dimension), and the
task performance. The Yerkes–Dodson law [26] advocates
that the task performance increases with the level of arousal
till a certain point (e.g., too high or too low arousal lev-
els make the task performance decrease, as depicted in Fig.
1). Moreover, Eysenck [5] has found that the extroversion–
introversion personality dimension is a matter of balance of
the inhibition–excitation in the brain (i.e., extroverted indi-
viduals are less aroused than introverted individuals), and that
the cortical arousal is strongly linked to the extroversion–
introversion level. He also found that introverted individu-
als had higher arousal level than extroverted individuals. We
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Fig. 1 Hebbian version of the Yerkes Dodson curve

believe that this personality-dependent arousal behavior can
be of great help for social robots if used wisely.

1.3 Goal of Stress Game Experiment

We designed a “Stress Game Experiment” aiming at studying
how to increase the task performance of users by tuning the
robot’s behavior so as to influence the individual’s level of
arousal. In our experimental design, we would like to verify
(1) the effectiveness of personality-based coaching style in a
non-rehabilitation context, (2) the correlation between stress
elicitor and human’s heart rate variability, and (3) the differ-
ence in heart rate variability between introvert and extrovert.

The rest of the paper is structured as following: Sect. 2
describes the system test-bed (the robot, the game, and the
ECG sensors); Sect. 3 presents the system architecture; Sects.
4 and 5 depict the experimental design and the hypotheses;
Sects. 6 and 7 discuss the results obtained, and finally con-
clusions and future work are given in Sect. 8.

2 System Testbed

The goal of our “Stress Game” is to evaluate the robot’s
capability of increasing human’s task performance and
interest to the game. The game is intended to elicit stress
and thus frustration into the player. The robot continuously
monitors the on-going performance of the player (and there-
fore his/her state of frustration) and acts accordingly so as
to help to lower the player’s frustration level and to enhance
his/her task performance.

2.1 Robot Test-bed

The experimental test-bed used in this study is the humanoid
Nao robot developed by Aldebaran Robotics.1 Nao is a 25
degrees of freedom robot, equipped with an inertial sensor,

1 http://www.aldebaran-robotics.com/.

Fig. 2 Operation game board

two cameras, eyes eight full-color RGB LEDs, and many
other sensors, including a sonar, which allows it to compre-
hend its environment with stability and precision. Nao is also
equipped with a voice synthesizer and 2 speakers enabling
vocal communication.

2.2 Stress Game

“Operation” board game is a game that tests players’ hand–
eye coordination and fine motor skills. It consists of an “oper-
ating table” with a comic likeness of a patient (nicknamed
“Cavity Sam”) drawn. On the surface, there are 13 openings
filled with various funny little objects (see Fig. 2). The player
has to extract the objects from the openings with the help of
a pair of tweezers without touching the edges. The game was
instrumented so as to be connected to the computer by using
a Phidget interface kit.2 Everytime the edges of an opening
are touched a signal is sent by the Phidget interface to the
computer. Moreover, the player has to push a button so as to
validate that an object has been successfully removed from
the board. The button is also connected to the Phidget
interface.

2.3 Shimmer ECG Sensor

It is well known from the psychology literature that inter-
nal motivational processes (thoughts and feelings) activate,
intensify, or energize observable behaviors [11]. The author
in [15] posits that the motivational state (i.e., emotional state),
representable under two parameters of valence (positive or
negative) and arousal (high or low), is highly correlated to the
physiological signals, such as skin conductivity, heart rate,
and blood pressure. In our experiment, we used heart rate as
an indicator for the stress level of the player.

2 http://www.phidgets.com/.
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Fig. 3 Shimmer ECG sensor and related materials

For the retrieval of heart rate data of the player, we
employed Shimmer3 ECG sensor (see Fig. 3) to acquire the
player’s signals in real-time (sample rate is 50Hz) and trans-
fer this data via Bluetooth communication to the computer for
further processing. The ECG sensor is attached to the player’s
body. Shimmer ECG can be connected to three electrodes
[left arm (LA), right arm (RA), and left leg (LL) electrodes],
which allow two channel acquisition, which are RaLL (i.e.,
pair Ra+LL) and LaLL (i.e., pair La+LL). From each pair,
the heart rate can be easily computed (see Sect. 3.1, Fig. 4
for an example of heart rate calculation).

Figure 4a presents the raw data ECG. Then, we calculate
the first deviation and filter it to retain the heart beat (see Fig.
4b). Heart rate is the number of heart beats per minute, and
thus depends on the interval between two consecutive heart
beats. When this interval becomes shorter, this means that the
heart rate accelerates. An example is shown in Fig. 4: at first
the heart rate is in the normal condition; then the intervals
between heart beats become shorter, obtaining a faster heart
rate. If the beginning period corresponds to the heart rate in
the normal condition, the second period can signify a stress
period. The third period can be seen as the one when the
heart rate becomes normal again after the stress period, for
example when the stressful situation passed.

