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Abstract In its lifetime, a robot should be able to auton-
omously understand the semantics of different tasks to effec-
tively perform them in different situations. In this context,
it is important to distinguish the meaning (in terms of the
desired effect) of a task and the means to achieve that task.
Our focus is those tasks in which one agent is required to per-
form a task for another agent, such as give, show, hide, make-
accessible, etc. In this paper, we identify that a high-level
human-centered combined reasoning, based on perspective
taking, efforts and abilities analyses, is the key to understand
semantics of such tasks. By combining these aspects, the
robot infers sets of hierarchy of facts, which serve for ana-
lyzing the effect of a task. We adapt the explanation based
learning approach enabling the task understanding from the
very first demonstration and continuous refinement with new
demonstrations. We argue that such symbolic level under-
standing of a task, which is not bound to trajectory, kinemat-
ics structure or shape of the robot, facilitates generalization to
novel situations as well as ease the transfer of acquired knowl-
edge among heterogeneous robots. Further, the knowledge of
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tasks at such human understandable level of abstraction will
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1 Introduction

As robots are evolving to co-exist in human centered envi-
ronment, they will be expected to understand as well as refine
their knowledge about various tasks in day-to-day life. Fur-
ther, such understandings should enable them to perform
those tasks in heterogeneous situations without any need of
providing the learning data for each and every situation.

From the perspective of social learning, which in loose
sense is “A observes B and then ‘acts’ like B”, in [11], three
components have been identified: Goal, Action and Result.
Based on what is learned there are basically three categories:
mimicking, emulation and imitation. Mimicking is just repro-
ducing the action without any goal. Emulation is regarded as
learning causal properties of objects [61], and learning the
goal by observation [45,64], to bring the same result, which
might be by different means/actions than the demonstrated
one. Imitation [40,54] is bringing the same result and with
same actions. Therefore, emulation involves reproducing the
changes in the state of the environment that are the results
of the demonstrator’s behavior, whereas imitation involves
reproducing the actions that produced those changes in the
environment.

Emulation is regarded as an important social learning skill,
also among great apes [61] and children [29,45]. In fact, this
facilitates to perform same task in different ways. Some com-
ponents and evidence of successful emulation during inter-
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action can be traced even at the child’s early development
phase. Children are able to show an object to someone in
different ways [37]: by pointing, by turning the object, by
holding it so that other can see it. Similarly, they are able to
hide an object from another person in different ways [25]:
by placing a screen between the person and the object, by
placing the object itself behind the screen from the person’s
perspective. All these suggest that we are able to abstract the
‘desired effect’ to bring, that too by reasoning from the other
person’s perspective. In our discussion above, such desired
effect were: the object should be visible to the other person
for the task of showing; the object should be invisible from
the other person’s perspective for the task of hiding. There-
fore, for such tasks to be successfully achieved, as a sign of
emulation, i.e. bringing the same result, which might be with
different means/actions than the demonstrated one, under-
standing the desired effect and reasoning about perspective
are important.

Motivated from these evidences, we also separate emu-
lation and imitation parts during learning by demonstration
for the robots. In this paper, we will develop a framework
for human-level understanding of effect-based semantics of
a task, independent from its execution. Such ‘meaningful’
understanding will also provide flexibility of planning alter-
natively for a task depending upon the situation, in addition
to enriching the natural human–robot interaction.

Fig. 1 〈W I, A, W F〉 triplet, showing Causal Nature of Environment
Change, a set of actions A on initial world WI at time ti results into a
final world WF at time t f

We hypothesize a task tk as a series of actions A by a
set of agents Ag, causing change in the world state from
W S(ti ) to W S(t f ), similar to [42]. Further, we assume
that various facts are inferred continuously during a course
of action, and I F(t) represents the facts inferred at time
stamp t . Hence, by observing and analyzing an instance of
<W I, A, W F>, (see Fig. 1) various parameters of a task
such as preference, desired and undesired changes, trajec-
tory, etc. could be learned. Where W I = (W S(ti ), I F(ti ))
and W F = (W S(t f ), I F(t f )), ti and t f are the time stamps
corresponding to start and end of A. Here it is important to
note that WI and WF are the snapshots at a particular instant,
however, as the inference of facts is continuous, it facilitate
to assert dynamic and static aspects of the environment, for
example “box on table”, “ball moving”, etc. Further, depend-
ing upon the level of abstraction, A could be symbolically
described as a single action or a series of actions.

Table 1, gives a general idea about the possible compo-
nents, which could be inferred and learned by partially or
fully observing different components of <WI, A, WF> tuple.
In this paper our focus is at <WI, WF> level, marked as *
in Table 1, by reasoning about the effect, assuming positive
examples.

Human-Centered Object Manipulation Tasks (HCOM
Tasks) We define the tasks within the context of the paper
as human-centered object manipulation tasks. These are the
tasks in which one agent (robot or human) is performing some
object manipulation task for another person, by considering
his/her presence and reasoning about him/her. Hence, such
object manipulation tasks require human-centered reasoning,
beyond the reasoning about stability of grasp, placement, etc.
from an object-centered perspective.

The focus of this paper is the subset of such human-
centered object manipulation tasks, which requires pick,
place, hold like actions. Therefore, next we will first present
the related works in learning pick-and-place type tasks,
which addresses one or the other aspect of Table 1, followed

Table 1 Observation and learning components correlation

Information about a task T What could be learnt for task T

WI Preconditions, initial world state

A Trajectory, sub-actions

WF Post-conditions, desired world state

Wl, A Trajectory, sub-actions, initial world state based preferences about selection of actions, sub-actions and
trajectory.

A, WF Trajectory, sub-actions, desired world state based preferences about which, how and where for actions,
sub-actions and trajectories to perform T

WI, WF Effect based semantics*, desired, undesired and side effects and changes, preferences about where to
perform T

WI, A, WF Preconditions, effects, initial situation and desired world state based preferences about which, how and
where for actions, sub-actions and trajectories to perform T

* This effect based task understanding (important for emulation learning) will be one of the contributions of the paper
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by related works on effect based learning approaches. Then
we will precise our scope and discuss our motivation to have
the hierarchies of facts, which enable comparing as well as
qualifying the effects of a task to be learned. Followed by
this, the instantiation of hierarchical knowledgebase for our
domain will be presented. Then we will present the learning
framework, followed by experimental results and analyses
for different tasks. The conclusion will be preceded by dis-
cussion on potential applications and benefits of such human-
level understanding of the tasks.

2 Related Work

Different learning aspects of Table 1 have been addressed by
researchers, see [4] for a survey. At the level of trajectory,
in [28], the robot learns to pick-and-place with constraints
on orientations. In [44], the task of pouring by a human
performer has been adapted by the robot for maintaining
collision free movement. Similarly, other works adapt the
learned trajectory for modified scenarios [7,21]. Whereas,
in [66], trajectory is learned from the perspective of main-
taining critical aspects of the motion. Such approaches are
in fact complementary to learning the symbolic description
of the task: what does the task mean?, which will facilitate
how (at non trajectory level) to perform the task in different
ways in various situations.

At symbolic primitives level, the task is mainly learned in
two forms: (1) based on the sequence of sub-actions and (2)
based on the effect in terms of changes in the environment.
In the sub-action learning approaches the task of ‘place an
object next to another object’ would be inferred as ‘reach’,
‘grasp’ and ‘transfer_relative’ [14]. The task of ‘Take a bot-
tle out of the fridge’ would be sub-symbolized as ‘Open the
fridge’, ‘Grasp the bottle’, ‘Get the bottle out’, ‘Close the
fridge’ and ‘Put the bottle on the table in a stable posi-
tion’ [20]. In [52], incremental learning of the task prece-
dence graph, for the tasks of pouring a bottle and laying a
table, have been presented. In [33], the robot grounds the
table assembling task in terms of ‘reach’, ‘pick’, ‘place’ and
‘withdraw’, and tries to learn the dependencies in order to
reorder and adapt for different initial setups. In [46], a hybrid
approach tries to represent the entire task in a symbolic sub-
task manner but also incorporates trajectory information to
perform the task. In [38], learning to assemble an electric
switch is presented, by providing an example of the plan
by moving the manipulator through the desired assembly.
The system observes the assembly and infers the underlying
plan. In [16], the authors abstract the human demonstration
of assembly construction to a sequence of object connec-
tions, which are used to infer a motion grammar for the robot
to repeat the task. In [53], a probabilistic approach to learn
relational planning rules has been presented, based on state

representation by facts like on, clear, etc., and actions like
paint, pickup, drive, walk, etc., covering different domains.

However, most of these approaches actually reason on
actions, i.e. trying to represent a task in sub-tasks/sub-actions
from the point of view of execution, which in fact is to facil-
itate imitation aspect of learning as discussed earlier. There
is no explicit reasoning about the semantics of the task inde-
pendent of the execution. As mentioned earlier our focus
will be on task understanding from the effect point of view,
to facilitate emulation learning. In fact, recognizing the effect
of actions, based on initial and resulting world states, is an
important component of causal learnability, and a comple-
mentary aspect for reasoning at action level, i.e. how to gen-
erate that effect [42].

For successful emulation, the robot should be able to ana-
lyze the effects in terms of the task driven changes. In [9],
through dialogue, the task ‘to follow’ a person would be
understood as to remain within 1 meter of the person. From
the perspective of learning object manipulation tasks by
observing human demonstrations, in [22] the effect of pick-
and-place type tasks have been analyzed by using predicates
such as holding object, hand empty, object at location, etc.
In [43] the robot performs different actions such as grasp,
touch and tap on different objects to analyze the effects;
once learned could be used to select the appropriate action
for achieving a particular effect [39]. However, the effects of
each action on the object were described in terms of veloc-
ity, contact and object-hand distance. In [60], a first order
knowledge representation and processing system KnowRob,
represents the knowledge in action centric way and learns the
action models of real world pick-and-place type task domain,
coupled with object and its properties. In [58] an approach has
been presented to learn abstract level action selection from
observation by considering the position, orientation, and the
symbolic interpretations of the performer’s body movement,
such as bow and pick object. In [13], the robot grounds the
goal of the observed tasks by symbolic concepts like ‘on the
shelf ’, ‘left side of the table’, etc. for pick-and-place type
tasks on a table top. In [31], planning models for dexterous
tasks, such as push a slider, are learned based on automati-
cally generated contact constraints and automatically relax-
ing them whenever necessary, by addressing the correspon-
dence problem because of the structural differences between
the robot and the human.

However, as the focus of these works are not those types of
tasks, which require one agent to perform for another agent,
hence, these works does not exploit and address the necessary
aspect of reasoning based on perspective taking, abilities and
effort of the target-agent’s (the agent for whom the task is
being performed).

