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Abstract For human–robot interaction (HRI), perception
is one of the most important capabilities. This paper re-
views several widely used perception methods of HRI in
social robots. Specifically, we investigate general percep-
tion tasks crucial for HRI, such as where the objects are lo-
cated in the rooms, what objects are in the scene, and how
they interact with humans. We first enumerate representa-
tive social robots and summarize the most three important
perception methods from these robots: feature extraction,
dimensionality reduction, and semantic understanding. For
feature extraction, four widely used signals including visual-
based, audio-based, tactile-based and rang sensors-based are
reviewed, and they are compared based on their advan-
tages and disadvantages. For dimensionality reduction, rep-
resentative methods including principle component analy-
sis (PCA), linear discriminant analysis (LDA), and locality
preserving projections (LPP) are reviewed. For semantic un-
derstanding, conventional techniques for several typical ap-
plications such as object recognition, object tracking, ob-
ject segmentation, and speaker localization are discussed,
and their characteristics and limitations are also analyzed.
Moreover, several popular data sets used in social robotics
and published semantic understanding results are analyzed
and compared in light of our analysis of HRI perception
methods. Lastly, we suggest important future work to an-
alyze fundamental questions on perception methods in HRI.
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1 Introduction

Social robotics, an important branch of robotics, has re-
cently drawn increasing attention in many disciplines, such
as computer vision, artificial intelligence, and mechatron-
ics, and has emerged as an interdisciplinary undertaking.
While a number of social robots have been developed, a
formal definition of social robot remains unclear and differ-
ent practitioners have defined it from different perspectives.
For example, Fong et al. [1] define that social robots are
able to recognize each other and engage in social interac-
tions; Breazeal et al. [2] explain that a social robot is a robot
which is able to communicate with humans in a personal
way; Bartneck and Forlizzi [3] describe that a social robot is
an autonomous or semi-autonomous robot that interacts with
humans by following some social behaviors; Hegel et al. [4]
define that a social robot is a combination of a robot and a
social interface. In Wikipedia, social robot [5] is specified
to be an autonomous robot that interacts and communicates
with humans or other autonomous physical agents by fol-
lowing some social rules. While there are some differences
among these definitions, a common characteristic can be re-
flected and we define in this paper a social robot as follows:

“A social robot is a robot which can execute desig-
nated tasks, and the necessary condition turning a
robot into a social robot is the ability to interact with
humans by adhering to certain social cues and rules.”

It is generally believed that human–robot interaction
(HRI) is the heart of a social robot, and the interaction capa-
bility is the most important factor for a social robot. There
have been several attempts on HRI of social robots in recent
years, and two representative examples are Kismet (devel-
oped by MIT in 2002) [6] and ASIMO (developed by the
Honda company in 2003) [7]. Breazeal and colleagues in

mailto:eyanhaibin@gmail.com


86 Int J Soc Robot (2014) 6:85–119

Fig. 1 Flow chart of human–robot interaction. The above and below
loops consist of the perception and action parts of the human–robot
interaction system. First, the perception part captures the raw signals
of the person made by using different sensors such as cameras, mi-
crophones, laser reading and so on. Then, some feature representation
methods are used to characterize the signatures of the raw signals cap-

tured. Based on the extracted features, some semantic understanding
tasks such as object tracking and recognition, speaker localization and
recognition, and scene understanding are conducted. Having obtained
the results of these semantic understanding tasks, the robot performs
some tasks such as face and body response to interact with the sub-
ject

the MIT Media Lab developed Kismet, which has a human-
like head to communicate with humans. Honda developed
ASIMO which also demonstrated human-like characteris-
tics to assist humans. More recently, a number of social
robots have been designed and already or potentially applied
to people’s everyday lives as companions, assistants, and
entertainment toys [8]. For example, RoboX [9] is a tour-
guide robot at the Swiss National Exhibition Expo.02, Sony
AIBO [10] has entertained humans to bring happiness, and
Kismet has assisted people for social interaction studies. In
this survey, we mainly focus on the interaction between a so-
cial robot and humans, also called human–robot interaction
(HRI) in social robots.

Generally, HRI of a social robot consists of three parts:
perception, action and an “intermediate” mechanism. In this
paper, perception refers to an environmental information ac-
quisition and analysis module; action means the responses
a robot made after it receives motor-control signals; and the
intermediate mechanism is equivalent to “a robot’s brain”
connecting perception and action to produce motor-control
signals according to the results from the perception analy-
sis module. Figure 1 shows the flow chart of a general HRI

framework in a social robot (the face image of the child is
from the public FG-NET Aging Database [11]).1 We can
see from this figure that the perceptual system dominates
the whole HRI because it acts as a bridge between a social
robot and the outside environment. Only the robot accurately
understands the surrounding world, it can give meaningful
responses to the correct subject. Due to high potentials and
great importance of a perceptual system, we review in this
paper state-of-the-art perception methods of HRI in social
robots from three aspects: feature extraction, dimensionality
reduction, and semantic understanding.2

1In this paper, we do not differentiate feature representation and fea-
ture extraction while there are some slightly differences. Generally
speaking, feature representation methods focus on extracting low-level
features and feature extraction methods aim at extracting middle- and
high-level features.
2In some social robots, semantic understanding is included in the in-
termediate mechanism. In this paper, we consider it as a part of the
perception system since it is indirectly fulfilled on the acquired signals
and the understanding can represent the outside environments that a
robot really wants to know.
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Features refer to the information conveyed by raw sig-
nals, such as energy, color, and texture. Generally speaking,
there are four classes of signals captured by a social robot:
visual-based, audio-based, tactile-based, and range sensors-
based. They are collected by cameras, microphones, tactile
sensors, and laser range finders, respectively. Semantic un-
derstanding includes advanced analysis on these extracted
features, such as sound localization, face detection, and
emotion recognition.3 In this paper, we review several typi-
cal semantic understanding examples such as object recog-
nition, object tracking, object segmentation, and speaker lo-
calization, and discuss their characteristics and limitations.4

The contributions of this work are summarized and high-
lighted as follows:

1. We have described a survey of perception methods for
HRI in social robots, which summarizes perception
methods from three aspects: feature extraction, dimen-
sionality reduction, and semantic understanding. More-
over, we have also presented several popular data sets
and published results to compare the advantage and dis-
advantages of different existing methods.

2. We have reviewed some representative social robots to
show how the perception methods work in existing social
robots, which can also effectively show their importance
for HRI.

3. We have pointed out the limitations of existing HRI sys-
tems and suggested some promising directions for future
work in this area.

The paper is organized as follows. Section 2 reviews
some representative social robots to show how the percep-
tion methods work in existing social robots. Section 3 sum-
marizes state-of-the-art perception methods. Moreover, sev-
eral popular data sets used in social robotics are analyzed
and compared in light of our analysis of HRI perception
methods, and a brief comparison of some published results
is also presented. Section 4 concludes the survey and sug-
gests challenges and future work.

2 Review of Representative Social Robots

While many challenges are encountered when applying so-
cial robots in real-world applications, there are still some so-
cial robots developed to assist our daily life, such as Kismet,
iCub, and Robovie, as well as some commercially available

3In some areas, emotion recognition is also called affective computing
and emotion is referred to as affective state. In this paper, we still use
emotion recognition because it is more commonly used in the litera-
ture.
4In this survey, we mainly focus on four widely used signals used in
existing social robots. Hence, other types of signals such as GPS, tem-
perature and pain of humans will not be discussed.

social robots including Sony’s AIBO and NEC’s PaPeRo. In
this section, we introduce some representative social robots
and show how the perception methods work in these robots.
Table 1 compares their basic functions and characteristics
(the sensor and the core algorithm).5 These methods enu-
merated in this table can work in real-time and are fully au-
tonomous.

2.1 Robots as Test Subjects

2.1.1 Social Development

For the research of social development, infants and young
children are the popular studied subjects. Hence, social
robots as test subjects are generally designed as infant-like
or child-like, which have some learning skills such as imita-
tion and joint attention.

Cog [12] is a representative robot, which is developed
for human cognition and developmental psychology. It has
22 DOFs distributed on the arms, torso, neck, and eyes. This
robot can manipulate objects, show head postures, and move
eyes. To achieve these goals, visual signals were adopted for
face detection and object segmentation [12, 13].

iCub is another representative social robot, and its ob-
jective is to offer a platform for cognition investigation. It
comes from RoboCub, a 5-year project funded by the Eu-
ropean Commission through Unit E5 “Cognitive Systems,
Interaction & Robotics” [14]. iCub is particularly designed
as a 3–4 years old child. It can interact with the outside envi-
ronments with the head, neck, arms, torso, and legs. For ex-
ample, iCub can follow objects by orientating its head and
eyes, dexterously manipulate objects with its hands, crawl
and sit up like a child [15]. Human detection, object recogni-
tion, and sound localization were implemented in this robot,
respectively [16–18, 226].

2.1.2 Social Interaction

An important way to learn new knowledge from environ-
ments is social interactions. To investigate social interac-
tions between humans, a natural approach is to design
human-like robots. According to the pre-defined personality,
robots make reasonable responses through speech or body
languages when interacting with humans.

Kismet [19], a well-known robot head, is designed to in-
vestigate social interactions between caregivers and babies.
It interacts with humans through facial expression, body
gesture, and vocal babbles. Its perception abilities include

5Please note that the core algorithm refers to the approach
used for some semantic understanding tasks such as detec-
tion/classification/prediction in HRI by using the extracted features.
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Table 1 Taxonomy of perception methods on existing representative social robots

Social robot Sensor Feature Semantic understanding task Core algorithm

Kismet camera motion, color [20, 21] object detection/recognition nearest neighbor

microphone pitch, energy [22] emotion recognition Gaussian mixture model

Cog camera intensity [13] face detection template matching

camera motion [12] object segmentation correlation analysis

iCub camera intensity, shape [16] human and object detection mutual information

camera SIFT-based [17] object recognition hough transform + least-mean-squares

microphone ITD, ILD, notches [18] sound localization mapping

GRACE laser reading shape [27] people in line perception nearest neighbor

camera color, shape [28] human tracking Kalman filter

microphone IBM’s ViaVoice [27] speech recognition IBM’s ViaVoice

Robox laser reading raw data [30] motion detection nearest neighbor

camera shape [30] object tracking Kalman filter

camera color [31] face detection Heuristic filter

microphone Viterbi-based [9] speech recognition hidden Markov model

Reckham camera Harr-like [32] face detection boosting

camera learning-based [33] face recognition nearest neighbor

camera color, shape, motion [33] human tracking condensation

camera color, shape [33] gesture classification condensation

Robovie camera color, learning-based [34] gesture recognition nearest neighbor

laser reading human trajectories [35] human behavior analysis support vector machine + k-means

laser reading raw data [35] human tracking clustering and particle filter

RUBI microphone STBF-based [37] emotion recognition boosting

camera Gabor-based [38] facial expression recognition boosting + support vector machine

ARMARIII camera DCT-based [42] face verification nearest neighbor

camera intensity [43] speaker tracking particle filter

microphone time delay [43] speaker tracking particle filter

microphone learning-based [44] sound classification hidden Markov model

camera intensity, shape [45] head pose estimation Neural Network

camera color, intensity [46] human gesture recognition Neural Network + hidden Markov model

PaPero camera shape, 3D model [48] face/eye detection, recognition template match

microphone fiter banks [49] speech recognition hidden Markov model

Huggable tactile calculation-based [50] touch classification Neural Network

MEXI camera color, intensity [13, 52] face detection template match

microphone frequency, energy [53, 54] emotion recognition fuzzy logic

ROMAN microphone raw data [56] sound localization beam-forming

microphone energy [56] object tracking particle filter

camera feature point [57] emotion recognition facial action coding system

BARTHOC microphone pitch, energy [59] emotion recognition bayes

microphone temporal shift [60] voice detection cross-power spectrum phase

camera haar-like [60] human tracking boosting

BIRON laser reading raw data [62] human tracking nearest neighbor

camera color, haar-like [62, 63] human tracking boosting

microphone time delay [63] sound localization cross-power spectrum phase

Fritz camera haar-like [64] face detection and tracking boosting + Kalman filter

microphone time delay [64] speaker localization cross-power spectrum phase
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object detection, object recognition, and emotion recogni-
tion [20–22]. Kismet has been a popular prototype in many
research groups to develop their social robots [23, 24].

