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Abstract Human robot collaborative work requires inter-
active manipulation and object handover. During the execu-
tion of such tasks, the robot should monitor manipulation
cues to assess the human intentions and quickly determine
the appropriate execution strategies. In this paper, we present
a control architecture that combines a supervisory attentional
system with a human aware manipulation planner to support
effective and safe collaborative manipulation. After detail-
ing the approach, we present experimental results describing
the system at work with different manipulation tasks (give,
receive, pick, and place).
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1 Introduction

In order to work with humans, a robotic system should be
able to understand the users’ behavior and to safely interact
with them within a shared workspace. Moreover, in order to
be socially acceptable, the behavior of the robotic system has
to be safe, comfortable, and natural. In Social Robotics (SR)
and Human–Robot Interaction (HRI), object exchange rep-
resents a basic and challenging capability [16,20]. Indeed,
simple tasks of object handover pose the problem of a close
and continuous coordination between humans and robots,
which should interpret and adapt their reciprocal movements
in a natural and safe manner. From the robot perspective,
the human motions and the external environment should be
continuously monitored and interpreted searching for inter-
action opportunities while avoiding unsafe situations. For
this purpose, the robotic system should assess the environ-
ment to determine whether humans are reachable, attentive,
and willing to participate to the handover task. On the other
side of the interaction, if the robot movements and intentions
are natural and readable, it is easier for the human operator
to cooperate with the robot; in this way, the robotic manipu-
lation task can also be simplified by human assistance [20].

During interactive manipulation, sensorimotor coordina-
tion processes should be continuously regulated with respect
to the mutual human–robotic behavior, hence attentional
mechanisms [27,33,35] can play a crucial role. Indeed, they
can direct sensors towards the most salient sources of infor-
mation, filter the sensory data, and provide implicit coor-
dination mechanisms to orchestrate and prioritize concur-
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rent/cooperative activities. In this perspective, an attentional
system should be exploited not only to monitor the interac-
tive behavior, but also to guide and focus the overall executive
control during the interaction.

Attentional mechanisms in HRI have been proposed
mainly focusing on visual and joint attention [7,8,28,29,32,
39,47]. In these works, the authors introduce and analyze
joint visual attentional mechanisms (eye gaze, head/body
orientation, pointing gestures, etc.) as implicit nonverbal
communication instruments used to improve the quality of
the human–robot communication and social interaction. In
contrast, we focus our interest on executive attention [36]
proposing the deployment of a supervisory attentional system
[17,33] that supports safe and natural human–robot interac-
tion and effective task execution during human-aware manip-
ulation. The achievement of this goal is very desirable in SR,
where social acceptability and safety earn a role of primary
importance.

Our attentional system is designed as an extension of a
reactive behavior-based architecture (BBA) [4,9] endowed
with bottom-up attentional mechanisms capable of monitor-
ing multiple concurrent processes [27,40]. For this purpose,
we assume a frequency-based approach to attention alloca-
tion [40] extended to the executive attention. This approach
is inspired by [34], where the attentional load due to the
accomplishment of a particular task is defined as the quan-
tity of attentional time units devoted to that particular task,
and by [40], where attentional allocation mechanisms are
related to the sampling rate needed to monitor multiple par-
allel processes. More specifically, we introduce attentional
allocation mechanisms [15], which allow the robot to reg-
ulate the resolution at which multiple concurrent processes
are monitored and controlled. This is obtained by modulat-
ing the frequency of sensory sampling rates and the speed
associated with the robot movements [14,15,24]. Follow-
ing this approach, we consider interactive manipulation tasks
like pick and give, receive and place, or give and receive. In
this context, the attentional allocation mechanisms are regu-
lated with respect to the humans’ dispositions and activities
in the environment, taking into account safety and effective
task execution. The human–robot interaction state is mon-
itored and assessed through costmaps [30], which evaluate
HRI requirements like human safety, reachability, interaction
comfort, and field of view. This costmap-based representa-
tion provides a uniform assessment of the human–robot inter-
active state, which is shared by the motion planner and the
attentional executive system. Indeed, the costmap-based rep-
resentation allows the robot manipulation planner and arm
controller to generate and to execute human-aware move-
ments. On the other hand, the attentional executive system
exploits the cost assessment to regulate the strategies for
activity monitoring, action selection, and velocity modula-
tion.

In this paper, we detail our approach presenting a case
study along with preliminary empirical results used to show
how the system works in typical scenarios of object han-
dovers.

2 Attentional and Safe Interactive Manipulation
Framework

In this work, we present an attentional executive system suit-
able for safe and effective human–robot interaction during
cooperative manipulation tasks. We mainly focus on han-
dover tasks and simple manipulation behaviors like pick,
place, give, and receive. Here the attentional system is used
to distribute the attentional focus on multiple tasks, humans
and objects (i.e., the relevant action to perform and the
human/object to interact with), to orchestrate parallel behav-
iors, to decide on task switching, and to modulate the robot
execution.

Our approach combines the following design principles:

– Attentional Executive System: we deploy attention allo-
cation mechanisms for activity monitoring, action selec-
tion, and execution regulation;

– Spatial and cost-based representation of the interaction:
a set of costmaps functions is computed from the human
kinematics state to assess human–robot interaction con-
straints (distance, visibility, and reachability);

– Adaptive human-aware planning: adaptive and reactive
human-aware motion/path/grasp planning and replan-
ning techniques are used to generate and to adjust manip-
ulation trajectories. These can be adapted at the execution
time by taking into account the costmaps and the atten-
tional state.

Figure 1 details the corresponding attentional framework.
The spatial reasoning system allows the robot to assess

Fig. 1 The spatial reasoning module updates the costmaps used to
assess the human posture and behavior. Given the costmap values, the
attentional system continuously modulates the behaviors sampling rates
and activations. The attentional state is then interpreted by an executive
system, which decides about task switches and modulates execution
velocity affecting the manipulation planner and the arm controller
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human–robot interaction constraints providing interaction
costmaps. These costmaps are then used by the attentional
executive system and by the human-aware planner to gener-
ate safe and comfortable robot trajectories. More precisely,
given the costmaps assessment from the human posture and
behavior, the attentional behavior-based architecture (atten-
tional BBA) continuously modulates the sensors sampling
rate and the actions activations; while, depending on suit-
able attentional thresholds, the executive system selects the
current task inducing path/motion replanning. When the task
changes, the executive system aborts the current motion and
starts the replanning process. Finally, the arm controller is to
execute the trajectory generated by the manipulation planner
modulating the velocity as suggested by the attentional exec-
utive module. In the following, we detail each component of
the architecture.

2.1 Spatial Reasoning

The attentional supervisory system is provided with a rich
data set by the spatial reasoning system such as distance,
visibility, and reachability assessment for the humans in the
scene. This key reasoning capacity enables to perform situa-
tion assessment for interactive object manipulation [45] and
to determine whether humans are reachable, attentive, and
willing to participate to the handover task.

The spatial reasoning module also evaluates the robot
interaction space and opportunities in the same manner. This
enables to assess the possible manipulation tasks that the
robot can achieve alone.

Each property is represented by a human or robot cen-
tric costmap that establishes if regions of the workspace are
distant, visible or reachable by the agent. All costmaps are
computed off-line as arrays of values named grid in the fol-
lowing. They are constructed by considering simple geomet-
rical features such as the distance between a segment and a
point or the angle between two vectors (details further). When
assessing the cost of a particular point, the value is not com-
puted on the fly but simply looked-up in the preloaded grid.
Hence, the attentional system is able to quickly determine
whether objects are visible by the human or not by simply
reading the value in the costmap. Other examples might be to
determine whether an object is reachable or not by a human,
whether a human is attentive during handover tasks by con-
sidering robot center visibility or whether he/she is too close
for handing an object (i.e. the human current position cannot
yield a safe handover).

The distance costmap, depicted in Fig. 2a, is computed
using a function f (h) → (p1, p2), which returns two points
of interest (p1 at the head and p2 at the feet) given a human
model h. The two points p1 and p2 are then used to define a
simplified model of the human composed of a segment and

Fig. 2 The human-centered distance costmap (a) and the field of view
costmap (b)

a sphere of radius R = 0.3m. The distance cost cdist (h, p)

between a point p and this simplified model will be:

cdist (h, p) = min(ds(h, p), max(0, ||p1 − p|| − R)) (1)

with:

ds(h, p) =

×

⎧
⎪⎪⎨

⎪⎪⎩

(p − p1) ∧ (p2 − p1)

||p2 − p1|| if 0 < ρ < ||p2 − p1||
||p1 − p|| if ρ � 0
||p2 − p|| if ρ � ||p2 − p1||

(2)

where ρ = (p1 − p)
p2 − p1

||p2 − p1|| .

This costmap models a safety property as it contains higher
costs for regions that are close to the humans. This property is
accounted at several levels of the robot architecture to ensure
the interaction safety. In fact, it reduces the risk of harm-
ful collisions by assessing possible danger and it determines
interaction capabilities (e.g. for object handover).

The visibility costmap, depicted in Fig. 2b, is computed
from the direction of the gaze g and the vector d joining the
camera to the point p to observe as follows:

cvisib(h, p) = 1

2

(

arccos

(
g

||g|| · d

||d||
)

+ 1

)

(3)

The gaze direction g and the vector d are computed from
the kinematic model h of the human or of the robot.

The visibility costmap models the attention and field of
view of the human; it contains high cost for regions of
the workspace that are hardly visible by the human. When
accounted by the path planner it aims to limit the effect of
surprise as a human may experience unease while the robot
moves in hidden parts of the workspace. It also provides
information about the visibility of objects and the attentional
state of the human.

Both distance and field of view constraints are combined
and accounted by the path planner and the attentional exec-
utive system. The path planner is so able to avoid high cost
regions by maximizing the clearance and increasing the robot
visibility. The executive system, instead, influences the arm
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Fig. 3 Reaching postures (a) and a resulting slice of the Reachable
space (b) of the right arm. The comfort cost, depicted using different
colors, is used to model reaching capabilities of the human. (Color
figure online)

controller at run-time to modulate the velocity along the tra-
jectory, even stopping the motion when the cost exceeds a
certain threshold.

