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Abstract During social interaction humans extract impor-
tant information from tactile stimuli that improves their
understanding of the interaction. The development of a sim-
ilar capacity in a robot will contribute to the future success
of intuitive human–robot interactions. This paper presents
experiments on the classification of social touch on a full-
sized mannequin arm covered with touch-sensitive artificial
skin. The flexible and stretchable sensitive skin was imple-
mented using electrical impedance tomography. A classifier
based on the LogitBoost algorithm was used to classify six
emotions and six social messages transmitted by humans
when touching the artificial arm. Experimental results show
that classification of social touch can be achieved with accu-
racies comparable to those achieved by humans.
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1 Introduction

As interactions between humans and robots become more
complex, there is increasing interest in building robots that
can interact with humans in more intuitive and meaningful
ways; robots such as the Fish-Bird wheelchairs [54] have
demonstrated that people naturally seek interaction through
touch and expect even inanimate-looking robots to respond
to tactile stimulation. In robotics it is therefore important to
design a method for touch identification that can be active
over all or most of a robot’s surface area; this could be
achieved using an artificial “sensitive skin.”

The functional requirements for an artificial sensitive
skin—such as spatial resolution and sampling rate—remain
debatable and are to some extent dependent on the intended
application of the skin. Our previous work [60] has discussed
approaches to the creation of artificial sensitive skin. Further-
more, extensive descriptions of various sensor types can be
found in Dario et al. [10], De Rossi and Scilingo [11] and
Cutkosky et al. [8]; a thorough review of the state-of-the-art
in robot tactile sensing is given by Dahiya et al. [9].

The interpretation of touch in robotics is a vast, unresolved
research area that will play a crucial role in the further devel-
opment of human-robot interaction (HRI). A robot that is
able to “feel,” “understand,” and respond to touch in accord
with human expectations could lead to more meaningful and
intuitive HRI.

Research in the area of tactile HRI [5,28,29,37,44,61,
62,65,66] has typically been focused around methods for
identifying touch modalities1—for example, “tap,” “pat,” and

1 The word modality is often used in the term “sensory modality” to
refer to a specific sense (visual, auditory, tactile, etc.). Our usage of
“touch modality” here is consistent with that previously used in [26,30]
and [62], for example.
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“stroke.” The location of touch on the body of a robot has
also been used to differentiate between touch modalities and
what could be called socially-loaded touch [7,36,46,67].
Socially-loaded touch is defined here as touch that contains
some hidden social implication which cannot be interpreted
unambiguously without additional information, such as the
location of the touch on the body, or the social context of the
interaction. The interpretation of emotions and other social
messages has mainly focussed on facial expression [3,16],
acoustic information [47], audiovisual data [4] and physio-
logical signals [19,41]. As far as we are aware, the inter-
pretation of affective touch for robotics—and in particular
through an artificial sensitive skin—has not been widely
studied. For extensive surveys in HRI, long-term social
HRI and tactile HRI the reader is referred to [18,39] and
[2].

In our previous work [59,60] we developed a large-
scale, flexible and stretchable touch-sensitive artificial skin
for robotics based on the principle of electrical impedance
tomography (EIT). This skin, which can be used to extract
information such as location, duration and intensity of
touch, was used to cover flat [61] and three-dimensional
structures such as a full-sized artificial arm [62]. Further-
more, in [61,62] we demonstrated that tactile information
extracted from the EIT-based artificial skin, together with
a ‘LogitBoost’ classification algorithm, can be success-
fully used to differentiate between multiple touch modal-
ities commonly used by humans during tactile interac-
tion.

This paper extends our previous findings and concentrates
on the interpretation of social touch through the classifi-
cation, using a supervised LogitBoost algorithm, of a set
of messages and emotions communicated via touch from
humans to the artificial arm used in [62]. The experimen-
tal results reported here demonstrate that an artificial arm
covered with an EIT-based sensitive skin, together with
attributes such as location, duration, and intensity of touch,
can be used to classify social touch at better-than-chance
levels and with accuracies comparable to those achieved
by human touch recipients. A correlation between differ-
ent touch modalities, attributes extracted from tactile stim-
uli, and the social messages they communicate is presented.
Differences in the classification accuracies of participants
depending on their gender and cultural background are
discussed.

The remainder of the paper is organised as follows. An
overview of tactile communication is presented in Sect. 2.
Section 3 then introduces the field of touch in social HRI.
Section 4 briefly describes EIT and how it was used to create
a touch-sensitive skin that covers an artificial arm. Section 5
describes data preprocessing and classification. The experi-
ments are then described in Sect. 6, followed by discussion
and conclusions in Sects. 7 and 8.

2 Tactile Communication

The interpretation of touch between humans is highly com-
plex. Early work on social interaction [24,25] demonstrated
that humans extract important information from tactile stim-
uli that helps them to understand the interaction. Influencing
the interpretation of touch are factors such as the modality
of the touch (e.g. pat, push, scratch, etc.), the location of
the touch on the body, the gender [26,33] and cultural back-
grounds [43] of the two people touching, and the content and
prosody of any concurrent speech [31].

It is almost impossible not to respond to touch, yet com-
munication by touch is so powerful that misinterpretation of
intentions is potentially harmful. The location of touch, for
example, could be divided into two classes: “non-vulnerable”
body parts such as hands, arms, shoulders, and upper back,
and “vulnerable” body parts such as head, neck, torso, lower
back, buttocks, legs, thighs and feet [32,33]. In general, the
more a touch is seen as an invasion of privacy, the less
positive—loving, pleasant and friendly—it is rated to be [26].

Additionally, the congruence between a touch, the context
of the interaction in which the touch occurs and the social
intimacy of the people involved in the interaction are all sig-
nificant factors in the interpretation of the touch and the touch
recipient’s psychological receptivity to the touch [26]. For
example, in some cultures (e.g. Europe, North and South
America), a pat on the buttocks is acceptable between mem-
bers of a sporting team after a good play, but it could be
considered sexual in more intimate interactions [75]. A pat
on the head is often interpreted as condescending, whereas
a pat on the back is typically used to signify congratulations
or condolence [27]. The effect of gender is also important.
According to Heslin et al. [26], women derive the primary
meaning of a touch from their relationship to the other per-
son, while men most significantly define the meaning of a
touch by the other person’s gender.

Recent studies have demonstrated that touch also com-
municates emotions, and humans have the ability to distin-
guish between different emotions transmitted through touch
alone [22,23]. Anger, for example, can be characterised by
a touch of short duration and moderate-to-strong intensity,
such as pushing and shaking, whilst sadness is associated
with a light touch of moderate duration, such as nuzzling or
hugging.