Besides human-like appearances, MIT Media Lab in col-
laboration with Stan Winston Studio and DARPA has devel-
oped a robot named Leonardo with animatronic characteris-
tics [25]. Leonardo has a highly mobile face and body, and
can learn new skills and cooperate with users by social inter-
actions. It is able to remember the users, execute the verbal
commands, and share attentions. There are several percep-
tion abilities on this robot, such as face recognition, speech
recognition, object recognition and tracking, and tactile per-
ception.

2.2 Socially Assistive Robotics

There are some socially assistive robots which provide
services to humans in public places or domestic environ-
ments [26]. Since it is closely related to people’s lives, more
recognition abilities and social cues are required in these
robots. Moreover, due to the difference between the public
places and the domestic environments, the perception tasks
are also distinct.

2.2.1 Robots in Public Places

Robots in pubic places refer to the robots used in muse-
ums, supermarkets, shopping centers, and childhood edu-
cation centers. Different places require different tasks. For
example, if the robot is applied in museums, it is used to in-
troduce the exhibits to humans; when it is applied for child-
hood education, it is used to help teacher to organize or teach
children.

GRACE is a representative robot which is used in pub-
lic places. It firstly appeared in AAAI 2002 to perform
the Robot Challenge, where the tasks were to navigate
the registration desk of the conference center, come to the
conference room, and give a presentation [27]. In AAAI
2005, GRACE’s task was extended to find a person [28].
In both AAAI 2002 and 2005, GRACE successfully com-
pleted speech recognition and human tracking in real-world
environments.

RoboX, a tour-guide robot, appeared at the Swiss Na-
tional Exhibition Expo.02 [9], and Rackham, another tour-
guide robot, appeared in Mission BioSpace exhibition [29].
Their task is to present exhibits for tourists. To implement
such task, they need to navigate environments, introduce
themselves, ask visitors to choose a visiting destination,
and give the corresponding presentations. The perception
tasks include motion detection and tracking, face detection
and recognition, speech recognition, and gesture classifica-
tion [30–33].

Robovie is a robot with different functions. Robovie II
aims to help the elders shop in the Apita-Seikadai super-
market in Kyoto, and Robovie III aims to provide directions
for people and invite customers to visit the shop. Robovie
II includes face and gesture recognition to recognize human
faces and hand poses of the users. Robovie III contains hu-
man behavior analysis to identify the users’ walking styles,
and directions [34, 35].

RUBI is a three-feet tall robot. It consists of a head, two
arms and touch screen, and is designed to assist teachers for
early childhood education. RUBI was set at the Early Child-
hood Education Center at the University of California, San
Diego, interacting with the children with 18–24 months old.
It can teach children numbers, colors and some basic con-
cepts, and schedule proper lessons and assist teachers ac-
cording to the children’s emotional responses [36]. It con-
tains some perception functions such as face detection and
tracking, and emotion recognition [37, 38].

2.2.2 Robots in Domestic Environments

Robots in domestic environments mean the robots used at
home. Christensen [39] has summarized three domestic en-
vironments: entertainment, everyday tasks, and assistance
to the elder and handicapped. Lohse and colleagues [40]
have proposed a functionality-based categorization includ-
ing health care, companionship, entertainment, toy, pet, and
personal assistants. Different from the robots which are used
in various and different public places, the robots in domestic
environments are generally employed at home. Hence, their
users are pre-specified.

ARMAR III, developed in University of Karlsruhe, can
execute tasks in household environments [41]. The robot can
open and close a dishwasher, pick up cups and dishwares,
place them anywhere within reach, and plug an electrical ap-
pliance into the wall in a kitchen [42–46]. Moreover, it can
interact with humans by using speech and gesture recogni-
tion. To achieve these goals, ARMAR III has a head, two
arms, two hands, a torso and a mobile platform, to perform
human verification and tracking, head pose estimation, and
sound classification.

PaPeRo is a social robot designed by the NEC Corpo-
ration and has been commercially available. It is a per-
sonal robot which can care for children and provide assis-
tance to elders. Several applications were developed: speech
conversation, face recognition, touching reaction, roll-call
and quiz game designing, communications through phone or
PC, learning greetings, and story telling [47–49]. Moreover,
speakers and LEDs are used to produce speech and songs
and display PaPeRo’s internal status, respectively.

Huggable [50] was developed by the personal robots
research group from the MIT media lab. Different from
the above described robots, it uses tactile-based signals for
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healthcare, education, and social communication applica-
tions. Huggable has the appearance of Teddy bear, and is
covered with a full-body sensitive skin containing more than
1500 sensors. Hence, it can detect and recognize pressure
from the outside world. In addition, cameras and micro-
phones are used to sense the surrounding environment. After
semantically analyzing the collected data, the robot can con-
vey a personality-rich character through some gestures and
expressions. Moreover, it can be remotely controlled and ap-
plied to monitor the elder and children through a web inter-
face.

2.3 Robots for Studying Human–Robot Interaction

HRI plays an important role on the above robots even if
they are developed for different applications. HRI can help
a robot to learn new knowledge, obtain useful information,
and attract persons. Motivated by these significant roles,
more and more researchers have focused on HRI in social
robots and developed several social robots, such as MEXI,
ROMAN, BARTHOC, and Fritz for HRI studies.

MEXI [51] is a robot head to detect faces and recog-
nize emotions. It responds to faces and emotions with differ-
ent facial expressions such as smiling, sulking, and looking
around [52–54]. Additionally, it uses a commercially avail-
able software to respond with speech. Similar to MEXI, RO-
MAN [55] is another humanoid robot head. ROMAN can
follow the detected human [56] using its eyes and neck, and
non-verbally communicate with humans using facial expres-
sions [57].

BARTHOC and BARTHOC Junior (Jr) are two upper-
body humanoid robots for studying HRI [58]. The main dif-
ferences between them include the sizes and the weights.
BARTHOC mimics adult person, and BARTHOC Jr im-
itates a four-year old child. Both of them can perform
emotion recognition, voice detection and human track-
ing [59, 60]. BIRON is another robot developed by Biele-
feld University [61], and has ported its several basic func-
tions to BARTHOC such as human tracking [62, 63].
Since the appearances of BARTHOC and BARTHOC Jr
are more human-like than that of BIRON, speech-based
emotion recognition has been developed and applied in
BARTHOC Jr. With the recognized results, the robot can
mirror human’s affective states by its own facial images.

Fritz [64] is another body-based social robot developed
for HRI. It was originally developed to play soccer, and is
now a platform to study multimodal communication with
humans. It has perception abilities such as face detection,
face tracking, and speaker localization. By using body ges-
tures, facial expressions and synthesized speech, the robot
can attract person’s interest on communication.

Besides the above mentioned robots, there are several
other social robots which can also implement semantic

understanding task, such as Cherry and Petra [65–67],
CERO [68, 69], Keepon [70], Paro [71], Probo [72–74],
ASIMO [7], iCat [75, 76], AIBO [10, 77], Albert Ein-
stein [78], WE-4RII [79–81], and Maggie [82, 83]. More-
over, some of them have been commercialized. Table 2 lists
some properties of these social robots, in which the sensors,
semantic understanding tasks, appearances, and functions
are presented.

To allow robot researchers to focus on the specific fields,
some companies and research institutions have developed
the robot platforms from both hardware and software as-
pects. These robot platforms can implement several basic
functions. For example, HOAP series from Fujitsu [84],
QRIO from Sony [85], HUBO (KHR-3) from KAIST [86],
and HRP series from Kawada Industries [87] are humanoid
robot platforms. While they are of different appearances
and sizes, their basic functions are similar. These robots
have perception abilities like object recognition and track-
ing, sound localization and recognition. QRIO can also rec-
ognize the users’ voice and face. Another two robot plat-
forms are PR2 from Willow Garage [88] and YouBot from
KUDA [89]. They have been commercially available now.
PR2 is designed as a personal robot with mobility. It can
navigate human environments and manipulate some objects
in the environments. For YouBot, it consists of a manip-
ulator and a mobile base. Hence, it has mobility and can
grasp some objects. Based on these developed robot plat-
forms, several perception tasks such as emotion recognition
and gesture recognition can be included for HRI study.

2.4 Discussion

In this section, we reviewed several representative social
robots according to their different applications including
robots as test subjects, robots providing social assistance,
and robots for studying HRI. We mainly focused on the
employed perception methods on HRI of these robots. As
Goodrich and Schultz [90] defined: “Human–Robot Inter-
action (HRI) is a field of study dedicated to understand-
ing, designing, and evaluating robotic systems for use by or
with humans”. A significant challenge of the study is how to
achieve natural communication between humans and robots.
To address this, one primary and key factor is using different
perception methods in HRI.

As we described above, different social robot applica-
tions affect the design of perception systems. For the robots
as test subjects and for studying HRI, they are usually used
in lab environments which are much simpler than the real-
world environments, and the perception tasks mainly in-
clude human detection and tracking, face detection, recog-
nition, and tracking, gesture recognition, sound localization
and recognition, and emotion recognition. In addition, when
humans use objects such as toys to interact with the robots,
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Table 2 Properties of some other social robots

Application Social
robot

Sensor Semantic understanding task Appearance Function Commercialized

Public service Cherry
and Petra

camera,
touch screen

face recognition, user interface mobile base
(AmigoBot and
PeopleBot)

to fetch, carry, and
guide in offices

No

CERO microphone,
PDA

speech interface, mobile, networked
PDA-based interface

mobile base
(Nomadic Super
Scout platform)

to fetch and carry
in offices

No

Keepon camera,
microphone

face and colorful toys detection and
object tracking, rhythms
recognition

a small yellow
snowman with a
black cylinder

to study social
development in
research institutes,
autism therapy in
care centers, and
play with children
in a playroom

Yes

Paro microphone,
tactile,
temperature,
posture

sound localization, speech
recognition, touch and elevation
detection

a baby harp seal
with pure white
fur

to help the elderly
or children’s
therapy in
hospitals or
nursing homes

Yes

Probo camera,
microphone,
sensitive
skin

face and object detection, sound
localization and identification,
touching detection and recognition

a imaginary
green elephant
with a touch
screen

to communicate
with children in
hospitals

No

ASIMO camera,
microphone,
tactile

face recognition, human tracking,
sound discrimination, touch sensing

whole-body
humanoid robot

to provide service
in public places

No

Domestic service iCat camera,
microphone,
tactile

face recognition, head tracking,
sound localization, speech
recognition, touch sensing

a cartoon cat
without mobile
ability

to be a family
companion to
control in-home
devices

Yes

AIBO camera,
microphone,
tactile

face and objects detection and
recognition, speech recognition,
user’s voice detection and
recognition, touch sensing

a robot dog to entertain users
and used as a
research platform

Yes

HRI Albert
Einstein

camera,
microphone

face detection, tracking and
identification, object tracking,
behavior and facial expression
recognition, speech recognition

robot head to study HRI No

WE-4RII camera,
microphone,
force sensor

colorful object detection and
tracking, sound localization,
touching detection and recognition

upper-body
humanoid robot

to study HRI No

Maggie camera,
microphone,
tactile
sensor

human detection and tracking, face
recognition, speech processing,
touching sensing

whole-body
humanoid robot

to study HRI No

Robot platform PR2 camera,
laser

object resonation whole-body
humanoid robot

to be a robotic
platform

Yes

YouBot camera,
range sensor

object resonation mobile base with
a manipulator

to be a robotic
platform

Yes

the robots should be able to detect and track the objects. If

humans want to have physical contacts with the robots, the

robots should also have the ability of tactile detection and

classification. For these perception tasks, visual signals ac-

quired by cameras, audio signals acquired by microphones,

and tactile signals acquired by tactile sensors are usually em-

ployed. Since the number of users under such scenarios is

limited, the environment is comparatively simple, and the

robots normally have no mobility, the extracted features and

semantic understanding methods are usually simple.
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For socially assistive robotics, since they could be used
in home, offices, or hospitals, the extracted features and se-
mantic understanding methods are normally different from
those used in robots as test subjects and for studying HRI.
For example, if the robot is applied in a shopping center, its
human tracking system usually requires to simultaneously
track several persons rather than only one user. Usually, due
to the complex application environments like uncontrolled
illumination and background, it will need more robust fea-
tures and semantic understanding methods to help the robot
successfully fulfill the tasks. In addition, because of the mo-
bility of several socially assistive robotics, besides visual,
audio, and tactile signals, laser reading acquired by range
finders is another useful modality to interact with the out-
side environment for the robots.

Generally speaking, the selection of sensors and feature
extraction methods depend on the semantic understanding
tasks, and semantic understanding tasks depend heavily on
the application scenarios of robots. For instance, the seman-
tic understanding tasks for the robot used in a museum and
that used in a childhood education center are different due
to different objectives. Correspondingly, the sensors and fea-
ture extraction methods are also different for distinct seman-
tic understanding tasks. Four basic rules are applied to select
the sensors and extract features in social robots: (1) high sta-
bility, (2) fast speed, (3) high accuracy, and (4) high auton-
omy.