3 Implementation

Our Stress Game experiment (see Fig. 5) aims two important
elements: (1) Collection of player’s heart rate and perfor-
mance during the game for future development, and (2) Test
of robot’s coaching style adapted to the player’s personality.

3 http://www.shimmer-research.com/.

3.1 Collection of the Frustration State of the Players from
Their Heart Rate Variability

As previously mentioned, our current work is based on
two interesting findings from the psychology literature
that correlate physiological signals (arousal), personality
(extroversion–introversion dimension), and task performance
together [5,26].

The authors in [2] have demonstrated the possibility to pre-
dict the user’s stressful state via electrodermal activity signal
(EDA). The EDA signal was recorded while the participant
was engaged in a social interaction activity through a phone
(e.g., reading emails or SMS, responding to phone calls).
Their system successfully recognized stress in 78.03 % of
cases. The work presented in [9] represents another example
showing the possibility to predict user’s stressful period via
physiological signal. They developed a stress recognizer that
takes skin conductance as input. The system was tested on
nine call center employees who processed 1,500 calls. The
result showed that their system achieved relatively high accu-
racy on detecting stress experienced by the participants dur-
ing phone calls. Moreover, the authors in [21] have shown that
human’s frustration state can be elicited when being faced to
specific events during a computer-based cognitive exercise.

In our Stress Game, the player’s frustration state is sup-
posed to be elicited when he/she makes a mistake while
playing, or when he/she does not perform well enough to
finish the game on time. The player’s frustration state can be
detected through his/her physiological signals (such as, heart
rate, skin conductivity, blood volume pulsation), as discussed
in [15,21]. Therefore, in this experiment, participants’ heart
rate and game events (success, failures) are carefully stored
for later analysis.

3.2 Classification of Participants’ Personality

Based on results of related works on personality matching
in HRI [14,25], we choose to consider the human subject’s
Extroversion dimension as the criteria to match the robot’s
personality to each participant. In Big5 personality inventory
[7], one can get an Extroversion score between 0 (extreme
introverted) and 100 (extreme extroverted). In our design,
we classify those whose Extroversion score is low (lower or
equal to 33) as Introverted, those whose Extroversion score
is high (greater or equal to 66) as extroverted, and those
whose Extroversion score is between 33 and 66 as average
introverted. This classification is to make sure that introverted
people and extroverted people are well distinguished.

3.3 Robot’s Coaching Styles

During the game with the robot coach, the personality and
the on-going performance of the player are used to determine
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Fig. 4 Example of heart rate calculation from ECG data using thresh-
old of 230, sampled at 50Hz. a Extract of RaLl signal captured by Shim-
mer ECG sensor. b Presents the first deviation of RaLl. c RaLl’s first

deviation filtered by the threshold 230 (i.e., only RaLl signals higher
than 230 are kept, otherwise converted to 0). d Heart rate calculated
from the filtered RaLl

Fig. 5 Software architecture of the robotic system

the appropriate verbal reaction of the robot. Even though the
robot has many abilities in terms of actions (for example:
verbal languages, hand gestures, body gestures), we chose
to model only the verbal language. This is because while
playing the Stress Game, the player will be obliged to look
at the game board all the time, which makes the verbal-based
coaching much more important and effective than any other
behavioral reactions. However, the verbal utterances were
also accompanied by hand gestures. The hand gestures were
previously fixed to go with the various utterances, and they
were not adapted to the users’ personality.

Since the robot plays the role of a coach in our exper-
imental scenario, we choose to follow the suggestion of
[25] to match the personality of the robot with that of the

Table 1 Robot coaching style in terms of player’s personality

Player’s personality Robot behavior strategy

Introverted Empathetic

Average introverted Encouraging

Extraverted Challenging

Big5 scores—Introverted, ≤33; average introverted, in-between 33–66;
extroverted, ≥66

human subject as described in Table 1. According to their
findings, extroverted subjects preferred challenging coaching
style while introverted subjects went with empathetic coach-
ing style. We thus matched extroverted participants with the
Challenging robot, the average introverted participants with
the Encouraging robot, and introverted participants with the
Empathetic robot.

Some examples of the verbal content used by the robot
during the game are given in Table 2. They are conceived
in the way that we believe to reflect at best the character of
the robot’s coaching style, based on some psycho-linguistic
studies that show the existence of some personality markers
in language [4,6,22].

4 Stress Game: Experimental Design

4.1 Stress Game Description

A sketch of the experimental design is depicted in Fig. 6. The
board game and the robot are placed on a table. The player
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Table 2 Examples of robot’s
verbal content in terms of its
behavioral strategy Robot behavior strategy Player made an error Player successfully removed an object

Empathetic Please try to make less errors I am happy about your results so far

I know its hard but
you are almost there

Very nice, keep up with the good work

You can do it dont give up You are doing great work

Excellent work

That’s very good

Just a little bit more and you will
finish the game

You did a very nice job

Encouraging You have to make
less errors but it’s ok

You did very few errors, continue
just like that

Attention is a request of this game Your timing is good

Try to concentrate, a better
score is possible

You can do it

There we go, you are doing very well

Keep going. Keep going

Challenging Concentrate on the game! Very well, but you have to move faster!