Although the aim of touching during human interaction
is to communicate messages rather than to transmit touch
modalities, human descriptors of touch commonly invoke
touch modalities. In other words, it is easier to understand
that anger is transmitted by “pushing and shaking” than by a
“short duration touch of moderate-to-strong intensity.” After
all, what does moderate-to-strong intensity really mean?

The term “touch modalities” as it is used here refers to
the basic form of touch in which a tactile gesture is differ-
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Fig. 1 Conceptual diagram of the interpretation of social touch by a
robot, as envisaged by the authors. Discontinuous arrows indicate the
subordinate role of touch modality interpretation in the interpretation of
social touch. This figure suggests that the interpretation of social touch
does not necessarily require a prior interpretation of touch by modality

entiated only by the underlying characteristics of the touch
itself. Consequently, touch modalities are characterised by
attributes such as intensity, movement and duration. The
interpretation of social touch, however, comprises a more
complex process than identification of a touch modality. Like
modality identification, it begins with the basic characteris-
tics of the tactile gesture, but instead aims to “understand”
the intended meaning behind the touch. That is, to consider
attributes such as body location and context to provide a more
accurate and practical interpretation of touch. This process
would, for example, allow one to discriminate between a
condescending pat and a congratulatory pat by considering
which body part the pat is applied to [27].

Although different touch modalities are commonly related
to some specific social messages (e.g. stroke with affection,
push with rejection), the authors believe that the interpreta-
tion of social touch does not strictly require a prior or partial
interpretation of touch modality, as suggested in Fig. 1. After
all, the true aim is to understand the message, not the modality
used to transmit it.

It is evident that humans extract information from tactile
stimuli that helps them to interpret social touch. In robotics,
it is important to design a method for touch identification
and interpretation that allows for both natural and intuitive
interactions with humans.

3 Touch in Social HRI

Even in its early stages of development, sensing and inter-
pretation of intuitive touch has been shown to play an impor-
tant role in HRI, where robots such as Paro the seal [56–
58,70,71] and the child-sized robot KASPAR [49–51] have

provided significant physical and mental improvements to
child and adult patients. Furthermore, interactive humanoid
robots with tactile sensing capabilities illustrate the possibil-
ity of using robots to improve daily life; from Robovie [34]
working as a tutor in classrooms, to Robonaut 2 [12] collab-
orating side-by-side with humans in the International Space
Station. Although these examples demonstrate that interpre-
tation of tactile stimuli would be a useful tool in HRI, methods
for tactile sensing and touch interpretation—generally based
on machine learning algorithms—are still far from perfect.

Iwata and Sugano [28,29], for example, used a modified
counter-propagation algorithm to classify ten touch modal-
ities while Stiehl and Breazeal [65] and Stiehl et al. [66]
used artificial neural networks to classify eight touch modal-
ities. In both experiments touch was transmitted only by a
single individual. The k-nearest neighbour algorithm was
used by Naya et al. [44] to classify five touch modalities
transmitted by eleven subjects; temporal decision trees were
used by Koo et al. [37] to classify four touch modalities
from 12 subjects while the present authors used a Logit-
Boost algorithm to classify nine modalities transmitted by 40
individuals [62].

Knight et al. [36], on the other hand, used touch informa-
tion from local sensors combined with the location of touch
on the robot’s body to differentiate between socially-loaded
touch (e.g. hug, head pat, foot rub, slap cheek etc.) and touch
modalities. Although the work approached the interpretation
of social touch, only socially-loaded touches that were clearly
not related to any social message were considered. Similar
work, where touch modality and body location were used to
classify socially-loaded touch, was presented by Taichi et al.
[67].

Furthermore, Cooney et al. [7] extended the classifica-
tion of socially-loaded touch to a full-bodied robot by using
vision, in addition to touch, to augment the classification.
Classification of touch was done using a support vector
regression algorithm. In addition, and through participants’
descriptions, the cited work evaluated different levels of
affection typically conveyed by 20 different socially-loaded
tactile gestures.

Noda et al. [45,46] proposed a method for the classifica-
tion of touch based on scenarios such as “let’s shake hands;”
“give me a hug;” “I wish you’d pat me on the head;” “hello”
and “what’s your name?” The robot in this research was con-
trolled using the “Wizard of Oz” methodology [35] while it
interacted with humans. Touch features were based on the
cross-correlation of data from discrete sensors distributed
over the robot’s body. Although this work closely relates to
the interpretation of social touch (e.g. “hello”) it is inter-
mixed with socially-loaded touch (e.g. “I wish you’d pat me
on the head”). Furthermore, class labels were assigned on the
basis of how the robot approached—as the touch initiator—
and spoke to the participants. It is believed that this behav-
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iour could have strongly influenced the way that participants
transmitted touch.

Yohanan and MacLean [72–74] studied the interpretation
and display of affective touch through the artificial Haptic
Creature. In [74] Yohanan and MacLean surveyed people
to evaluate the likelihood that each of thirty tactile gestures
would be used by the participants to communicate nine spe-
cific emotions to the robotic creature. Each participant then
transmitted their most likely touch gestures to the Haptic
Creature whilst imagining feeling the emotion that they asso-
ciated with the touch gesture. The location and pressure of
touch were manually encoded second-by-second. This study
provided extensive information about the tactile gestures that
were used to communicate emotions to a pet-like robot.

4 EIT-based Artificial Sensitive Skin

EIT [40,69] is a non-invasive imaging technique used to esti-
mate the internal conductivity distribution of an electrically
conductive body by taking measurements from electrodes
attached only at the boundary of the body. If the conductivity
in a region of the body changes, the current distribution also
changes and EIT can be used to quantify these changes. In this
method, electrodes are typically located in the borders of a
thin conductive material that changes its conductivity proper-
ties due to applied pressure. Conductive rubbers, foams, fab-
rics, etc. can be used as the medium. EIT then allows changes
in resistance—and therefore pressure—across the sheet to
be determined. The essence of EIT is to inject a known cur-
rent into the electrically conductive medium using a pair of
boundary electrodes, while taking potential measurements
at the remaining electrodes. Scanning this pattern of current
injection and potential measurement rapidly around various
electrodes it is possible to calculate the approximate conduc-
tivity distribution inside the medium through inverse solution
of Maxwells equations.