3 Perception Methods in HRI

State-of-the-art perception methods of social robots can be
mainly classified into three steps: feature extraction, dimen-
sionality reduction, and semantic understanding. The aim
of feature extraction is to convert the raw signals from
sensors to feature descriptors for subsequent understand-
ing tasks. Four widely used signals including visual-based,
audio-based, tactile-based, and range sensors-based are em-
ployed for feature extraction. The aim of dimensionality re-
duction is to reduce the complexity of computation after fea-
ture extraction. The aim of semantic understanding is to in-
fer the objects or human behaviors from the extracted fea-
tures. Typical semantic understanding tasks include object
detection and recognition, human tracking and identifica-
tion, speech recognition, emotion recognition, and touching
detection and recognition.6 We present some representative
feature extraction and dimensionality reduction methods and
semantic understanding examples in this section. The main
abbreviations used in this section are listed in Table 3.

6Please note that semantic understanding presented in this paper refers
to the interaction between humans and robots, and hence other tasks
such as navigation in mobile robots and interaction between robots and
the environments are not included in this paper.

Table 3 Main abbreviations used in the paper

Abbreviation Full name

LBP local binary pattern

SIFT scale invariant feature transform

AHT adaptive hough transform

EOH edge orientation histograms

EMD elementary motion detector

PCA principle component analysis

LDA local discriminant analysis

LPP locality preserving projections

DCT discrete cosine transform

MFCCs mel frequency cepstral coefficients

ITD interaural time difference

IID interaural intensity difference

ISD interaural spectral difference

ICA independent component analysis

HMM hidden Markov model

GMMs Gaussian mixture models

3.1 Feature Extraction

As shown in Table 1, four kinds of sensors including cam-
eras, microphones, tactile sensors, and laser range finders
are widely used for signal acquisition in HRI. Hence, we
review state-of-the-art feature extraction methods based on
these four categories.

3.1.1 Visual-Based Methods

Visual signals have been widely used in social robots to
achieve semantic understanding tasks such as face detec-
tion and recognition, human tracking and identification, fa-
cial expression recognition, and gesture classification. The
reason why visual signals are popular in social robots is that
most information (∼75 %) received everyday for human be-
ings are visual signals [91]. Motivated by this fact, most so-
cial robots use visual signals to conduct human-like percep-
tion. According to the camera types, visual signals consist of
2D-based and 3D-based. 3D visual signals are usually col-
lected by Kinect [92] or stereo cameras such as the Bum-
blebee [93], and have become an important modality in HRI
perception recently.

1 2D-based

A large number of 2D visual-based feature extraction
methods have been proposed in social robots. Some of these
visual features could reflect characteristics of objects such as
color, shape, and texture of the raw signals acquired, which
are closely related to objects’ attributes and could be named
attribute-based features. Some of these features are designed
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based on algorithms which could be called algorithm-based
features such as filtered feature and Haar-like feature. Dif-
ferent applications usually require different visual features.
For example, color is effective for object detection because
objects to be detected usually demonstrate different color
distributions; shape is useful for human detection and track-
ing as the shape information of humans and other objects
are exclusive; texture plays an important role in face recog-
nition since human faces have a specific texture structure
compared with other objects.

A. Color
Color is an important feature to represent objects, and

two typical application examples include color-based ob-
ject detection and color-based face detection. Since differ-
ent color demonstrates different characteristics, the key to
extract color feature is how to effectively employ the infor-
mation of RGB (red, green, and blue) channels to better de-
scribe different colors. In Kismet’s active vision system [20],
it used some specified color transformation functions on
RGB channels to extract color saliency features [94]. In
MEXI’s vision processing system [51], it applied region
growing and merging method to obtain similar color re-
gions for segmentation of objects of interest. While color
is an effective feature to represent objects, it is easily af-
fected by changing illumination. To address this problem, a
large number of methods have been proposed. Jensen and
colleagues [9] normalized the green and blue channels with
the red channel, and then detected skin-color regions by se-
lecting certain ranges of the color features in different color
channels. Darrell et al. [95] applied a log color-opponent
space to localize skin-color regions by using a Gaussian
probability model, which is robust to shade from illumina-
tion. Wang et al. [96] employed a YCbCr color space to un-
correlate the intensity and chrominance, such that skin color
is clustered into a small area even under a poor lighting con-
dition. These examples have clearly shown the efficacy of
color for feature extraction in social robots.

B. Intensity
In some applications, color may not be stable due to poor

acquisition conditions. Intensity is another popular visual
feature and has also been widely used in many social robots.
Since color cameras are widely used nowadays, it is neces-
sary to design an appropriate color transformation space to
convert color signals to gray-scale ones, and the gray-scale
value of each pixel in an image is referred as an intensity
feature. There are a number of color transformation spaces
and some of them have been successfully applied to social
robots [20, 34, 94–96]. Please refer to [97, 98] for details.

Having obtained the gray-scale signals, intensity can
be employed for feature representation. Ruesch and col-
leagues [99] utilized Mexican hat wavelets with different
sizes in gray-scale images to extract conspicuous regions.
Chen and Tiddeman [100] exploited horizontal and vertical

integral projections to detect human’s eyes by using the in-
tensity information since the changing of the pixel intensity
around the eyes is clearer than that of other regions in faces.
Disparity information can also be obtained by using the in-
tensity features, and has been used for object segmentation
in some social robots [95, 101].

C. Visual Texture
Visual texture is an important property for visual signals,

and different objects usually demonstrate different texture
characteristics. A number of texture representation methods
have been proposed for texture analysis and classification,
and we believe that most of them can be extended to fea-
ture extraction in social robots. In this subsection, we only
present several representative ones.

Song et al. [102] presented an image ratio feature repre-
sentation method for facial expression recognition, which is
robust to various illuminations. Given a point p on a patch
j , the expression ratio at this point is defined as

� = I ′(u, v)p(j)

I (u, v)p(j)
(1)

where (u, v) is the image coordinate of p, I ′(·) and I (·)
denote the intensity of the expressional and neutral images,
respectively.

Local binary pattern (LBP) is another popular texture de-
scriptor for feature representation. Inspired by Wang and
He’s work [103], Ojala et al. [104] proposed a novel LBP
feature representation method for face recognition. The ba-
sic idea is as follows: for each pixel, its 8-neighborhood
pixels are thresholded into 1 or 0 by comparing them
with the center pixel. Then the binary sequence of the 8-
neighborhoods is transferred into a decimal number (bit pat-
tern states with upper left corner moving clockwise around
center pixel), and the histogram with 256 bins of the pro-
cessed image is used as the texture descriptor. To capture
the dominant features, Ojala et al. [105] extended LBP to a
parametric form (P,R), which indicates that P gray-scale
values are equally distributed in a circle with radius R to
form circularly symmetric neighbor sets. To better charac-
terize the property of texture information, uniform pattern
is defined according to the number of spatial transitions that
are bitwise 0/1 changes in the calculated binary values. If
there are at most two bitwise transitions from 0 to 1 or vice
versa, the binary value is called a uniform pattern.

Recently, Jin et al. [106] developed an improved LBP
(ILBP) method. Different from LBP, ILBP makes better use
of the central pixel in the original LBP, and takes the mean
of all gray values of elements as the threshold value. For
the newly generated binary value of the central pixel, it was
added to the most left position of the original binary string.
The corresponding decimal value range would be changed
from [0,255] to [0,510] for a 3×3 operator. Figure 2 shows
the basic ideas of LBP and ILBP. Since LBP and ILBP are
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Fig. 2 The LBP and ILBP operators where (a) original image patch
(b) results of LBP operator (c) results of ILBP operators

robust to illumination changes, they have been widely used
in many semantic understanding tasks such as face recogni-
tion and facial expression recognition [107–109].

More recently, Zhao and Pietikäinen [110] presented a
spatiotemporal LBP that extends the original LBP to three
orthogonal planes including XY , XT and YT for facial ex-
pression recognition, where X and Y are the width and the
height of each face image, and T is the length of the image
sequence. Then, the histogram equation was modified to

Hb,c,j,i =
∑

x,y,t

I
(
fj (x, y, t) = i

)
,

i = 0, . . . , nj − 1; j = 0,1,2, (2)

where nj is the number of different labels produced by LBP
in the j th plane, b and c are the indexes of rows and columns
of image pixels.

Similar to LBP and ILBP, census transform (CT) and
modified census transform (MCT) were also proposed for
texture representation. The only difference between MCT
and ILBP is that their orders of the generated binary strings
are different. More details can be found in [96, 111, 112].

In addition to LBP and its extensions, Scale Invariant
Feature Transform (SIFT) feature is another important local
feature for texture description, and has been widely used in
object recognition, robotic navigation, video tracking, and
image matching [113]. The key idea of this method is to
transform an image into a large collection of local feature
descriptors that densely cover the image over the full range
of scales and locations, such that it can detect local feature
points that are invariant to translation, scaling, rotation, and
small distortions [114].

There are four main steps in the SIFT method: scale-
space extrema detection, keypoint localization, orientation
assignment, and keypoint description. Scale-space extrema
detection is to identify potential interest points that are in-
variant to varying scales and orientations. A difference-of-
Gaussian function is generally applied, and the local ex-
trema of function at different scales are potential interest

points. Then, for each keypoint candidate, its accurate loca-
tion is determined by using interpolation of nearby data, and
the one with low contrast or poorly localized along an edge
is removed. The remaining points are selected as keypoints.
To obtain robust descriptors for local affine distortion, each
keypoint is assigned one or more orientations based on a gra-
dient orientation histogram computed in the neighborhood
of the keypoint. Lastly, the keypoint descriptor can be ob-
tained by using the information of local image gradients that
are measured at the selected scale in the region around each
keypoint. For the details, please refer to [113].

D. Shape
Shape is another important feature for visual signal rep-

resentation, especially for facial image analysis and human
detection. For example, Tian et al. [115] extracted facial
components including lip, eyes, brow, cheek, and furrow as
human face features. A representative shape descriptor is
the well-known snake model, which has been widely used
in many computer vision applications. The snake model is
an energy-minimizing spline, and the energy is represented
by [116]

E∗
snake =

∫ 1

0
Esnake

(
v(s)

)
ds

=
∫ 1

0
Eint (

(
v(s)

) + Eimage
(
v(s)

) + Econ
(
v(s)

)
ds

(3)

where v(s) = (x(s), y(s)) is the position of a snake, Eint is
the internal energy of the spline due to bending, Eimage rep-
resents the image forces, and Econ gives rise to the external
constraint forces. With the cooperation of the forces repre-
sented in energy function, a snake can capture features like
lines and edges. After initializing snakes with facial features,
they lock onto the capture region surrounding features and
localize them accurately.

Adaptive hough transform (AHT) is another shape de-
scriptor to characterize human cheeks and chins. Compared
with the original hough transform (HT), AHT achieves bet-
ter performance in terms of both storage and computational
requirements. AHT exploits the idea of a flexible iterative
“coarse to fine” accumulation and search strategy based on
small accumulator array. In Illingworth and Kittler’s work,
identifying line and circular segments in images were de-
scribed [117].

Recently, edge orientation histograms (EOH) has been a
popular feature representation method in object recognition
and face detection. For example, Levi and Weiss presented
three EOH features [118]. The first one was defined as

Ak1,k2(R) = Ek1(R) + ε

Ek2(R) + ε
(4)
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Fig. 3 Sobel convolution
kernels where (a) vertical
direction (b) horizontal
direction

where Ek(R) = ∑
(x,y)∈R ψk(x, y), R is a subwindow in an

image, ψk(x, y) is the value of the kth bin based on a prepro-
cessed image by the Sobel operator [118], ε is a smoothing
term, in which R’s orientation was captured. The second one
represented dominant orientation features that were com-
puted by Bk(R) = Ek(R)+ε∑

i Ei (R)+ε
. When there is a dominant

edge orientation, features Bk(R) are better than Ak1,k2(R).
The third one was the symmetry feature to capture symme-
try of an image, and it was defined as

Symm(R1,R2) =
∑

k∈K |Ek(R1) − Ek(R2)|
size of (R1)

(5)

where R1 and R2 are rectangles of the same size and oppo-
site positions of a symmetry axes.