The reachability costmap, depicted in Fig. 3b, estimates
the reachability cost for a point p in the human or robot
workspace. The assumed reachable volume of the human or
robot can be pre-computed using generalized inverse kine-
matics. For each point inside the reachable volume of the
human, the determined configuration of the torso remains as
close as possible to a given resting position. A comfort cost
is assigned to each position through a predictive model of
human posture introduced in [31] using a combination of the
three following functions:

– The first function computes a joint angle distance from a
resting posture q0 to the actual posture q of the human
(see Fig. 3a), N is the number of joint and wi are weights:

f1 =
N∑

i=1

wi (qi − q0
i )2 (4)

– The second considers the potential energy of the arm,
which is defined by the difference between the arm and
the forearm heights with those of a resting posture (�zi )
pondered by an estimation of the arm and the forearm
weights mi g :

f2 =
2∑

i=1

(mi g)2(�zi )
2 (5)

– The third penalizes configurations close to joint limits.
To each joint corresponds a minimum and a maximum
limit and the distance to the closest limit (�qi ) is taken
into account in the cost function as follows with a weight
γi :

f3 =
N∑

i=1

γi�q2
i (6)

The cost functions are summed to create the reachabil-
ity cost with the function G I K (h, p) → q that gener-
ates a fully specified configuration using generalized inverse
kinematics:

creach(h, p) =
3∑

i=1

wi fi (G I K (h, p)) (7)

where h is the human model and wi weighting the three
functions. The musculoskeletal costmap (i.e. the predictive
human like posture costmap) accounts for the reaching capa-
bilities of the human in the workspace. It is used to com-
pute object transfer points and, during the path planning for
the handover task, to facilitate the exchange of the object at
any time during motion such as introduced in [30]. A sim-
ilar costmap defined for the robot is used by the attentional
system to assess the capacity of reaching an object in the
workspace.

Apart from the costmaps, the spatial reasoning system
provides a large set of data to the attentional system. Such
data are the objects position and velocity (poso and velo
where o is the object identifier), the state of the gripper (open
or closed), and the distance between the gripper and a given
object (dgo).

2.2 Attentional Executive System

In a HRI domain, an attentional system should super-
vise and orchestrate the human–robot interactions insuring
safety, effectiveness, and naturalness. Here, simple handover
activities are designed using a BBA endowed with bottom-up
attentional allocation strategies suitable for monitoring and
regulating human–robot interactive manipulation [14,41].
Starting from values obtained from the costmaps, the envi-
ronment, and the internal states of the robot, the attentional
system is able to focus on salient external stimuli by regu-
lating the frequency of sensory processing. It is also able to
monitor and orchestrate relevant activities by modulating the
activations of the behaviors.

We assume a frequency-based model of attention alloca-
tion [15], where the frequency of the sensors sampling rate
is interpreted as a degree of attention towards a process: the
higher the sampling rate, the higher the resolution at which a
process is monitored and controlled. This adaptive frequency
provides a simple and implicit mechanism for both behavior
orchestration and prioritization. In particular, depending on
the disposition and the attitude of a person in the environment,
the behaviors sampling rates and activations are increased or
decreased changing the overall attentional state of the sys-
tem. This attentional state can influence the executive system
in the choice of the activities to be executed, indeed, high-
frequency behaviors are associated with activities with a high
priority.
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Fig. 4 Schema theory representation of an attentional behavior

2.2.1 Attentional Model

Our attentional system is obtained as a reactive behavior-
based system where each behavior is endowed with an atten-
tional mechanism. We assume a discrete time model, with
the control cycle of the attentional system as the time unit.

The model of our frequency-based attentional behavior is
represented in Fig. 4 by a Schema Theory representation [3].
This is characterized by: a Perceptual Schema, which takes
as input the sensory data σ t

b (represented as a vector of n
sensory inputs); a Motor Schema, producing the pattern of
motor actions π t

b (represented as a vector of m motor out-
puts); a Releaser [46] that works as a trigger for the motor
schema activation; an attention control mechanism based on a
Clock regulating sensors sampling rate and behaviors activa-
tions (when enabled). The clock regulation mechanism repre-
sents our frequency-based attentional allocation mechanism:
it regulates the resolution/frequency at which a behavior is
monitored and controlled.

This attentional mechanism is characterized by:

– An activation period pt
b ranging in an interval [pb_min,

pb_max ], where b is the behavior identifier. It defines the
sensors sampling rate at time t . A specific value x for the
period pt

b implies that the behavior b perceptual schema
is active every x control cycles.

– A monitoring function fb(σ
t
b, pt ′

b ) : R
n → R that adjusts

the current clock period pt
b. Here σ t

b is the perceptual
input of the behavior b, t ′ is the time value at the previous
activation, while pt ′

b is the period at the previous control
cycle.

– A normalization function φ( fb) : R → N that maps the
values returned by fb into the allowed range [pb_min,

pb_max ]:

φ(x) =
⎧
⎨

⎩

pb_max , if x ≥ pb_max

�x�, if pb_min < x < pb_max

pb_min, if x ≤ pb_min

(8)

– Finally, a trigger function ρ(t, t ′, pt ′
b ), which enables the

perceptual elaboration of the input data σ t
b with a latency

period pt
b:

ρ(t, t ′, pt ′
b ) =

{
1, if t − t ′ = pt ′

b
0, otherwise

(9)

The clock period at time t is regulated as follows:

pt
b = ρ(t, t ′, pt ′

b )φ( fb(σ
t
b, pt ′

b )) + (1 − ρ(t, t ′, pt ′
b ))pt ′

b

(10)

That is, if the behavior is disabled, the clock period remains
unchanged, i.e., pt

b = pt ′
b ; otherwise, when the trigger func-

tion returns 1, the behavior is activated and the clock period
changes according to φ( fb).

2.2.2 Attentional Architecture

The proposed attentional architecture integrates the tasks for
pick, place, give, and receive. It is depicted in Fig. 5, where
each task is controlled by an attentional behavior. It is also
endowed with behaviors for searching and tracking (humans
and objects) and with the behavior associated with the obsta-
cle avoidance capability. Each behavior b is endowed with a
distinct adaptive clock period pt

b characterized by its own
updating function. In the following, we use the notation
σ t

b[i] to refer to the i-th component of the sensory input
vector σ t

b .
SEARCH provides an attentional visual scan of the envi-

ronment looking for humans. The monitored input signal is
cdist (r, p), which represents the distance of the human pelvis
p from the robot r in a robot centric costmap (i.e., the input
data vector for this behavior is σ t

sr = 〈cdist (r, p)〉). This
behavior is always active and it has a constant activation
period (pt

sr = pt ′
sr ), hence fsr (σ

t
sr , pt ′

sr ) = pt ′
sr .

Once a human is detected in the robot far workspace (i.e.,
when 3m < cdist (r, p) ≤ 5m),TRACK is enabled and allows
the robot to monitor the humans motions before they enter in
the interaction space (1m < cdist (r, p) ≤ 3m). Also in this
case, the monitored signal is the robot-human distance (i.e.,
σ t

tr = 〈cdist (r, p)〉). In this context, a human that moves fast
and in the direction of the robot needs to be carefully moni-
tored (at high frequency), while a human that moves slowly
and far away can be monitored in a more relaxed manner (at
low frequency). Therefore, the clock period associated with
this behavior is updated following the equation (10) with:

ftr (σ
t
tr , pt ′

tr ) = βtrσ
t
tr [1] · γtr

(
σ t

tr [1] − σ t ′
tr [1]

pt ′
tr

)

+ δtr .

(11)

Here, the period update is affected by the human position
with respect to the robot and the perceived human velocity.
In particular, the period is directly proportional to the human
distance and modulated by the perceived velocity. The latter
is computed as the incremental ratio of the space displace-
ment with respect to the sampling period. The behavior para-
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Fig. 5 Behavior-based
attentional architecture within
the overall framework. The
attentional system is provided
by the spatial reasoning module
with preprocessed data and
influences task switching
(executive) and motion control
(arm controller)

Table 1 Attentional system set up used in the experiments

Attentional BBA

SEARCH & TRACK
psr = 10 βtr = 4.5
γtr = 0.33 δtr = −11.5

AVOID
βav = 2.01 γav = 1.08
δav = 0.33 λav = 1.67

GIVE & RECEIVE βgv = 0.8 βrc = 0.75

PICK & PLACE dmax pk = 0.7m dmax pl = 0.7m

Costmap thresholds

Visib. & Reach. Kvisibili t y = 0.5 Kreachabili t y = 0.5

Executive System

Task Switcher KNew,Old = 3

meters βtr , γtr and δtr are used to weight the importance of
the human position and velocity in the attentional model and
to scale the sampling period within the allowed range. In this
specific application the values of these parameters are cho-
sen experimentally (see Sect. 3.1.1 and Table 1), but they

can also be tuned by learning mechanisms either off-line or
on-line as shown in previous works [12,18].
AVOID supervises the human safety during human–robot

interaction. It monitors the humans in the interaction and
proximity space and modulates the arm motion speed with
respect to the humans’ positions and movements. Moreover,
it interrupts the arm motion whenever a situation is assessed
as dangerous for the humans. Specifically, the input vector
for AVOID is σ t

av =〈cdist (r, p), cdist (h, r), cvisib(h, r)〉 rep-
resenting, respectively, the operator proximity (distance of
the human pelvis from the robot base), the minimal distance
of the robot from the human body (including hands, head,
legs, etc.), and the robot visibility. The human–robot dis-
tance σ t

av[1] is monitored in the range 0.1m < σ t
av[1] ≤ 3m

and AVOID is enabled when a human is detected in such
an area. If a human gets closer to the robot, then the costs
σ t

av[1] and σ t
av[2] increase and the clock should be acceler-

ated. Instead, the clock should be decelerated, if the operator
moves away from the robot. This is captured by the following
monitoring function.
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fav(σ
t
av, pt ′

av) = (βavσ
t
av[1] + γavσ

t
av[2])

·δav

(
(σ t

av[1] − σ t ′
av[1])

pt ′
av

)

+ λav. (12)

In this case, the clock period is directly proportional to the
human position σ t

av[1] and human–robot minimal distance
σ t

av[2], while it is modulated by the perceived human speed
(with respect to the robot base). Analogously to the previous
cases, these components are weighted and scaled by suitable
parameters. δav is thus used to emphasize the period reduc-
tion when the human moves towards the robot and, similarly,
to increase the period relaxation when the human moves away
from the robot base. The βav, γav and λav values are chosen
as shown in Table 1 in order to weight the importance of the
parameters and to scale the period value within the allowed
range.