Since most of the sensing area is made of thin materials
without any internal wiring, it is possible to create large, flex-
ible and stretchable ‘skins’ of arbitrary shapes. Furthermore,
as the response of the system depends only on the variable-
conductance material used, materials sensitive to different
types of excitation, such as pressure or temperature, could be
used. An EIT-based sensitive skin has the potential to be a
low-cost and easy-to-manufacture solution to the problem of
large-scale sensing. For the current application only pressure
sensing was considered.

A major disadvantage of EIT-based sensors, as compared
with other pressure/force sensing technologies, is their poor
spatial resolution. However, considering that during social
interaction humans have the ability to understand messages
transmitted via touch regardless of the sensory limitations
in some areas of human skin—for example, lower spatial

a
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Fig. 2 a Dimensions of the artificial skin with 19 circular electrodes.
Step-by-step assembly of the skin layers on top of a mannequin arm:
b polyurethane foam, c EIT-based sensitive skin (black) and soft suede
fabric and d finished arm

resolution in arms, back and stomach [38]—it was assumed
by the authors that high spatial resolution is not an absolute
requirement.

For this work, our previous configuration of an artificial
arm covered with an EIT-based skin was used [60–62]. The
reader is referred to the cited work for more detailed infor-
mation about EIT forward and inverse solutions, hardware
and software implementations, and how they were used to
realise a touch-sensitive skin.

To provide a more natural and intuitive touch environment,
the sensitive skin was shaped and mounted on to the forearm
and upper arm of a full-size fibreglass mannequin, as shown
in Fig. 2. The use of a thin layer of polyurethane foam under
the EIT-based sensitive skin provides a degree of mechanical
compliance and damping that serves to attenuate transients
when the artificial skin is touched. A soft suede fabric was
placed on top. An arm was selected for these experiments as
it provides a “moderate” or “very pleasant” zone [26] when
touched by participants of either gender.

The mannequin arm was then elastically mounted with
freedom to rotate about an axis normal to the plane of Fig. 3
and translate sideways in that figure. The mounting incorpo-
rated rubber as an elastic and damping element. A Tekscan,
Inc. FlexiForce � sensor was used inside the shoulder joint to
measure the magnitude and direction, principally parallel to
the translatory degree of freedom, of whole-arm movement.
This sensor emulates, in a very simple way, the propriocep-
tive sensing of muscular effort that occurs in a human arm.

A user interface for experiment control was written in
LabVIEW �. Data acquisition was achieved via an ADLINK
Technology Inc. board, FEM meshes were generated using
DistMesh [48], and inverse solution and image reconstruction
were done in MATLAB�.
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Fig. 3 Shoulder joint sensor and artificial arm’s shoulder joint. The
FlexiForce sensor is located flat under the black rubber and cannot be
seen

5 Preprocessing and Classification Methods

This section introduces the steps followed to transform the
raw data obtained during experimentation (Sect. 6) into an
appropriate format that could be used for touch classification.
The classification algorithm is also introduced.

5.1 Data Filtering

Since this application is required to work in real time, data
preprocessing began from the data collection stage where
potential measurements were low-pass filtered and ampli-
fied in hardware before their acquisition. Noise was addi-
tionally reduced by over-sampling the signals by a factor of
10. This over-sampling factor achieved a good compromise
between noise reduction and sampling rate. Data collection
was achieved at approximately 40 Hz after over-sampling.

5.2 EIT Inverse Solution

The EIT inverse solution is needed to find the distribution of
conductivity changes inside the conductive domain that cor-
responds to measurements of electrode potentials. Difference
imaging [1] was used for the inverse solution.

Unlike our previous work [59–62] where the simplified
point electrode model was used to solve the EIT prob-
lem, here the complete electrode model with the generalised
Tikhonov regularisation, as described in [6,69], were used.
This model considers the existence of a discrete number of
electrodes of finite size, the shunting effect of a conductive
electrode and the potential drop due to the electrode’s contact
impedance. A total of 729 elements connected by 448 nodes

were used for the FEM mesh required for the forward solu-
tion. Since all experiments were performed with the artificial
skin fixed onto the rigid arm, skin deformation and electrode
movement were insignificant and any consequential conduc-
tivity changes [64] were ignored. This configuration results
on a spatial resolution of approximately 10–15 % of the char-
acteristic dimension of the unrolled artificial skin (Fig. 2a).

5.3 Data Segmentation

The procedure followed was to consider a full touch inter-
action from the beginning of a tactile stimulus until its end.
The beginning and end of each touch was defined by a change
in the intensity above (or below) a pre-defined threshold of
a signal from either the artificial skin or the shoulder joint
sensor. A variable size window was generated to mark the
beginning and end of each touch.

5.4 Feature Extraction

In a sensitive skin, it is sensible to use features analogous
to those used when evaluating the human sense of touch.
Four attributes are proposed as a foundation for the features
needed to classify different types of touch.

1. Pressure intensity is the most obvious manifestation of
touch. The maximum and minimum pressure intensity
values over the surface of the skin were used as features;
these values correspond to the maximum and minimum
conductivity changes that occur over all finite elements
in the mesh. In addition to the conductivity changes in
the artificial skin, two independent features were used to
encode the magnitude and direction in which the artificial
arm—as a whole—is moved. These features were taken
as the maximum and minimum potential changes in the
joint sensor over the duration of the touch.

2. Touch location is equivalent to the system’s ability to
locate accurately the centroid of a touch. Only those ele-
ments in the reconstructed image containing at least 75 %
of the maximum amplitude were considered. Touch loca-
tion was evaluated by computing the coordinates of the
centroid of an individual stimulus. Location was encoded
by the x and y axis values with their origin at the centre
of the elbow, between electrodes 6 and 15 in Fig. 2. The
total distance from the initial to final locations of a touch
was also used as a feature.

3. Area of contact refers to the fraction of the area in con-
tact between two objects and provides information about
pressure distributions on the surface of the skin. Con-
tact area was computed by evaluating two features. The
first feature is the spatial resolution at the instant in time
where the maximum pressure intensity occurs. The spa-
tial resolution was evaluated by calculating the ratio of
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Table 1 List of attributes and corresponding features used for touch
classification with the artificial arm

Attribute Feature

Pressure intensity 1. Maximum pressure intensity value

2. Minimum pressure intensity value

3. Maximum potential value in joint
sensor

4. Minimum potential value in joint sensor

Touch location 5. Location of the touch in the x direction

6. Location of the touch in the y direction

7. Displacement of touch from its initial to
final location

Area of contact 8. Spatial resolution at 50 % of maximum
intensity

9. Mean of spatial resolutions over the
duration of the touch

Temporal information 10. Touch duration

11. Maximum rate of positive intensity
change

12. Maximum rate of negative intensity
change

13. Touch count

the number of elements in the reconstructed image con-
taining at least 50 % of the maximum amplitude when a
single stimulus is applied. The second feature is the mean
of spatial resolutions during the duration of the touch.