Edge is a useful technique to describe the shape infor-
mation of objects, and a number of edge detection oper-
ators have been proposed for shape representation. Here,
we present one representative method: Sobel operator. By
using the Sobel operator on gray-scale images, the magni-
tude response in horizontal and vertical derivations can be
captured. The detailed procedure is to implement convolu-
tion between a 3 × 3 kernel and the original image in both
the horizontal and vertical directions. The used kernels are
shown in Fig. 3 [119]. Sobel operator has been applied in
normalized head images to extract features for head pose
estimation [45].

E. Motion
Motion features have been widely used for object detec-

tion, tracking and recognition [127–130]. Optical flow is a
typical motion feature, which is the distribution of velocities
of brightness patterns’ movement in an image [120]. Many
optical flow methods have been proposed for motion repre-
sentation. Brox et al. [121] presented an method to compute
the optical flow by minimizing an energy function expressed
as E(u,v) = EData(u, v) + αESmooth(u, v), where the two
terms are related to the appearance and smoothness of the
image, respectively, and α controls the regularization term.
Bab-Hadiashar and Suter [122] proposed two robust optical
flow methods by using the Least Median Squares and Least
Median Squares Orthogonal Distances, to detect the outliers
and solve the inlier group, respectively.

In addition to optical flow, Kismet [20] used a threshold
function to compute the absolute difference between con-
tinuous frames in a video sequences, and the positions with
high intensity values in a binary map were represented as
motion features. iCub explored motion information in its at-
tention system [99], where motion was detected by using a

biologically plausible model called elementary motion de-
tector (EMD) [123]. There are five parts in EMD which
are photoreceptors, high-pass filters, low-pass filters, mul-
tipliers, and subtractions, where high-pass and low-pass fil-
ters are used to remove constant illumination information
from input visual signals and delay signals, and multipliers
are used to correlate non-delayed and delayed signals from
high-pass and low-pass filters.

There are several surveys of motion feature extraction
methods [124–126], where Cedras and Shah [124] reviewed
the development of motion detection and recognition in
computer vision, Moeslund and Granum [125] investigated
human motion detection, and Wang and Singh [126] sur-
veyed motion analysis from the video processing aspect.
Without loss of generalization, we believe most of these
methods can be generalized and applied to social robots.

F. Filtered Feature
There are some filtering features used in visual feature

extraction, such as discrete cosine transform (DCT) and Ga-
bor wavelet. DCT decorrelates the original data by using the
following transformation [146]

F(u, v) = 1√
MN

α(u)α(v)

M−1∑

x=0

N−1∑

y=0

f (x, y)

× cos

(
(2x + 1)uπ

2M

)
× cos

(
(2y + 1)vπ

2N

)
(6)

where α(ω) = 1√
2

when ω = 0 and 1 otherwise, u =
0,1, . . . ,M , v = 0,1, . . . ,N , f (x, y) is the image intensity
function, and M × N is the size of the image.

The key point of DCT is the selection of DCT coeffi-
cients because these coefficients have distinct discriminative
power. Particularly, there are three parts of DCT coefficients:
low frequencies containing illumination information, mid-
dle frequencies reflecting image content information, and
high frequencies representing noise and image details. In
Dabbaghchian and colleagues’ work, they applied a data-
dependent approach to search discriminative coefficients for
feature representation [146]. DCT features have been used
in local feature-based face recognition [147].

Gabor wavelet is a popular feature extraction method for
visual signal representation, and discriminative information
is extracted by convoluting the original image with a set of
Gabor kernels with different scales and orientations. A 2-D
Gabor wavelet kernel is the product of an elliptical Gaussian
envelope and a complex plane wave, defined as [148, 149]:

ψμ,ν(z) = ‖kμ,ν‖2

σ 2
e
− ‖kμ,ν‖2‖z‖2

2σ2
[
eikμ,νz − e− σ2

2
]

(7)

where μ and ν define the orientation and scale of the Gabor
kernels, z = z(x, y) is the variable in a complex spatial do-
main, ‖ · ‖ denotes the norm operator, and the wave vector
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Fig. 4 Real part of Gabor kernels at eight orientations and five
scales [148]

kμ,ν is defined as follows:

kμ,ν = kνe
jφμ (8)

where kν = kmax/f
ν , φμ = πμ/8, kmax is the maximum

frequency, f is the spacing factor between kernels in the
frequency domain, and σ is the standard deviation of Gaus-
sian envelope determining the number of oscillations. For a
given image I , the convolution of I and a Gabor kernel ψμ,ν

is defined as

Oμ,ν(z) = I (z) ∗ ψμ,ν(z) (9)

where Oμ,ν(z) is the convolution result corresponding to the
Gabor kernel at orientation μ and scale ν. Figure 4 shows
the real part of the Gabor kernels.

Gabor-based features have shown good performance in
face recognition and facial expression recognition
[150, 151]. Usually, five spatial frequencies and eight ori-
entations are used, and there will be a total of 40 Gabor
kernel functions employed on each pixel of an image. Its
computational cost is generally expensive. Moreover, only
the magnitudes of Gabor wavelet coefficients are used as
features because the phase information are sensitive to inac-
curate alignment. Besides face-related applications, Gabor-
based features have been used to detect directional saliency
features in iCub’s attention system [99].

G. Haar-Like Feature
Haar-like features are originally defined as the difference

of the sum of pixels in two rectangular areas. One of the pi-
oneering studies on Haar-like features is Viola and Jones’
work [32]. In their work, three kinds of features were used
for Haar-like feature extraction, including two-rectangle,
three-rectangle, and four-rectangle features, as shown in
Fig. 5. To speed up the computation, the integral image was
presented to be an intermediatete representation of an image
to conveniently provide the sum of the pixels.

Besides the conventional Haar-like features, Pavani et
al. [152] proposed an extension of Haar-like features which

Fig. 5 Four examples of Haar-like features [32]

is optimally weighted rectangle and contains more dis-
criminative information. They proposed a method to calcu-
late Haar-like features depending on Papageorgiou and col-
leagues’ work [153]:

f =
k∑

i=1

w(i) · μ(i) (10)

where f is the value of a Haar-like feature, k is the num-
ber of rectangles generated from the image, μ(i) is the mean
pixel intensity of ith rectangle of the image, and w(i) is the
weight of the ith rectangle, respectively.

For the weights of the conventional Haar-like features,
they are usually fixed and satisfy the following require-
ments:

k∑

i=1

w(i) = 0 (11)

For example, the weights of three kinds of features used in
Viola and Jones’ work [32] are sequentially assigned to 1
and −1; 1, −2, and 1; 1, −1, 1, and −1. However, for the
extension of Haar-like features in [152], different rectangles
are highlighted with different weights. To calculate opti-
mal weights of the enhanced Haar-like features [152], brute-
force search (BFS), genetic algorithm (GA), and Fisher’s
linear discriminant analysis (FLDA) were applied, respec-
tively.

Considering the importance of dynamic characteristics in
video-based face analysis, Yang et al. [154] designed a dy-
namic Haar-like feature representation method to extract a
set of Haar-like features in a temporal window which con-
tains a sequence of images to reflect different facial expres-
sions. Then, the dynamic feature unit was coded into a bi-
nary pattern. By means of binary pattern, the feature vector
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is changed into a scalar feature, and the encoded feature is
robust to noise due to the statistical distribution.

H. Discussion
In some HRI scenarios, humans use simple toys to inter-

act with robots. These toys usually have special shapes such
as circles or rectangles, and bright colors such as red, yel-
low, or green. To detect these objects, color and shape fea-
tures can be used. If these objects are moving, motion fea-
tures can be adopted. Moreover, attribute-based features can
be employed to human-related tasks because human faces
have unique colors and textures, and human bodies have spe-
cial shapes compared with other objects. Generally speak-
ing, for the objects that demonstrate unique characteristics
in their color, shape, texture, or motion, attribute-based fea-
ture is a good choice to be utilized to represent the objects.
In addition, attribute-based features have the advantages like
low-CPU use, easy implementation, and simplicity of de-
bugging for developers, hence, they have been widely used
in many perception tasks such as object detection and track-
ing, face detection and tracking, and human detection and
tracking that are useful to achieve natural and effective HRI.
As discussed above, color features have been successfully
applied in object detection and face detection of Kismet and
MEXI, and intensity and motion features have been applied
in iCub’s attention system. While texture and shape features
have not been used in the above surveyed robots, they have
also been successfully applied in face recognition, object
and human detection, and facial expression recognition, and
we believe that they can be also employed in social robots.

For algorithm-based features, we briefly introduced DCT-
based, Gabor wavelet-based, and Haar-like-based features.
Different from attribute-based features, these features are
not directly related to the attributes of original signals, but
demonstrate better discriminative abilities in some real ap-
plications. In real applications, there are many challenging
conditions such as large illumination variations and com-
plex backgrounds where the performance of attribute-based
features are usually worse. However, under such complex
environments, algorithms-based features are more robust to
noises, and they have been successfully used in many real
world face-related applications such as face detection and
recognition, and facial expression recognition.

Among the introduced algorithm-based features, Gabor
wavelet-based is the most robust feature because it extracts
features from different scales and orientations. Generally,
the larger number of scales and orientations, the more in-
formation is extracted. Correspondingly, the computational
cost is larger. Due to its satisfactory robustness, Gabor
wavelet feature still can be used in HRI if its expensive com-
putation problem is solved. Compared with Gabor wavelet
features, Haar-like features are more efficient because they
do not require complex operations. Hence, they are more
popular for real time applications. The famous success is the

Haar-like features based real-time face detection. For real
applications, how to choose appropriate features in HRI, we
should make a balance between the accuracy and the effi-
ciency. Based on this criterion, Haar-like and LBP features
are more popular.

As we discussed above, an important objective of HRI
is to achieve a natural communication between humans and
robots, not only in lab environments, but also in real sce-
narios. To achieve this goal, more robust features should be
extracted for the following semantic understanding tasks.

2 3D-based

(1) Kinect-Based
Compared with conventional 2D visual signals, Kinect

can capture 3D visual signal which contains RGB and
depth information simultaneously, also called RGB-D sig-
nals. Generally speaking, RGB images are rich in color and
texture, and have higher resolutions. However, they are eas-
ily affected under non-ideal illuminations. Depth images
are robust to illumination changes, but sensitive to low-
signal strength returns. Due to the complementary informa-
tion contained in RGB and depth images, the combination
of them can largely increase object detection and recogni-
tion, manipulation, navigation, and interaction capabilities
in HRI.

Depth images are created by one infrared (IR) projector
and one IR camera of Kinect. The value of each pixel in
depth image refers to the distance between the object and
Kinect. Since such distance can be known in advance and
the relations of different objects can be obtained, one sim-
ple application using depth image is to provide useful and
complementary information to RGB images. Lai et al. [155]
performed object segmentation by using visual cues, depth
cues, and rough knowledge of the configuration between the
turntable and camera, simultaneously. Since the distance be-
tween the turntable and camera can be represented in depth
image, they first removed the background, and the rough
position of turntable can be estimated. Due to noise in the
depth image, there are usually some small, dark, transpar-
ent, and reflective objects on the segmented images. To ad-
dress this, they exploited a background subtraction method
to generate another segmentation. Lastly, both depth-based
and vision-based segmentations are combined to better de-
tect objects.

Depth images can be also considered as gray-scale im-
ages and the depth values are equivalent to intensity infor-
mation in conventional 2D images. Hence, the widely used
2D feature extraction methods can be also used for depth
images. For example, Benavidez et al. [157] applied a 2D
gradient and a 2D log filter in depth images to identify the
traversable area for their mobile robot. Spinello et al. [198]
proposed Histograms of Oriented Depths (HOD) to detect
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people from depth data. Their method was based on the His-
togram of Oriented Gradients (HOG) method and the pecu-
liar depth characteristics of the RGB-D sensor.

In addition to 2D feature extraction methods, each depth
image can be converted to 3D cloud points by mapping each
pixel into the corresponding 3D coordinates. Hence, the ex-
isting 3D feature extraction methods can be utilized. Spin
Images [158] and Fast Point Feature Histogram [159] are
two representative examples. While these feature represen-
tation methods have been developed on cloud points and
achieved reasonably good performance, they are not suit-
able for depth images where full viewpoint independence
are missed. To address this problem, Bo et al. [160] pre-
sented five depth kernel descriptors to capture local features
to describe the size, shape and edges (depth discontinuities)
of objects in depth images for object recognition. To cap-
ture the size of an object, Gaussian kernel was applied to
compute the similarity between the distance attributes of two
cloud points, where the distance is calculated between each
point and the reference point. To capture the shape of an ob-
ject, kernel PCA features and spin kernel descriptors were
exploited. For the edges of an object, 2D feature extraction
methods such as Gradient and local binary pattern kernel
descriptors were used, respectively.