The output of this behavior is a speed deceleration associ-
ated with high frequencies. This is obtained by regulating the
function α(t) that permits a reactive adaptation of the robot
arm velocity (see Sect. 2.3.4). Specifically, α(t) represents
the percentage of the speed applied on-line with respect to
the one planned. In our case, α(t) is regulated as follows:

α(t) =
{

pt
av

pav_max
, if (σ t

av[1] > 0.1m) and (σ t
av[3] < Kvisibili t y)

0, if (σ t
av[1] < 0.1m) or (σ t

av[3] ≥ Kvisibili t y)

(13)

where, pt
av and pav_max are, respectively, the current activa-

tion rate and the maximum allowed period for AVOID. Here,
if the human is not in the robot proximity and the robot is
in the human’s field of view (visibility cost below a suitable
threshold, σ t

av[3] < Kvisibili t y), then the velocity is propor-
tional to the clock period (i.e., slow at high frequencies and
fast at low frequencies). Instead, if the robot is not visible
enough or the human is in the robot proximity, then AVOID
stops the robot by imposing zero velocity.
PICK is activated when the robot is not holding an object,

but there exists a reachable object in the robot interaction and
proximity space. This behavior monitors the distance dgo of
the target object from the end effector and the associated
reachability cost creach(r, o) (i.e., the input vector for this
behavior is σ t

pk = 〈dgo, creach(r, o)〉). Specifically, PICK
is activated when the distance of the object from the end
effector is below a specific distance (σ t

pk[1] ≤ 3m) and
the reachability cost is below a suitable threshold (σ t

pk[2] <

Kreachabili t y). If this the case, then the associated period pt
pk

is updated with the equation (10) by means of the following
monitoring function:

f pk (σ t
pk , pt ′

pk ) = (ppk_max − ppk_min)
σ t

pk [1]
dmax pk

+ ppk_min (14)

where, ppk_min and ppk_max are, respectively, the minimum
and the maximum allowed value for ppk , while dmax pk is
the maximum allowed distance between the end effector and
the object (refer to Table 1 for the parameters values). This
scaling function is used to linearly scale and map σ t

pk[1] in
the allowed range of periods [ppk_min, ppk_max ].

Analogously to the previous case, the speed modulation
associated with this behavior is directly proportional to the
clock period:

α(t) = pt
pk

ppk_max
(15)

That is, if PICK is the only active behavior, then the arm
should move with max_speed when there is free space for
movements (and a low monitoring frequency). Conversely,
the arm should smoothly reduce its speed to a minimum
value in the proximity of objects and obstacles when pre-
cision motion is needed at higher monitoring frequency (this
effect is analogous to the one provided by the Fitts’s law
[21]).

Once selected by the executive system (see Sect. 2.2.3),
the execution of PICK is associated with a set of processes:
a planning process generates a trajectory towards the given
object; upon the successful execution of this trajectory, a
grasping procedure follows; finally, if the robot holds the
object, it moves it towards a safe position, close to the robot
body. Notice that, if PICK is not enabled by the executive
system this sequence of processes is not activated (indeed,
the attentional behaviors provide only potential activations,
while the actual ones are filtered and selected by the executive
module).
PLACE is activated when the robot is holding an object.

Once selected by the executive system (i.e., in the absence
of humans in the interaction space), this behavior activates
a set of processes that move the robot end effector towards
a target position, place the object and then move the robot
arm back to an idle position. Analogously to PICK, PLACE
monitors the distance of the target dgt and the reachability
cost creach(r, t) (i.e., the input vector for this behavior is
σ t

pl = 〈dgt , creach(r, t)〉). The clock period is regulated by a
function, which is analogous to the one of PICK (14), while
the speed modulation follows the equation (15).
GIVE and RECEIVE regulate the activities of giving and

receiving objects taking into account the positions and move-
ments of humans in the work space along with their reacha-
bility and visibility costs.
GIVEmonitors: the presence of humans in the interaction

space (1 < cdist (r, p) ≤ 3m), the visibility of the end effec-
tor (cvisib(h, r) < Kvisibili t y), the distance (cdist (r, t)) and
reachability of the human hand (creach(h, t) < Kreachabili t y),
and the presence of an object held by the robot end effec-
tor (distance between end effector and object dgo below
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Fig. 6 Execution of GIVE: a activations (vertical bars) and releasing (red circles). b human hand velocity profile. c hand end-effector distance.
(Color figure online)

a suitable threshold). That is, the input vector is σ t
gv =

〈cdist (r, p), cvisib(h, r), cdist (r, t), creach(h, t), dgo〉.
The clock period is here associated with the distance and

the speed of the human hand. If more than one human hand
is available, GIVE selects the one with a minimal cost in
the reachability costmap. Once activated by the executive
system, the execution of this behavior moves the end effector
towards the target hand; during the execution the robot arm
velocity should be regulated with respect to the hand distance
and movement. The GIVE period changes according to its
monitoring function fgv that combines two functions f 1

gv

and f 2
gv with a weighted sum regulated by a βgv parameter

as follows:

fgv(σ
t
gv, pt ′

gv) = βgv f 1
gv(σ

t
gv[3]) + (1 − βgv) f 2

gv(σ
t
gv[3])

(16)

The function f 1
gv sets the period proportional to the hand

position (i.e. the closer the hand, the higher the sampling fre-
quency) as in equation (14). Instead, f 2

gv depends on the hand
speed, that is, the higher the hand speed, the higher is the sam-
pling frequency. The speed of the target hand is calculated

as v = γgv
σ t

gv[3]−σ t ′
gv[3]

pt ′
gv

, where γgv normalizes the velocity

within [0, 1], while the function f 2
gv is used to scale the value

of the period within the allowed interval [pgv_min, pgv_max ]:

f 2
gv =

{
(pgv_max−pgv_min)(1 − v)+pgv_min if v ≤ 1
pgv_min otherwise

(17)

Intuitively, the βgv should be chosen in order to give great
priority to the hand position rather than to its velocity (see
Table 1), since very quick hand movements are not to be
considered as dangerous if the hand is far from the robot
operational space. The clock frequency regulates the velocity
of the arm movements. More specifically, the execution speed
is related to the period and the costs as follows:

α(t) =
{

pt
gv

pgv_max
, if σ t

gv[2] < Kvisibili t y

−1, otherwise
(18)

In this case, if the human subject is not looking at the robot
(σ t

gv[2] ≥ Kvisibili t y), then the robot performs a backward
movement in the planned trajectory (α(t) = −1).

In Fig. 6, we show the activations and releasing activi-
ties during the execution of a GIVE behavior with respect
to the velocity and the distance of a human hand. The GIVE
motor schema (red circles in Fig. 6a) starts to be active after
cycle 230 when the human is in the interaction space and
the human hand is reachable (σ t

gv[4] < Kreachabili t y). In
this case, it produces a movement towards the human hand.
Before that cycle, the perceptual schema is active at low fre-
quency (period = pgv_max ) in order to check for the user
presence in the interaction space. Around cycle 400, some
abrupt movements of the human hand cause an increase of
the clock frequency. These effects are attenuated from cycle
450, when the hand stands still. The final high frequency is
associated with the object exchange, when the human hand
is very close to the robot end effector.

123



Int J of Soc Robotics (2014) 6:533–553 541

As for RECEIVE, this is active when a human enters
in the interaction space (cdist (r, p) ≤ 3m) holding an
object (distance dgo between the object and the end effec-
tor less than a suitable threshold), the robot end effec-
tor is visible (cvisib(h, r) < Kvisibili t y) and the target
human hand is reachable (creach(h, t) < Kreachabili t y).
Therefore, also in this case the input vector is σ t

rc =
〈cdist (r, p), cvisib(h, r), cdist (r, p), creach(h, t), dgo〉). Sin-
ce this behavior is similar (and inverse) to the one provided
by GIVE, the sampling rate for RECEIVE is regulated by
a function which is analogous to the one represented by the
equation (16) (set with different parameters) and the adaptive
velocity modulation is inversely proportional to the current
period, as in equation (18).

2.2.3 Executive Module

The attentional behaviors described so far are monitored and
filtered by the executive system, which is to decide about task
execution, task switching, and behavior inhibition depend-
ing on the current task, the executive/interactive state, and
the attentional context. The executive system receives data
from the attentional system and manages task execution
by orchestrating the human-aware motion planner and the
arm movement. In particular, it continuously monitors the
active (released) behaviors along with the associated activi-
ties (clocks frequencies), and, depending on the current task,
it decides: when to switch from one task to another; when to
interrupt the task execution; and how to modulate the execu-
tion speed.

Initially, the executive system is in an idle state. Once an
event activates the attentional behaviors, it can switch from
the idle state to one of the following four possible tasks: pick,
place, give, and receive. In order to activate a task, the exec-
utive system should select not only the associated behavior,
but also the most appropriate object for manipulation and the
human that should be engaged in the task. Therefore, a task
is instantiated by a triple (behavior, human, object) and,
given a task, we refer to its associated behavior as its domi-
nant behavior. Once a task is activated, the executive system
should monitor if its dominant behavior remains active dur-
ing the overall execution. Moreover, it should also decide
when to switch to another task if something wrong occurs or
a conflict between behaviors is detected (e.g., the activation
of RECEIVE can conflict withPICK, analogously,GIVE can
conflict with PLACE). These conflicts are managed with the
following policy: the executive system remains committed
with the current task unless the frequency associated with
the conflicting behavior exceeds the frequency of the exe-
cuted one by a suitable threshold: pt

bold
− pt

bnew
> Knew,old .