You did better earlier You started well, continue just like that!

Faster, faster! Nice work!

Keep going, don’t give up!

Great job!

sits in front of the table. He/she will be asked to play the game
four rounds. During each round, the player has to pick up as
many objects as possible. An annoying sound is played when
the participant touches the edge of an opening. Each touch is
counted as a mistake. One round lasts 1 min and represents a
different game condition.

The game condition is defined by two factors: difficulty
level (normal vs. stressful), and robot’s coaching (with or
without), as explained below.

The game’s difficulty level is altered by adding or not
adding the false alarms sounds randomly while the player is
playing the game. The two levels are defined as follows:

– Normal There are no false alarms.
– Stressful There are false alarms (i.e., annoying sounds are

played when no mistake occurs).

Robot’s coaching is either enabled or disabled. When it is
enabled, the robot will make verbal comments / encourage-
ments about the player’s on-going performance. When the
robot’s coaching is disabled, the robot does not say or act
whatsoever. The robot’s verbal utterances are personality-
dependent (see Sect. 3.3 for detailed description).

Player’s performance is assessed in terms of speed (i.e.,
number of objects removed per minute) and error rate (i.e.,
number of errors made per object). These two performance
indicators are calculated as follows:

Fig. 6 Experiment setup

Speed = number of objects removed per minute (1)

Error rate = number of errors

number of objects removed
(2)

4.2 Experimental Protocol

The procedure adopted in the experiments contains several
phases:
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(1) Introduction We explain to the participant the principle
of the game and the steps he/she has to follow. We made
sure that he/she understands how to play the game and
what to expect when having the robot coaching him/her.

(2) Player’s personality identification Before starting the
game, we ask the participant to fill a Big5 questionnaire
in order to determine his/her personality. This informa-
tion is then used to choose the robot’s coaching style, as
described in Table 1.

(3) Recording the heart rate baseline The participant is
invited to relax for 5 min in order to collect his/her heart
rate while being relaxed. The collected data is used as a
baseline.

(4) Game playing in four rounds After the previously men-
tioned phases, the participant plays the game 4 times;
each time corresponds to one condition of the game.
The conditions are: (1) no robot intervention—normal
alarm system; (2) robot intervention—normal alarm sys-
tem; (3) no robot intervention—stressful alarm system
(i.e., with false alarms); and (4) robot intervention—
stressful alarm system. The duration of each game is
1 min. The conditions are presented in a random order.
Robot’s action strategy is determined as a function of the
player’s personality. After each condition, the player is
asked to fill a post-condition questionnaire about his/her
state during the game. Additional questions about the
robot’s behavior strategy are asked when the robot is
involved in the game (i.e., in the robot condition).

(5) Rating of different coaching style of the robot: After
finishing the game, the participant is asked to fill a web-
based questionnaire where he/she watches three videos
showing the robot NAO coaching a player with respec-
tively three different personalities in each video (i.e.,
empathetic, encouraging, and challenging). The partic-
ipant is asked to rate the NAO’s behavior in terms of
challenging, encouraging, and empathetic on the scale
of one (not at all) to seven (very much). He/she is then
asked to choose the personality of the robot that he/she
prefers if having to play the game again with the robot’s
coaching enabled.

5 Hypotheses

Our hypotheses are as follows:

– Hypothesis 1 The players will perform better when being
coached by the robot than when playing the game without
the robot’s coaching.

– Hypothesis 2 The players prefer playing the game with
robot’s coaching than no robot’s coaching.

– Hypothesis 3 There will be a correlation between player’s
personality and their preference about the robot’s
personality.

Fig. 7 Player’s speed

Fig. 8 Player’s error rate

– Hypothesis 4 (a) Player’s heart rate accelerates when
he/she makes an error and (b) decelerates when he/she
successfully removes an object).

– Hypothesis 5 Introverted players have greater heart rate
variability than extroverted players.

6 Experimental Results

Our system was tested with 17 individuals (16 male and 1
female; 9 introverted, 2 average introverted, and 6 extro-
verted), the age of participants was between 23–36 years old,
and they were all with a background in technical sciences.
During the experiments, we collected the heart rate evolution
during the game so as to study the correlation between the
stress and the heart rate when the players are stressed.

6.1 The Effectiveness of Robot’s Coaching on Participants’
Performance

Participants’ performance is represented in terms of speed
and error rate. Figures 7 and 8 illustrate the speed and the error
rate for each condition and for each participant, respectively.