(2) Stereo-Based
Stereo vision is another method which can obtain 3D in-

formation of objects. Different from depth images where 3D
information is directly provided by the depth cameras such
as the Microsoft Kinect camera, 3D information from stereo
vision can be obtained using multiple images of a single
scene from different views. Motivated by the fact that hu-
man beings can estimate the distance from objects using two
eyes, the simplest stereo vision camera system consists of
two separate cameras, and they are commercially available.

Since the technical parameters of stereo camera system
are known in advance, the distance information of the ob-
ject can be computed by the trigonometric measurement
method [161] after the object is detected and matched from
two images captured by a stereo camera system. Figure 6
shows the object viewed from 2 cameras [162].

In Fig. 6, d is half of the distance between two cameras, b
and c are the distances between two cameras and the object,
l is the distance between the center of two cameras and the
object, B and C are the angles of two cameras, and A is the
angle of cameras’ cross point. d , B , C, and A are known,
and b, c, and l are unknown. l is the final objective to be
achieved. To calculate l, b or c should be firstly obtained.
The following equations are employed:

a2 = b2 + c2 − 2bc · cosA (12)

b

sinB
= c

sinC
= 2d

sinA
(13)

Fig. 6 Trigonometry

Fig. 7 Projection directions of PCA and LDA on a toy dataset

Having obtained b and c, we can compute l as follows:

l2 = c2 + d2 − 2cd · cosB (14)

l2 = b2 + d2 − 2bd · cosC (15)

Compared with the depth-based 3D information acqui-
sition, stereo vision has a widespread use in robot-related
applications due to the mature techniques and has achieved
good performance on acquiring the distance information of
objects. For example, Li et al. [163] employed stereo vision
to estimate the user’s attention direction from the head pose
and eye gaze direction for their mobile robot. Thompson
et al. [164] presented stereo vision localization estimation
methods to humanoid robots.

(3) Discussion
3D visual signals can provide distance information of ob-

jects which the robot is manipulating or interacting. With the
help of such positional information of objects, the robot will
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know where the object is and how the surrounding environ-
ment looks like. This will better improve the robot’s opera-
tion performance and make the robot more human-like. As
described above, both Kinect and stereo vision systems can
obtain 3D information of objects.

There are some advantages and disadvantages for the two
3D vision systems. For the Kinect vision system [155–157,
160, 198], the camera utilizes an infrared pattern that is pro-
jected on the scene and can directly acquire the depth im-
age to provide the distance information of objects. Depth
images also can be converted to 3D cloud points by map-
ping each pixel into the corresponding 3D coordinates.
Meanwhile, the Kinect sensor provides RGB information.
Hence, researchers can conduct their developed approaches
on both the RGB and depth images. While the Kinect cam-
era demonstrates good performance in many indoor environ-
ment applications, the performance is generally poor when
applied in outdoor environments. Moreover, the Kinect cam-
era can only work over a range of several meters, which is
another limitation for real-world applications.

For the stereo vision, many commercially available sys-
tems have been developed due to mature techniques. These
systems are of different sizes and can be used for both in-
door and outdoor environments [161–164]. Moreover, it can
produce higher resolution than Kinect. However, since 3D
information of a stereo vision system is usually calculated
by using at least two images of the object captured from dif-
ferent views, it heavily depends on the results of feature de-
tection and correspondence. Even if many commercial and
free stereo libraries are available, the performance of cur-
rent stereo vision systems will also be affected especially
for real-time and real-world applications due to several chal-
lenging problems of 2D image processing like illumination
changes. Therefore, with respect to 3D information acqui-
sition, the users should choose proper systems according to
their own requirements.

3.1.2 Audio-Based Methods

Audio has also been widely used in many social robots to
implement semantic understanding tasks, such as speaker
localization, speech recognition, sound event classification,
emotion recognition, and rhythms recognition. In this pa-
per, we will not describe audio features for speech recog-
nition because a number of speech recognition software so-
lutions are commercially available, such as IBM’s ViaVoice,
Dragon Naturally Speaking, Voice Xpress, FreeSpeech 2000
from Philips [165] and CMU Sphinx. They can be directly
used in social robots. For instance, Simmons et al. [27] se-
lected IBM’s ViaVoice to convert spoken utterances to text
strings, and Esau et al. [51] chose ViaVoice in MEXI. Sim-
ilar to visual-based methods, different semantic understand-
ing tasks use different features.

While audio features for speech recognition will not de-
scribed in this paper, we will briefly introduce phoneme de-
tection from a raw audio signal since it is important for sev-
eral audio related applications such as emotion recognition
that use phoneme detection to parameterize the audio sig-
nal and account for prosodic differences. Phoneme detec-
tion normally includes three stages: feature extraction, seg-
mentation and labeling, and word-level recognition [166].
First, to describe the broad acoustic properties of the differ-
ent phonetic units, feature detection with a spectral analy-
sis of the speech is applied to convert the spectral measure-
ments to a set of features. Next, a segmentation and labeling
phase is used to segment the speech signal into stable acous-
tic regions. Following that, attaching one or more phonetic
labels to each segmented region is implemented, that could
result in a phoneme lattice characterization of the speech.
Last, it should match a valid word with the phonetic label
sequences [167].

To recognize speech-based emotions, acoustic features
such as prosodic, voice quality, and spectral features have
been widely used because it is easily to extract and pro-
cess these features, even in distinct cultural backgrounds.
As Clavel et al. [168, 169] stated, prosodic features mainly
include fundamental frequency, intensity contours and du-
rations; voice features normally contain jitter, shimmer, un-
voiced rate, and harmonic to noise ratio; and spectral fea-
tures usually consist of Mel Frequency Cepstral Coefficients
(MFCCs), Bark band energy, and spectral centroid. In addi-
tion, other features were also presented for acoustic recogni-
tion, such as phoneme dominant feature [170], and low-level
time and frequency derivatives [37]. Please refer to [171,
172] for details.

In MEXI [51], an emotion recognition system—
PROSBER was developed, in which six speech parameters
including the fundamental frequency, energy, jitter, shim-
mer, power spectrum, and speech/pause time were exploited.
In BARTHOC Jr [173], to recognize emotion states, 1316
features on pitch, energy, MFCCs, frequency spectrum, du-
ration, and pauses were computed, and 20 features related
to pitch, MFCCs and energy were selected to further im-
prove the performance and speed. In Kismet [22], 12 kinds
of audio-based features related to pitch and energy includ-
ing pitch mean, pitch variance, maximum pitch, minimum
pitch, pitch range, delta pitch mean, absolute delta pitch
mean, energy mean, energy variance, energy range, maxi-
mum energy, and minimum energy were applied to identify
approval, attentional bid, prohibition, soothing, and neutral
emotions.

Among the above mentioned audio features, pitch, en-
ergy, and MFCCs are three representative ones. Pitch refers
to the fundamental frequency which defines the lowest fre-
quency when the speech signal repeats. Pitch contour, range,
mean, median, inflection range, and rate of change are re-
lated to distinct emotions [174]. To extract pitch features,



100 Int J Soc Robot (2014) 6:85–119

several methods were developed, such as the simplified
inverse filter tracking (SIFT) [175], the pitch constraints
and dynamic programming search [176], and the statistical
method based on cepstrum [177].

Energy is defined as the volume or intensity of speech
which aims to measure the variations of speech signals’ am-
plitude. The energy is usually computed as the log of the
signal energy [178], described as below:

E = log
N∑

n=1

S2
n (16)

where Sn is audio sample, n = 1, . . . ,N , and N is the num-
ber of audio samples.

MFCCs are coefficients which collectively make up an
mel frequency cepstrum (MFC) to represent a short-term
power spectrum of a sound. The MFCCs are calculated
as [178]:

Cn =
√

2

k

K∑

k=1

(logSk) cos
[
n(k − 0.5)π/k

]
(17)

where Sk is the output of the filter bank which includes
12 triangular filters, n = 1,2, . . . ,N , and N is the number
of audio samples.

Based on the basic acoustic features described above,
some researchers have exploited advanced features to re-
flect the statistical performance and attributes of the raw au-
dio signals. For instance, Vogt and André derived features
including the minima and maxima, temporal distance, the
first and second derivatives, etc. based on pitch, energy and
MFCC, and their statistical parameters were further com-
puted as final feature vectors, such as mean, variance, me-
dian, etc. Some other features like positions of the overall
pitch maximum, the number of pitch, and energy minima
and maxima per segment were also adopted for feature rep-
resentation. Please refer to [59] for details.

In addition, Kim et al. [179] proposed a novel speaker-
independent feature, the ratio of a spectral flatness mea-
sure (SFM) to a spectral center (RSS), to recognize emo-
tion. The RSS is calculated as shown in Eq. (18). SFM is the
ratio of the geometric mean to the arithmetic mean of the
power spectrum, and the spectral center is the average fre-
quency weighted by acoustic power, computed as shown in
Eqs. (19)–(20), where Xj(f ) is the magnitude of the short-
term Fourier transform with the f th frequency for the j th
speech window with length of N . Both of them are related
to the extent to which the utterance is noise-like or tone-like.
The presented features have been used in the emotion recog-
nition system developed in a Korea robot to help the elderly
and lonely people.

RSSj = 1000 × SFMj

spectral centerj

(18)

SFMj = (
∏N

f =1 Xj(f ))1/N

1/N
∑N

f =1 Xj(f )
(19)

Spectral Centerj =
∑N

f =1 fj · Xj(f )
∑N

f =1 Xj(f )
(20)

There is another kind of spatio-temporal box filters
(STBF) feature to characterize periodic sampling features
and temporal integration features based on mean, min, max,
standard deviation, and quadrature pair operations. The ex-
tracted features represent critical properties of audio signals.
In Ruvolo and colleagues’ work [37], to recognize emotions,
six types of box filters (also called Haar-like features) were
used in a 2D Sonogram, which was converted from the raw
audio signals. The reason to use Sone units is that they are
proportional to human’s loudness.

Besides emotion recognition, sound localization is an-
other representative semantic understanding task based on
audio signals. Correspondingly, the specific features are ex-
tracted to accomplish this task. For example, three features
called interaural time difference (ITD), interaural level dif-
ference (ILD), and notches in the frequency response of each
ear were proposed in sound localization, respectively [18].
ITD is the ratio of the number of samples to the sampling
frequency. The cross-correlation function was executed on
the signals from left to right microphones, and the sampling
frequency is pre-defined. For ILD, it is computed as a func-
tion of the average power of the audio signals. The used
signals were temporal-based. To obtain notches, frequency
notches were calculated and more steps were taken. First,
power spectra density for each ear was computed through
the Welch spectra method [180]. Then, interaural spectral
difference (ISD) was calculated. Based on the obtained re-
sults, a 12-degree polynomial curve was fitted on them.
Lastly, minima of the fitted curve was found as the notches
feature. Shibata and colleagues have applied ITD and IID
features in their robots for sound localization [181].

Motivated by the fact that speech is an important human–
human communication channel, audio signals also play sig-
nificant roles on HRI of social robots. By analyzing the col-
lected audio signals, robots can acquire more information
related to their interaction subjects, such as their positions,
commands, and emotional states. These information are use-
ful and helpful to build a natural communication between
humans and robots. To successfully and accurately obtain
these information, extracting effective audio features is a key
factor.

Through reviewing the commonly used features in emo-
tion recognition and sound localization, it can be seen that
how to develop audio features mainly depends on seman-
tic understanding tasks. For example, for speech-based emo-
tion recognition, three groups of features including prosodic,
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Table 4 Performance
comparison of visual- and
audio-based low-level features
in perception. Generally, there is
not a clear criterion to define
these qualitative results.
Different from some
quantitative results such as
precise accuracy and
computational cost, we just
present a general concept of
these qualitative performance of
different methods in this table.
Specifically, these results are
obtained by comparing these
methods together to obtain the
relative qualitative results

Method Feature Accuracy Computational
complexity

Robustness

Visual-based color [94–96] medium low low

intensity [99–101] high medium medium

texture [104–106, 110] high high high

shape [116–119] low medium low

motion [120–123] medium high medium

DCT [146, 147] high high medium

Gabor wavelet [148–151] high high high

Haar-like [152–154] high medium medium

Audio-based pitch [174–177] medium medium medium

energy [178] low low high

MFCCs [178] high medium medium

voice quality, and spectral features have been widely used.
The number of features can be determined by the recognized
emotional states and applied environments. This is because
each emotional state can be described by different features.
Pitch, energy, and MFCCs are three popular feature repre-
sentation methods in this application. For sound localiza-
tion, feature selection is similar to that used in speech-based
emotion recognition. It depends on the category and envi-
ronments of localized sounds. For example, due to different
characteristics of different sounds, the features to localize
the sound of voices and the sound of hand clap are differ-
ent. Generally speaking, the application scenario of social
robots is an important factor to choose and develop audio-
based features.