This simple policy allows us to gradually switch from one
task to another if the old dominant behavior gets less excited,
while the new one becomes predominant. Notice that this

mechanism allows the robot to keep a stable and predictable
behavior reducing also potentially swinging behaviors due to
sensors noise. Actually, the swinging behaviors are mitigated
not only at the executive level, but also at the behavior-based
level. Indeed, even if the system is close to a threshold that
can activate/deactivate a releaser due to noise, the behavior
activations are gradually increased/decreased avoiding high
discontinuity in the attentional state. As an additional mech-
anism to filter out the outliers, the executive system switches
from a task to another only if a repeated indication of this kind
is observed. Notice that the target of the task can be switched
as well depending on the values of the costmaps (e.g. GIVE
selects the human hand with minimal reachability values).
In our setting the executive system always enables the target
suggested by the dominant behavior, however, a thresholding
mechanism, analogous to the one for task switching, can be
exploited to regulate target commitment.

Furthermore, the executive system monitors the AVOID
behavior to prevent collisions with objects and humans.
Indeed, the arm velocity modulation is obtained as the mini-
mal between the one proposed by the dominant behavior and
the one suggested by the AVOID: α(t) = min(αav(t), αtask

(t)). Moreover,AVOID can directly bypass the executive sys-
tem (see Fig. 5) to stop the motion in case of dangerous inter-
actions/manipulations.

2.3 The human-Aware Manipulation Planner

Once a task is selected by the attentional executive sys-
tem, an associated manipulation task has to be generated
by the manipulation planner. The planning process proceeds
by first computing a path P using a “human-aware” path
planner [30,43,44], which relies on a grasp planner to com-
pute manipulation configuration and secondly by processing
this path using the soft motion generator [10,11] to obtain a
trajectory T R(t). In this section we overview the main com-
ponents of this framework.

2.3.1 Grasp Planner

As the choice of a grasp to grab an object greatly determines
the success of the task, we developed a grasp planner module
for interactive manipulation [38]. Even for simple tasks like
pick and place or pick and give to a human, the choice of the
grasp is constrained at least by the initial and final position
accessibility and by the grasp stability [6]. The manipulation
framework is able to select different grasps depending on the
clutter level in the environment (see Fig. 7). Grasp planning
basically consists in finding a configuration for the hand(s)
or end effector(s) that will allow to pick up an object. In a
first stage, we build a grasp list to capture the variety of the
possible grasps. It is important that this list doesn’t introduce
a bias on how the object can be grasped. Then, the planner can
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Fig. 7 Ease grasp (a) and difficult grasp (b) depending on obstacles in
the workspace

rapidly choose a grasp according with the particular context
of the task.

2.3.2 Path Planner

The human-aware path planning framework [30] is based on a
sampling-based costmap approach. The framework accounts
for the human explicitly by enhancing the robot configura-
tion space with a function that maps each configuration to a
cost criterion designed to account for HRI constraints. The
planner then looks for low cost paths in the resulting high-
dimensional cost space by constructing a tree structure that
follows the valleys of the cost landscape. Hence, it is able to
find collision free paths in cluttered workspaces (Fig. 10) and
account simultaneously for the human presence explicitly.

In order to define the cost function, the robot is assigned
a number of points of interest (e.g. the elbow or the end
effector). The interest-points positions in the workspace are
computed using forward kinematics F K (q, gi ), where q is
the robot configuration and gi the i-th interest-point. The cost
of a configuration is then computed by looking up the cost
of the N points of interest in the three costmaps presented in
Sect. 2.1, and summing them as follows:

cost (h, q) =
N∑

i=1

3∑

j=1

w j c j (h, F K (q, gi )) (19)

where h is the human posture model, q is the robot config-
uration and wi are the weights assigned to the three elemen-
tary costmaps c j of Sect. 2.1. The tuning of those weights can
be achieved by inverse optimal control [1], it is out of scope
of this paper. When the human is inside the interaction area
evaluated by the robot centric distance costmap, planning
is performed on the resulting configuration space costmap
with T-RRT [26,30], which takes advantage of the perfor-
mance of two methods. First, it benefits from the exploratory
strength of RRT-like planners resulting from their expansion
bias toward large Voronoi regions of the configuration space.
Additionally, it integrates features of stochastic optimiza-
tion methods, which apply transition tests to accept or reject

potential states. It makes the search follow valleys and sad-
dle points of the cost landscape in order to compute low-cost
solution paths. This human-aware planner outputs solutions
that optimize clearance and visibility regarding the human
as well handover motions from which it is easy to take the
object at all times.

In a smoothing stage, we employ a combination of the
shortcut method [5] and of the path perturbation variant
described in [30]. In the latter method, a path P(s) (with
s ∈ R

+) is iteratively deformed by moving a configuration
qperturb randomly selected on the path in a direction deter-
mined by a random sample qrand . This process creates a
deviation from the current path, hoping to find a better path
regarding the cost criteria. The path P(s) computed with the
human-aware path planner consists of a set of via points that
correspond to robot configurations. Via points are connected
by local-paths (straight line segments).

2.3.3 Trajectory Generation

Given the optimized path described by a set of robot config-
urations {qinit , q1, q2, . . . , qtarget }, the Soft Motion Trajec-
tory Planner [10,11] is used to bound the velocity, the accel-
eration and the jerk evolutions in order to protect humans.
Just as in [42], the trajectory is obtained by smoothing the
path at the via points, it is composed for each axis of a series
of segments of cubic polynomial curves. The duration of each
segment is synchronized for all joints. The trajectory T R(t)
obtained is checked for collision and, in case of collision at a
smoothed via point, the initial path can be used. In this case
the trajectory must stop at the via point.

2.3.4 Reactive Adaptation of the Velocity

To improve the reactivity, the evolution along the trajec-
tory T R(t) is adapted to the environment context using a
time scaling function τ(t); the trajectory realized is then
T R(τ (t)). In the absence of human around the robot, it can
simply be chosen as τ(t) = t . The function τ(t) depends on
the function α(t) presented in the Sect. 2.2.2.

To maintain dynamic properties of τ(t), we use the
smoothing method introduced in [10]. The function of time
αs(t) represents the smoothed value of α(t). The function
αs(t) is updated at each sampling time (period �t) of the tra-
jectory controller and directly used to adapt the timing law
τ(t) along the trajectory as follows:

τ(0) = 0
τ(t) = τ(t − �t) + αs(t)�t

(20)

Note that in the case of absence of human, we have αs(t) =
1 and τ(t) = t . The αs(t) function is analog to the velocity
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Fig. 8 The Jido platform from LAAS–CNRS

Fig. 9 The main GenoM modules of the software architecture of the
Jido Robot

of the time evolution τ(t). This method adapts the timing law
for all joints of the robot that are slowed down synchronously.

In our framework, this mechanism in exploited by the
attentional executive system which is able to modulate the
speed along the executed trajectory by controlling the para-
meter α(t) taken as input by the controller.

3 Experiments

In this section, we present a case study along with some
preliminary experimental results collected to illustrate the
behavior and the performance of the overall HRI system dur-
ing a typical interaction context (a complete evaluation of the
system is left as a future work).

3.1 Setup

To illustrate our approach, we present the results carried out
on the LAAS–CNRS robotic platform Jido. Jido is built up
with a Neobotix mobile platform MP-L655 (however, mobile
robotics tasks are not considered in this paper), and a Kuka
LWR-IV arm (see Fig. 8). It is equipped with one pair of
stereo cameras and a Kinect is used to track the human body.

The Fig. 9 depicts the main elements of the software archi-
tecture of the robot. This architecture is based on GenoM
modules [22]. An important module, Spark, is responsible
for perception and interpretation of the environment combin-
ing sensory data and modules results. In particular, it main-

tains the 3D model of the environment tracking positions and
velocities of humans and salient objects. A representation of
the 3D model is displayed on the large screen in the back
of the scene as illustrated in Fig. 8. Mhp is the motion plan-
ner and lwr is the trajectory controller module. Niut is in
charge of tracking the human kinematics using the Kinect.
Using markers, Viman identifies and localizes objects while
Platine controls the orientation of the stereo camera pair.
Attentional module includes both the Attentional BBA and
the Executive.

3.1.1 Parameters Settings

The attentional system parameters have been set as follows.
The far workspace is in the interval (3m, 5m] meters from
the robot base, the interaction space is in (1m, 3m], while the
proximity space is in [0.1m, 1m]. For each behavior clock,
the period spans the interval [1, 10], while psr is constant
and set at 10. The maximum speed of the human pelvis vmax

is equal to 3m/s, while max_speed of the robot end effector
is 2m/s. In TRACK and AVOID, the variable to be tuned are
only βtr , βav , and γav , while γtr and δav are about 1/vmax ,
hence 0.3 (to scale the velocity with respect to its maximum
value), instead γtr and λav are used to normalize the val-
ues within the allowed interval. βtr emphasizes the effect
of the human position on the tracking attention, while βav

and γav also regulates the balance between the influence of
the σav[1] and σav[2]. As for GIVE and RECEIVE, βgv and
βrc regulates the importance of velocity and position in the
period update. In PICK and PLACE, we set dmax pk = 0.7m
and dmax pl = 0.7m because the robot arm extension is
about 0.793m (kuka lightweight) which is used as a reference
to define a maximal distance for targets to be reached. The
costmap-related thresholds Kvisibili t y and Kreachabili t y have
been set to 0.5, since the costmap values are normalized in
[0, 1] and this setting was natural and satisfactory. Concern-
ing the Executive System, the KNew,Old was set to 3 (30% of
the maximum allowed period) after manual tuning searching
for the best regulation trading off between task commitment
(for high values of KNew,Old the switch is never enabled)
and task switching (for low values of KNew,Old the switch is
enabled too often). All the parameters values associated with
the attentional system have been collected in Table 1.