In this paper we will focus on such human-centered object
manipulation tasks, which make it a must to reason on the
effects from the perspective of changes in target-agent’s abil-
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ities and effort, hence requiring to develop a learning frame-
work based on the combined reasoning of such aspects.

3 Scope, Motivation and Contributions

We will consider a set of basic yet key human-centered
object-manipulation tasks in a typical interaction scenario
such as give, make accessible, show, hide, put-away, hide-
away an object. One common effect of such tasks is to enable
and/or disable the actions or abilities of the target-agent (the
agent for whom the task is being performed). Such as make
accessible enables the target-agent to take the object when-
ever he/she wants. Hide deprives the target-agent from the
ability to see the object. Hence, the reasoning about the effect
of a task from the target-agent’s perspective is a must for
understanding such tasks.

3.1 An Illustrative Example

Let us consider an example scenario of making an object
accessible to a person, i.e. an object, which is currently invis-
ible and/or unreachable for a person, should be made visible
and reachable to him/her. In Fig. 2 person P1 has to make
the green bottle (marked by red arrow) accessible to person
P2. The task is same, however depending upon the current
mental and physical states and desires of both them and their
relation, P1 could prefer to perform the task by choosing to
put the bottle at different places, (b), (c) and (d). Here, the

interesting point is, P1 is able to infer from P2’s perspective
that if P2 will stand up, lean forward, and stretch out her
arm, she can get the bottle in (b), whereas in (c), P2 will be
just required to stretch out her arm. In (d) as an attempt to
balance mutual efforts, P1 leans forward and puts the bottle
at a place, which requires P2 also to lean and stretch out the
arm to take it. This suggests that the robot should be also able
to perform the perspective taking not only from the current
state but also from different states of the agent. Hence, this
shows the necessity of combined reasoning based on effort,
ability and perspective taking.

Now, assume that the robot is observing the task as per-
formed in Fig. 2c, and learns just by reasoning about the
actions, in terms of symbolic sub-tasks such as grasp object,
carry object and put object at ‘x’ distance from the person P2
or put the object reachable by P2’s current position. In this
case, it will not be able to identify that the tasks performed
in Fig. 2b, d are the same tasks. This is because of two main
reasons: (1) what the robot has learned is, how to perform
the task, (2) it did not reason at correct level of abstraction
required for such tasks. In this example a better understand-
ing of the task should be: the object should become ’easier’
to be seen, reached and grasped by the target-agent, P2.
Hence, the robot should be able to infer the facts at different
levels of abstractions, which might not be directly observ-
able, such as comparative facts: easier, difficult, etc. and
use them in the learning process. This points towards build-
ing a hierarchy of knowledge based on different levels of
abstractions.

Fig. 2 a Initial scenario for the task of making the green bottle (indi-
cated by arrow) accessible to P2 by P1. P1 puts the bottle so that it will
be visible and reachable by P2 if she will b stand up, lean forward and

stretch out her arm, c just stretch out the arm, d lean forward and stretch
out the arm from the sitting position. (Color figure online)
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3.2 Main Contributions

In [42] two desirable capabilities of an autonomous causal
learnability have been discussed as: (a) Ability to infer the
indirect facts, which could be obtained by ramifications of
the action’s effects. (b) Build a hypothesis that the agent can
use to make predictions of effect-based resultant world state
from a novel initial state, which has not been observed before.

The main contributions of the paper are to deal with the
above-mentioned two components by incorporating the
aspects explored earlier in this section in the following
manner:

(i) Hierarchical knowledge building incorporating effort,
ability and perspective taking: Enriching the robot’s
knowledge with a set of hierarchy of facts related to
agent’s capabilities and object state. We enable the robot
to infer comparative facts such as easier, difficult, main-
tained, reduced, etc. as well as qualitative facts such as
supportive, non-supportive, etc. This requires what we
call as multi-state visuo-spatial perspective taking rea-
soning about the agents, i.e. by combining the aspects
of effort, ability and perspective taking. To the best of
our knowledge, facts based on such reasoning have not
been inferred and used in the context of the robot under-
standing tasks from demonstrations.

(ii) Human-level task semantics understanding through
explanation based learning: We present an explanation
based learning (EBL) framework to learn effect-based
tasks’ semantics by building a hypothesis tree. Further,
we have incorporated m-estimate based reasoning to
find consistency based relevant predicates for a task,
which also incorporates the notion of experience. The
framework autonomously learns at the appropriate lev-
els of abstractions for different tasks. We argue that such
human-level understanding successfully holds for novel
scenarios as well as facilitates transfer of understanding
among heterogeneous robots.

Positive Demonstrations by Expert Teacher Learning
based on expert demonstrations is an acceptable practice
for learning explanation and goal driven autonomy [63,65].
Therefore, we will also assume that the demonstrations are
by expert teachers and we are not trying to teach something
to a “child” robot with non-expert teacher or wrong demon-
strations.

4 Effect-Centric Knowledge Abstractions Building: A
General Guideline

As discussed, to capture the ‘meaning’ of the aforementioned
tasks, it is important to reason about the capabilities and con-

Fig. 3 A general representation of fact hierarchy from the perspective
of analyzing effect

straints of the agents involved. Further, to facilitate learning
at appropriate abstraction level, there should be different lev-
els of abstractions based on those facts, which might not be
directly observable through sensor based data, for example
the fact that something became easier. Hence, in this section
and in the section following, we present the first contribution
of the paper: hierarchical knowledge building, by enabling
the robot to infer the facts at different levels of abstractions.

The hierarchical knowledge is built from the perspective
of analyzing effects, hence requires the comparative reason-
ing about the initial and the final states corresponding to the
task. We consider two types of effects to be incorporated in
the hierarchy: (1) Ability based effects: building relations
based on changes in applicability of abilities of the agent. (2)
Perceptual situation based effects: building relations based
on changes in perceived information about the status and
the situation of the world. Our approach of developing the
hierarchy is also influenced by the intuitive understanding
of the tasks and their semantic differences. For example, if
the task is to show something, we know that the object’s
visibility should increase for the target-agent (the agent to
whom the object is being shown). Hence, there should not
only be an attribute related to measuring visibility but also
some attribute should capture the notion of change in the
visibility.

Based on such reasoning, we proposed different levels of
abstraction in the knowledgebase, see Fig. 3. (we assume
level 1 is highest level of abstraction):
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(i) Level 4, geometric reasoning: Agents’ configurations
and the geometric world state. At this level differ-
ent types of geometric reasoning can be performed to
extract the values of some geometric attributes. Those
can be the geometric position of the object, reasoning
about IK based actions for agents, etc.

(ii) Level 3, comparable attributes: Quantitative and sym-
bolic reasoning based attributes, which can be directly
used to compare two values. Based on the lower level
such facts could be the visibility score of an object, the
effort of an agent, the state of the object, etc.

(iii) Level 2, comparative effect: This corresponds to the
initial and final world states based relative compar-
isons of the ways the value of an attribute changes or
maintained. The comparable facts at level 3 are used
to derive such comparative effects. In general, the com-
parison result could be stated in different forms, such as
unchanged, easier, difficult, increased, decreased, main-
tained, gained, lost, etc. Therefore, the choice of range
of the values of such facts depends upon the attribute
itself, the context and the requirement.

(iv) Level 1, qualitative nature: This corresponds to the sym-
bolic facts, which qualify the nature of the compara-
tive effect and the resulting changes in the value of its
child attribute. Existence of Such level of abstraction
is more relevant, if comparative effects in the level 2
can have more than two types and some of them can be
grouped together in a meaningful manner. For exam-
ple, if comparative effect about visibility can have three
values: increased, maintained, and decreased, then we
can group and quantify first two values as of supporting
nature, which support the agent’s ability to see, whereas
the decreased value can be seen as unsupportive nature
for the agent’s ability to see.

Depending upon the target domain of the task and the
type of the attribute, we can decide about the different levels
of abstraction to be included in building the corresponding
knowledge hierarchy. Such as, if there is an obvious meaning
of intention behind some changes in the effect and at least
two such changes could be further assigned a single meaning,
then we can have the fact that qualifies the nature of that
intention. For, example, if a task maintains or better facilitates
for a particular ability of an agent, we can say that there
is an intention to support that ability, so we will have the
abstraction up to level 1. On the other hand, if the attribute
at level 2 can take only two possible values, there might be
no reason to further qualify those values. For example, if
something can be either changed or maintained, then there
is no need to further abstract them at a higher level. In that
case, any other label will just serve as synonym.

Depending upon the context and the implementation, the
selection of different attributes, different ability types of the

agent to consider as well as the computation of the effect
can vary. Below, we describe the attributes and methods we
have chosen to instantiate the hierarchical knowledgebase
adapted to our domain of human-centered object manipula-
tion (HCOM) tasks.

5 Instantiation of the Hierarchical Knowledgebase for
Basic Human-Centered Object Manipulation Tasks
Domain

In this section, we identify different basic attributes to instan-
tiate the hierarchical knowledgebase for the current context
of human-level understanding of the basic HCOM tasks. As
discussed in Sect. 3 one contribution of the paper is to iden-
tify the importance of combined reasoning about abilities,
effort and the perspective taking. In this direction, based on
such combined reasoning, we have identified some impor-
tant predicates. Further, we have also shown in Sect. 8.3 that
without them an intuitive understanding of a task cannot be
achieved.

The guidelines of the different levels of abstraction out-
lined in Fig. 3 will be used to instantiate different hierarchies
of attributes related to the human and the object. In the trees
of the hierarchical representation, the superscripts 1 and 2
represents the facts related to the initial world state WI and
the final world state WF, respectively.

We have explain in the experimental platform Sect. 7.1
that the robot maintains and updates 3D world model, to
represent a geometric world state, similar to the one shown
in Fig. 4a. By reasoning on this 3D model of the world, the
robot infers various facts related to agent abilities, object state
and affordances. Next, we will first discuss various abilities
of the agents, our robot is able to infer, and then instantiate
a subset of hierarchical knowledgebase based on combined
reasoning about abilities, effort and perspective taking. Then
we will discuss agent and object status based hierarchy of
facts and eventually build our hierarchical knowledgebase of
the domain, within the scope of the paper.

5.1 Abilities, Effort and Perspective Taking Based
Knowledge Building

By reasoning on the agents’ models, the robot estimates var-
ious abilities of the agents. An agent’s state, S, is defined by
his/her/its configuration, position and orientation. Reasoning
on the agent state and the environment, various abilities to
see, reach and grasp are inferred.