4. Temporal information refers to changes in the touch stim-
ulus applied to the skin over the time of contact. Four
features based on temporal information were used: touch
duration, maximum rate of positive intensity change,
maximum rate of negative intensity change and touch
count. Touch duration was evaluated as the time taken
from the beginning to the end of the touch. Maxima
of positive and negative intensity changes were com-
puted by evaluating the difference in intensity between
the elements in the reconstructed image at adjoining time
sequences. The positive intensity rate is then the rate of
intensity change when the pressure is applied, while the
negative intensity rate refers to the change when the pres-
sure is released. Finally, touch count refers to the number
of sequential touches that constitute a particular message.

Altogether 13 features based on the four attributes pre-
sented above were used for classification and are listed in
Table 1. These features were selected from a list of approx-
imately 20 candidate features using the information gain
attribute evaluation technique as implemented in WEKA2,
the Waikato environment for knowledge analysis [21]. This
technique provides the information required to measure the

2 WEKA is a widely-used [13,42], Java-based, open source data mining
environment developed at the University of Waikato, New Zealand.

relative contributions of various features in a classification
problem and so rank them in order of importance. The same
approach was used successfully with similar results in [62]
during the classification of touch modalities. The thirteen fea-
tures in Table 1 were selected using aggregate data from the
experiments in [62] and the current experiments. If multiple
touches were used to communicate a message, the average
of their values was used for classification.

5.5 Classification with LogitBoost

In the present work, the “LogitBoost” classifier [17] with
decision stumps as a base (weak) learner was used. This
classifier has previously been used by the authors for classi-
fication of touch modality on flat [61] and three-dimensional
surfaces [62]. Additional information about the algorithm
can be found in the cited publications.

WEKA was used for classification. All steps from the
inverse solution to classification were carried out off-line. If
the off-line preprocessing and classification steps were per-
formed on-line, the complete process of data collection, pre-
processing and classification would have executed at approx-
imately 36 Hz.

6 Experiments

This section describes the experiments that were performed
to evaluate the ability of the system to distinguish between a
number of emotions and social messages that are commonly
transmitted by humans during social interactions. All experi-
ments were conducted with the same setting described in our
previous work on the interpretation of touch modalities [62].
That is, a private experimental room was divided in two by
an opaque curtain with the artificial arm protruding through
(Fig. 4). A table was placed such that half of it was on each
side of the curtain.

Potential measurements from the EIT-based artificial skin
were taken from 17 boundary electrodes referenced to two
internal electrodes using the 4th injection pattern [60]. The
electrical potential was not measured at electrodes carrying
injected current, giving a full set of 285 independent volt-
age measurements at each acquisition time step. Potential
measurements from the shoulder joint sensor were taken via
a voltage divider connected directly to the data acquisition
hardware. Data from the artificial skin and the shoulder joint
sensor were acquired in parallel and at the same sampling
rate.

In addition to a “no touch” gesture, the six basic emo-
tions proposed by Ekman and Friesen [14] and described
to the participants as “anger,” “fear,” “happiness,” “sad-
ness,” “disgust” and “surprise” were studied. These emo-
tions were selected because they have been previously used

123



Int J of Soc Robotics (2014) 6:489–505 495

Fig. 4 Human and artificial arms showing a male participant interact-
ing with the arm of a human touch recipient. Both arms project through
holes in an opaque curtain located on the far right of the image. Models
were used to protect the confidentiality of experiment participants

to classify emotions transmitted by facial expressions [3],
speech [47], physiological signals [19] and even touch
between humans [22,23]. Furthermore, six social messages
described to the participants as “attention-getting,” “greet-
ing,” “acceptance,” “rejection,” “affection” and “animosity”
were incorporated. These messages were centred on Hes-
lin’s functional to friendship categories [24]; Jones’ posi-
tive, control and ritual touches [31]; and Guerrero’s negative
touch [20]. More playful, intimate, and sexual categories of
touch, as defined by [[31] p. 298 et seq.], were not consid-
ered because they require a higher level of intimacy than
could be expected during experiments such as those reported
here. The “no touch” gesture was necessary to allow for very
soft touches that the system could not detect.

To minimise any biasing effects, all instructions were
provided to each participant—using the same experimenter
script—at the beginning of the session. To reduce the poten-
tially confounding variation between participants of differ-
ent cultural backgrounds, a definition3 of each emotion and
message was given to participants in addition to the word
descriptor. All participants involved in these experiments had
not taken part in our previous work and had not interacted
with the artificial arm.

It was hypothesised that the gestures used to communicate
emotions and social messages would be consistent during
repetitions from a single individual but quite variable across

3 Obtained from http://dictionary.cambridge.org/ and http://oxford
dictionaries.com/

a range of individuals. Two experiments were designed to
evaluate both hypothesised dependencies. All experimental
sessions were video recorded for verification post hoc.

6.1 Experiment One: Touch from a Single Individual

The objective of this experiment was to determine the accu-
racy of the classifier for social touch transmitted to the artifi-
cial arm by a single individual. Two male participants, both
students from Latin America, were recruited from the Faculty
of Engineering and Information Technologies at the Univer-
sity of Sydney.

Participants entered the room one by one and were
assigned the role of touch transmitter, while the artificial arm
was used as the touch recipient. After an brief introduction
to the experiment, participants were given 10 min to think
about ways that they might communicate each social mes-
sage and emotion solely by touching an arm, from the shoul-
der to the wrist. After taking a seat in front of the artificial
arm, a practice session with five randomly-selected emotions
and/or messages was conducted to confirm a participant’s
clear understanding of the experiment instructions.

Participants then had no further contact with the experi-
menter until the end of the experiment. Prompted by a sim-
ple user interface on a computer screen, participants were
instructed to convey the message or emotion displayed as a
word on the screen. Each word—both emotions and social
messages—was displayed 50 times in a random order, giv-
ing a total of 650 touch samples per participant. The entire
session took each participant approximately 50 min to com-
plete. To aid the classification process, all data samples were
labelled automatically with their correct class by the software
immediately after data acquisition.

To reduce possible variability in the results, a 10-fold
cross-validation technique [68] was used to assess the clas-
sification accuracy. This technique randomly divides the full
data set into 10 mutually exclusive subsets of the same size.
The classifier is trained with nine subsets and tested with the
one remaining subset. The training and testing process is then
repeated until all ten subsets have been used for classification.
The average accuracy across all subsets provides an estimate
of the accuracy rate of the classifier. To provide replicabil-
ity when comparing classifiers, ten 10-fold cross validations
were performed using different randomly created subsets of
the data.