3.2 Results

Given the setting described above, we tested: the human
aware planning system performance in a simplified scenario
(a simple pick and give scenario); the attentional system
effectiveness in monitoring and controlling activities dur-
ing tasks of object handover (activation reduction vs. safety
and performance); finally, we assessed the overall attentional
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Fig. 10 The human aware
manipulation planner is able to
handle free (left) and cluttered
(right) environments

Table 2 Planning and execution
performance Duration Pick Give Total

Planning Execution Planning Execution

Mean 1.29 s 6.61 s 2.75 s 10.20 s 20.85 s

Min 0.72 s 5.00 s 0.99 s 5.58 s 12.29 s

Max 5.45 s 24.52 s 12.18 s 22.34 s 64.49 s

STD 0.81 s 3.51 s 2.01 s 3.75 s 5.5 s

system and the way it affects the overall human–robot inter-
action (quantitative and qualitative analysis).

3.2.1 Human Aware Planning System

In the first experimental test, our aim is to assess the per-
formance of the human-aware planning and control system
during pick and give tasks (Fig. 10). With respect to previ-
ous implementation of the human-aware planning and control
system, the version used here introduces an enhanced T-RRT
method to deal with cluttered environments (see Sect. 2.3.2)
and a better connection with the controller, which is based
on the timing law to regulate the speed (see Sect. 2.3.4).

We assume that the CAD models of the environment are
known, while the pose of the objects and obstacles in the
environment are updated in real time using the stereo cameras
and markers. The position and posture of the humans are
updated using the Kinect sensor.

We consider a scenario, where the robot is involved in a
pick-and-give task. This task is activated when the following
two conditions are verified: there is an object in a reachable
position and a human within the robot workspace, who is not
holding any objects.

Indeed, as soon as the stereo camera pair detects an object
on the table the PICK behavior becomes dominant. Then,
once the Kinect detects a human, the GIVE behavior is acti-
vated. Both the PICK and GIVE behaviors are associated
with planned trajectories generated by the motion planner.

In this experiment, to assess the planner performance we
measured: the time to plan the trajectory and the time to
execute it for both the pick and the give phases. To verify

the human aware planner capabilities we varied the human
and obstacle positions (see Fig. 10a). Table 2 presents the
results; these data are the synthesis of 53 trials. Notice that
the attentional regulation of speed is here switched off. The
visibility and distance property are equally tuned.

The collected data shows that the planning time increases
when the environment becomes more cluttered and the tra-
jectory more complex. However, the times obtained with the
T-RRT method are compatible with a reactive and natural
human–robot interaction when the environment is reason-
ably uncluttered. For cluttered environment, like the one of
the Fig. 10b, the path computed by the planner can become
long and complex.

3.2.2 Attentional HRI

In a second experiment, we tested the attentional system
by measuring its performance in attentional allocation and
action execution. For this purpose, we defined a second, more
complex, scenario in which the robot should monitor and
orchestrate the following tasks: pick an object from a table,
give one object to a human, receive an object from a human
or place an object in a basket. In this case, the velocity of the
arm is adapted with respect to the positions and the activi-
ties of humans in the scene. The robot behavior should be
the following. In the absence of a human, the robot should
monitor the scene to detect humans and objects. When an
object appears on the table, the robot should pick it. In the
absence of humans the picked object should be placed in the
basket. If a human comes to hand over an object, the robot
should receive it (if the robot holds another object, it should
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Fig. 11 A complete sequence of pick and give. 1: The robot perceives
the human and an object. 2: The robot moves the arm towards the object.
3: Just after grasping the object, the robot starts moving towards the

human. 4: The arm avoids an obstacles. 5: The robot moves the arm
towards the human. 6: The human grasps the object handing over by
the robot

place it before receiving the new one). If a human is ready
to receive an object, the robot should give the object it holds
or try to pick an object in order to give it to the human. All
these behaviors should be orchestrated, monitored, and reg-
ulated by the attentional system. Figure 11 shows a sequence
of snapshots representing a pick and give sequence; after
picking a tape box on a table, the robot gives it to the human.

Five subjects participated to this experiment: three grad-
uate and two PhD students, two females and three males
with an average age of 28. The subjects were not specifically
informed about the robot behavior. They were only told that
the robot was endowed with certain skills/behaviors such as
give or take an object, and that their attitude in the space could
somehow have an influence its behavior, but they actually did
not know what to expect during the interaction.

In this scenario, we assessed the performance of the atten-
tional system in terms of behavior activations and velocity
modulation: the attentional system should focus the behav-
iors activations on relevant situations only, while the veloc-
ity should be reduced only when necessary (e.g., in case of
danger, when accuracy is needed or to provide a more nat-
ural behavior). To assess the attentional system efficiency in
attention allocation, we considered the percentage of behav-
ior activations (with respect to the total number of cycles)
and the mean value of the velocity modulation function (rep-
resented by α(t) see Sect. 2.3.4) for each interaction phase
associated with the execution of a task (i.e., give, receive,
pick, place). In particular, for each phase we illustrate the
activations of two behaviors: the dominant behavior (i.e.,
the one characterizing the executed task, e.g., PICK dur-
ing the pick task) and the AVOID behavior. The idea is
that the attentional system is effective if it can reduce these

activations without affecting the success rate and the safety
associated with each phase. Analogously, the mean value
of the velocity modulation function α(t) should be max-
imized preserving success rate, safety, and quality of the
interaction. In our setting, activations, velocity, and suc-
cess rate are measured with quantitative data (log analysis
and video evaluation). As for safety and quality of inter-
action, we collected the subjective evaluation of the testers
using a questionnaire, which was compiled after each test
session.

The quantitative evaluation results are illustrated in
Tables 3 and 4, while the qualitative results can be found
in Table 6. The collected data are here the means and stan-
dard deviations (STDs) of the 20 trials (4 for each partici-
pants) for each phase. Table 3 presents the results obtained by
evaluating the logs associated with the trials: we segmented
and tagged (comparing them to the corresponding data in
the video) each interaction phase (pick, place, give, receive)
measuring the associated performance. In this case we mea-
sured behavior activations of the dominant behavior (Table 2,
first row), the activations of avoid (Table 2, second row) and
velocity attenuation cost (t) = 1 − α(t). Instead, in Table 4
we show the duration of the interaction and the system reli-
ability. These data are obtained by evaluating the videos of
the recorded tests. In this table, Time is for the time needed
to achieve the overall task from behavior selection till the
success or the failure; Failures is for the percentage of fail-
ures with respect to the number of attempts. Here, a failure
represents any situation in which the task was not accom-
plished (e.g., robot not able to grasp the object, to give, or
to receive the object, wrong selection of place, falling object
during execution).
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Table 3 Activations and velocity attenuation during different interaction phases (pick, give, place, receive)

Pick Give Place Receive

Dom. 0.28 ± 0.15 0.18 ± 0.04 0.27 ± 0.09 0.11 ± 0.05

Avoid 0.26 ± 0.12 0.61 ± 0.25 0.31 ± 0.15 0.72 ± 0.25

cost 0.49 ± 0.20 0.62 ± 0.24 0.45 ± 0.17 0.59 ± 0.20

The activation rates of the dominant behavior (Dom.) and of the obstacle avoidance behavior (Avoid) are defined with respect to the total number
of cycles. The velocity attenuation (cost (t) = 1 − α(t)) represents the percentage of velocity subtracted by the attentional system

Table 4 Duration of the
interaction and reliability
analysis from video and log
evaluation

Pick Give Place Receive

Time 12.3 ± 6.3s 14.0 ± 1.4s 12.3 ± 3.4s 15.8 ± 6.1s

Failures 10 % 10 % 9 % 20 %

By considering the quantitative results in Tables 3 and 4,
we can observe that for each phase, the percentage of the
activations of both the dominant behavior and the AVOID
behavior remains pretty low with respect to the total number
of cycles (Table 3), hence the attentional system, as expected,
is effective in reducing the number of activations. However,
this reduction does not affect the effectiveness of the sys-
tem performance. Indeed (see Failures in Table 4), the sys-
tem failures remain low for each phases, therefore the atten-
tional system seems effective in focusing the behaviors acti-
vations on task/contextual relevant activities for each inter-
action phase. Indeed, depending on the attentional state of
the system some behavior should be more active than oth-
ers. We recall here that this mechanism not only allows us
to save and focus control and computational resources, but
also, and more crucially, to orchestrate the execution of con-
current behaviors by distributing resources among them. In
our scenario, behaviors involving human interaction have to
be frequently activated, but only when this is required. As
we expected, during the give and receive phases the num-
ber of activations of AVOID are greater than the ones for
PICK and PLACE. Indeed, during pick and place, the atten-
tional system should only monitor the presence of humans
in the interaction area, focusing the activations only in the
presence of potentially dangerous situation. As for velocity
attenuation (Table 3), the values for cost (t) seem slightly
higher during give/receive phases than during pick/place,
this is because the interaction with the human needs more
caution. In particular, the human hand proximity and move-
ments during the object exchange determine a modulation
of the velocity profile. However (as already observed by
[20]), if the robot motion is readable for the human, the
handover tasks is usually facilitated by the human collab-
orative behavior, hence the mean value of the velocity atten-
uation is not that intense. This can also be observed in the
time to achieve the goal (Table 4), where the mean dura-
tions for the give and receive phases are slightly higher, but

Table 5 HRI questionnaire [1:very bad, 2:bad; 3:inadequate, 4:not
enough, 5:almost enough, 6:sufficiet, 7:decent, 8:good, 9:very good,
10:excellent]

Section Question

Personal information Age?

Gender?

How familiarized are you with robotic
applications?

General feelings Safety: Did you feel safe during interaction?

Naturalness: How did you feel about the
naturalness of the interaction?

Human legibility: Did you understand the
robot behavior?

Robot legibility: Did the robot react
accordingly with your behavior?

the slow-down effect of the interaction is not emphasized
in a noticeable difference in performance. Here, the human
cooperative behavior during the handover seems facilitated
by a natural interaction. This is considered by the qualitative
evaluation.