5.1.1 Ability to See (Se) and the Associate Visibility Score
(ViS)

An object is said to be seen if at least one cell belonging to the
object is visible by the agent from a particular state. Further,
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Fig. 4 a, b: First row, c, d:
Second row. a Robot observing
a human–human interaction. b
P1’s current state visual
perspective, visibility scores
(ViS) is 0.0 for entirely hidden
toy dog. c ViS is 0.001 when the
toy dog is partially occluded and
relatively far. d ViS is 0.003 for
non-occluded and relatively
closer toy dog

the robot keeps track of how much the object is visible. For
this the robot calculates the visibility score, ViS, by dividing
the number of pixels of the object in the image of the field of
view of agent by the total number of pixels in the image of the
field of view, from a particular state of the agent. Figure 4b–d
shows different visibility scores for toy horse from human P1
perspective from his current state.

5.1.2 Ability to Reach (Re)

An object is said to be reachable if at least one cell (in the grid
based representation of the workspace, see [47] for imple-
mentation detail) belonging to the object is within the length
of the fingertip from the shoulder in a particular state of the
agent; that is how we also perceive a rough reachability [10].

5.1.3 Ability to Grasp (Gr)

As an object might be reachable to an agent for various pur-
poses such as to touch, push, point, grasp, etc., the robot
further distinguishes whether the reachable object is gras-
pable or not. Our robot can generate a set of grasps for dif-
ferent multi-fingered hands/grippers, for object of different
shapes [57]. Figure 5 shows a subset of the generated grasps
for different objects for the robot’s gripper and for an anthro-
pomorphic hand used to reason on graspability of the human.
If there exists at least one collision free grasp for the reachable
object, the object is assumed to be graspable by the agent’s
hand.

Fig. 5 Subsets of grasps for an anthropomorphic hand and the robot’s
gripper, generated for different objects (see [57])

5.1.4 Multi-State Perspective Taking

Perspective taking has already been shown as an important
aspect in learning [6]. In fact, it has been shown as a key com-
ponent in shaping and grounding our day-to-day interactions.
Perspective taking is important for how we interact with oth-
ers [24], to reduce ambiguity and for grounding [55,62], for
action recognition [30], for proactive behavior [50], planning
interactive and cooperative tasks [34], sharing attention [41]
and so on.

In [47], taking inspiration from the studies in neuro-
sciences and behavioral psychology, we have presented the
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concept of Mightability, which stands for Might be Able to…,
based on the reasoning about multi-state visuo-spatial per-
spective taking. The idea is to analyze various abilities such
as ability to reach, ability to see, etc. of an agent not only
from the current state of the agent, but also from a set of
sates, which the agent might achieve from his/her/its current
state. For this the robot applies, AV , an ordered list of vir-
tual actions, to make the agent virtually attain a state and
then estimates the abilities Ab ∈ {See, Reach, Grasp}, by
respecting the environmental and postural constraints of the
agent. Currently,

AV ⊆
{

Ahead
V , Aarm

V , Atorso
V , Aposture

V , Adisplace
V

}
(1)

where,

Ahead
V ⊆ {Pan_Head, Tilt_Head} (2)

Aarm
V ⊆ {Stretch_Out_Arm (le f t |right)} (3)

Atorso
V ⊆ {Turn_Torso, Lean_Torso} (4)

Aposture
V ⊆ {Make_Standing, Make_Sitting} (5)

Adisplace
V ⊆ {Move_To} (6)

This enables the robot to answer following queries:

? {obj} ⇒ {Ab = True|False, apply(Av), by(Ag)} (7)

? {Av} ⇒ {Ab = True|False, f or(obj), by(Ag)} (8)

For example, from Eq. 7, the robot can find the objects, which
will be visible, Ab:see=True, if the human, Ag=human,
will stand up and lean forward, i.e. Av=[Make_Standing,
Lean_Torso]. Whereas by Eq. 8, the robot could find the
ordered list of action Av required by an agent to see, reach
or grasp a particular object.

5.1.5 Effort Based Comparable Facts: Types of Efforts for
Agent’s State Change

The robot needs to quantify the efforts associated with actions
to attain a state from another state of the agent. For this,
the robot associates a type to effort in terms of involved
body parts for the virtual action Av . Figure 6 shows the
types, which in fact is motivated from the studies of human
movement and behavioral psychology [15,27], where differ-
ent types of reach actions of the human have been identi-
fied and analyzed. Figure 7, shows taxonomy of such reach

Fig. 6 Effort types for visuo-spatial abilities

Fig. 7 Effort based taxonomy of reach action

involving simple arm-shoulder extension (arm-and-shoulder
reach), leaning forward (arm-and-torso reach) and standing
reach.

We define a mapping operator Et to assign a type of effort
level TE (from table of Fig. 6) to a virtual action Av from the
state S (currently represented as configuration, position and
orientation) of the agent, as:

Et (S, Av)→ TE (9)

In the current implementation, Eq. 8 always returns the
actions requiring least effort. This could be achieved in dif-
ferent ways: (a) By using approximate but online estimation
of all the abilities by applying all the subsets of AV from
Eq. 1 as presented in [47], and then finding the least effort
state among them. If the ability is satisfying from the current
state itself, then Av will be set as No_Action_Required. (b)
Another way to find the least effort is by using an IK (Inverse
Kinematics) solver iteratively by only activating the set of
joints at each iteration in a predefined order corresponding
to lowest to highest effort. In the current implementation we
are using approach (a) as it is online and accuracy is accept-
able to infer the symbolic effort related facts at the level of
abstraction within the interest of the paper.

As mentioned earlier, to the best of our knowledge, such
concept of multi-state visuo-spatial perspective taking, i.e.
by combining effort, ability and perspective taking, has not
been exploited in task understanding from demonstration.

5.1.6 Effort Based Comparative Facts: Relative Effort Class

The robot should be able to relatively analyze two efforts.
For this we define an operator, which compares two effort
levels and assign a class CRE , as:

CRE

(
T 1

E , T 2
E

)
=

⎧⎪⎨
⎪⎩

Remains_Same i f T 1
E = T 2

E

Becomes_Easier i f T 1
E < T 2

E

Becomes_Difficult i f T 1
E > T 2

E

(10)

Note that CRE
(
T 1

E , T 2
E

) �= CRE
(
T 2

E , T 1
E

)
Although not used in current implementation of learning,

we further have a measure of amount of effort for a particular
effort level in terms of how much the agent has to turn/lean,
etc. Hence, the robot could further compare two efforts of
same effort level. This could be further enhanced based on the
studies of musculoskeletal kinematics and dynamics mod-
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els [32,56]. Whether the input is effort level or amount of
effort, the robot extracts the comparative facts of Eq. 10.

5.1.7 Effort Based Qualitative Facts: Nature of Relative
Effort Class

We have further enhanced the robot’s knowledge-base with
another layer of abstraction by qualifying the Relative Effort
Classes (CRE ) as supportive and not supportive. Based on
the intuitive reasoning that if an object becomes difficult to
be reached by a person, the intention/nature behind it is not
to support the person’s ability to reach the object. Hence, we
qualify the intention behind the change in effort level for an
ability type Ab, by assigning a nature, N Ab

REC as:

N Ab
REC

(
C Ab

RE

)
=

⎧⎨
⎩

S : Supportive i f C Ab
RE ∈

{
Remanins_Same,
Becomes_Easy

}

N S : Not_Supportive i f C Ab
RE ∈ {Becomes_Difficult}

(11)

Figure 8 shows the hierarchy of facts based on efforts.

5.1.8 Quantitative Visibility Based Hierarchy of Facts

The robot compares two visibility scores, V i S1 and V i S2 to
obtain relative visibility score classes as:

CRV i S

(
V i S1, V i S2

)

=
⎧⎨
⎩

Almost_Same i f (V i S1 − V i S2 ≈ 0)

Increased i f V i S1 << V i S2

Decreased i f V i S1 >> V i S2
(12)

Again, we qualify the nature, NRV i SC , of this relative class
based on whether the quantitative visibility of the object is

Fig. 8 Effort based Hierarchy of facts

Fig. 9 Visibility scores based hierarchy of facts

supported or not:

NRV i SC (CRV i S) =⎧⎨
⎩

S : Supportive i f CRV i S ∈
{

Almost_Same,
Increased

}

N S : Not_Supportive i f CRV i S ∈ {Decreased}
(13)

Figure 9 shows the hierarchy of facts by analyzing the visi-
bility scores.

5.2 Agent Status Based Hierarchy of Facts

5.2.1 Agent Posture Based

The robot tracks the body of the human and online distin-
guishes between standing and sitting postures, based on rel-
ative positions and orientations of the body parts. Agent’s
posture predicate Post is:

Post ∈ {Standing, Sitting} (14)

Further, by comparing two postures, a class is assigned as:

CR Post

(
Post1, Post2

)

=
{

M : Maintained i f Post1 = Post2

C : Changed otherwise
(15)

5.2.2 Human Hand Status Based

From the human’s perspective a status is assigned to his/her
hand as:

HS ∈ {Holding_Object : O H, Free_of _object : O F,

Resting_on_Support : RS} (16)

The robot further compares two instances of human hand
status from the point of view of manipulability of the object.
Based on the reasoning that if the object is in the hand, then
the human can directly manipulate it, a comparative class
is assigned as follows (Manip stands for Manipulability, see
expression 16 for other abbreviations):
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CR H S

(
H1

S → H2
S

)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M : Manip_Maintained i f H1
S = H2

S ∧ H2
S = O H

G : Manip_Gained i f H1
S �= H2

S ∧ H2
S = O H

L : Manip_Lost i f H1
S �= H2

S ∧ H1
S = O H

V : Manip_Avoided i f H1
S �= O H ∧ H2

S �= O H

(17)

Further, a qualifying nature to a relative class, c = CR H S(
H1

S → H2
S

)
, from the agent’s perspective is assigned as (see

expression 17 for abbreviations):

NR H SC (c)

=
{

M D : Manip_Desired i f c ∈ {M, G}
M N D : Manip_Not_Desired i f c ∈ {L , V } (18)

This again results into a hierarchy of facts based on human’s
hand status. Note that in the current implementation, if the
state of either hand changes, it is treated as change in manip-
ulability.

Since, we chose to assign only two possible values to
this comparative attribute, we further do not qualify them
by adding another level.

5.3 Object Status Based Hierarchy of Facts

5.3.1 Object Placement Status Based

Based on relative positions of an object with respect to the
human’s hand and other objects, a symbolic placement sta-
tus to the object is assigned. Currently, the object placement
status predicate can have the following values:

Os ∈{Inside_Container, On_Support, I n_Hand, I n_Air}
(19)

Any ambiguity in object placement status is resolved
based on simple case based rules. Such as, if the hand is
in contact with an object but the object is also on a support,
it returns object status as On_Support.