In summary, we present a brief performance compari-
son of visual- and audio-based features in perception, and
the advantages and disadvantages such as accuracy, com-
putational complexity and robustness are compared in Ta-
ble 4. We briefly analyze why these features are compared
as shown in this table.

– In terms of the accuracy, most visual-based features can
obtain an acceptable recognition performance. That is be-
cause visual features generally contain many discrimina-
tive information and most feature extraction methods can
exploit these information in perception. Among these fea-
tures, the performance of shape, color and motion fea-
tures is generally poorer than others. The reason is that
these features mainly focus on global information of vi-
sual data and may ignore some local discriminative in-
formation. For audio-based features, MFCCs is the best
feature representation method and has been widely used
in many audio event analysis tasks. That is because it can
reflect more detailed information of audio data than the
other two features.

– The computational cost of most visual feature extraction
methods is generally higher than those of audio-based

methods. The reason is feature dimensions of visual data
are generally larger than those of audio data.

– In terms of the robustness, texture and Gabor wavelet-
based methods are top two visual features because local
information of visual data can be effectively extracted by
these two methods and hence they are robust to noise.

For the features listed Table 4, once the required parame-
ters are selected, they can be extracted in fully autonomous
status. In other words, when social robots employ these fea-
tures in the perception systems, human interference is not re-
quired. However, when the social robots are applied in other
environments, the parameters need to be re-selected, and the
perception system will be partially autonomous. The advan-
tages and disadvantages listed in Table 4 can be used as a
reference for feature determination.

Now, we briefly discuss the difference of HRI and
human–compute interaction (HCI). HRI is a growing field of
research and application. The field includes many challeng-
ing problems and has the potential to produce solutions with
positive social impact. Its interdisciplinary nature requires
that researchers in the field understand their research within
a broader context. Specifically, HRI is closely related to
HCI. However, there are at least three important differences
between HCI and HRI, described as below [223–225]:

– The main difference between HCI and HRI is that HRI
deals with embodied and situated agents. What this means
is that perception is grounded in the real world. The con-
sequences for both the sensation and interpretation of
events is that for embodied and situated agents they need
to be tied to action. For example, perceiving objects in the
world is not just about correctly identifying them in an im-
age, but also translating that into knowledge of where that
object is relative to an actuator, such as a gripper. Lighting
conditions change as the camera moves, and it is not just
important to know the u,v coordinates of where an object
is in an image, but also the full coordinate of where it is in
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the world. Finally, when dealing with human interaction,
it is also important to balance recognition accuracy with
latency in order to effectively sustain an interaction.

– HRI focuses on the combination of the user and the robot
and HCI focuses on the user using the computer, which
indicates that the main objectives of HRI and HCI are dif-
ferent. The main reason is that several assumptions such
as clean environments, controlled conditions, and simple
background are made to design the HCI methods, how-
ever, these assumptions may not hold in many real appli-
cations where HRI is employed.

– The interactions of HCI and HRI are generally differ-
ent. Specifically, HRI is physically bidirectional because
robots are not passive entities like computers and it could
implement the functions related to actions or motion; HRI
is asymmetric because robots have not the same cognitive
skills of humans; HRI is unique because robots are per-
ceived as living entities. HRI has lower repeatability be-
cause there are even not two robots following the same
path in HRI. While HCI has been studied for many years,
tools and metrics do not directly transfer to HRI and many
methods developed in HCI may not always be readily ap-
plicable in the design and evaluation of interactive robots
for HRI.

While there are several important differences between
HCI and HRI, to our best knowledge, many state-of-the-art
HCI methods could be applicable to HRI if the gap between
the theoretical research in HCI and the practical application
in HRI is bridged. As the field of HRI has grown, it has
seen many contributions from researchers in HCI and it has
been nurtured by HCI organizations. HRI research is attrac-
tive to many members of the HCI community because of
the unique challenges posed by the field. HRI benefits from
contributions from HCI researchers, both in methodologies,
design principles, and computing metaphors.

3.1.3 Tactile-Based Methods

Besides audio- and visual-based features, tactile-based fea-
ture is also important in human–robot interaction. It is well-
known that when humans communicate with a robot, it is in-
evitable to interact with the robot physically, which is called
tactile-based interaction. Similar to visual- and audio-based
signals, tactile signals contain rich information and can be
used to environment understanding. For example, a robot
can know whether there are persons touching on it and what
kind of touches by analyzing the collected tactile signals.
While human touch’s meanings are still yet to be explored,
it can reflect the internal state of humans to a certain extent.
For instance, if humans lightly pat the robot, it may show
that they are be in a relaxing state; if they heavily scratch the
robot, it may mean that they are in a fretful state. Moreover,
a robot can acquire information of the touched objects by

exploring them with various kinds of tactile sensors [182].
Generally, there are two popular methods including singu-
lar tactile sensor-based and “sensitive cover”-based. Singu-
lar tactile sensor-based is usually embedded in robots’ arms
and grippers, and “sensitive cover”-based is to detect a full
body’s or region’s sense of touch.

Dao et al. [182] designed a 4-DOF (degree of freedom)
soft-contact tactile (SCT) sensor which can detect three
components of force and one component of moment. It has
been employed in robots’ fingers to sense the gripping forces
when gripping objects. However, when social robots interact
with users, they sense human’s touch not only through fin-
gers, but also through the whole body, especially for robots
in the form of toys. Under such situation, “sensitive cover”-
based interaction is applied. Tsetserukou et al. [183] used
“sensitive cover” in a robot arm to automatically generate
compliant motion according to the measured external force
vector. Here, tactile sensors and torque sensors were dis-
tributed in the “sensitive cover”. Iwata et al. [184] employed
“sensitive cover” to another robot arm that was able to avoid
physical interference from human. The “sensitive cover”
was designed by using force-torque sensors and touch sen-
sors. Gorostiza et al. [83] designed a personal robot named
Maggie that can interact with humans in a peer-to-peer rela-
tionship. The tactile system of Maggie consists of several in-
visible tactile sensors installed in the robot’s casing. Maggie
can detect tactile events from human. Stiehl et al. [185] pre-
sented a “sensitive skin” containing three kinds of sensors
under a soft silicone skin to detect external force and temper-
ature. It has been applied in Huggable [50, 186], a new type
of therapeutic robotic. Shibata [187] developed a ubiquitous
surface tactile sensor that can collect both position and pres-
sure information. Moreover, the designed sensor system has
advantages of flexibility and usability to a curbed surface. It
has been employed in the therapeutic robotic, Paro.

As described above, “sensitive cover” is a popular way to
detect forces from the outside environments. The key com-
ponent of “sensitive cover” is the tactile sensor matrix. Since
each sensor in the matrix can generate a pressure value, a
number of sensors can generate a tactile image representing
the pressure distribution. Different from a visible image, a
tactile image is usually of low-resolution and contains some
mechanical cross-talk noise [188]. Even so, it can also be
used for semantic understanding tasks.

Besides 1D tactile signals, 2D tactile images have also
been used to extract tactile-based features. For the raw tac-
tile signals, Iwata et al. [189] extracted 11 parameters as
the input of a neural network classifier to recognize touch-
ing states, such as hit, grasp, scrape, and scratch. The ex-
tracted parameters include maximum force, time to reach
the maximum force, contact duration, number of contacts,
average deviation of force, average force, maximum pres-
sure, maximum contact area, maximum two-point distance,
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moved distance of contact area, and summation of contact
area, which were calculated by the conventional statistical
methods of 1D signals. Stiehl and colleagues [186] extracted
features such as normalized sensor value sum, normalized
average sensor value sum, the change in sensor value sum,
and the centroid location and direction of motion, in the
Huggable robot. In addition, Göger and colleagues [190]
applied PCA to classify slip and itons between the robot
gripper and the object which has to be manipulated. Be-
fore executing PCA, tactile signals were transformed from
the time domain to the frequency domain by using a short-
time Fourier transform defined as STFTx[n] ≡ X(m,ω) =∑∞

n=−∞ x[n]ω[n − m]e−iωn, where x[n] is the raw signals,
ω[n] is the window used. Then, an image with 1024 pixels
was formed based on the computational results of eight FFT
transformations. Finally, PCA was conducted on a dataset
containing n images.

For tactile images, we can process them similar to the
conventional visible images. For instance, each pixel in a
tactile image called taxel and can be calculated similar to the
intensity in visible images. Differently, taxel values are cal-
culated in different ways due to the exploited tactile sensory
system. For example, Payeur et al. [184] took 96 “taxels”
(pixels with pressure force value instead) generated from an
8×12 tactile image as the input of a two-layer feed-forward
neural network to recognize the shape of an object. Here,
tactile values were represented by geometric displacements.
Similarly, Carotenuto et al. [191] directly employed tactile
images to determine objects’ category where taxel values
were the sum of the normal stresses. In addition, feature ex-
traction methods used in visible images can be extended to
tactile images. An example is Göger and colleagues [190]
who applied PCA to tactile images to identify contact pat-
terns.

For tactile-based feature extraction methods, most con-
ventional signal processing can be employed, such as the
methods to extract statistical features and short-time Fourier
transform, PCA and Active Hough Transform (AHT). In D.
Berger’s work [188], after removing the effects of cross-talk
noise from the tactile images by using a adaptive thresh-
older, an edge detector was used to detect edges and AHT
was deployed to determine the line parameters.

In terms of the popularity of the above feature extraction
methods, tactile-based methods are similar to visual- and
audio-based methods. Moreover, tactile-based methods can
be further used when the robots only have physical contacts
with the outside environments. As we mentioned above,
“sensitive cover”-based methods are more popular. That is
because they can not only detect point contacts, but also de-
tect surface contacts which usually happen in HRI. However,
the price of “sensitive cover” is comparatively high.

3.1.4 Range Sensors-Based Methods

Besides human-like methods, social robots can use other
perceptual systems to understand the outside environments,
e.g., laser range finders. Laser range finders are commonly
used to detect paths or obstacles in mobile robots for nav-
igation. Since only human–robot interaction is surveyed in
this paper, we concentrate its applications on tracking people
and predicting people’s behaviors. Considering the executed
tasks, there are two ways to place laser range finders, one is
to mount them in the mobile base of robots, and the other is
to place them in the environments where robots act.

Kanda et al. [35] selected the second mounting method
to place six SICK LMS-200 laser range finders in a shop-
ping arcade where they acquire humans’ trajectories to pre-
dict their behaviors, such as people’s walking styles and di-
rections. These information of human behaviors has been
exploited by Robovie. To obtain human trajectories, Parti-
cle Filtering was used to track torso-level scan data by a
background substraction model. The background model was
obtained by filtering out noise and objects from hundreds
of frames. Then, points satisfying some pre-defined rules
were identified as persons. By using customized calcula-
tion rules, 32 features were extracted to represent the end
point of the normalized trajectory, the size of the rectangle
that covers the normalized trajectory, the angles of the tra-
jectory, and the velocity for local behavior prediction. The
proposed method was first applied in an experiment room to
track human body’s motion, and the centers of ellipses with
axis between 15 cm and 55 cm were identified as human
candidates [192].

For the first mounting way of laser range finders, the
collected data are used to track people and provide addi-
tional information. For human tracking, a challenging prob-
lem is how to localize people’s initial positions, and there
are several methods proposed in [35] and [192]. The simi-
lar idea was also used in GRACE [193] which is to utilize
the size information of the segmented regions to detect hu-
mans. The segmentation with the width between 5 cm and
60 cm was classified into potential person category or hu-
man leg category. In addition, Jensen et al. [9] presented a
method to detect people by using the motion information.
First, a static map containing non-moving objects was gen-
erated according to the laser readings. Then, new informa-
tion was obtained by comparing new readings and the static
map. Thirdly, a chi-square test was applied to the new in-
formation to determine whether it was the static map or a
moving object. Lastly, the static map was updated for a new
validation. The information labeled as dynamic objects was
human candidate.