To evaluate the accuracy of the classification, results are
presented as averaged confusion matrices in Table 2. The first
column in each matrix lists the actual class while the first
row is the predicted class. As shown in this table, the Logit-
Boost algorithm performed better during the classification of
touch from Participant A, with all classes correctly classified
with an overall performance of approximately 95 %. These
results confirm the ability of the system, and the chosen fea-
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Table 2 Averaged confusion matrices showing percentage accuracy of LogitBoost classification of touch from a single touch transmitter, either
Participant A or B. The first column in each matrix lists the actual class while the first row gives the predicted class

tures, to discriminate between different gestures transmitted
by humans via touch. Furthermore, they suggest that relative
consistency and a well-defined pattern—made of a combi-
nation of the extracted features—exist in the tactile gestures
transmitted by this participant. On the other hand, Table 2b
shows the misclassification of up to 51 % of the message
acceptance as greeting, which suggests that similar gestures
were used by Participant B to transmit these two different
messages. A summary of the classification accuracies for the
two touch transmitters is presented in Table 3.

Finally, if data from Participant A and Participant B
are classified together we can obtain additional information
about associations that may exist between the tactile ges-
tures used by both participants during the communication
of emotions and social messages. These associations can be
obtained by using the LogitBoost algorithm trained with data
from Participant A to classify data from Participant B, and
vice versa. Results that show these two-way associations in
the form of confusion matrices of average classification accu-
racies are given in Table 4. Average accuracies for the classi-
fication of emotions and social messages are 32 % and 51 %
respectively.

Table 3 Mean and standard deviations (in parenthesis) of percentage
accuracy of a LogitBoost classification of touch from a single touch
transmitter, either Participant A or B, averaged over all emotions and
social messages respectively

Emotions (%) Messages (%)

Participant A 94.3 (3.8) 94.7 (3.5)

Participant B 81.7 (6.3) 73.7 (5.8)

With the exception of the three social messages attention,
rejection and animosity, Table 4 shows a significant decrease
in the classification accuracies of both participants relative
to those shown in Table 2. These three messages were com-
municated in similar ways by both participants, whereas the
remaining emotions and messages were transmitted in sig-
nificantly different ways by the two participants. For exam-
ple, Participant A used higher pressure intensities to convey
anger, while Participant B used higher intensities during the
communication of fear.

The information gain attribute evaluation as implemented
in WEKA was used to rank the features in order of impor-
tance. The evaluation indicates that the features that con-
tributed the most during all classifications were location of
the touch on the x axis, touch duration, maximum rate of
positive intensity change and maximum pressure intensity
value. The least contributors were minimum potential value
in the joint sensor and touch count.

The following experiment extends these results by analy-
sing touch from a larger number of individuals.

6.2 Experiment Two: Touch from Multiple Individuals

This experiment aimed to determine the accuracy of the clas-
sifier for the same social messages and emotions transmitted
by a range of individuals. To provide additional comparative
data to assist in the evaluation of the classification system
relative to the classification accuracy of individual human
touch recipients, a set of control experiments was also con-
ducted by having participants touch a human arm with the
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Table 4 Averaged confusion matrices showing percentage accuracy of
LogitBoost classification of touch from one participant, when the algo-
rithm is trained with data from Participant A and tested by classifying

touch from Participant B, and vice versa. Accuracies are averaged over
both participants. The first column in each matrix lists the actual class
while the first row gives the predicted class

touch recipient acting as a human classifier of social touch.
As a result, this experiment was divided into two parts: one
used the artificial arm as a touch receiver while the other used
a human arm to receive touch.

A total of 42 individuals (twenty-one pairs) took part in
the experiment: 29 males and 13 females aged between 20
and 50 years old. Volunteers originated from nine different
countries within Australasia (38 %), Europe (5 %), Latin
America (52 %), and the Middle East (5 %), and identified as
belonging to six different religious beliefs. Participants were
recruited through email lists and word of mouth. Participants
were randomly paired in twenty unacquainted same-gender
pairs and one mixed-gender couple. All participants were
well-educated, with most having a university degree. The
sexual orientation of participants was not recorded. Same-
gender, unacquainted pairs were preferred in an attempt to
reduce possible biasing effects due to participant discomfort
and/or personal relationships during experimentation. Con-
sequently, the data obtained from the mixed-gender couple
were removed from the control (human classifier) experi-
ments. All data were considered for the LogitBoost classifi-
cation.

Following a similar procedure as in the first experiment
(Sect. 6.1), two participants entered the room and took seats
on opposite sides of the curtain. After a brief introduction to
the experiment, one participant was randomly assigned the
role of touch transmitter while the other became the touch
recipient. From that moment, participants were not allowed
to see or talk with each other until the end of the experi-
ment. Participants were encouraged to act naturally and to

perform as similarly as possible when touching the human
and artificial arms.

First, the individual assigned the role of touch transmitter
was instructed to convey each message or emotion displayed
on the computer screen to the artificial arm. Each message
and emotion was displayed five times in random order, giving
a total of 2,730 touch samples over 42 participants.

In the second part of the experiment, immediately after
the sequence of touches to the artificial arm, the individual
assigned the role of touch recipient introduced their uncov-
ered left arm through the hole in the dividing curtain (Fig. 4).
Following the same procedure as with the artificial arm, the
touch transmitter was again instructed to convey each mes-
sage and emotion displayed on the computer screen five times
to the human recipient’s uncovered arm, giving a total of
2,520 touch samples over 42 participants. The touch recip-
ient performed touch classification immediately after each
touch. The “no touch” gesture was removed from this sec-
tion as it was clear to the touch recipient if their arm had
been touched or not. For this part of the experiment, both the
user interface and the response sheet used by the touch recip-
ient were arranged to first display all emotions followed by
all social messages. This configuration was intended to sim-
plify the classification by “forcing” the human touch recip-
ient to select only emotions (or messages) when an emo-
tion (or message) has been transmitted. To reduce forced-
choice effects [53], the modified forced-choice scale pre-
sented by [15] was adopted. This means that a “none” option
described as “none of the six options presented” was incor-
porated in the response sheet.
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Table 5 Averaged confusion matrices showing percentage accuracy of
LogitBoost and human classification of touch from multiple touch trans-
mitters. Human classification is averaged over multiple touch recipients.