By comparing two ordered instances of Os a class is
assigned as:

CRO S

(
O1

S → O2
S

)

=
{

M : Maintaining
(
O1

S

)
i f O1

S = O2
S

G : Gaining
(
O2

S

) ∧ L : Losing
(
O1

S

)
otherwise

(20)

Note the second case results into two simultaneous facts to
encode the transition: gaining and losing states by the object.
For example, for the lift task if initially the object was on
support and now it is in hand, then the expression (20) will
result into two facts: Losing On_Support state and Gaining
In_Hand state, to encode the transition.

Fig. 10 Object state based
hierarchy of facts

Further, we qualify the nature of the change, c =
CRO S

(
O1

S → O2
S

)
, as supportive to a state O

′
S if the transi-

tion maintains or gains that state, as:

NRO SC (c) =⎧⎨
⎩

S : Supportive
(

O
′
S

)
i f c ∈

{
M

(
O
′
S

)
, G

(
O
′
S

)}

N S : Not_Supportive i f c ∈
{

L
(

O
′
S

)}

(21)

Hence, a hierarchy of facts based on object placement
states is built, as shown in Fig. 10.

5.3.2 Object Motion Status Based

As already illustrated in Fig. 1, the environment observation
and inference is continuous in time. Hence, based on the
temporal reasoning about the object’s position, at any point
of time the motion status of the object is knows as:

Oms ∈ {Moving : Mv, Static : St} (22)

Further, by comparing two instances of motion status, a
relative status class for the object’s motion state transition is
assigned as follows [see expression (22) for abbreviations]:

CRO M S

(
O1

ms → O2
ms

)
=

⎧⎪⎪⎨
⎪⎪⎩

motion_gained i f O1
ms = St ∧ O2

ms = Mv

motion_lost i f O1
ms = Mv ∧ O2

ms = St
motion_maintained i f O1

ms = Mv ∧ O2
ms = O1

ms
motion_avoided i f O1

ms = St ∧ O2
ms = O1

ms

(23)

As pointed in the beginning of the section, one contribu-
tion of this paper is to identify the key aspects of reasoning
about ability, effort and perspective taking based predicates
(which we think are more relevant for the tasks within the
scope of the paper). However, it could further be enriched by
other types of facts, e.g. predicates, which can capture the
effects of type: putting on the top of a particular object or at
a particular place.

In this section we have enriched the robot’s knowledge-
base with a set of hierarchy of facts related to the human and
the object, which is inferred by the robot online. Next section
will describe our generalized task-understanding framework
based on explanation-based learning and m-estimate based
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refinement. The framework takes into account such hierar-
chies of facts and autonomously learns the tasks’ semantics
at appropriate levels of abstractions.

6 Explanation Based Task Understanding

In addition to have human-level understanding of the task
and to make such understanding independent of how the
task has been executed, another motivation behind the cur-
rent work is to enable the robot to begin learning even from
the single positive demonstration and refine with subsequent
demonstrations. Therefore, we have adapted the framework
of Explanation Based Learning (EBL) (see the survey [65]),
which has been shown to possess the desired characteristics
and could be used for concept refinement (i.e. specialization)
as well as concept generalization [19]. For continuity, below
we mention the components of a typical EBL system (see [19]
for detail):

Goal Concept: A definition of the concept to be learned.
Given in terms of high-level properties, which are not directly
available in the representation of an example.

Training Example: A lower level representation of the
examples.

Domain Theory: A set of inference rules and facts suffi-
cient for providing that a training example meets the high-
level definition of the concept.

Operationality Criterion: Defines the form in which the
learned concept definition must be expressed.

Generally domain theory and operationality criterion are
devised to restrict the allowable learned vocabulary and ini-
tial hypothesis space, to ensure that the new concept is ’mean-
ingful’ to the problem solver (the task planner).

Our approach is similar to EBL [23,65], in the following
manner:

It (1) constructs an explanation tree for each example of a
task, (2) compares these trees to find largest sub tree, and (3)
forms a horn clause using the leaf nodes of the largest sub
tree to find the general rule.

However, towards addressing the issue of scalability, our
approach will differ from EBL in the sense, instead of provid-
ing a proper domain theory and operationality criterion for
the target-concept to precise the hypothesis space, we will
provide a general goal concept in terms of the effect of the
task. This will create a hypothesis space with wide ranging
knowledgebase of the robot, spanning over lowest to high-
est levels of abstractions. This will ensure to learn any task,
which could possibly incorporate any of the effect related
predicates known to the robot. Then based on the demonstra-
tions, the robot has to autonomously refine/prune the hypoth-
esis space. This will prevent providing separate domain the-
ory for each and every task the robot will encounter, as well

as will enable the robot to autonomously extract relevant fea-
tures for a particular task.

We are following the framework of the explanation based
learning, which requires providing a goal concept and a
domain theory (a set of inference rules and facts sufficient for
providing that a training example meets the high-level defini-
tion of the concept). That is why we have to provide a hypoth-
esis space in terms of the knowledgebase, which encodes
the domain theory in terms of various inference rules. In
the future work, we will address the aspect of generating
a hypothesis space based on different knowledge gathering
approaches, such as [36,60].

6.1 General Target Goal Concept to Learn

We provide for any task tk, performed by a performing-agent
Pag for a target-agent Tag on a target-object Tobj , the gener-
alized goal concept to learn as:

T ask (tk)← effect (W I, W F) (24)

As illustrated in Fig. 1 WI and WF are snapshots of the
continuously inferred facts and continuously observed world
states at time stamps ti and t f marking the start and the end
of a demonstration.

6.2 Provided Domain Theory

Further, the following domain theory is provided:

effect (W I, W F)← Nreach
REC

(
Tag, Tobj

) ∧
N grasp

REC

(
Tag, Tobj

) ∧ N see
REC

(
Tag, Tobj

)

∧NRV i S
(
Tobj , Tag

) ∧ CR Post
(
Tag

) ∧
NR H SC

(
Tag

) ∧ NRO SC
(
Tobj

) ∧ CRO M S
(
Tobj

)
(25)

The task is learned in the form of desired effects from
‘any’ target-agent’s perspective for ‘any’ target-object.

The above expression when mapped into the definitions
of inferred facts discussed earlier in this paper, results into
the following representation:

effect (W I, W F)←
Nature_Effect_Class_to_Reach

(
Tag, Tobj

) ∧
Nature_Effect_Class_to_Grasp

(
Tag, Tobj

) ∧
Nature_Effect_Class_to_See

(
Tag, Tobj

) ∧
Nature_Visibility_Score

(
Tobj , Tag

) ∧
Effect_Relative_Posture

(
Tag

) ∧
Nature_Effect_Hand_Status

(
Tag

) ∧
Nature_Effect_Object_Status

(
Tobj

) ∧
Effect_Object_Motion_Status

(
Tobj

)
(26)

The definitions of the domain theory are already presented
in expressions of Sect. 5.
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Fig. 11 Initial generalized hypothesis space for human-level effect-
based understanding of tasks’ semantics. The symbolic mapping of
the notations from the top–down order from left to right: NREC :
Nature of Relative Effort Class*, CRE : Class of Relative Effort*,
TE : Type of Effort*, S : State*, A : Action*, (* : common for the first,
third and sixth subtrees for different abilities of reach, grasp and see)
CR Post = Class of Relative Posture, Post : Posture, CROms = Class of

Relative Object motion state, Oms =Object motion state, NRV i SC
=Nature of Relative Visibility Score Class, CRV i S=Class of Relative
Visibility Score, V i S=Visibility Score, NRHsC = Nature of Relative
Hand status Class, CRHs=Class of Relative Hand status, Hs =Hand
status, NROsC =Nature of Relative Object status Class, CROs =Class
of Relative Object status, Os =Object status

Above domain theory when unfolded results into a general
initial hypothesis space as shown in Fig. 11.

The training examples are provided in the form of lowest
level representation, i.e. in 3D world model consisting of the
positions and configurations of the objects and the agents. As
the robot continuously observes and infers the environment,
based on the time stamps of the start and the end of a demon-
stration, the robot autonomously instantiates the hierarchies
of facts within the domain theory.

Further, to be generalized enough to learn different tasks;
we do not strictly provide the form of the learned concept as
operationality criterion. It could be composed of any set of
nodes of the initial hypothesis space as shown in Fig. 11.

6.3 m-Estimate Based Refinement

Each node of initial hypothesis space of Fig. 11 serves as a
predicate. For refining the learned concept based on multiple
demonstrations, instead of directly pruning the explanation
sub-tree based on getting two different values for a node, we
use m-estimate based reasoning. m-estimate has been shown
to be useful for rule evaluation [26] and to avoid prema-
ture conclusions [1]. This is because the generalized defini-
tion of m-estimate incorporates the notion of experience, as
described below.

Let us say a value v for a particular predicate p for a partic-
ular task tk has been observed in n number of demonstrations,
out of a total of N demonstrations. The likelihood (i.e. the

measure of the extent to which a sample provides support
for particular values) of observing the same value v for the
next demonstration within the m-estimate framework will be
given as:

Qv,tk
p (n, N ) = n + a

N + a + b
(27)

where, a > 0, b > 0, a + b = m and a = m × pv

m is domain dependent, and could also be used to include
noise [12]. From Eq. 27 following properties could be
deduced:

Qv,tk
p (0, 0) = Pv > 0 (28)

Qv,tk
p (0, N ) = a

N + a + b
> 0 (29)

Qv,tk
p (N , N ) = N + a

N + a + b
< 1 (30)

Hence, it does not assume a close world in the sense if it
did not observe a value v for predicate p, it does not mean
that likelihood of the existence of v is NULL [expressions
(28), (29)]. In fact, pv is prior probability of v, as also can be
inferred from Eq. 28. On the other hand, if always the same
value v has been observed, that too will not be accepted as
universal rule that p will always have the value v for the task tk
[expression (30)]. Hence, it takes into account the likelihood
of unseen demonstrations. These properties allow lifelong
refinement of the learned concept.

Qv,tk
p (N + 1, N + 1) > Qv,tk

p (N , N ) (31)
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Above property [expression (31)] ensures that even the
value v has been observed for all the examples, the likeli-
hood to observe same value will be more if more number
of examples has been demonstrated, thus incorporating the
notion of experience.

Qv,tk
P (0, N ) < Qv,tk

P (0, N + 1) (32)

This property ensures that even the value v has never been
observed, the likelihood that v will not be observed in the
future will be less if less number of examples have been
demonstrated, thus again incorporating the notion of experi-
ence.

One acceptable instantiation of m-estimate is using
Laplace’s law of succession. This states that if in the sample
of N trials, there were n successes, the likelihood of the next
trial being successful is (n+1)/(N+2), assuming that the ini-
tial distributions of success and failure are uniform. With the
similar initial assumption, we also use a=1 and a+b=2 for
m-estimate of Eq. 27.