The quality of the interaction was assessed by asking the
subjects to fill a specific HRI questionnaire after each of the
20 tests. The aim of this questionnaire, inspired by the HRI
questionnaire adopted in [19], is to evaluate the naturalness
of the interaction from the operator’s point of view.

The questionnaire is structured as follows (see Table 5):

– a personal information section containing the personal
data and the technological competences of the partici-
pants. Here, we categorize subjects by their bio-attributes
(age, sex), the frequency of computer use and their expe-
rience with robotics;

– a general feelings section containing questions to assess
the perceived intuitiveness of our approach. In order to
measure the level of confidence of the human with respect
to the interaction, we asked about its safety, naturalness,
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Table 6 Qualitative analysis
from questionnaire evaluation.
For each data we report the
associated 0.95 confidence
interval

Pick Give Place Receive

Safety 10 ± 0.00 9.8 ± 0.19 8.2 ± 0.19 7.2 ± 0.35

Naturalness 9.0 ± 0.30 8.6 ± 0.48 8.0 ± 0.30 7.1 ± 1.19

H Legibility 9.8 ± 0.19 9.0 ± 0.30 8.1 ± 0.28 8.0 ± 0.42

R Legibility 9.4 ± 0.23 9.6 ± 0.23 9.3 ± 0.19 6.0 ± 0.52

and about the understanding level with respect to both
the human and the robot point of view.

Each entry could be evaluated with a mark from 1 (very
bad) to 10 (excellent).

Table 6 presents the results obtained for each interaction
phase (pick, place, give, receive); here, safety, naturalness,
human and robot legibility are means of the marks given by
the evaluators. In the table we also report the 0.95 confidence
intervals.

By considering results in Tables 4 and 6, we observe that
the task is perceived as reliable for each phase, while, as
expected, the perceived safety is higher during the pick and
give phases (usually the human remains far from the robot
during the pick hence this phase is perceived as very safe,
while the operation of give is legible for the users), but it
is lower during the receive and place phases. In particular,
the receive phase is assessed as slightly less natural and this
also affects the evaluation of safety (an unnatural behav-
ior is not readable for the human, hence it can be assessed
as dangerous). As for the human legibility, for each phase
the robot reacts to the human behavior according to the
human expectations. On the other hand, from the robot leg-
ibility perspective, the robot motion sometimes seems not
natural and can be misinterpreted, in particular this hap-
pens during receive and place (this affects the perception of
safety).

Table 7 illustrates a correlation of qualitative and quan-
titative results. In particular, we adopted the Pearson corre-
lation index metric for data of Tables 4 and 6. In the table,
we also provide the significance of the correlation coeffi-
cients (assuming the collected 20 samples for each phase). As
expected, we can find an evident inverse correlation between
the qualitative and quantitative values, that is, the Time and
Failures performances are inversely connected with Safety,
Legibility and Naturalness. In particular, we observe for both
GIVE and RECEIVE behaviors a strong correlation for time
of execution and safety perceived by participants, and for per-
centage of failures and human legibility. These correlations
are also supported by a satisfactory significance value. The
first strong correlation can be explained by the fact that a short
execution time is usually associated with reduced activations
of theAVOIDbehavior, which is aroused in case of dangerous
human positioning or movements. Therefore, when the exe-

Table 7 Correlation (r) and significance correlation coefficient (p) of
qualitative (safety, naturalness, human legibility and robot legibility)
and quantitative (time and failures) values for GIVE and RECEIVE
phases

Safety Natural. H Legib. R Legib.

GIVE

Time

r −0.78 −0.63 −0.32 −0.25

p <0.0001 0.0014 0.0845 0.1438

Failures

r −0.56 −0.66 −0.71 −0.46

p 0.0051 0.0007 0.0002 0.0206

RECEIVE

Time

r −0.73 −0.56 −0.78 −0.66

p 0.0001 0.0051 <0.0001 0.0007

Failures

r −0.60 −0.36 −0.75 −0.41

p 0.0025 0.0594 <0.0001 0.0362

cution is short, it is likely that few dangerous situations have
been encountered and the human tester felt safer. The sec-
ond inverse correlation shows that several failures during the
interaction (e.g., end-effector wrong positioning or objects
falling) are related to a reduced legibility of the robot behav-
ior for the users. For the RECEIVE behavior we have also a
strong and significant inverse correlation between Time and
Human/Robot Legibility values. Indeed, if the robot is slow
in reacting to the human intention of giving an object, the
human can experience a difficulty in the interpretation of the
robot behavior. This is not observed during the dominance
of the GIVE behavior because the robot intention of giving
something is usually more legible for the interacting human.
The other entries of the table provide weaker correlations and
less significant values.

Summing up the results in Tables 3, 4 and 6, the atten-
tional system seems effective in attentional allocation, action
selection, and velocity modulation (Table 3) while keeping
an effective interaction (Table 4) between the human and the
robotic system. Moreover, in our case study, the users usu-
ally perceived the interaction as safe, reliable, and natural
(Table 6).

123



548 Int J of Soc Robotics (2014) 6:533–553

4 Conclusions

Interactive manipulation is an important and challenging
topic in social robotics. This capability requires the robot to
continuously monitor and adapt its interactive behavior with
respect to the humans’ movements and intentions. Moreover,
from the human perspective, the robot behavior should also
be perceived as natural and legible to allow an effective and
safe cooperation with the robot. In this work, we proposed to
deploy executive attentional mechanisms to supervise, regu-
late, and orchestrate the human–robot interactive and social
behavior. Our working hypothesis is that these mechanisms
can improve not only the interaction safety and effective-
ness, but also the behavior readability and naturalness. While
visual and joint attentional mechanisms have been already
proposed in social robotics as a way to improve the legibility
of the robotic behavior and social interaction, here we pro-
posed attentional mechanisms at the core of the executive
control for both task selection and continuous sensorimotor
regulation.

In this direction, we presented an attentional control archi-
tecture suitable for effective and safe collaborative manipu-
lation during the exchange of objects between a human and
a social robot. The proposed system integrates a supervisory
attentional system with a human aware planner and an arm
controller. We deployed frequency-based attentional mech-
anisms, which are used to regulate attentional allocations
and behavior activations with respect to the human activities
in the workspace. In this framework, the human behavior
is evaluated through costmap based representations. These
are shared by the attentional system, the human aware plan-
ner, and the trajectory controller to assess HRI requirements
like human safety, reachability, interaction comfort, and field
of view. In this context, the attentional system exploits the
cost assessment to regulate activity monitoring, task selec-
tion, and velocity modulation. In particular, the executive
system decides attentional switches among tasks, humans,
and objects providing a continuous modulation of the robot
speed. This dynamic process of attentional task switching
and speed modulation should support a flexible, natural, and
legible interaction.

We presented a case study used to describe the system at
work and to discuss its performance. The collected results
illustrate how the attentional control system behaves during
typical interactive manipulation scenarios. In particular, our
results suggest that, despite the reduction of the behaviors
activations, the system is able to keep a safe and effective
interaction with the humans. Indeed, the attentional allo-
cation mechanisms seems to suitably focus and orchestrate
the robot behaviors according to the human movements and
dispositions in the environment. Moreover, from the human
perspective, the attentional interaction is perceived as nat-
ural and readable. Namely, the attentional system provides

the capability of dynamically trading-off among naturalness,
legibility, safety, and effectiveness of the interaction between
the human and the robot.

In this work, we mainly focused on the role of the execu-
tive attention and attention allocation in simple HRI scenar-
ios, on the other hand we have deliberately neglected other
attentional mechanism, which are commonly deployed in
social robotics. For instance, a visual attentional system is
usually considered as a crucial component that supports a
social and natural interaction between the human and the
robot [7,8]. These models are complementary with respect
to the ones presented in our framework (temporal distrib-
ution of attention versus orienting attention in space) and
can be easily integrated. For example, in our case study, the
SEARCH behavior can be extended by introducing saliency-
based methods [25] to monitor and scan the scene. Visual per-
ception is also associated with other important mechanisms
for human–robot social interaction and nonverbal commu-
nication [29] such as joint attention [28,32,39], anticipatory
mechanisms [23], perspective taking [47], etc.. Our behavior-
based approach allows us to incrementally introduce analo-
gous models within more sophisticated interaction behaviors
to be orchestrated by our attentional framework. For example,
we are currently investigating how to integrate more sophisti-
cated human-intention recognition system in our attentional
framework [37]. Of course, when the social behavior and
the interaction scenario becomes more sophisticated, task-
based attentional mechanisms and top-down attentional reg-
ulations comes into play [13]. For example, in the presence
of complex and structured cooperative tasks [2], the execu-
tive switching mechanism should take into account both the
behavioral attentional activations (bottom-up) and the inter-
action schemata required by the task (top-down). The inves-
tigation of these issues is left as a future research activity.
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5 Appendix

The overall control architecture has been implemented within
the LAAS architecture exploiting the GenoM (Generator of
Modules) [22] development framework. In the following,
we first introduce the main concepts of the GenoM frame-
work, then we illustrate the implemented control architec-
ture, finally we provide some details about the implementa-
tion of the attentional module.
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Fig. 12 GenoM module
structure and state machine

5.1 GenoM

The GenoM framework allows to design real-time software
architectures. It permits to encapsulate the robot function-
alities into independent modules, which are responsible for
their execution. Each GenoM module can concurrently exe-
cute several services, send information to other modules or
share data with other modules using data structures called
posters. The functionalities are dynamically started, inter-
rupted or parameterized upon asynchronous requests sent
to the modules. There are execution and control requests:
the first starts an actual service, whereas the latter controls
the execution of the services (see Fig. 12). Each request is
associated with a final reply that reports how the service has
been executed. For each module, the algorithms must be split
into several parts: initialization, body, termination, interrup-
tion, etc. Each of these elementary pieces of code is called
a codel. In the current version of GenoM, these codels are
C/C++ functions. A running service is called an activity. The
different states of an activity are shown in Fig. 12(right). On
any transition, one can go into the INTER state. In case of a
problem, one can go into the FAIL state, or even directly into
the ZOMBIE state (frozen). Activities can control a physical
device (e.g., sensors and actuators), read data produced by
other modules (from posters) or produce data. The data can
be transferred at the end of the execution through the final
reply, or at any time by means of posters.