The first column in each matrix lists the actual class while the first row
gives the predicted class

Finally, the pair of participants exchanged roles with the
touch recipient becoming the touch transmitter and vice
versa. The experiment was repeated with the same condi-
tions, although the touch was transmitted first to the human
arm and then to the artificial arm. This change was made to
minimise any effects caused by the touch transmitter adapt-
ing to the experimental setup. As a result, one half of the
participants started the experiment touching a human arm.
The session took approximately 45 minutes to complete.

Unlike Experiment One, in which a 10-fold cross-valida-
tion technique was used to assess the LogitBoost classifica-
tion accuracy, in Experiment Two cross-validation was per-
formed across all 42 touch transmitters so that variations in
the classification could be assessed by touch transmitter. As
a result, the LogitBoost classifier was trained with the data
from 41 participants and tested with touch data from the one
remaining participant. This training and testing process was
repeated until touch from all 42 participants had been clas-
sified. Consequently, neither the algorithm nor the human
touch recipient were trained with data from the touch trans-
mitter whose touch they were attempting to classify. In the
case of the human, “training” is through life experience of
touch, yet the human had no experience of touch from the par-
ticular touch transmitter whose touch they were classifying.
Similarly, the LogitBoost algorithm was trained using data
from 41 touch transmitters and subsequently classified data
from the remaining transmitter. The average accuracy across
the ensemble of all touch transmitters provides an estimate
of the accuracy rate of each classifier.

Averaged confusion matrices for the LogitBoost algorithm
and the human classifier (Table 5) show that, with the excep-

tion of the human classification of greeting, all emotions and
messages were successfully classified at above-chance lev-
els. A random guess would be correct in one of seven trials,
or 14 %. The lowest results were obtained during the clas-
sification of acceptance by the LogitBoost algorithm, with
only 27 % of samples correctly classified. These results also
compare positively with the accuracies reported for humans
in Hertenstein et al. [22], where participants correctly iden-
tified anger (57 %), fear (51 %), happiness (30 %), disgust
(63 %) and surprise (24 %); in those experiments sadness was
not accurately identified. The 100 % accuracy in human clas-
sification of the “no touch” gesture represents our assump-
tion that each touch recipient could easily know if their arm
had been touched. This “no touch” gesture was included
to maintain consistency when comparing human and Log-
itBoost classifiers.

A summary of the classification accuracies for touch trans-
mitted by all 42 individuals is presented in Table 6. Note that
human classification accuracy for the mixed-gender couple
(not considered in the overall human classification accura-
cies) was 66 % for emotions and 69 % for social messages,
slightly higher than the averaged result of all participants.

Table 6 Mean and standard deviations (in parenthesis) of percentage
accuracy of touch from multiple touch transmitters averaged over all
emotions and social messages respectively. Standard deviations repre-
sent the dispersion of accuracies between touch transmitters

Emotions (%) Messages (%)

LogitBoost 46.9 (11.4) 49.7 (13.8)

Human 51.8 (16.0) 62.1 (16.5)
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Furthermore, the results presented in Table 6 show that, in
general, classification of social messages provided better
results than classification of emotions for both LogitBoost
and human classifiers.

An evaluation of features based on their information gain
indicates that the features that contributed the most during the
classification of both messages and emotions were all based
on pressure intensities: maximum rate of negative intensity
change, maximum pressure intensity value, minimum pres-
sure intensity value, and maximum rate of positive intensity
change. The least contributors towards classification of emo-
tions were touch count and displacement of touch, while the
least contributors for the classification of social messages
were spatial resolution and mean of spatial resolutions over
the duration of the touch.

7 Discussion

Robotics researchers are working with several technolo-
gies to improve the sensing capabilities of artificial skins.
It is unclear, however, whether a high-performance artificial
skin—with, for example, sub-millimetre spatial resolution
and sampling rates over 100 Hz—is necessarily a key factor
in improving HRI through touch. The results presented in this
paper demonstrate that a relatively low-resolution EIT-based
sensitive skin, together with a shoulder joint sensor, can be
used to discriminate between different social messages and
emotions communicated to an artificial arm. The accuracy of
classifying touch transmitted by one individual was as high as
94 % when classified by the LogitBoost algorithm. This accu-
racy reduced to approximately 50 % for touch transmitted by
multiple (42) individuals. In the context of these results, it is
interesting to note that the accuracy of human touch locali-
sation on the forearm and upper arm is typically 8–10 mm,
and the two-point discrimination threshold is approximately
40 mm.

If we scrutinise the results obtained by multiple individu-
als, it becomes clear that participants’ individual interpreta-
tions of tactile communication and their unique understand-
ing of emotions and social messages comes into play. That
is, the understanding of an individual is important in deter-
mining how they transmit and interpret emotions and mes-
sages encoded in touch. At first, participants appeared to be
unable to decide how to transmit each message or emotion
and changed their tactile gestures over repeated transmissions
of the “same” touch. This suggests that participants had to
adjust to the idea of transmitting specific messages solely by
touching an arm, either real or artificial. Variation in how an
individual uses touch to convey an emotion or social message
undoubtedly influences the accuracy with which the emotion
or social message is classified. Future work should endeav-
our to quantify this variation within and between individuals,

and assess how this variation influences the interpretation of
touch.

Moreover, since emotions were not induced in the partic-
ipants, participants could have been communicating inten-
tions rather than emotions. Although the communication of
emotional intention does not capture the full emotion, it has
been previously accepted as a fair approximation in studies of
the communication of “emotions” via facial expressions [16],
haptic links [63], and touch between humans [22,23]. Future
work should investigate whether the same decision-making
process applies, for example, after an emotion is induced in
a participant.

In reviewing the experimental results for the human clas-
sification of touch it was observed that, similar to our pre-
vious work with the classification of touch modalities [62],
humans tend to compare different tactile gestures adminis-
tered by the same person to aid their classification. As a result,
the classification accuracies improved as more touch repeti-
tions from the same person were experienced (Fig. 5). A
chi-squared test of independence was performed to evaluate
the difference in net classification accuracy between the first
ten samples and the last ten samples over all participants.
Results show that classification accuracy was significantly
higher during the participants’ last ten samples both for emo-
tions (χ2 (1,N=800) = 8.096, p < 0.005) and social messages
(χ2 (1,N=800) = 4.62, p < 0.05). This observation suggests
that higher classification accuracies could be expected when
touch from a single person is evaluated, as confirmed by the
highly accurate results shown in Experiment One (Table 2).
Future work should investigate if a similar “learning” process
can be realised in robotics by using semi-supervised machine
learning instead of the fully-supervised technique used here.