6.4 Consistency Factor

As the robot is required to autonomously reason about
whether a predicate p is relevant or not, it analyzes the con-
sistency in the observed value of the predicate. If the values
are not always the same, it means the predicate might not be
relevant for that task and the values are just the side effects,
not the desired effect. We further assume that vh is the value
for p having the highest m-estimate obtained from Eq. 27. If
this value is consistent over demonstrations, then the predi-
cate p is relevant and its desired value will be vh . Let, for a
particular predicate p, over N demonstrations, Np different
values

{
v1, v2, v3, . . . vN p

}
have been observed. We define

a consistency factor (CF) of p for task tk to decide about the
relevance of p as:

C Ftk
p =

relevanceevidence︷ ︸︸ ︷
Qvh ,tk

p −
N p∑

i=1∧i �=h

Qvi ,tk
p

︸ ︷︷ ︸
non−relevanceevidence

(33)

The first part on the right side of the equation shows the
evidence of p being relevant for the task. Higher this value,
greater will be the likelihood that the most observed single
value, vh , for p is the part of the desired effect for task tk.
The second part gives the likelihood of obtaining any of the
observed value other than vh . This in fact represents non-
relevant evidence of p, N RE p, because, higher this value,
lower the likelihood of p having a consistent value. Hence,
based on the value of the consistency factor after any demon-
stration, we define following three situations about a partic-
ular predicate p for a particular task tk (see Fig. 12):

Fig. 12 Deciding relevance and irrelevance of a predicate, as well as
potential confusion

(i) Contradiction, so irrelevant p: A predicate p will be
assumed to be non-relevant based on contradiction in
its value, (a) if C F < 0; non-relevant evidences are
collectively higher than the relevant evidence, or (b) if
0 <= C F <= d1; non-relevant evidences are signifi-
cant to contradict the likelihood of vh being the expected
consistent value of p.

(ii) Consistency, so relevant p: if C F > d2; as the non-
relevant evidences are significantly lower and could be
ignored.

(iii) Confusion, require clarification: if d1 < C F < d2; as
the non-relevant evidences are not sufficient to contradict
the current understanding but also not low enough to be
ignored directly. In this case, the robot has to ask the
human partner for clarification about the significance of
the predicate p and its desired value by framing a sentence
including the values causing the confusions.

It is evident that by setting different values on the thresh-
old and maintaining separate boundaries allow to tune d1 and
d2 based on various practical factors such as the reliability of
the demonstration, the accuracy of the inferred fact, noise at
different levels of the system, nature, sensitivity and critical-
ity of the domain and attributes, preferences on inconsistency
tolerances, etc.

However, as the demonstrations are assumed to be pos-
itive, which means we will not try to teach a child with
wrong examples, little evidence of a predicate assuming dif-
ferent values should be sufficient to prune that node from the
explanation tree. This assumption results into almost coin-
ciding d1, d2 and Qvh

p . Therefore, we have set d2 based on
the 10% tolerance of the inconsistency in relevant predicate,
i.e. l2 = 0.1× Qvh

p , hence:

d2 = Qvh
p − 0.1× Qvh

p (34)

Similarly, we have given the robot greater autonomy to
decide a predicate to be irrelevant if there exists non-
relevant evidence as low as 30% of the relevant evidence, i.e.
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l1 = 0.3× Qvh
p which results into:

d1 = Qvh
p − 0.3× Qvh

p (35)

Setting the above-mentioned very narrow band of confu-
sion zone is mainly for two purposes: (1) Demonstrations
are assumed to be positive and observation of the world is
assumed to be almost noise free at the symbolic level. (2)
Our robot was not equipped with sufficient speech synthesis
and dialogue module and no feedback interface was installed
in front of the demonstrators. Therefore, we wanted to avoid
any explicit communication, instead to let the demonstra-
tor to focus on the task and the robot to focus on observing
demonstration and inference of facts.

At this point, it is important to note that the robot keeps
track of m-estimate of all the observed values for all the pred-
icates to maintain the notion of inter-value experiences, even
currently a particular value might have been found irrelevant.
This facilitates the robot to incorporate experience and allow
modifying its understandings lifelong.

7 Demonstrations and Analysis

7.1 Experimental Platform

The robot uses Move3D [59], an integrated 3D planning
and visualization platform. Through its various sensors, the
robot maintains and updates the 3D world state in real time.

For object identification and localization, it uses tags based
stereovision system. For localizing and tracking humans,
it uses data from 3D motion sensors mounted on it. The
human’s gaze is simplified to his/her head orientation, esti-
mated through markers tracked by a marker based motion
capture system in real time.

We have tested our system on two different robots: JIDO
a home-built mobile manipulator equipped with a LWR
Kuka arm and PR2 robot from Willow Garage. As shown
in Fig. 13a, b, Jido and PR2 robots are observing the envi-
ronment. Figure 13c, d show the 3D world representation of
the environment built and updated online by the robots.

7.2 Procedure

For each demonstration, the human operator provides the
name of the task, indicates the performing-agent, the target-
agent and the target-object, and tags the time stamps of start
and finish of the task.

Note that the target-agent is the agent the task is targeted
to, not the target of the experiment. As the robot should be
able to perceive the necessary and sufficient parts of the envi-
ronment before and after the demonstration. Therefore, in
most of the cases the placement of the robot was closer to
the performing-agent. This perception coupled with our per-
spective taking system, which allows the robot to reasons
from the perspective of the target-agent, provides sufficient
information to analyze the effect of the demonstration.

Fig. 13 Mobile robots a JIDO and b PR2 are observing Human–Human interaction scenario. c, d 3D representation of the world built and updated
online by the robots
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The demonstrations were the part of a bigger set of three
complementary studies: The semantics understanding, which
is the focus of this paper, trajectory level analysis of per-
forming different manipulation tasks by different people,
and the preferred places to perform the tasks with respect
to both the agents in different setups. Although in our case,
it would have been sufficient to have demonstrations by
a single expert teacher, because of the other aspects the
demonstrations were performed by different demonstrators.
However, since we did not tell the demonstrators about
where to perform the task, it adds some inherent diversity
to further demonstrate the working of the presented frame-
work.

The demonstrators were the researchers from our robotics
lab selected based on their availability. They are aware about
the perception system of the robot; hence, they know how
to hold the object (i.e. not to hide the tag) so that the robot
can track it most of the time. They have been told about
the name of the task they are expected to perform and some
hints about some of the confusing aspects. For example, most
of them have been told about the main difference between
make accessible and give, that the object should be placed
somewhere in the former case. However, most of them did not
know the algorithm and what was being learned. There were
three to five demonstrations for each task and data used in
this paper are taken at least from two different demonstrators
for each task.

In the current approach, the name of the target-object
is explicitly provided to the robot. However, works on
autonomous learning of task-relevant objects such as [35]
could be adapted for this purpose.

In all the demonstrations, the explanation tree has been
constructed by inferring the facts from the target-agent’s per-
spective. This is to find the desired effect for the person for
whom the task has to be performed. However, a similar tree
could be constructed from the perspective of the performing-
agent as well, to find how the agent prefers to perform the
task.

As explained in Sect. 6, the robot constructs an explanation
tree for each new demonstration of the task, by instantiating
the hypothesis tree of Fig. 11. For instantiating the leaf nodes,
the predicates with superscript 1 represent the data from WI,
the initial world state, whereas superscript 2 represent the
data from WF, the final world state.

Greater the diversity among the demonstrations for the
same task, faster the non-relevant predicates will be pruned
out from the task’s understanding. To achieve the diversity
across demonstrations we used to change the scenarios by
changing the relative arrangements of the performing- and
target- agents, the target-object and its initial position, and
the positions of other objects and furniture.

Next we will discuss the resulting understanding of the
robot for different tasks.

7.3 Show an Object

The first task demonstrated to the robot was to show an object.
Figure 14a–d show final scenarios of four different demon-
strations of the task. The red quadrilaterals show initial posi-
tions of the target-object [which is cup in (a) and wooden
cube in (b), (c) and (d)], the red arrows mark the final posi-
tion of the target-object at the end of the task. In situations (a)
and (c) the target-agent was the person on the left, whereas,
for (b), he was the performing-agent. In (d) the person on the
right was the target-agent. The largest consistent sub-tree
after first two demonstrations (a) and (b) has been shown
in Fig. 15. Below each node of the tree the corresponding
inferred values of the predicates have been shown in paren-
thesis {}. The learned target concept for the task is obtained
in terms of horn clause from the leaf nodes of this sub-tree.

Figure 16 shows partial instantiation of the hypothesis
space for the individual demonstration of Fig. 14c. And
Fig. 17 shows the refined explanation, based on the largest
common, m-estimate based consistent, sub-tree for all the
three demonstrations. In the fourth demonstration for the
same task, a different pair of performing and target agents
demonstrated the task in standing postures. The performing-
agent has put the target-object, the wooden cube, on another
object, white box, to make it visible, as shown in Fig. 14d.
Figure 18 shows the refined explanation tree. The refined
understanding after these four demonstrations, formed by
the horn clause of the leaf nodes is:

T ask (Show_Object)← (CR Post = Maintained) ∧
(O1

ms = Static) ∧ (O2
ms = Static) ∧

(CRV i S = I ncreased) ∧
(A2

v(see) = No_Action_Required) ∧
(H1

s = Object_Free) ∧ (H2
s = Object_Free)

(36)

By replacing the abbreviations with the symbolic terms,
presented in Sect. 5, the above expression results into the
following:

T ask (Show_Object)←
(Relative_Posture = Maintained) ∧

(Object_I ni tial_Motion_Status = Static) ∧
(Object_Final_Motion_Status = Static) ∧

(Object_Relative_V isibili t y_Score = I ncreased) ∧
(Action_to_See = No_Action_Required) ∧
(I ni tial_Hand_Status = Object_Free) ∧

(Final_Hand_Status = Object_Free)

(37)
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Fig. 14 Human–Human demonstration for show an object task. Initial
positions of the target-object are shown by red quadrilaterals. a Right
human is showing the cup by holding it. b Left human is showing the

wooden cube by holding it. c Right human is showing the wooden cube
by holding it. d Left human is showing the wooden cube by making it
visible by putting it on the top of the white box. (Color figure online)

Fig. 15 Explanation tree for the show task after two demonstrations a and b of Fig. 14

Note that the above understanding is from the target-
agent’s perspective. This means the target-agent should put
no effort to see the target-object, the visibility score of the
target-object should be increased from the target-agent’s per-
spective, the hand of the target-agent should be free of object,
etc. Also note that the irrelevant predicates such as reachabil-

ity and graspability of the target-agent as well as the object’s
status have been autonomously pruned out from the learned
desired effect of the task.