5.2 System Architecture

A description of the GenoM modules involved in the atten-
tional control cycle is provided in Fig. 13. Here, we can
distinguish the SPARK module, which is responsible for
perceptual analysis and costmap generation, the MHP mod-
ule, which is responsible for the robot motion planning and
execution (path/grasp/motion planning and smoothing), and
the ATTENTIONAL module, which is responsible for atten-
tional regulation and task switching.

Fig. 13 Architecture of the system

5.3 Attentional System

The attentional system is implemented as a GenoM mod-
ule that has an executive cycle of 10 milliseconds. An
abstract illustration of the codel associated with the atten-
tional system is provided by the Algorithm 1. Here, the
attentionalControl Main() is activated at each cycle (i.e.,
every 10 milliseconds) and returns an ACTIVITY_EVENT
(i.e., the EXEC state). During the cycle, all the behav-
iors are checked and updated. For each behavior, the atten-
tional module checks if the perceptual schema is active
or not. If it is not active, the behavior clock is increased
by one tick (updateClock()). Otherwise, if the perceptual
schema is active, its acts as follows: it reads the associated
input data from the poster generated by the SPARK module
(read Data()); it defines the next clock period according to
the behavior monitoring function (updateClock Period());
it assesses the releasing function (check Releaser()) to deter-
mine whether the motor schema is active or not; finally,
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the previous sensing data is stored (storeLast Sensing())
and the clock is reset (resetClock()). Once each behav-
ior has been updated, the executive system is to select
the current activity to be executed and the associated cost
(select Activi t y()).

Algorithm 1 attentionalControlMain()

for (all Behaviors) do
if (percept Active) then

readData();
updateClockPeriod();
checkReleaser();
if (releaser On) then

updateCost();
end if
storeLastSensing();
resetClock();

else
updateClock();

end if
end for
taskAndCost = selectActivity();
reportCycleStatus(taskAndCost);
return EXEC;

The executive system is implemented by the select
Activi t y() function (see Algorithm 2). It gets the current
executive state (IDLE, PICK, GIVE, RECEIVE, PLACE),
the attentional state (active behaviors and the associated peri-
ods), and the associated cost vector (velocity modulation sug-
gested by each behavior). If there exists at least one active
behavior, the function checks for priorities (depending on
the executive state) and decides whether to keep the cur-
rent activity or to switch to another one. Once one activ-
ity has been selected, a target human, location or object
is set (selectT arget ()). Finally, the velocity modulation is
decided (setCost ()) by minimizing the one associated with
the selected behavior and the one proposed by AVOID (i.e.,
min(αav(t), αtask(t))).

Algorithm 2 selectActivity()

getTheExecTask();
getTheAttentionalState();
getTheCostVector();

if (activeBehaviors) then
priorityEvaluation();
taskSwitcher();
selectTarget();
setCost();

end if
return taskAndCost;

Following the standard specifications of a GenoM mod-
ule, the attentional module is activated by the start func-
tion attentionalControlStart () (used to initialize the mod-

ule, it returns EXEC) and it is closed by the end function
attentionalControl End() (used to close the module, it
returns ETHER).

5.4 Interaction Example

In Fig. 14 we illustrate a sequence diagram that represents a
typical pick and give interaction. The diagram shows how
the main components of the global framework in Fig. 1
(which is an abstract version of Fig. 13) interacts in the fol-
lowing scenario: the robot picks an object from the table
and tries to place it in another position or to give it to a
human. For the sake of clarity, we distinguish between an
ATTENTIONAL and an EXECUTIVE timeline even though
they belong to the same module. On the ATTENTIONAL
timeline we show the names of the behaviors whose motor
schemas are active (recall that the perceptual schemas of the
behaviors are always periodically active). Moreover, to sim-
plify the presentation, only relevant messages are shown.
In the absence of a human or when the robot is idling, the
robot monitors the scene (search for human). The percep-
tual schema of the SEARCH behavior receives data from
the SPARK module (e.g., no human). Notice that in Fig. 14,
the messages labeled with (∗) are periodically transmitted.
If an object appears on the table (object position), in the
absence of other stimuli, the robot tries to pick it up (pick
object). The EXECUTIVE, as soon as the frequency of (pick
object) increases, calls the PLANNER for the trajectory gen-
eration. Once the planner sends the trajectory to the arm
controller, the attentional system should modulate the arm
velocity (speed modulation) during the execution taking into
account the information provided by all the active behav-
iors. The execution of the trajectory terminates with the
object picked (holding object). When the robot is holding
the object, in the absence of humans, the robot tries to place
it on a suitable location (location position). The activation
of PLACE behavior (place object) affects the EXECUTIVE
system, which switches to the PLACE mode and invokes
the generation of an associated new trajectory (place trajec-
tory). During this trajectory execution the attentional sys-
tem can affect the speed modulation. If a human enters in
the INTERATION_SPACE (human detected), TRACK will
monitor his/her position (human position) and GIVE will be
activated (give object). In this particular configuration, both
PLACE and GIVE behavior are active. The task switcher
should choose the one or the other taking into account the fre-
quencies of the two behaviors while monitoring the external
processes. If a human is ready to receive an object and the fre-
quency of GIVE becomes dominant, the EXECUTIVE calls
a task switch. It stops the execution of PLACE and asks the
planner to launch the behavior GIVE (switch to give). Once
again, during the execution, the attentional system affects the
behaviors activations and consequently the arm speed modu-
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Fig. 14 Sequence diagram of a
typical pick and place/give
human–robot interactive
activity. Messages labeled with
(∗) are periodically sent

Fig. 15 Snapshot of the interface of the simulated environment, during
a typical pick and place/give human–robot interactive activity

lation. In the presence of a human, also the AVOID behavior
can give its contribution with speed modulation halting the
execution in case of danger.

5.5 Interface

In Fig. 15 we show the interface used to visualize the system
behavior. This snapshot shows the case of the parallel activa-
tion of PLACE, GIVE and also AVOID behavior presented
above. In the right box we can notice, that the active behav-
iors are these latter three, and that the selected one, under
the condition that the robot is holding an object, is the GIVE
behavior, because there is a man in the scene who is asking
for an object.

References

1. Abbeel P, Ng AY (2004) Apprenticeship learning via inverse rein-
forcement learning. In: Proceedings of the twenty-first international
conference on Machine learning, p 1. ACM

2. Alili S, Alami R, Montreuil V (2009) A task planner for an
autonomous social robot. In: Distributed autonomous robotic sys-
tems. Springer, Berlin, pp 335–344

3. Arbib MA (1998) Schema theory. In: The handbook of brain theory
and neural networks. MIT Press, Cambridge, pp 830–834

4. Arkin R (1998) Behavior based robotics. MIT Press, Cambridge
5. Berchtold S, Glavina B (1994) A scalable optimizer for automat-

ically generated manipulator motions. In: IEEE/RSJ Int. Conf. on
Intel. Rob. And Sys. IEEE, Munich, Germany

6. Bounab B, Labed A, Sidobre D (2010) Stochastic optimization-
based approach for multifingered grasps synthesis. Robotica
28(07):1021–1032

7. Breazeal C (2002) Designing sociable robots. MIT Press, Cam-
bridge

8. Breazeal C, Kidd CD, Thomaz AL, Hoffman G, Berlin M (2005)
Effects of nonverbal communication on efficiency and robustness
in human-robot teamwork. In: in IROS-2005. ACM/IEEE, Edmon-
ton, pp 383–388

9. Brooks RA (1991) A robust layered control system for a mobile
robot. In: Iyengar SS, Elfes A (eds) Autonomous mobile robots:
control, planning, and architecture (vol 2). IEEE Computer Society
Press, Los Alamitos, pp 152–161

10. Broquère X, Sidobre D (2010) From motion planning to trajectory
control with bounded jerk for service manipulator robots. In: IEEE
Int. Conf. Robot. And Autom. IEEE, Anchorage

11. Broquère X, Sidobre D, Herrera-Aguilar I (2008) Soft motion tra-
jectory planner for service manipulator robot. In: IEEE/RSJ Int.
Conf. on Intel. Rob. And Sys. IEEE, Nice, France

12. Burattini E, Finzi A, Rossi S, Staffa M (2010) Attentive monitor-
ing strategies in a behavior-based robotic system: an evolutionary
approach. In: Proceedings of the 2010 international conference on

123



552 Int J of Soc Robotics (2014) 6:533–553

emerging security technologies, EST ’10. IEEE Computer Society,
Washington, pp 153–158

13. Burattini E, Finzi A, Rossi S, Staffa M (2011) Cognitive control
in cognitive robotics: attentional executive control. In: Proc. of
ICAR-2011. IEEE, Tallin, Estonia, pp 359–364

14. Burattini E, Finzi A, Rossi S, Staffa M (2012) Attentional human-
robot interaction in simple manipulation tasks. In: Proc. of HRI-
2012, Late-Breaking Reports. ACM/IEEE, Boston

15. Burattini E, Rossi S (2008) Periodic adaptive activation of behav-
iors in robotic system. IJPRAI 22(5):987–999 Special Issue on
Brain, Vision and Artificial Intelligence

16. Clodic A, Cao H, Alili S, Montreuil V, Alami R, Chatila R (2009)
Shary: a supervision system adapted to human-robot interaction.
In: Khatib O, Kumar V, Pappas G (eds) Experimental robotics,
springer tracts in advanced robotics, vol 54. Springer, Berlin, pp.
229–238. doi:10.1007/978-3-642-00196-3_27

17. Cooper R, Shallice T (2000) Contention scheduling and the control
of routine activities. Cogn Neuropsychol 17:297–338

18. Di Nocera D, Finzi A, Rossi S, Staffa M (2012) Attentional action
selection using reinforcement learning. In: Ziemke T, Balkenius
C, Hallam J (eds) From animals to animats 12–12th interna-
tional conference on simulation of adaptive behavior, SAB 2012,
Lecture Notes in Computer Science, vol 7426. Springer, Berlin,
pp 371–380