Jung and Sukhatme exploited a laser range finder to pro-
vide depth information for estimating the partial 3D posi-
tion [194]. Given the optical properties of a camera, distance
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Table 5 Summary and
comparison of different
categories of low-level feature
extraction methods in social
robots. Specifically, these results
are obtained by comparing these
methods together to obtain the
relative qualitative results

Method Accuracy Computational
complexity

Robustness Cost Convenience

Visual-based [94, 99, 105, 144,
152]

medium high medium low high

Audio-based [174–178] medium medium low low high

Tactile-based [189–191] high high high medium medium

Range sensors-based [192–195] low medium medium high high

information from the laser range finder can be projected onto
the image coordinates through a transformation equation as:

[
x

y

]
=

[
w
2 × (1 − tan(α)

tan(fh)
)

h
2 × (1 + (d − d

r
× (r − l) × 1

l×tan(fv)
))

]
(21)

where (x, y) represents the coordinate of each pixel in the
image, α and r are the heading and the range of a scan, re-
spectively, f is the focal length of the camera, fh and fv

are the horizontal and vertical angles of view of the cam-
era, d is the height from the laser range finder to the camera,
and w and h are the width and height of the image. Addition-
ally, Glas and colleagues deployed laser scan data to esti-
mate human positions by providing occupancy and edge in-
formation. Occupancy information represents the status of a
coverage grid: occupied or empty represented by integrating
values of all sensors, and edge information indicates edges
of an identified object represented by the edge-fit estimation
using an angular array. More details can be found in [192,
195].

Besides the above introduced 2D range sensors-based
methods, 3D laser range finder has been developed to col-
lect 3D laser reading information to explore the whole 3D
scene around the robot. The basic idea to design a 3D range
finder is to mount a 2D range finder onto the rotating sup-
port such that the scan measurement can perform horizontal
scan and vertical scan by two scanning mechanisms [196].
Similar to the stereo vision system, 3D range finder could
be commercially available according to the specific require-
ments.

To extract features from 3D data, there are usually two
kinds of methods: the first is to use appropriate feature
extraction methods on 3D data directly, and the other is
to transform 3D data into 2D form and then utilize exist-
ing 2D methods to extract features. Scholer et al. [197]
employed the observation model of a particle filter to 3D
laser range data to track a person with occlusions. Spinello
et al. [198] utilized 3D range data to detect people. Differ-
ent from Scholer’s work, they treated the 3D cloud points
as a collection of 2D laser points at different slices or lay-
ers. For 2D laser data at each layer, the authors extracted
17 existing 2D features, such as width, circularity, PCA ra-
tio, quadratic spline fitting, bounding box area and so on.

Navarro-Serment et al. [199] exploited 3D LADAR data to
detect and track people. In their work, they applied both 2D
and 3D feature extraction methods from 3D cloud points
of the object. First, they projected 3D point cloud into 2D
planes by using a virtual scan line. Then four motion-related
variables including the object’s size, the distance it traveled,
and the variation in the object’s size and velocity were com-
puted. By utilizing the position and size information of the
object, 3D point sets referring to potential humans can be
isolated. Then, for each potential object, geometric features
including 2D-based and 3D-based were extracted. Among
them, the covariance matrix, and the normalized moment of
inertia tensor were calculated by using 3D cloud points.

While laser range finders have been widely applied in
mobile robots, they require the robot to have the ability to
scan the environments when it moves at a reasonable pace.
Under such scenario, it is more difficult to collect high qual-
ity 3D cloud points by using 3D laser range finder compared
with 2D lasers, especially in outdoor environments [200].
Therefore, if the corruption of the 3D data cannot be re-
paired in the data collection, the performance of these used
feature extraction methods are generally heavily affected,
and more robust feature extraction methods should be used.

To better compare the different performance of the above
feature extraction methods, we list their advantages and dis-
advantages in Table 5, where accuracy, computational com-
plexity, robustness, practical cost, and convenience are tab-
ulated. We can see that different feature extraction methods
demonstrate different performance in terms of different fac-
tors. We present the following reasons to discuss why they
are summarized as shown in the table.

– In terms of the accuracy, tactile-based method is the best
and range sensors-based method is the worst. That is be-
cause tactile-based methods are based on physical touches
and robust to external disturbances, and lasers are sen-
sitive to these disturbances. For visual- and audio-based
methods, their accuracies are medium in general. For ex-
ample, the accuracies of Gabor wavelet [148–151], tex-
ture [104–106, 110], and Haar-like visual-based features
are generally higher and those of intensity and shape fea-
tures are lower. Similarly, the accuracy of energy audio-
based feature is high and those of pitch and MFCCs are
low.
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– The computational complexity of visual- and tactile-
based methods is generally higher than the other two
methods. The reason is the data dimensions of signals
of these two features are generally larger than those of the
others, and hence a higher computational complexity is
usually required.

– In terms of the cost, audio and visual sensors are much
cheaper than lasers and tactile-based sensors and they
have already been widely used in our daily lives. Com-
pared with tactile-based sensors, range sensors-based sen-
sors are most expensive and hence are only suitable to
specific application tasks.

– For the convenience of use, tactile-based method is gener-
ally worse than the other three because it requires physical
touches in practical applications. Therefore, it is difficult
to achieve uncontactness HRI for this method.

3.1.5 Multimodal-Based Methods

The above described feature extraction methods are
unimodal-based. While some encouraging performance can
be obtained, there are still several shortcomings because
unimodal-based features are generally not robust in many
real-world applications. To address this problem, multi-
modal feature extraction methods are usually used in many
social robots. We here present three representative exem-
plars in the following.

The first example is the attention system of robotics,
where multimodal signal fusion is applied. For example,
Matthias et al. [16] designed iCub’s attention system via
audio-visual synchrony for tutoring a child. To effectively
detect the synchrony, mutual information was utilized to
measure the correlation between visual and audio signals.
For the visual signal, image intensity feature was used, and
for the audio signal, audio energy was applied. In iCub, an-
other method related to the attention system was also pre-
sented [99]. It fulfilled a multimodal saliency-based bottom-
up attention. Intensity, color, directional and motion infor-
mation were visual saliency features, and center location,
uncertainty information, and intensity values were auditory
saliency features. To obtain a multimodal saliency map, all
visual and audio saliency features were converted to a com-
mon egocentric reference and aggregated into a single map
by choosing the maximum value from all saliency channels
at the same position. The highest saliency values in the com-
bined map were taken as the attentions of the robot. By us-
ing the designed attention systems, iCub can detect objects
of interest.

Another example is the audiovisual-based emotion recog-
nition. As described above, facial and vocal signals are two
useful and widely-used sources to detect and characterize
human emotions. However, there are some shortcomings in
unimodal-based affective state recognition [201]. For ex-
ample, facial expression recognition is easily affected by

pose and illumination variations, and noise is a significant
effect on audio signal analysis. To address these issues,
some researchers have pointed out that audiovisual-based
(fusion of audio and visual signals) emotion states recog-
nition is a new solution to improve the performance. For
example, Fragopanagos et al. [202] designed an Emotion-
ally Rich Man-machine Intelligent System (ERMIS) to rec-
ognize emotions, where Artificial Neural Network for At-
tention (ANNA) was used to fuse features from different
modalities, such as linguistic, paralinguistic (prosodic) and
facial images. Zeng et al. [203] used Multistream Fused
Hidden Markov Model (MFHMM) to detect and track a
user’s emotion states by using both audio and visual signals.

The last example is [204]. They proved a hypothesis that
HRI through semantic integration of multiple modalities,
dialog management, and contexts can show better perfor-
mance than that obtained from a single modality. A domes-
tic robot to clean a house using a multi-modal interface was
applied to test the hypothesis. The multi-modal interface
included audio modal like speech, and visual modal such
as pointing, field of vision, and head nodding. The com-
pared single modal is the speech. Accuracy and succinct-
ness are two criteria to evaluate the robot’s learning process.
After a series of experiments, they concluded that multiple
modalities can improve HRI over single model and the robot
can better implement the specified tasks than using a single
modality.

While these exemplars have shown that multimodal-
based feature fusion methods usually perform better than
unimodal-based methods, there are still several unsolved
problems. For example, which fusion level, feature level or
decision level, is better? How these methods work if one
source of feature is very noisy? How to handle large scale
multimodal features and combine multimodal information
with different representations still need more investigations
in future work.

3.2 Dimensionality Reduction

Features extracted from different modalities are usually
high-dimensional and there may be some redundancy in
these features. Hence, it is desirable to use some statisti-
cal learning techniques to further process these features to
better reflect their semantic information. Subspace learning
is one of such representative methods. Subspace learning
aims to find a mapping to project high-dimensional raw sig-
nal into a low-dimensional feature space, such that some
intrinsic characteristics of the original signals can be re-
vealed and preserved. Representative methods include prin-
ciple component analysis (PCA), linear discriminant anal-
ysis (LDA), and locality preserving projections (LPP), re-
spectively [127–142].
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Considering a set of samples denoted as a vector-
represented dataset {xi ∈ Rd, i = 1,2, . . . ,N} and the corre-
sponding label {li ∈ {1,2, . . . , c}, i = 1,2, . . . ,N}, where N

is the number of samples, d is the feature dimension of
each sample, c is the number of classes, and xi possesses
a class label li . The objective of subspace learning is to
find a linear mapping W = [w1,w2, . . . ,wk] to project
{xi, i = 1,2, . . . ,N} into a low-dimensional representation
{yi ∈ Rm, i = 1,2, . . . ,N}, i.e., yi = WT xi , m � d . The es-
sential difference of these subspace learning methods lies in
the difference in defining and finding the mapping W .

PCA seeks to find a set of projection axes such that the
global scatter is maximized after the projection of the sam-
ples. The global scatter can be characterized by the mean
square of the Euclidean distance between any pair of the
projected sample points, defined as [143]

JT (w) = 1

2

1

NN

N∑

i=1

N∑

j=1

(yi − yj )
2 (22)

We can simplify JT (w) to the following form
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Let

ST = 1
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1

NN
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i=1

N∑

j=1

(xi − xj )(xi − xj )
T (24)

and the mean vector m = 1
N

∑N
i=1 xi , then ST can be calcu-

lated as follows:

ST = 1

N

N∑

i=1

(xi − m)(xi − m)T (25)

then Eq. (22) can be rewritten as

JT (w) = wT ST w (26)

The projections {w1,w2, . . . ,wk} that maximize JT (w)

comprise an orthogonal set of vectors representing the
eigenvectors of ST associated with the k largest eigenval-
ues, k < d , which is the solution of PCA.

LDA seeks to find a sets of projection axes such that the
Fisher criterion (the ratio of the between-class scatter to the
within-class scatter) is maximized after the projection. The
between-class scatter SB and the within-class scatter SW are

defined as [144]

SB =
c∑

i=1

Ni(mi − m)(mi − m)T (27)

SW =
c∑

i=1

Ni∑

j=1

(xij − mi)(xij − mi)
T (28)

where xij denotes the j th training sample of the ith class, mi

is the mean of the training sample of the ith class and m is
the mean of all the training samples. The objective function
of LDA is defined as

max
w

wT SBw

wT SWw
(29)

The corresponding projections {w1,w2, . . . ,wk} comprise a
set of the eigenvectors of the following generalized eigen-
value function

SBw = λSWw (30)

Let {w1,w2, . . . ,wk} be the eigenvectors corresponding to
the k largest eigenvalues {λi |i = 1,2, . . . , k} decreasingly
ordered λ1 ≥ λ2 ≥ · · · ≥ λk , then W = [w1,w2, . . . ,wk]
is the learned mapping of LDA. Since the rank of SB is
bounded by c−1, k is at most equal to c−1. Figure 7 shows
the projections of PCA and LDA on a toy dataset.

LPP [145] is one recently proposed manifold learning
method, and the aim of LPP is to preserve the intrinsic ge-
ometry structure of original data and make the samples lying
in a neighborhood to maintain the locality relationship af-
ter projection. Specifically, LPP first constructs one affinity
graph to characterize the neighborhood relationship of the
training set and then seeks one low-dimensional embedding
to preserve the intrinsic geometry and local structure. The
objective function of LPP is formulated as follows:

min
∑

ij

(yi − yj )
2Sij (31)

where yi and yj are the low-dimensional representation of
xi and xj . The affinity matrix S can be defined as:

Sij =

⎧
⎪⎨

⎪⎩

exp(−‖xi − xj‖2/t),

if xi ∈ Nk(xj ) or xj ∈ Nk(xi)

0 otherwise

(32)

where t and k are two dependent pre-specified parameters
defining the local neighborhood, and Nk(x) denotes the k

nearest neighbors of x. Following some simple algebra de-
duction steps [145], one can obtain

1

2

∑

ij

(yi − yj )
2Sij = wXLXT w (33)
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where L = D − S is the Laplacian matrix, D is a diago-
nal matrix and its entries are column sums of S, i.e., Dii =∑

ij Sji . Matrix D provides a natural measure on the data
points, and the bigger the value Dii is, the more “important”
yi is. Usually, one can impose a constraint:

yT Dy = 1 ⇒ wXDXT w = 1. (34)

Then, this minimization problem can be converted into solv-
ing the following constrained optimization problem:

wopt = arg min
w

wT XLXT w

s.t. wT XDXT w = 1.