Explicitly learning the preconditions for a task is not the
scope of this paper, however, when a leaf node corresponding
to WI appears in the learned concept, we let it be there to be
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Fig. 16 Partial instantiation of the hypothesis space of Fig. 11 for explaining the show object task of demonstration (c) of Fig. 14. Note the main
difference in the left most sub-trees, compared to the explanation tree of Fig. 15

Fig. 17 Refined consistent explanation tree after the three demonstrations, a, b and c, of Fig. 14 for the show object task

useful for task planners to enrich the list of preconditions
based desired effects.

Remark on m-estimate and Consistency Factor: Table 2
analyzes the consistency of node O2

S of explanation tree,
which corresponds to the final object status for the show
object task demonstrations. Fourth column shows the m-
estimate corresponding to the value v of the predicate O2

S hav-
ing highest m-estimate. And fifth column shows the simple
probability based estimation of value v. By comparing both
the columns we observe an interesting difference. m-estimate
as explained earlier takes into account experience. Hence,
with each new demonstration in which value v=In_Hand
(first three demonstrations) is obtained, the robot’s belief
to have the same value is increasing, based on experience.
Whereas, in the case of probability it is always the same as
1, hence, simple probability fails to update experience based
belief. This observation illustrates the property of expression

Fig. 18 Refined consistent explanation tree after the fourth demonstra-
tions, (d), of Fig. 14 for the show object task. Note that the abstraction
level for CR Post has been changed, compared to the understanding of
Fig. 17
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Table 2 Consistency factor analysis

Consistency analysis of predicate Object State after demonstration (O2
s ) for show task

Demo Current
observed
value

Value (v)
correspond-
ing
to highest
m-estimate

m-estimate
based relevance
evidence (RE)
for v

Probability
based
value of
v, P(v)

Non-relevance
evidence (NRE)

Confusion
boundary limit
on Consistency
Factor

Predicate’s
current
consistency
factor (CF)

Min (dl) Max (d2)

1 ln_Hand ln_Hand 0.66667 1 0 0.46667 0.6 0.66667

2 ln_Hand ln_Hand 0.75 1 0 0.525 0.675 0.75

3 ln_Hand ln_Hand 0.8 1 0 0.56 0.72 0.8

4 On_Support ln_Hand 0.66667 0.75 0.33333 0.46667 0.6 0.33334

Bold values correspond to the main data to observe, and is evident in the text

(31) of m-estimate, which states that: even the same value has
been observed in all the demonstrations, the expectation to
observe the same value in next demonstration will be increas-
ing with more number of demonstrations.

Further, our approach does not fix the value of the thresh-
olds across demonstrations. This can be observed by ana-
lyzing the columns seven and eight. Thresholds d1 and d2
of Fig. 12 are dynamically varying. This is because of our
approach, which decides these thresholds based on the m-
estimate of the relevance evidence, Eqs. (34) and (35). Note
that in the last column, for the first three demonstrations, the
consistency factor is well above d2, so the robot considers
the predicate and its value as relevant. Now analyze the row
corresponding to the fourth demonstration. This time a dif-
ferent value has been observed for the predicate, which is
On_Support, but still the value corresponding to the highest
m-estimate is In_Hand. After fourth demonstrations, the con-
sistency factor of highest m-estimate value of the predicate
is 0.33334. This is well below d1, the minimum threshold for
confusion and makes the robot sure about its irrelevance.

Note that we did not observe any confusion because of
our deliberately selected very narrow confusion zone. As we
have already mentioned we assume the demonstrations to
be positive, so a little inconsistency makes the predicate to
be irrelevant. However, if we decide to give less decisional
autonomy to the robot, forcing the robot to ask for clarifi-
cation instead of directly deciding the irrelevance, we could
make the confusion zone wider. For example, if we set the
range to be between 10 and 60 % of the relevance evidence
instead of 10–30 %, in that case, the same demonstration 4
will result into a confusion, as d1 will become 0.26667 hence,
consistency factor 0.33334 will lie between d2 and d1.

7.4 Hide an Object

The next task demonstrated to the robot was hide an object.
Fig. 19 shows three demonstrations for this task with different

initial scenarios. The understanding of the task, after these
three demonstrations, formed by the horn clause of the leaf
nodes, results into the following symbolic representation:

T ask (Hide_Object)←
(Human_I ni tial_Posture = Sitting) ∧
(Human_Final_Posture = Sitting) ∧

(Object_I ni tial_Motion_Status = Static) ∧
(Object_Final_Motion_Status = Static) ∧

(Object_Final_V isibili t y_Score ≈ 0) ∧
(Relative_Effort_Class_to_See = Becomes_Difficult) ∧

(I ni tial_Hand_Status = Object_Free) ∧
(Final_Hand_Status = Object_Free) ∧

(Object_I ni tial_Status = On_Support) ∧
(Object_Final_Status = On_Support)

(38)

Similar to the show task, further demonstrations in which
the target-agent would be standing, would result into refined
understanding related to the target-agent’s posture attribute.
However, note that the main differences between the under-
standings of the show and the hide tasks have been captured.
In the hide task the effort hierarchy corresponding to the abil-
ity to see the object is pruned at relative effort class level,
instead of maintaining the lowest level node, of required
action, as was the case of show task. This results into the
understanding of the hide task that the relative effort to see the
object should become difficult for the target-agent. Also the
visibility score based subtree has been pruned at lowest level
of absolute value of visibility score. For the show task, the
actual values of visibility score from the target-agent’s per-
spective were not consistent but were always greater than the
initial values. Hence, the framework autonomously results
into a higher level of abstraction for the show task, which
is: increased relative visibility score. Whereas, in the case of
the hide task the absolute value of visibility score itself is
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Fig. 19 Three demonstrations for the task of hiding an object, observed by JIDO robot. First column shows the initial scenarios and the second
column shows the final scenarios after performing the task

always negligible, hence, making the visibility score node as
consistent and relevant.

Note that again the effect on the abilities to reach and grasp
the object by the target-agent have been autonomously found
to be irrelevant and pruned out from the explanation tree, as
was the case for the show task.

7.5 Make an Object Accessible

Next, the task of making an object accessible has been
demonstrated to the robot. There were a total of five demon-
strations, three of them were similar to the demonstrations
of Fig. 2b–d. The rest two demonstrations were in different
relative arrangements of the objects and the humans, and the
target-agent was in standing posture.

As the intention behind make-accessible task is to pro-
vide the target-agent with the flexibility to take the object
sometime in future whenever required. Therefore, the pro-
vided end time stamps of the make-accessible demonstra-
tions were the instants when the performing-agent finishes
the task by putting the object on the table to make it acces-

sible, not the instants shown in Fig. 2b–d, where the target-
agent has already begun to reach the target-object.

The understanding of the robot about the make-accessible
task after these five demonstrations results into the following
symbolic representation:

T ask (Make_Accessible)←
(Relative_Effort_to_Reach = Becomes_Easier) ∧

(Relative_Posture = Maintained) ∧
(Object_I ni tial_Motion_Status = Static) ∧
(Object_Final_Motion_Status = Static) ∧

(Relative_Effort_to_Grasp = Becomes_Easier) ∧
(Object_Relative_V isibili t y_Score = I ncreased) ∧

(Nature_Effort_Class_to_See = Supportive) ∧
(I ni tial_Hand_Status = Object_Free) ∧
(Final_Hand_Status = Object_Free) ∧

(Object_I ni tial_Status = On_Support) ∧
(Object_Final_Status = On_Support)

(39)
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Note that the predicate related to the posture of agent is
from the point of view of desired effect on the posture due to
the task. This posture does not indicate the change of posture,
which might occur due to the actions required by the target-
agent to see, reach or grasp the target-object. This is captured
in other set of attributes encoded in effort-based hierarchy, for
example Relative_Effort_to_Reach. The Relative_Posture
predicate obtained in the above understanding indicates that
the task does not change the posture of the agent.

The interesting observation for the make-accessible task
understanding is that, it did not filter out reachability and
graspability as irrelevant predicates, as were the cases for the
show and hide tasks. It understands that the reachability and
graspability of the target-object by the target-agent should
become easier.

7.6 Give an Object

The next task demonstrated to the robot was to give an object.
The scenarios were similar to the make-accessible task, the
only difference was that the performing-agent was holding
the target-object at appropriate place in the space and waiting
for the target-agent to take it, instead of putting the object
on the support. For this task the end time stamps indicated to
the robot were the moments when the target-agent takes the
object from the performing-agent. There were a total of three
demonstrations and the task understanding based on the leaf
nodes of the m-estimate based consistent explanation sub-
tree results into the following symbolic representation:

T ask (Give)←
(Action_to_Reach = No_Action_Required) ∧

(Relative_Posture = Maintained) ∧
(Action_to_Grasp = No_Action_Required) ∧

(Object_I ni tial_Motion_Status = Static) ∧
(Object_Final_Motion_Status = Static) ∧

(Object_Relative_V isibili t y_Score = I ncreased) ∧
(Nature_Effort_Class_to_See = Supportive) ∧

(Relative_Hand_Status = Manipulabili t y_Gained) ∧
(Object_I ni tial_Status = On_Support) ∧

(Object_Final_Status = I n_Hand)

(40)

Compared to the make-accessible task, the main differ-
ences (which in-fact are interrelated) in the understanding of
the give task are: the target-agent should apply no action to
reach and grasp the target-object, the target-object should
be in the hand of target-agent and the manipulability of the
target-object should be gained by the target-agent. Further,
it encodes that the give task will not be finished until the
target-object is in target-agent’s hand, whereas for the make-

accessible task it is sufficient to make the target-object easier
to be reached and grasped by the target-agent.

7.7 Put-Away an Object

Next we have demonstrated the task of put-away an object.
There were four demonstrations in different situations. Fol-
lowing is the robot’s understanding about the put-away task:

T ask(Put_Away)←
(Relative_Effort_to_Reach = Becomes_Difficult) ∧

(Relative_Posture = Maintained) ∧
(Object_I ni tial_Motion_Status = Static) ∧
(Object_Final_Motion_Status = Static) ∧

(Relative_Effort_to_Grasp = Becomes_Difficult) ∧
(Relative_V isibili t y_Score = Decreased) ∧

(Relative_Effort_to_See = Maintained) ∧
(I ni tial_Hand_Status = Object_Free) ∧
(Final_Hand_Status = Object_Free) ∧

(Object_I ni tial_Status = On_Support) ∧
(Object_Final_Status = On_Support)

(41)

7.8 Hide-Away an Object

Next task to demonstrate was to hide-away an object. Again
there were four demonstrations in different situations, result-
ing into the following understanding:

T ask (Hide_Away)←
(Relative_Effort_to_Reach = Becomes_Difficult) ∧

(Relative_posture = Maintained) ∧
(Object_I ni tial_Motion_Status = Static) ∧
(Object_Final_Motion_Status = Static) ∧

(Relative_Effort_to_Grasp = Becomes_Difficult) ∧
(Object_Final_V isibili t y_Score ≈ 0.0) ∧

(Relative_Effort_to_See = Becomes_Difficult) ∧
(I ni tial_Hand_Status = Object_Free) ∧
(Final_Hand_Status = Object_Free) ∧

(Object_I ni tial_Status = On_Support) ∧
(Object_Final_Status = On_Support)

(42)

Note that the above understanding of the hide-away task
tries to inherit the properties of the hide and put-away tasks.
For the hide task the abilities to reach and grasp were found
to be irrelevant, whereas in the hide-away task, similar to the
put-away task, these have been found relevant in the sense
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to make these abilities difficult for the target-object from
target-agent’s perspective. For the put-away task, the robot
found relative visibility score to be decreasing because of
the relatively away position of the target-object, whereas for
hide-away task the absolute visibility score itself has been
found to be negligible from the target-agent’s perspective, as
was the case for the hide task. Hence, the framework prunes
the subtrees at different appropriate levels of abstractions.