If we consider the classification results in Experiment
Two we notice that the classification of social messages
resulted in generally higher accuracies than the classification
of emotions for both the human and LogitBoost algorithms.
Mistakes in emotion classification were made particularly
between emotions such as anger, fear and disgust, which are
similar in valence and arousal [52,55], and messages such
as rejection and animosity, which are both negative forms of
touch. Considered together, these results suggest that both
social messages and emotions occur along a continuum of
various dimensions (such as valence), and more concrete
interpretation of touch is only possible when the context of
the interaction is considered. It is important to remember
that in these experiments touch was transmitted only to an
arm, and more information could be obtained if touch was
transmitted to the whole body, as demonstrated by Herten-
stein et al. [23] in their investigation of the communication
of emotions between humans.

Furthermore, if the number of samples that were clas-
sified as “none” by the human touch recipients (Table 5)
is reviewed, we notice a greater number of non-classified
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(b) Messages.

Fig. 5 Classification and polynomial trend line of 30 touch gestures
(five repetitions of six emotions and six social messages) classified by
40 individuals. Each point represents the number of individuals who
performed a correct classification

emotions than non-classified social messages. This finding
is attributed to two possible factors. First, the classification
accuracy was higher during the communication of social
messages for both the LogitBoost and the human classi-
fiers. Second, emotions were communicated first, followed
by social messages. Future research should confirm (or deny)
these influences. Note that participants were asked to classify
messages and emotions that would be conveyed in random
order, and were not informed that messages would be trans-
mitted only after emotions.

7.1 Statistical Analysis

To assess potential differences in the interpretation accuracy
between groups of participants, a one-way analysis of vari-

ance (ANOVA) was conducted using different groups as the
independent variables and the accuracy per participant as the
dependent variable. A total of three a priori hypotheses were
tested for each data set (human and LogitBoost) using Bon-
ferroni adjusted alpha levels of 0.017 per test (.05/3). For the
first test, the independent variables consisted of the following
groups: males, females, participant starting as touch transmit-
ter and participant starting as touch recipient (Table 7). No
significant differences were found in either human classifi-
cation of emotions [F(3,76) = 0.01, p = 0.99, η2 < 0.001]
or social messages [F(3,76) = 0.67, p = 0.57, η2 = 0.026],
nor LogitBoost classification of emotions [F(3,80) = 1.77,
p = 0.16, η2 = 0.062] or social messages [F(3,80) = 0.56,
p = 0.65, η2 = 0.02].

Similar tests were conducted to assess potential differ-
ences between country of origin (four regions: Australasia,
Europe, Latin America, and Middle East; Table 7) and reli-
gion4 (Catholic, Christian, Hindu, Jewish, Protestant, and no
religion identified; Table 7). Country of origin and religion
were self-reported by the participants. No significant differ-
ences were found during the comparison by country of origin
in either human classification of emotions [F(3,36) = 0.64,
p = 0.59, η2 = 0.051] and social messages [F(3,36) = 0.08,
p = 0.97, η2 = 0.007], or LogitBoost classification of emo-
tions [F(3,36) = 0.64, p = 0.59, η2 = 0.015] and social mes-
sages [F(3,38) = 0.22, p = 0.88, η2 = 0.017]. The compar-
ison between religious beliefs also yielded non-significant
results in human classification of emotions [F(5,34) = 0.81,
p = 0.55, η2 = 0.106] and social messages [F(5,34) = 0.45,
p = 0.81, η2 = 0.063], and LogitBoost classification of social
messages [F(5,34) = 0.19, p = 0.94, η2 = 0.036]. There was,
however, a significant effect at the p < 0.017 level during the
comparison of religion for the LogitBoost classification of
emotions [F(5,36) = 4.00, p = 0.006, η2 = 0.357].

Post hoc comparisons using the Tukey honestly significant
difference test indicated that the mean score for the Christian
group (M = 69 %, SD = 9 %) was significantly higher than
the Catholic (M = 46 %, SD = 9 %), Jewish (M = 46 %,
SD = 8 %) and no religion reported (M = 43 %, SD = 11 %)
groups. The differences with the Hindu (M = 40 %, SD = 0 %)
and Protestant (M = 47 %, SD = 0 %) groups were not sig-
nificant. Taken together, these results suggest that religious
beliefs may play a role during the communication of emo-
tions via touch. Since this effect was found only when the
touch was transmitted to the artificial arm, it is believed that
transmitter-receiver pairings may play an important role dur-
ing the classification of touch. The artificial arm, however,
may have acted as a neutral agent that permitted more accu-
rate comparisons. Future work should investigate this effect
across a larger population.

4 The semantically non-exclusive labels “Catholic,” “Christian” and
“Protestant” occurred through self-reporting of religion.
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Table 7 Means and standard deviations (in parenthesis) of percentage accuracies of LogitBoost and human classification for different groups of
participants. “Count” is the number of participants in each group

LogitBoost classification Human classification

Group Count Emotions Messages Count Emotions Messages

Males 29 44.6 (12.4) 51.4 (14.0) 28 43.8 (17.4) 54.8 (16.8)

Females 13 51.9 (6.8) 45.7 (13.1) 12 43.6 (22.3) 58.3 (24.7)

Transmit first 21 49.0 (12.4) 48.9 (15.2) 20 44.2 (17.7) 51.8 (19.5)

Receive first 21 44.8 (10.3) 50.5 (12.7) 20 43.3 (20.1) 59.8 (18.6)

Groups divided by region of origin

Australasia 16 46.8 (14.2) 48.6 (11.6) 14 47.9 (13.9) 57.9 (14.4)

Europe 2 53.0 (5.7) 54.3 (8.06) 2 31.7 (7.1) 55.0 (2.4)

Latin America 22 46.5 (9.3) 50.5 (16.3) 22 43.0 (20.8) 54.6 (23.4)

Middle East 2 45.5 (20.5) 44.3 (6.1) 2 35.0 (35.4) 56.7 (14.1)

Groups divided by religion

Catholic 16 45.9 (8.8) 49.8 (16.1) 16 42.9 (20.8) 56.0 (21.3)

Christian 3 69.7 (9.1) 43.8 (10.0) 3 37.8 (15.8) 41.1 (25.5)

Hindu 1 40.0 (0.0) 45.7 (0.0) 1 30.0 (0.0) 46.7 (0.0)

Jewish 6 46.3 (8.0) 47.6 (9.3) 6 36.1 (15.7) 60.0 (16.1)

Protestant 1 57.0 (0.0) 60.0 (0.0) 1 36.7 (0.0) 53.3 (53.3)

No religion 15 43.3 (11.4) 51.1 (14.8) 13 51.3 (18.1) 58.0 (18.6)

7.2 A Close Inspection to Tactile Gestures

If the feature values extracted from all touch samples in
Experiments One and Two are closely examined, a number
of relevant characteristics are seen:

1. In general, feature values from Participants A and B were
significantly better clustered than were features from
multiple participants. This result provides further evi-
dence of the range of variability between gestures trans-
mitted by multiple individuals.