It is easy to see that in the stressful condition (i.e., game
with false alarms), the players’ speed is higher than in the
normal condition (i.e., no false alarms). Furthermore, we also
noticed that in terms of error rate, players performed with
fewer errors per object in the stressful condition and with
even fewer errors when having the robot talking and acting
aside. Average values of speed and error rate are presented
in Table 3.

123



234 Int J of Soc Robotics (2015) 7:227–240

Table 3 Average speed (number of objects per minute) and average
error rate (number of errors per objects) of players during the four
game conditions together with their respective standard deviation in
parentheses

Mean speed
(SD)

Mean error rate
(SD)

No robot’s coaching—Normal 5.65 (1.58) 2.06 (2.92)

No robot’s coaching—Stressful 6.65 (2.67) 1.56 (0.95)

With robot’s coaching—Normal 6.06 (2.73) 1.44 (1.31)

With robot’s coaching—Stressful 6.65 (2.03) 1.60 (1.38)

We also analyzed players’ performance in the different
game conditions of the experiment, by considering each par-
ticipant’s speed and error rate through his/her 4 game condi-
tions (see Table 3). We can notice that the average speed in
the stressful conditions is higher than in the normal condi-
tions, which means that the participants tended to play faster
in the stressful conditions. Moreover, in terms of error rate,
players tended to make less errors when the game had addi-
tional elements (such as the stressful alarm or the robot’s
intervention). For example, the average number of errors per
object removed in the no robot—normal alarm condition is
higher than in the other three conditions. It seems that the
participants paid more attention (and thus, made less errors)
when the game became more stressful and/or when having
instantaneous feedback (from the robot) about their errors.

Validation of Hypothesis 1 In order to validate our Hypoth-
esis 1, we analyzed the user’s performance in the robot’s
coaching and no-robot’s coaching conditions. We can see
from Table 3 that robot’s coaching made participants per-
form better during the game period of time (i.e., in our case
1 min). Furthermore, in the normal alarm condition, the par-
ticipants’ accuracy enhanced greatly when having the robot
aside. However, ANOVA finds no significance in this data.
More specifically, in terms of speed, the two-factor analy-
sis of variance (i.e., two-way ANOVA) showed no signifi-
cant main effect for the difficulty level factor, F(1, 64) =

2.03, p = 0.1594, η2
p = 0.037; no significant main effect

for the robot’s coaching factor, F(1, 64) = 0.14, p =
0.7133, η2

p = 0.0021; no interaction between difficulty level
and robot’s coaching was significant, F(1, 64) = 0.14, p =
0.7133, η2

p = 0.0021. In terms of error rate, the two-factor
analysis of variance showed no significant main effect for the
difficulty level factor F(1, 64) = 0.24, p = 0.6225, η2

p =
0.0038; no significant main effect for the robot’s coaching
factor, F(1, 64) = 0.58, p = 0.4506, η2

p = 0.0089; no
interaction between difficulty level and robot’s coaching was
significant, F(1, 64) = 0.5, p = 0.48, η2

p = 0.0078.
A finer view can be obtained by analyzing participants’

performance in terms of their personality across different
game conditions. In the following paragraphes, three way
repeated-measure ANOVA (personality × coaching style ×
alarm condition) is conducted to investigate possible inter-
action among these factors.

Table 4 shows the average speed and error rate of partici-
pants considering their personality traits. We noticed that the
extroverted participants performed faster with more errors
than did the introverted participants. To investigate the sig-
nificance of these differences, we applied a repeated-measure
ANOVA analysis (including number of objects removed and
number of errors per object removed) of the participants.
Findings are presented in the next paragraphs.

Regarding player’s speed, Table 4 suggested that extro-
verted participants had higher speed than introverted partici-
pants. In fact, through repeated-measure ANOVA, we found
that the extroverted individuals performed significantly faster
than introverted individuals only in the no robot’s coaching–
-stressful alarm condition (F(1, 13) = 7.83, p = 0.015).
Even though in the other three conditions, extroverted par-
ticipants had higher speeds than introverted individuals,
repeated-measure ANOVA analysis showed no significance
in the data.

In terms of player’s error rate, the data from Table 4 shows
that extroverted participants made more errors per object than
introverted participants. When comparing accuracy between

Table 4 Average speed
(number of objects per minute)
and average error rate (number
of errors per objects) in terms of
personality in each condition
together with their respective
standard deviation in
parentheses

Introverted Average introverted Extroverted

Average speed by personality type

No robot’s coaching—Normal 5.44 (1.59) 6 (0) 5.83 (1.94)

No robot’s coaching—Stressful 5.22 (1.48) 7 (0) 8.67 (3.26)

With robot’s coaching—Normal 4.89 (1.62) 6 (0) 7.83 (3.66)

With robot’s coaching—Stressful 6 (1.5) 7.5 (0.71) 7.33 (2.80)