In these resulted understandings of the tasks, the effects
related to the abilities to reach and to grasp, wherever
appeared in the learned concepts, were similar. This is
because of the type of task demonstrated. However, if the
robot will be demonstrated with the tasks such as, put the
target-object to enable the target-agent just to touch it, the
framework would successfully capture the independent and
different effects about the abilities to reach and to grasp.

8 Performance Analysis

In this section, we will analyze the performance from the per-
spective of the average processing time and based on intuitive
understanding of the tasks. Here, it is important to note that as
mentioned earlier, the numbers of demonstrations mentioned
in the following figures are representing the demonstrations
by expert teachers, that too by manually achieving diversity
among different demonstrations for the same task, for faster
convergence. Following our analogy that we are not teaching
a ’child’ with wrong demonstration, analysis of experiments
with non-expert teacher is not the scope of the paper.

8.1 Processing Time

Table 3 shows number of demonstrations per task and the
average processing time per demonstration (excluding the
time of demonstration). It is interesting to observe that it
takes more time for those tasks, which require the robot to
apply more number of virtual actions on the target-agent for
finding the least feasible effort for an ability. For example, in

Table 3 Number of demonstration per task and average learn-
ing/refinement time (in s) after each demonstration for each task

Task Total number of
demonstrations

Average time for
learning after each
demonstration in s

Make accessible 5 0.56

Hide 3 0.81

Show 4 0.63

Give 3 0.59

Put away 4 0.61

Hide away 4 1.2

the case of the hide task, the target-object had been placed to
be invisible by the performing-agent from the perspective of
target-agent. In most of such cases, the robot needs to apply
Whole_Body_Effort or even Displacement_Effort to find the
least feasible effort to see or reach the target-object by the
target-agent, after sequentially testing for lower effort lev-
els. Whereas, for the tasks for which the least feasible effort
of the target-agent is found by applying the virtual actions
corresponding to lower-level efforts such as Head_Effort or
Arm_Effort, the computation time is less. For example, for
the give task, from target-agent’s perspective, least efforts to
see and reach are both lower, hence, lower processing time.

In fact, the convergence after each demonstration depends
upon the total number of predicates in the domain theory, as
even the learned concept appear to be pruned significantly,
the robot maintains the m-estimate of all the predicates to
incorporate the possibility of lifelong learning and confusion
based refinement. This is a choice we have made. However,
one could chose to refine only the tree learned so far and
batch process the remaining data offline. This will make the
system learn faster but needs to decide what to batch process
and when.

8.2 Analyzing Intuitive and Learned Understanding

In this paper, we have tried to incorporate a subset of predi-
cates for better human-level understanding of a task, but we
cannot claim it to be a complete domain theory for under-
standing of such tasks. We do not follow a close world
assumption and in fact we should not, as a task could have
effects, which cannot be captured in the current hypothesis
space, and could include other physical, mental and emo-
tional states of the target-agent, his/her desire and so on. For
example, does making accessible require the target-agent
to maintain his/her posture or his/her foot to be on ground,
should the target-object always be visible more easily or is
it acceptable to compromise it for the ease of reachability.
Therefore, it is practically not possible to figure out an exact
ground truth model, hence, to define a domain theory, which
will be “complete” or “accurate”.

The question of “correct tree” will probably be unan-
swered until we will have a “complete” domain knowledge
and universally accepted “precise semantics” of tasks. Hence,
it is difficult to design an objective function for analysis and
comparison. Therefore, in this paper we can only intuitively
say something about a “partially correct” explanation of a
task for comparison purpose.

Since, the focus of the paper is on understanding tasks,
which are performed for other agents, in this section we
have chosen the predicates related to the effect on target-
agent’s ability and the effect on target-object’s state to ana-
lyze the “partial correctness”. For this, based on an intu-
itive understanding of tasks, we have compared the robot’s
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Table 4 Analyzing the key attributes’ understanding by the robot with an intuitive understanding for a task

Task Intuitive understanding of task Number of demonstration to
reach at intuitive understanding

Number of trial to get
the intuitive sub-tree
of hypothesis

For target agent’s ability For target object state For target agent’s ability For target
object state

To see To reach To see To reach

Make Accessible Supportive Easier Static on support 4 2 1 4

Hide Difficult (Not relevant) Static on support 2 2 1 2

Show Directly (Not relevant) (Not relevant) 1 3 4 4

Give Supportive No action* In target-agent’s hand 3 1 1 3

Put Away Maintain Difficult Static on support 2 2 1 2

Hide Away Difficult Difficult Static on support 3 3 1 3

* Assuming task ends when object is grasped by target agent

understanding. The intention is to demonstrate the strength
of the presented framework that it can reach such human-
level understanding even from two positive demonstrations,
if demonstrated as differently as feasible. Table 4 summa-
rizes this comparison. Note that for reaching the understand-
ing at higher level abstraction such as supportive, it takes
more number of trials than the lower level predicates based
understanding, such as directly, which maps to No_Effort,
a value corresponding to lower level in the effort hierarchy.
This is obvious, as the pruning of the sub-trees are bottom
up for the sake of understanding a task at appropriate level
of abstraction and generalization. Therefore, generally the
number of demonstrations to conclude non-relevance accu-
mulates as the level of abstraction goes up.

It is worth to note that even though as explained earlier, it
is difficult to have an objective function and correct tree to
compare, the intuitive understanding used in this section and
the analysis of the result from different perspectives as done
in the columns of Tables 3 and 4 could serve to analyze and
compare the results of future works on understanding such
tasks.

8.3 Necessity of Ability Based Facts Based and Perspective
Taking

Let us assume that the hypothesis tree does not contain any
attribute related to the ability based on the perspective taking
of the target-agent. In that case, the understood semantics for
the tasks of Make Accessible and Put Away are:

T ask (Make_Accessible)←
(Relative_Posture = Maintained) ∧

(Object_I ni tial_Motion_Status = Static) ∧
(Object_Final_Motion_Status = Static) ∧

(I ni tial_Hand_Status = Object_Free) ∧

(Final_Hand_Status = Object_Free) ∧
(Object_I ni tial_Status = On_Support) ∧

(Object_Final_Status = On_Support) (43)

T ask(Put_Away)←
(Relative_Posture = Maintained) ∧

(Object_I ni tial_Motion_Status = Static) ∧
(Object_Final_Motion_Status = Static) ∧

(I ni tial_Hand_Status = Object_Free) ∧
(Final_Hand_Status = Object_Free) ∧

(Object_I ni tial_Status = On_Support) ∧
(Object_Final_Status = On_Support) (44)

Hence, these two tasks, which are opposite in nature are
not semantically separated, because the core difference is
from the perspective of the target-agent on the ability to reach
the object. Therefore, the reasoning about abilities from the
target-agent’s perspective is a must for understanding those
types of tasks in which an agent is performing for another
agent.

8.4 Importance of Levels of Abstraction

Let us take the example of the learned semantics of
the tasks hide and show. In the show task, the sub-tree
related to the ability to see the target-object has been pre-
served at the lowest level of target-agent’s required action
(Action_to_See = No_Action_Required). This results into
an intuitive notion that the target-agent should not put any
effort to see the object. Whereas, for the hide task, the
same sub-tree has been pruned to relative effort class level
(Relative_Effort_Class_to_See = Becomes_Difficult), which
results into an understanding that the target-object should
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become difficult to be seen by the target-agent, and the
effort to see can vary depending upon the situation. Simi-
larly, for the task of make accessible the same sub-tree has
been pruned at the highest level, i.e. the nature of the effect,
(Nature_Effort_Class_to_See = Supportive), which can also
be defended as initially the object might be hidden or already
visible and the making accessible might increase the visibil-
ity or at least maintain it, while reducing the effort to be
reached by the target-agent. Hence, even there is inconsis-
tency in the values at relative effort level in the hierarchy,
the nature/intention has been captured at the higher level of
abstraction.

In the above example if we do not have the leaves at action
level, the difference between the show and the hide tasks
would have been still captured at the relative effort class to
see (i.e. easy or difficult to see). However, the finer notion
that the target-agent should put no effort to see the object
in the case of show task would be lost. Similarly, if we do
not have the qualifying the level of abstraction, nature, the
inconsistency at the level of relative effort to see would result
into an understanding, which will consider the ability to see
the object as an irrelevant predicate. Hence, the design of
the knowledgebase with significant levels of abstractions is
important to capture the intuitive semantics of the tasks, to
avoid missing some relevant predicates as well as to avoid
losing some finer details.

8.5 Remark on Practical Limitations

The practical issues related to inference of various facts limit
the output of the presented framework. For example, the
object_in_hand fact is inferred if the object is not on a sup-
port and the hand is close to the object. This limits estimat-
ing how the object is being grasped by the agent, i.e. what is
the relative position and orientation of the hand with respect
to the grasped object. This further limits the understanding
about dual grasp, i.e. there should be sufficient space avail-
able to grasp the object simultaneously by another human.
Therefore, for the give task we have deliberately chosen the
object of bigger dimensions. This always leaves sufficient
space, so that the robot can positively infer a collision free
grasp by the target-agent. Another limitation arises from the
localization of the object. Since it is based on the tag on the
object, the performing-agents were instructed to manipulate
the object such that the tag always faces towards the camera
of the robot.

9 Potential Applications and Benefits

The symbolic understanding of a task along with its geomet-
ric counterpart makes the robot more ’aware’ about a task.
In this section we discuss some of the potential applications.

9.1 Generalization to Novel Scenario

The understanding of a task is independent of the shape and
size of the object, the trajectory as well as the absolute/relative
distances among the agents and objects. This facilitates the
robot to perform the task in an entirely different scenario. For
example, the robot will be able to perform the task of making
an object accessible by putting it at the top of another object,
even it might have not been demonstrated to the robot.