19. Duguleana M, Barbuceanu FG, Mogan G (2011) Evaluating
human-robot interaction during a manipulation experiment con-
ducted in immersive virtual reality. In: Proc. of international con-
ference on virtual and mixed reality: new trends, vol I. Springer,
Berlin, pp 164–173

20. Edsinger A, Kemp CC (2007) Human-robot interaction for cooper-
ative manipulation: Handing objects to one another. In: RO-MAN
2007. IEEE, Jeju, Korea, pp 1167–1172

21. Fitts P (1954) The information capacity of the human motor sys-
tem in controlling the amplitude of movement. J Exp Psychol
47(6):381391

22. Fleury S, Herrb M, Chatila R (1997) Genom: a tool for the specifi-
cation and the implementation of operating modules in a distributed
robot architecture. In: IEEE/RSJ Int. conf. on intel. rob. snd sys.
IEEE, Grenoble, France

23. Hoffman G, Breazeal C (2007) Cost-based anticipatory action
selection for human–robot fluency. IEEE Trans Robot 23(5):
952–961

24. Iengo S, Origlia A, Staffa M, Finzi A (2012) Attentional and
emotional regulation in human-robot interaction. In: RO-MAN,
pp 1135–1140

25. Itti L, Koch C (2001) Computational modeling of visual attention.
Nat Rev Neurosci 2(3):194–203

26. Jaillet L, Cortés J, Siméon T (2010) Sampling-based path plan-
ning on configuration-space costmaps. IEEE Trans Robot 26(4):
635–646

27. Kahneman D (1973) Attention and effort. Prentice-Hall, Engle-
wood

28. Kaplan F, Hafner VV (2006) The challenges of joint attention.
Interact Stud 7(2):135–169. doi:10.1075/is.7.2.04kap

29. Lang S, Kleinehagenbrock M, Hohenner S, Fritsch J, Fink GA,
Sagerer G (2003) Providing the basis for human-robot-interaction:
A multi-modal attention system for a mobile robot. In: Proc. int.
conf. on multimodal interfaces. ACM, Vancouver, pp 28–35

30. Mainprice J, Sisbot E, Jaillet L, Cortés J, Siméon T, Alami R (2011)
Planning Human-aware motions using a sampling-based costmap
planner. In: IEEE int. conf. robot. and autom. IEEE, Shanghai.

31. Marler R, Rahmatalla S, Shanahan M, Abdel-Malek K (2005) A
new discomfort function for optimization-based posture prediction.
SAE Technical Paper, Warrendale

32. Nagai Y, Hosoda K, Morita A, Asada M (2003) A construc-
tive model for the development of joint attention. Connect Sci
15(4):211–229

33. Norman D, Shallice T (1986) Attention in action: willed and auto-
matic control of behaviour. Conscious Self-Regulation 4:1–18

34. Pashler H, Johnston J (1998) Attentional limitations in dual-task
performance. In: Pashler H (ed) Attention. Psychology Press, East
Essex, pp 155–189

35. Posner M, Snyder C (1975) Attention and cognitive control. In:
Information processing and cognition: the loyola symposium. Psy-
chology Pr, Hillsdale, Erlbaum

36. Posner M, Snyder C, Davidson B (1980) Attention and the detection
of signals. J Exp Psychol Gen 109:160–174

37. Rossi S, Leone E, Fiore M, Finzi A, Cutugno F, (2013) An exten-
sible architecture for robust multimodal human-robot communica-
tion. In: Proc. of IROS, (2013) IEEE. Tokyo, Japan

38. Saut JP, Sidobre D (2012) Efficient models for grasp planning with
a multi-fingered hand. Robot Auton Syst 60(3):347–357. doi:10.
1016/j.robot.2011.07.019 Autonomous Grasping

39. Scassellati B (1999) Imitation and mechanisms of joint attention:
a developmental structure for building social skills on a humanoid
robot. In: Computation for metaphors, analogy and agents, vol
1562. Springer, Berlin, pp 176–195

40. Senders J (1964), The human operator as a monitor and controller
of multidegree of freedom systems. IEEE Trans. on Human Factors
in, Electronics, HFE-5 pp 2–6

41. Siciliano B (2012) Advanced bimanual manipulation: results from
the DEXMART project, vol 80. Springer, Heidelberg. doi:10.1007/
978-3-642-29041-1

42. Sisbot E, Marin-Urias L, Broquère X, Sidobre D, Alami R (2010)
Synthesizing robot motions adapted to human presence. Int J Soc
Robot 2(3):329–343

43. Sisbot EA, Alami R (2012) A human-aware manipulation planner.
Robot IEEE Trans 28(5):1045–1057

44. Sisbot EA, Marin-Urias LF, Alami R, Siméon T (2007) Human
aware mobile robot motion planner. IEEE Trans Robot 23(5):
874–883

45. Sisbot EA, Ros R, Alami R (2011) Situation assessment for human-
robot interactive object manipulation. In: IEEE RO-MAN. IEEE,
IEEE, Atlanta

46. Tinbergen N (1951) The study of instinct. Oxford University Press,
London

47. Trafton JG, Cassimatis NL, Bugajska MD, Brock DP, Mintz FE,
Schultz AC (2005) Enabling effective human-robot interaction
using perspective-taking in robots. IEEE Trans Syst Man Cybern
35:460–470

Xavier Broquère received his M.Sc. degree in 2007 from Institut
Supérieur de Mécanique de Paris, France. He joined the Robotics and
InteractionS Group at LAAS–CNRS, Toulouse, France in 2007. He
received his Ph.D. degree in 2011 from the Paul Sabatier University
with his research on robot trajectory planning in the context of Human-
Robot Interaction. Since 2012, he is a software engineer in the Mobile
Communication Group at Intel Corporation, Toulouse, France.

Alberto Finzi is Assistant Professor at DIETI, University of Naple
“Federico II” (Italy). He received his Ph.D degree in Computer Engi-
neering from Sapienza University of Rome (Italy). His research interests
include: Cognitive Robotics, Human-Robot Interaction, Executive and
Cognitive Control, Autonomous and Adaptive systems, Planning and
Scheduling, Multi-agent Systems, V & V methods for autonomous sys-

123

http://dx.doi.org/10.1007/978-3-642-00196-3_27
http://dx.doi.org/10.1075/is.7.2.04kap
http://dx.doi.org/10.1016/j.robot.2011.07.019
http://dx.doi.org/10.1016/j.robot.2011.07.019
http://dx.doi.org/10.1007/978-3-642-29041-1
http://dx.doi.org/10.1007/978-3-642-29041-1


Int J of Soc Robotics (2014) 6:533–553 553

tems. He has been recently involved in several research projects spon-
sored by the EC (European Community), NASA (National Aeronau-
tics and Space Administration), ESA (European Space Agency), ASI
(Italian Space Agency), FWF (Austrian Science Fund), MIUR (Italian
Ministry for University and Research), and private industries.

Jim Mainprice is currently a post-doctoral researcher at the Worcester
Institute of Technology, MA. He received his M.Sc. degree from the
University of Montpellier II in 2008, and his Ph.D. in Robotics and
Computer science from the University of Toulouse in 2012. His research
interests are Motion Planning and Human-Robot Interaction.

Silvia Rossi is currently assistant professor at the University of Naples
Federico II (department of Electrical Engineering and Information
Technologies). She received the M.Sc. degree in Physics from Univer-
sity of Naples Federico II, Italy, in 2001, and the Ph.D. in Information
and Communication Technologies from University of Trento, Italy, in
2006. Her research interests include Artificial Intelligence, Multi-agent
System and Cognitive Robotics and Human-Robot Interaction.

Daniel Sidobre is currently Assistant Professor at University Toulouse
III - Paul Sabatier (UPS) since 1992. Graduated from the Ecole Normale

Superieure in Cachan in 1981, he received an M.Sc. in mechanics from
Pierre et Marie Curie University in 1983, a DEA degree in control from
UPS in 1986, a Ph.D. in robotics in 1990 from UPS and the Habilita-
tion a Diriger des Recherches degree from UPS in 2009. He spent one
sabbatical year at Mc Gill University, Canada. He teach mechanical and
production engineering. He is member of the LAAS–CNRS laboratory,
making research on robotic manipulation and human robot interaction.

Mariacarla Staffa is currently Research Fellow at the University of
Naples Federico II (Department of Electrical Engineering and Informa-
tion Technology). She received her B.Sc. and M.Sc. degrees in Com-
puter Science both with honours (cum laude) from the University of
Naples Federico II in 2004 and 2008 respectively, and her Ph.D. degree
entitled “Attentional Mechanism for Sensory-motor Coordination in
Behavior-based Robotic Systems” under the supervision of Professor
Bruno Siciliano in 2011. She is member of the PRISMA (Projects of
industrial and service robotics, mechatronics and automation) and of the
PRISCA (Projects of intelligent robotics and advanced cognitive sys-
tems) Laboratories, making research in the fields of Cognitive Robotics,
Artificial Intelligence and Human–Robot Interaction.

123


	An Attentional Approach to Human--Robot Interactive Manipulation
	Abstract 
	1 Introduction
	2 Attentional and Safe Interactive Manipulation Framework
	2.1 Spatial Reasoning
	2.2 Attentional Executive System
	2.2.1 Attentional Model
	2.2.2 Attentional Architecture
	2.2.3 Executive Module

	2.3 The human-Aware Manipulation Planner
	2.3.1 Grasp Planner
	2.3.2 Path Planner
	2.3.3 Trajectory Generation
	2.3.4 Reactive Adaptation of the Velocity


	3 Experiments
	3.1 Setup
	3.1.1 Parameters Settings

	3.2 Results
	3.2.1 Human Aware Planning System
	3.2.2 Attentional HRI


	4 Conclusions
	Acknowledgments
	5 Appendix
	5.1 GenoM
	5.2 System Architecture
	5.3 Attentional System
	5.4 Interaction Example
	5.5 Interface

	References