Average error rate by personality type

No robot’s coaching—Normal 1.05 (0.71) 1.75 (1.53) 3.96 (4.41)

No robot’s coaching—Stressful 1.70 (0.84) 1 (1.21) 1.71 (1.14)

With robot’s coaching—Normal 0.78 (0.52) 1.08 (1.06) 2.66 (1.46)

With robot’s coaching—Stressful 1.12 (0.55) 0.49 (0.52) 2.70 (1.76)
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Fig. 9 Participants’ response about whether continuing the game with
or without the robot coach

introverted and extroverted participants, repeated-measure
ANOVA analysis gave significant difference in the follow-
ing robot conditions: for with robot—normal alarm condi-
tion (F(1, 13) = 13.3, p = 0.0029), and for with robot—
stressful alarm condition (F(1, 13) = 7.2, p = 0.019).
This result may have several ways of explanation. Firstly,
it may suggest that the robot coach during the game has
a greater effect on extroverted participants than introverted
participants, which is understandable as extroverted people
tend to respond to external stimulus more often than intro-
verted people. Secondly, it may suggest that robot’s coach-
ing style plays some role in participants’ performance, for
instant, introverted participants were praised by the robot
while extroverted participants were challenged by the robot,
which made extroverted participants more stressed and thus
might have made more errors.

Validation of Hypothesis 2 After four rounds of the game,
participants were asked whether they prefer to play the game
with or without the robot’s coaching, most of the participants
(11 out of 17 participants, i.e., 65 % of participants) pre-
ferred having the robot coaching them while playing (Fig.
9). In order to verify if participants’ choice is well higher
than chance value, we conducted Pearson’s Chi-square test
of goodness of fit between evenly generated choice and
our experimental data. The test returns a critical value of
13.2361 for p < 0.001 confirms that participants’ choice
in our experiment is different from chance value. This val-
idates our Hypothesis 2 stating that the robot’s coaching
condition is preferred to the no robot’s coaching condition
in the game.

6.2 Participants’ Perception About Robot’s Coaching Style

When being asked about robot’s behavior, all participants
reported that the robot’s behavior was somewhat appropriate
to their preferences (average rating is 4.4 on a 7-point Likert
scale) (Table 5). They also found that the interaction with

robot was engaging with an average rating of 4.4. Moreover,
the introverted players tended to rate the robot’s behavior
higher in terms of appropriateness to their preference and of
interaction engagement comparing to the extroverted players.
However, ANOVA analysis shows no significance in their
ratings.

As shown in Table 6, all players found that the robot was
social, extroverted, and helpful, but introverted players had
higher ratings than extroverted players. Introverted players
also considered the robot less stressful comparing to how
extroverted players rated the robot. Concerning the helpful-
ness of the robot, most players appreciated the robot in the
introduction phase, but during the game, some of them stated
that robot’s speech and gestures stressed them more and dis-
tracted them a bit from the game.

All players agreed that the robot had a human-like social
behavior. Robot’s speech got higher ratings than its gestures
(see Table 7).

Furthermore, as described in the Step 5 of the experiment,
participants were also asked to rate their perception about
the robot’s behavior strategies (i.e., empathetic, encouraging,
and challenging) based on participant’s personality (see Table
1) via a a web-based questionnaire. 4 We also asked the partic-
ipants to evaluate the extroversion–introversion personality
trait of Nao robot along with the three robot’s behavior strate-
gies. We had 13 previously involved participants’ answers.
Average ratings of the online questionnaire are presented in
Table 8. The Challenging robot behavior was rated as chal-
lenging and encouraging, the Encouraging robot behavior
was rated as encouraging, and the Empathetic robot behavior
was rated also as encouraging. ANOVA analysis confirms the
above statements. The Challenging robot behavior has been
found significantly more challenging and encouraging than
empathetic (F (2,36) = 10.75, p = 0.0002). ANOVA analy-
sis found no significance in participants’ ratings regarding the
Encouraging robot behavior. Furthermore, the Empathetic
robot behavior was considered as significantly more encour-
aging than challenging or empathetic (F (2,36) = 13.78, p
≤ 0.0001).

Validation of Hypothesis 3 From the results of the online
questionnaire, we were also able to evaluate people’s pref-
erence about robot’s personality in the context of the stress
game experiment. Among the 13 people who answered the
online questionnaire, 9 chose the Encouraging robot, 3 chose
the Empathetic robot, and only 1 chose the Challenging robot
as shown in Fig. 10 (no correlation is found between partici-
pants’ personality and their preference about the robot’s per-
sonality as Cohen’s Kappa coefficient = 0.1269). This finding
rejects our Hypothesis 3 about the correlation between par-
ticipant’s personality and his/her preference about the robot’s
coaching style (Table 9).