2. The highest pressure intensities during the communica-
tion of emotions were found for anger and fear; both
negative emotions of high arousal.

3. Maximum displacements of touch were observed during
the communication of sadness and fear; both negative
emotions.

4. All social messages and emotions were communicated
to the outside of the arm. This suggests that during a
“full-bodied” robotics application, such as a humanoid
robot, more emphasis should be given to an artificial
skin located in the outer side of the arm. This possibility
should be experimentally tested.

5. The shortest touch durations were observed during the
communication surprise, disgust and anger; all emotions
of high arousal. A similar observation was made during
the communication of the message attention.

6. Social messages such as greetings and rejection were
conveyed more often by touching areas near the hand.
We speculate that the hand would have been touched if
this were allowed. Attention was often communicated by
touching the shoulder.

7. More touch repetitions were observed during the commu-
nication of social messages. In most cases when multiple
sequential touches were used these were composed of
sequential repetitions of similar touches.

If social touch and touch modalities are considered
together it is possible to discern relationships between them.
That is, to reveal information about which touch modalities
were more commonly used to communicate different social
messages and emotions. In our previous work [62], a similar
approach to the one followed in this paper was performed
to classify touch modalities transmitted via touch to the arti-
ficial arm described in Sect. 4. Associations between social
touch and touch modalities can be identified by using a Log-
itBoost algorithm trained using data from our earlier touch
modality experiments [62] to classify emotions and social
messages from the current experiment data, and vice versa.

Table 8 shows the average of such two-way associations
in the form of confusion matrices of averaged classifica-
tion accuracies. High accuracies indicate strong correlations
between an emotion or social message and the touch modality
or modalities that were used to transmit it. The table shows
that anger and fear—both emotions of high arousal—were
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Table 8 Averaged confusion matrix of LogitBoost classification show-
ing the relation between touch modalities (from [62]) and social touch
as a percentage of correctly classified samples. The first column in each

matrix lists either emotions or social messages while the first row gives
touch modalities

typically communicated by squeezing, while stroking and
scratching were used to communicate emotions of neutral
arousal such as happiness and sadness. Furthermore, Table 8
shows that a social message such as attention is communi-
cated by tapping and patting; greeting by pulling and squeez-
ing; and affection by stroking and scratching. These results
are consistent with the work by Yohanan and MacLean [74]
which demonstrated that a touch modality such as squeeze
can be used to convey “excitement”—also an emotion of high
arousal—while a stroke was used to communicate “pleased,”
which—like happiness—is a positive emotion of neutral
arousal. No other similarities with the results reported in [74]
were found; this is attributable to the dissimilar sets of touch
gestures and emotions used, and to the quite different exper-
imental settings.

Altogether, these results demonstrate that similar gestures
can be used to communicate different messages and emo-
tions, and suggest that better interpretation of social touch
can be achieved without considering a prior interpretation
of touch modality. For example, emotions such as anger and
disgust—both communicated by pushing—could be differ-
entiated from each other by using the fact that anger often
involves tactile gestures of longer duration and higher pres-
sure intensity. Similarly with anger and fear; both emotions
were communicated by squeezing and can be better discrim-
inated by touch duration and the location where they are

applied. In this regard, it should be noted that the classifica-
tion results presented in [62] showed that touch modalities
such as pat and tap were often confused with each other.

7.3 Considerations for Future Experiment Design

As a result of the work described here, the following sug-
gestions are provided for consideration in any future experi-
mental work.

All experiments reported here were performed with pairs
of participants acting as touch transmitters and touch recipi-
ents. Although no significant differences were found between
participants starting as touch transmitters and those starting
as touch recipients, future experiments should consider using
different participants as transmitters and recipients of touch
to reduce any biasing effects.

It is important to recognise that human interpretation of
touch begins almost immediately following the start of a
touch: interpretation does not wait until the touch has ended.
Touch interpretation in HRI should therefore also consider
temporal classification methods in which the classification
can begin before the end of the touch, as proposed by Koo et
al. [37].

During the current research, all attributes used for the
interpretation of touch ignored the effects of multi-touch that
may have occurred when participants used both their hands
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simultaneously. For example, touching two body parts simul-
taneously may be characteristic of more intimate forms of
touch [23].

During the control experiments reported in Sect. 6.2 it was
assumed that the touch recipient could unambiguously know
when they were touched. As a result, the “no touch” ges-
ture was removed. To add consistency to the experimentation
process, future work could consider a method in which all
experiments consistently include (or exclude) the “no touch”
gesture.

Finally, one pressure sensor was used to measure mag-
nitude and direction in which the artificial arm was moved.
Since force is not (strictly) applied orthogonally to the direc-
tion of arm movement, future work should consider a more
comprehensive set of sensors to allow the force and direction
of the arm movement to be determined accurately.

8 Conclusions

This paper presented experiments on the classification of
social touch using a thin, flexible and stretchable sensitive
skin based on the principle of EIT. The sensitive skin was
used to cover a full-sized mannequin arm, and has the ability
to extract information such as location, duration and intensity
of touch. The extracted information was successfully used to
classify six social messages and six emotions using a Logit-
Boost algorithm.

The experimental results presented in this paper show
that interpretation of social touch through a sensitive-skin-
covered artificial arm is possible. LogitBoost classification
of touch from a single participant was performed with up to
90 % accuracy for both emotions and social messages. These
results reduced to approximately 50 % for touch from mul-
tiple participants. This accuracy was similar to the averaged
accuracy of multiple humans classifying social touch to their
own uncovered arm.

No significant dependence of touch classification accu-
racy on gender or country of origin of the touch transmitter
was found. A statistically significant difference was found
in the classification of emotions transmitted by participants
of different self-reported religious beliefs. Future research
should investigate these cultural factors across a larger pop-
ulation.

Finally, a correlation between social touch and touch
modalities identified modalities of touch that are typical used
for the communication of different messages. This result
shows that a single touch modality such as “push” could
communicate a number of different messages and emotions,
whilst the communicated message could be better defined by
the underlying characteristics of the touch itself.
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