9.2 Greater Flexibility for Symbolic and Shared
Cooperative Plan Generation

If the planner at symbolic level knows the semantics of a
task independent of the actions to be executed, it could plan
to achieve the task in a variety of ways. Such as, if it ’under-
stands’ that hiding means the target-object should be difficult
to be seen by the target-agent, depending upon the situation,
it could plan to cover the target-object with some other con-
tainer type object to make it invisible. Similarly, for show-
ing or making an object accessible, again instead of directly
manipulating the target-object, it could plan to displace the
occluding or obstructing object from the human’s perspective
to achieve the same desired effects. The task-planner could
even involve a third agent to achieve the task.

Goal effect based task planners, such as [2,3,8,17],
and affordance based task planners [5,48], could take into
account high-level constraints and generate alternative solu-
tion in terms of actions, agents and objects for a task. Our
ongoing work in this direction, such as [17,18,48], demon-
strates the feasibility of a hybrid planner capable of generat-
ing cooperative shared plans for achieving a task in human–
robot interaction domain, based on combined geometric and
symbolic reasoning. It is able to take into account the aspects
such as which agent can do which type of action, what are
the associated levels of efforts, constraints and preferences.
Nevertheless, it will be an interesting future work to incor-
porate the complementary aspects of action learning from
demonstrations, and incorporate that through a mechanism
to reduce the complexity or at least guide the search space of
such task planner.

9.3 Transfer of Understanding Among Heterogeneous
Agents

Since the robot understands the task independent of the tra-
jectory planning and control level execution, it can easily
transfer the task semantics to another robot of entirely dif-
ferent kinematics structure and shape. And the other robot
equipped with similar reasoning capabilities could then inter-
pret the understanding and perform it by respecting its own
constraint of whole body planning.
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Fig. 20 Different ways to reproduce a learned task, based on desired effect. Either the effect could be converted in terms of constraints for a
geometric pick-and-place task planner or could be used by high-level symbolic planner to produce entirely different plans depending upon the
situation

9.4 Feasibility of Reproducing the Learned Task

As the learning is not at trajectory or sub-action level, so it is
not possible to reproduce the task by imitation approaches.
In fact, the domain of effect-based task planning is a com-
plementary research topic.

As shown in Fig. 20 a task learned in terms of desired
effect could be reproduced in different ways:

(i) Effect-to-Parameter Converter: By using a converter,
which will interpret the effect and convert it into the para-
meters of a geometric task planner.

(ii) High-Level task Planner: By using a High-Level task
planner, such as HATP [2] and other as discussed in
Sect. 9.2 to find the actions, which could result into the
desired learned effect the world. The advantage of using
such high level symbolic planner is, it can plan to achieve
same effect in different ways, as discussed in Sect. 9.2.
As shown in dotted link, a two-way handshaking between
the low-level planner and the high-level planners, such
as [3,17] could better converge to a feasible plan, based
on desired effect and effort.

In [47] we have presented a framework to find the candi-
date places to perform a task, once the semantics of the task
is known in terms of effort based ability to see and reach.
In [49], we have presented a framework to plan for such
basic HCOM tasks. In [51] we presented an integrated plan-
ner based on constraint hierarchy, for planning a set of basic
pick-and-place tasks and presented experimental results. The

core of the planner takes as input three sets: candidate places,
candidate grasps, candidate orientation of the object. Further,
it takes the range of visibility score, need of dual grasp as
input parameter, to test for feasibility of a solution.

As the domain of the demonstrated tasks of the current
paper is within the scope of our planner presented in [51], we
have implemented a simple converter to ground the learned
effects in terms of the parameters of this planner. This con-
verter has different sub-modules to convert different predi-
cates. For example, to convert the symbolic value “easier”
for the ability “reach” of the target-agent, it finds the target-
agent’s current least effort, CL E to reach the target-object.
Then it finds the places, which are reachable by less effort
levels than CL E by the target-agent, using approach in [47].
These places serve as the input set of candidate places. Sim-
ilarly, the value of desired visibility score is directly passed.
If the object status should be on_support, this is also passed
directly, as the framework is capable of finding set of sta-
ble placement on any support plane. As the effect of task
understanding is at a level of abstraction, which makes it
independent from the kinematics of the agent, we have taken
this advantage to feed the converted constraints for planning
for the hide task by PR2 robot, although learned by JIDO
robot. Fig. 21 shows PR2 robot reproduces the task of hiding
a target-object (grey-tape) form a target-agent (human) in a
different scenario.

Note that the planner of [51] only serves as an example,
which could be used in geometric planner block of Fig. 20.
For a different geometric planner, an appropriate effect to
parameter converter will be required.

Fig. 21 Using the effect to parameter converter, learned effects of the
hide task has been converted into constraints comparable with our geo-
metric planner for human-centered tasks [51]. Using those, the PR2

robot reproduces the task of hiding a target-object (Grey tape) from a
target-agent (Human) in a different scenario

123



Int J of Soc Robotics (2014) 6:593–620 617

9.5 Understanding by Observing Heterogeneous Agents

Our system is capable of effort based visuo-spatial perspec-
tive takings analysis not only for human but also for different
robots, JIDO, HRP2, PR2. Therefore, using the same frame-
work and system, the robot could understand task semantics
from the demonstrations in which the target-agent is a robot.
This facilitates understanding for the situation in which the
human might perform the task for the observer robot itself or
for another type of robot.

9.6 Generalization for Multiple Target-Agents

Another interesting future research work is to incorporate the
aspect of multiple target-agents. Such as, hide an object from
two humans at the same time, show an object to a group of
people, etc. There will be two different aspects:

(i) Adapting the understanding to perform for multiple
target-agents: The symbolic level understanding of tasks
will facilitate easy generalization for planning for multi-
ple target-agents, but will depend upon the capability of
the task planner to plan and perform the task for multiple
target-agents.

(ii) Understanding from the demonstrations involving multi-
ple target-agents: From the point of view of understand-
ing the task, which itself has been aimed for multiple
target-agents, the framework can be adapted to build and
maintain multiple hypotheses trees for different target-
agents. The underlying research challenge will be merg-
ing such hypotheses tress to autonomously come up with
a coherent understanding.

9.7 Generalization for Multiple Target-Objects

In the current implementation, we focused on the tasks requir-
ing a single target-object of interest. There could mainly two
ways in which multiple target-objects could be important for
a task:

(i) Without any relation or ordering: For example, giv-
ing something to write, which required giving pen and
paper. For this our current framework can be adapted,
so that the robot will reason on the effects for differ-
ent target-objects, independent of each other. This might
also lead to autonomous reasoning about identifying the
target-objects. In the current approach, the name of the
target-object is explicitly provided to the robot. Works
on autonomous learning on task-relevant objects such
as [35] could be adapted for this purpose.

(ii) There are some semantics associated with the relation
and ordering between the objects: For example, serving
coffee, which will require to put the cup above the plate.

For this, it will require integrating the presented approach
with the works on learning ordering and preferences, such
as [52].

9.8 Facilitate Task/Action Recognition and Proactive
Behavior

By partially observing the human’s action and its effect, the
robot could probabilistically classify the task or the desired
changes in the ongoing action, by the human. Even the com-
plete task is known to the robot, again based on the desired
effects of the task, the robot could show proactive behav-
iors to partially/fully facilitate the task while reducing the
human’s effort. For example, if the robot infers/knows that
the human is trying to reach an object, it could proactively
offer help by making the object accessible. Similarly, if the
robot knows at symbolic level that the human wants to show
or give an object to it, knowing the ’meaning’ of task, the
robot could proactively turn its head or move its arm to facil-
itate achieving the desired effect as an attempt to guide as
well as support the task [50].

9.9 Enriching Human–Robot Natural Interaction

Such symbolic awareness about the task’s semantics could
also enrich the interaction with the human partner to be more
natural, as the robot will be able to communicate the task at
the level of abstraction understandable by the human.

9.10 Understanding Other Types of Tasks

The focus of the paper is on basic HCOM tasks, which
requires one agent to perform the task for the other agent.
We do not claim that with its current knowledgebase the
system can learn every manipulation task. However, the pre-
sented knowledge and the learning framework can help in
augmenting the knowledgebase for effect-based understand-
ing of various other types of tasks, such as tap, lift, drop,
dump in trash bin, throw an object, etc. For example after tap-
ping a ball initially laying static on a support, the final state
of the ball is moving on support, hence, the effect contains
object symbolic status: on_support , motion status: moving.
Similarly, for throw task the effect contains object symbolic
status: in_air , motion status: moving. Similarly, for lift task,
the object status on_support will be lost and object status
in_hand will be gained, hence, manipulability gained, etc.
Certainly more predicates and reasoning about the dynamic
effects will be required to understand the complete effect of
such tasks, such as dump, which requires the notion of “place”
or “bin”. However, if the domain theory and the knowledge-
base are rich enough (either engineered or learnt by some
ontological representation) the presented framework could
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be used to autonomously prune out irrelevant facts, associ-
ated either with the human or with the object.

10 Conclusion and Future Work

This paper serves as a step towards making the boundary
between task primitives and execution primitives visible and
enables a human-centered robot to understand task seman-
tics independent of the means to achieve it. This is an impor-
tant aspect of emulation learning, which facilitates us, the
humans, to efficiently perform a task differently in different
situations.

In this paper we focused on those tasks, which require
one agent to perform a task for another agent, e.g. show,
hide, give, etc. The main novelty of the paper is that we
have argued and demonstrated that it is a must to include
multi-state visuo-spatial perspective taking, i.e. combining
the reasoning about effort, ability and perspective taking for
understanding such tasks by a robot. We have identified the
key attributes, which enable the robot to reason on various
quantitative, comparative and qualitative facts for analyz-
ing the effect of demonstrated tasks. An explanation based
learning (EBL) framework, incorporating m-estimate based
consistency measure, which introduces the notion of ’expe-
rience’, has been presented for understanding task semantics
from demonstration. All these equip the robot with the ability
to learn and explain its understanding in a ’meaningful’ way.
We have demonstrated that the robot autonomously learns the
intuitive semantics of a set of basic human-centered tasks at
appropriate levels of abstractions and argued that such under-
standing could be generalized to novel scenarios and hetero-
geneous agents.

A work in progress is to integrate the learning framework
with goal-effect based task planners to reproduce the task in
an entirely different way. Further, the presented approach
could benefit from various other attributes to understand
more complex tasks.

The presented framework currently reasons at initial and
final world state 〈W I, W F〉 to understand a task based on
its effect. An interesting future work is to include the action
component A and reason based on 〈W I, A, W F〉. This will
enable the robot to analyze the rich information about exe-
cution preferences and to learn those tasks for which some
sub-action primitives might be essential parts for understand-
ing the desired effect of the task. Further, it will be interesting
to investigate, how the framework could be adapted to under-
stand the undesirable effects of a task.
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