4 https://sites.google.com/site/naospersonalityevaluation/.
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Table 5 Mean (and SD) of appropriateness of robot’s behavior towards participants’ preference, rated by participants

Introverted Average introverted Extroverted All

With robot’s coaching—Normal 4.4 (1.0) 5.5 (0.7) 4 (1.3) 4.4 (1.1)

With robot’s coaching—Stressful 4.9 (0.9) 5.5 (0.7) 3.8 (1.2) 4.6 (1.1)

Ratings are between 1 and 7

Table 6 Mean (and SD) of
robot character rated by
participants

Ratings are between 1 and 7

Condition Introverted Average introverted Extroverted All

With robot—Normal alarm

Sociable 5.3 (1.22) 6 (0) 4.7 (1.51) 5.2 (1.29)

Extroverted 5.1 (1.05) 6 (0) 4.5 (1.6) 5 (1.3)

Safe 5.9 (1.9) 6 (0) 3.7 (2.7) 5.1 (2.3)

Helpful 3.6 (1.6) 5.0 (0) 3.8 (1.3) 3.8 (1.4)

Stressful 3.2 (1.4) 4 (2.8) 4.8 (1.7) 3.9 (1.8)

With robot—Stressful alarm

Sociable 5.6 (0.9) 6 (0) 4.3 (1.5) 5.2 (1.2)

Extroverted 5 (1.0) 6 (0) 4.3 (1.4) 4.9 (1.2)

Safe 5.8 (1.9) 5.5 (0.7) 4.3 (2.5) 5.2 (2.1)

Helpful 3.9 (1.5) 5 (0) 4.3 (1.0) 5.2 (1.2)

Stressful 3.4 (1.3) 3 (1.4) 4 (2.4) 3.6 (1.7)

Table 7 Mean (and SD) of of
robot’s expressiveness in terms
of speech and gesture, rated by
participants

Ratings are between 1 and 7

Condition Introverted Average introverted Extroverted All

With robot—Normal alarm

Speech 4.4 (1.3) 5.5 (0.7) 4.2 (1.5) 4.4 (1.3)

Gesture 3.9 (1.2) 6 (0) 3.7 (1.8) 4.1 (1.5)

With robot—Stressful alarm

Speech 4.6 (1.4) 6 (0) 4.5 (1.2) 4.8 (1.3)

Gesture 4 (1.3) 5.5 (0.7) 3.3 (1.5) 4.0 (1.4)

Table 8 Mean (and SD) of of robot’s personality from the online post-
experiment questionnaire, rated by participants

Condition Challenging
robot

Encouraging
robot

Empathetic
robot

With robot—Normal alarm

Challenging 4.8 (1.5) 3.8 (1.2) 3.7 (1.3)

Encouraging 4.2 (1.4) 4.9 (1.5) 6.2 (1.1)

Empathetic 2.5 (1.1) 4.1 (1.4) 4.2 (1.4)

Extroverted 5 (0.8) 4.4 (1.1) 4.5 (0.9)

Ratings are between 1 and 7

A possible explanation is that people prefer the robot to
encourage and motivate them during stressful tasks, and do
not want the robot to challenge them or criticize them when
they make errors in such a situation. This tendency of pre-
ferring supportive robots to Challenging robots is originated
from the human’s need for affiliation in stressful situations
[19]. This suggests that in order to optimize the user’s experi-

ence during HRI in stressful situations the designated robots
should act in a supportive, agreeable, and empathetic manner.

6.3 Heart Rate Analysis

During the experiments, we also collected the participants’
heart rate data. As described in Sect. 3.1, participants’ heart
rate is acquired from the ECG Shimmer sensor during the
game. The baseline acquisition phase allowed us to iden-
tify the heart rate baseline of each participant, and better
determine the stress period of each participant during the
game.

Our hypothesis is that participant’s stress level is corre-
lated with the various events during the game, including suc-
cessfully removing an object, making an error (i.e., touching
the border of an opening). To verify this hypothesis, we con-
structed an algorithm to identify the stress period of the par-
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Fig. 10 Participant’s preference about robot’s coaching strategy in
stress game

Table 9 Number of choice about the robot’s coaching strategy from
the online post-experiment questionnaire in terms of participants’ per-
sonality

Challenging
robot

Encouraging
robot

Empathetic
robot

Introverted 1 5 2

Average
introverted

0 2 0

Extroverted 0 2 1

ticipants through their recorded heart rate and then analyze
the correlation upon the resulted output.

The period of stress identification algorithm consists of
three main steps:

Step 1 Heart Rate Calculation. From the ECG raw data
recorded by Shimmer Connect application, we extracted the
peak signal by calculating the first deviation of the raw data
and filter it by using an adapted threshold (i.e., the threshold
was manually fixed for each participant). Please refer to Sect.
3.1 for detailed explanation.

Step 2: Heart Rate Event Detection. Our hypothesis
about the correlation of game events and player’s heart rate
is that heart rate accelerates when player makes an error and
heart rate decelerates otherwise (e.g., successfully remove an
object). The two heart rate events that are interesting in our
case is the moment when the heart rate reaches local mini-
mum and the moment when heart rate reaches local maxi-
mum. This heart rate event detection takes into account the
baseline heart rate (acquired in the baseline acquisition phase
of our experiment). The player experiences stress if his/her
heart rate exceeds his/her baseline heart rate. The player does
not experience stress if his/her heart rate remains under the
baseline heart rate. Thus, in our algorithm, when the baseline
heart rate is taken into account, a local minimum is reported
only when this local minimum is below the baseline heart
rate; and a local maximum is reported only when it is higher
than the given baseline heart rate.

Step 3: Correlation Detection. A co-occurrence between
a game event and a targeted heart rate event happens when the
two events occur in the same period of time. As we suppose
that the game event triggers spontaneous stress in the player,
the co-occurrence should appear in the matter of seconds. In

Fig. 11 Percentage of co-occurrence between heart rate events and
game events in different game conditions

our algorithm, a period of 2 s is chosen so as to detect if a
co-occurrence occurs. For example, when the player makes
an error and hears the alarm sound, his/her heart rate should
attain local maximum if he/she is stressed by the sound. Let’s
suppose that he/she made an error at the 5th second of the
game, then if our algorithm detects any local maximum in
his/her heart rate from the 3rd second to the 7th s of the game,
a co-occurrence will be reported. The consideration of the
2 s after the game event is transparent as we suppose that the
game event is the one that triggers the spontaneous stress.
The consideration of the two seconds before the game event
is used to cover the case where the player anticipates his/her
error, and/or when the player actually sees that his/her tweez-
ers almost touch the border and thus anticipates that he/she
will make an error.

Validation of Hypothesis 4(a) The results obtained for the
detection of the correlation between users’ heart rate acceler-
ation and game events are presented in Fig. 11. We can notice
that in the case of an error–stress correlation, the stress expe-
rience is detected around half of the times, meaning that the
player experienced stress in half of the times he/she made
errors during the game. This makes our Hypothesis 4(a)
unable to be validated. [Note that the percentage of the heart
rate acceleration in the conditions Normal (including thus
the condition No robotic coach—Normal alarm and the con-
dition with robotic coach—Normal alarm, there is no false
alarm event, thus the percentage of correlation is 0%, as
shown in the Fig. 11.)]

Validation of Hypothesis 4(b) We can also notice the high
correlation between heart rate deceleration and the success of
removing an object out of an opening. The percentage of this
correlation is really high (94.36 % when taking into account
the baseline heart rate). This suggests that players actually
calmed down every time they made a good move during the
game. This validates our Hypothesis 4(b).

Validation of Hypothesis 5 Eysenck in his work on
personality [5] stated that introverted individuals had higher
arousal level than extroverted individuals. In our experiment,
we were also able to observe a correlation between the arousal
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Fig. 12 Average number of heart rate peaks in terms of game condi-
tions

level (i.e., being translated into the number of heart rate peaks
per minute) and the personality. As shown in Fig. 12, the
average number of heart rate peaks (i.e., local maximum)
during a game of introverted participants is significantly
higher than those of extroverted participants. ANOVA test
on average peaks between introverted and extroverted par-
ticipants across game conditions returns F (1,6) = 3.64, p
= 0.1049, η2 = 0.3778. This does not allow to validate our
Hypothesis 5 about the correlation between heart rate vari-
ability and subject’s personality.

During robot’s intervention, the number of heart rate peaks
of introverted participants decreases in the difficult level of
the game (see Fig. 13). For extroverted participants, robot’s
intervention increases people’s heart rate in easy game level
and decreases it in the difficult level. This can be consid-
ered as a positive impact of the robot’s behavior because
according to the Yerkes–Dodson law [26] (which is graphi-
cally summarized in Fig. 1), it is preferable to keep human
at a moderate stress level. In our case, the robot was able
to decrease the high stress level of introverted people and
moderate the stress level of extroverted people in different
difficulty levels. Our design of robot’s behavior in the con-
text of Stress Game experiment is thus appropriate to assist
people in coping with stress.

7 Discussion

The automatic detection of human’s stress and frustration
while performing a task is an important element for HRI. Sev-
eral aspects need to be taken into account so as to improve
user’s task performance. Our designed experiment tried to
create a stressful situation and focused on how to diminish
stress with a robot with personality. Furthermore, we inves-
tigated the correlation between stressful events and physio-
logical signals.

The effect of boosting human’s task performance while
being monitored and encouraged by a personalized robotic
coach was not observed in our experiment thus the inability
to validate Hypothesis 1, as explained in Sect. 6.1. Moreover,

Fig. 13 Statistic about heart rate peaks in term of personality

Fig. 14 Percentage of correlation between heart rate events and game
events

as Hypothesis 3 is rejected according to our results, it seems
that participants’ preference is task-oriented, not personality-
oriented as reported in [14,25]. Further researches should be
conducted so as to clarify the impact of robots with person-
ality on human’s performance in various applications.

As Hypothesis 4(a) is currently not validated, it seems
that heart rate variability may not be considered as enough
to detect/predict stress in humans during task performance.
A combination with other physiological signals (e.g., skin
conductance) is to be investigated in future research projects.

7.1 Heart Rate Acceleration at the end of the Game

While examining the heart rate data to construct the stress
detection algorithm, we noticed an interesting phenomenon:
the players’ heart rate seemed to accelerate when the end
of the game approached. To test if this correlation actually
happens, we checked the correlation between heart rate local
maximum and the end of the game. As shown in Fig. 14,
this correlation exists at the rate of 62.69 % when the user’s
heart rate baseline is taken into account, and at the rate of
98.15 % when no baseline heart rate was considered. This
can be an interesting phenomenon to be considered in HRI
as it suggests that human reacts physiologically also to the
beginning and the end of a long event (in our case is the 1 min
game). An assistive robot can use this information to choose
an appropriate action in order to better assist the user.
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The biggest weaknesses of our current results are the lack
of female participants and the small tested population. Some
of the data in the results can not be validated statistically due
to this weakness.

8 Conclusions

In this paper, we discuss an experimental setup designed to
test the robot’s role in reducing the frustration level of the
player in order to enhance his/her task performance. Several
conditions were tested: robotic coach versus no robotic coach
condition; and neutral versus stressful condition.

From the experiment, we were able to evaluate the role of
the robotic coach towards human’s performance. While we
were able to show that people preferred performing the task
with the robotic coach, the robotic coach did not have clear
influence towards human’s performance. We were also able
to investigate the personality matching strategy. We found
that matching personality between human and robotic coach
does not always allows a better performance, at least in the
context of non-rehabilitation task, which was being tested in
our experiment. We believe that this finding is complimentary
to the current state of the art, and can be served as guidance
for future research on personality-based HRI.

Through the experiment, we were also able to verify
the correlation between heart rate deceleration with partici-
pants’ positive moves (successfully removed objects from the
board) in the game. The heart rate acceleration is observed
at 50 % in occurrence of negative events (noisy alarms) dur-
ing the game, which may be just at random level, making it
unable to predict/validate the participants’ stress state when
making errors during the game. A combination with other
physiological signals (such as skin conductance) can provide
a better stress detection/prediction and should be considered
in future works on this subject.
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Appendix

Post-trial Questionnaire

Condition: With Robotic Coach

(1) How were the robot’s movement/gestures with respect
to your preferences?
Few 1 2 3 4 5 6 7 Many

(2) How engaging was the interaction?
Not at all 1 2 3 4 5 6 7 Very much

(3) The robot’s character was:
Unsociable 1 2 3 4 5 6 7 Sociable

Introverted 1 2 3 4 5 6 7 Extroverted
Dangerous 1 2 3 4 5 6 7 Safe
Unhelpful 1 2 3 4 5 6 7 Helpful
Unstressful 1 2 3 4 5 6 7 Stressful

(4) Was the game stressful?
Not at all 1 2 3 4 5 6 7 Very much

(5) The robot was expressive.
Not at all 1 2 3 4 5 6 7 Very much

(6) Did you notice any personality traits in the robot?
Not at all 1 2 3 4 5 6 7 Many

(7) Do you think that the robot is acting independently:
Not at all 1 2 3 4 5 6 7 Totally Agree

(8) Do you think the robot was having a human-like behav-
ior?
Not at all 1 2 3 4 5 6 7 Totally Agree

(9) What characteristics made the robot more natural:
A. Speech:
Not appropriate 1 2 3 4 5 6 7 Very appropriate
B. Gestures:
Not appropriate 1 2 3 4 5 6 7 Very appropriate

(10) Was the robot acting appropriately?
Not appropriate 1 2 3 4 5 6 7 Very appropriate

(11) Do you think the robot was helpful?
Not at all 1 2 3 4 5 6 7 Totally Agree

(12) Was the robot stressing you?
Not at all 1 2 3 4 5 6 7 Totally Agree

(13) Did you need any help to perform better?
Not at all 1 2 3 4 5 6 7 Totally Agree

(14) Were you stressed during the game?
Not at all 1 2 3 4 5 6 7 Totally Agree

Condition: Without Robotic Coach

(1) Was the game stressful?
Not at all 1 2 3 4 5 6 7 Very much

(2) Did you need any help to perform better?
Not at all 1 2 3 4 5 6 7 Totally agree

(3) Were you stressed during the game?
Not at all 1 2 3 4 5 6 7 Totally agree

Post-experiment Questionnaire

(1) Did you prefer the game the robot or without the robot?

(a) with the robot
(b) without the robot

Online Questionnaire

https://sites.google.com/site/naospersonalityevaluation/.
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