(35)

Finally, the bases of LPP are the eigenvectors of the follow-
ing generalized eigenvalue problem:

XLXT w = λXDXT w (36)

Let w1,w2, . . . ,wk be the solutions of Eq. (31), ordered ac-
cording to their eigenvalues, 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λk , then
W = [w1,w2, . . . ,wk] is the resulted mapping of LPP.

3.3 Semantic Understanding

Having extracted the features, semantic understanding tasks
should be implemented for social robots. Generally speak-
ing, different tasks involve different semantic understanding
methods. For example, object recognition, emotion recog-
nition and human identification need classification meth-
ods, and face and human tracking requires tracking tech-
niques. Hence, we discuss existing approaches which have
been used in several typical applications of HRI such as ob-
ject recognition, object tracking, object segmentation, and
speaker localization, and show their characteristics and lim-
itations in this subsection.

3.3.1 Object Recognition

Object recognition is one of the most representative applica-
tions in HRI, such as face recognition, human identification,
and emotion recognition. In this subsection, we unify them
into a general object recognition framework,7 and present
state-of-the-art object recognition methods in the following.

A. Template Matching Template matching is one of the
simplest recognition methods, and the basic idea is to rec-
ognize the object to a gallery sample which has the highest
similarity. For example, Scassellati [13] applied ratio tem-
plate matching in Cog to detect human faces, in which a

7Face, human and emotion can be unified as a different categories of
objects.

14×16 gray-scale image patch was chosen as a template,
and the ratio of average gray-scale value was utilized in the
template region. If the ratio exceeds a pre-defined value,
the corresponding candidate region was detected as a face
region. Moreover, to speed up the method, an early-abort
scheme and a motion-based pre-filter were presented. Simi-
larly, the ratio template matching approach can be also used
for eye detection.

B. Clustering Clustering is another machine learning
method to gather similar objects. Hasanuzzaman et al. [34]
used a multi-cluster approach to classify face and hand poses
based on PCA-based features. In their work, Euclidean dis-
tance was applied to measure the similarities of different im-
ages. Nickel and Stiefelhagen [46] applied a k-means clus-
tering method to identify face and hand regions. Differently,
they took skin color and image disparity as features. Before
clustering, skin-color probability histogram features were
calculated. Then, dilation and erosion operations were ap-
plied on the skin-color map. Simmons and colleagues [27]
applied a clustering method on range readings from SICK
scanning laser range finders to identify people and walls.
The shape of the cluster was a criterion for judgement.
A small cluster and a pair of small clusters were candidates
of people, and big clusters having line shapes were candi-
dates of walls.

C. Nearest Neighbor Many object recognition methods
use the nearest-neighbor classifier, such as face recognition
in ARMAR III [147]. It first computed the distances be-
tween the test image and the training images, and applied a
Min-Max normalization method and a sum rule to normalize
and fuse the scores. Then, the face was recognized accord-
ing to the highest score obtained and a predefined thresh-
old value. It has been also used in Göger and colleagues’s
work [190] to classify slip status including signal with slip,
signal without slip, and noise and contact patterns like small
point contact, large point contact, edge contact etc.

D. Neural Network Neural Network is a well-known clas-
sification method, which consists of several neurons inter-
connected with each other to form input, hidden and output
layers to stimulate human’s Neural Network. Breazeal and
colleagues [20] selected a pixel based multi-layer percep-
tron to recognize areas of eyes and nose bridges. For the
perceptron’s inputs, they are subimages including eye can-
didates extracted from potential faces. Voit et al. [45] ap-
plied Neural Network to estimate head poses. The neural
network used includes three layers, and normalized intensity
image and the Sobel magnitude were fed into the input layer.
For the hidden layer, 100 neurons were designed. Nickel
and Stiefelhagen applied this method to estimate head ori-
entations, which is an additional feature used in ARMAR
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III’s pointing gesture detection. For the input of Neural Net-
works, intensity images and the corresponding disparity im-
ages were used. The number of hidden neurons was empiri-
cally determined to be 60 [46].

E. Boosting Boost methods are employed to generate a
strong classifier by using a series of weak classifiers. Ad-
aBoost is a representative method which has also been
widely used with Haar-like features for face detection [32].
Due to its fast speed and high detection rate, this method
has been widely used in many face detection systems, es-
pecially for real-time applications. A representative exam-
ple is that it has been applied in OpenCV, a famous library
of programming functions for real-time computer vision, to
detect frontal face. Moreover, some extended methods have
been developed in recent years. For example, Spexard et
al. [205] proposed an improved method in BARTHOC to de-
tect faces with rotation angles including 20◦, 40◦, 60◦, and
80◦. In their study, the idea of classification pyramid was
added in Viola and Jones’s work. In addition to the classi-
fication types, speed performance is also improved. Based
on the results of face detection, the authors also performed
face recognition by using the Eigenfaces method [206] to
matching the detected face and stored faces.

Besides AdaBoost, there is another boosting method
called Gentle-Boost which represents modified version of
the real AdaBoost method [207]. The main difference be-
tween these two methods is in the shape of the loss func-
tion being used. Based on large features extracted by spatio-
temporal box filters, Gentle-Boost was used to construct a
strong classifier and has been used in RUBI to recognize
children’s emotions [37]. Gentle-Boost is designed to es-
timate sequential maximum likelihood and select features.
The proposed methods were used in Berlin dataset, Orator
dataset, and their own dataset collected from Early Child-
hood Education Center at UCSD. Six basic emotion states
plus neutral were recognized in the Berlin dataset; seven
classes of emotions including agitation, anger, confidence,
happiness, leadership, pleasantness, and strength were rec-
ognized on the Orator dataset; three categories of sound
were recognized on their own dataset.

F. Hidden Markov Model Hidden Markov Model (HMM)
is a statistical learning technique and has been widely used
in speech recognition, emotion recognition, and gesture
recognition. For example, a Continuous Density Hidden
Markov Model (CDHMM) method was applied in speech
recognition based on phoneme. To train the phoneme mod-
els, standard European and American databases as well
as a specific database with the words were employed [9].
In RoboX, the specific database consists of Yes/No with
French, German, Italian, and English. To improve the recog-
nition performance, spatial filtering, dereverberation, and

noise cancelation were implemented. In addition to speech
recognition, HMM was also applied to recognize pointing
gestures. In ARMAR III [46], three dedicated HMM were
employed to model hand gestures’ phases, including prepa-
ration, peak, and retraction. While for the models’ inputs,
the features representing the positions of the pointing hand
and head written in cylindrical coordinate were used. More-
over, to improve the recognition performance, head orien-
tation was deployed as an additional information. In AR-
MAR III, HMM was also employed to classify sound events
in kitchen environments [44]. For the employed HMM, er-
godic HMMs with two, three, and four states were tested on
one-frame, three-frame, five-frame, seven-frame, and nine-
frame with ICA features, respectively. Experimental results
have shown that ergodic trisate HMMs with seven frames
achieved the lowest error. Another example is HRP-2W ser-
vice robot who can demonstrate four kinds of motions in-
cluding walking, squat, picking up, and Cossack dancing
by observing and learning human’s motions [208]. Mime-
sis model was proposed to implement the recognition of
human’s motion and generation of robots’ motion by us-
ing motion elements and proto-symbols. To acquire motion
elements, a hybrid HMMs integrating continuous HMMs
(CHMMs) and discrete HMMs (DHMMs) was developed.
CHMMs were used in motion elements acquisition phase,
and DHMMs were applied in motion recognition. For the
designed hybrid HMMs, the input is observed behavior
sequences of human, the output is motion elements the
robot required, and the used parameter of HMMs is proto-
symbols. In the application, each proto-symbol has each cor-
responding motion.

G. Gaussian Mixture Models Gaussian Mixture Models
(GMMs) is another statistical model for clustering and clas-
sification, which has also been used to sound event classifi-
cation in ARMAR III [44]. The number of Gaussian mod-
els per state can be determined by a Bayesian information
criterion. In Kim and colleagues’ work [179], GMMs with
Bayesian information criterion was deployed to recognize
speaker-independent affective states. For different emotion
states, the number of Gaussian components is usually dif-
ferent. The Korean affective statesal speech (KES) database
was applied for training.

H. Others Besides the aforementioned machine learning
techniques, fuzzy model, Naive Bayes classifier, and Sup-
port vector machine (SVM) have also been employed for
recognition. For example, MEXI [51] used fuzzy model
[209] to recognize emotions which include happiness, sad-
ness, anger, fear, and neutral. Carotenuto et al. [191] applied
a Fuzzy model to classify objects into bar, point object, and
round object. BARTHOC Jr [173] utilized a Naive Bayes
classifier to recognize emotion states including fear, anger,
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joy, boredom, sadness, and disgust on the Berlin dataset. Al-
tun and Polat [210] used SVM to recognize speech-based
emotion states based on Berlin Affective statesal Speech
Database-EmoDB.

3.3.2 Object Tracking

As we described before, if a robot wants to follow a user’s
face by the head and neck or a walking person by us-
ing its mobile base, object tracking is naturally encoun-
tered in social robots. Usually, object tracking can be
implemented based on visual-based, range sensors-based,
and multimodal-based signals. For visual-based tracking
approaches, there are generally two categories including
deterministic-based and stochastic-based [211]. For the first
category, Gradient descent and mean shift are two popular
methods, and Kalman filter and Particle filter are the other
two widely used methods for the second category. For range
sensors-based tracking methods, Kalman filter and Particle
filter are usually applied. Particle filter has attracted increas-
ing attention from social robot researchers due to its high
accuracy, strong robustness, and good flexibility in tracking
moving objects. Hence, we focus on Particle filter here, es-
pecially on its initialization since it is strongly related to the
extracted features introduced above.

Particle filter is a sequential important technique which
uses a set of weighted samples to approximate the probabil-
ity density function of a nonlinear system state [211]. For
example, Kanda et al. [35] used Particle filters in Robovie
to track people’s trajectories in a shopping arcade. For the
initial position of the people to be tracked, frame differ-
ence is applied for foreground segmentation. Similarly, Wu
et al. [212] applied frame difference as detected target, in
which color-spatial information was also combined. Since
color distributions are insensitive to partial occlusion, in-
variant to rotation and scale, and computationally efficient,
Nummiaro et al. [213] also integrated a color distribution
into Particle filter. In addition to frame difference and color-
related information, other features representing the objects
were employed. In Zhai and colleagues’ work [211], edges
representing human’s heads were the measurement cue since
they are robust to varying illumination and pose. Kwon et
al. [214] employed an appearance-adaptive model in Parti-
cle filter to handle the occlusion problem. Muñoz-Salinas et
al. [215] combined depth, color, and gradient information in
Particle filter to track multiple persons with different actions
such as jumpping, running, and shaking hands.

3.3.3 Object Segmentation

It is well-known that objects are difficult to be segmented
when they have similar texture and color with the environ-
ment. However, if objects are moving, they can be easily de-
tected, and the motion of objects can be obtained through a

robot’s arms which can exert certain force on objects. Based
on this observation, Paul and colleagues developed a mech-
anism and applied it to Cog [12]. The designed mechanism
visually probed objects’ connectivity and physical extent by
adopting reaching action that needs no prior knowledge of
objects. The key problem in the designed mechanism is to
locate a robot’s arms visually. Two methods such as optic
flow and image difference were presented to localize the
robot’s arm from its motion. For the object to be segmented,
it can be detected by finding the relation between the ob-
ject’s movement and the robot’s end-effector’s impact time
and spacial position. However, how a robot knows whether
the arm collides with an object, how long the exploring pro-
cedure, and how about the arms’ moving performance still
remain unsolved in this area.

3.3.4 Speaker Localization

Speaker localization is commonly used in robot’s attention
system to direct the robot’s attention and reduce searching
regions in face and human detection. For this semantic un-
derstanding task, the raw audio data are collected by mi-
crophones, and the cross-power spectrum phase (CSP) is
used to compute temporal shift between two audio signals.
According to time delay of arrival (TDOA) from temporal
shift, the positions of the speaker corresponding to micro-
phones’ positions can be obtained. This approach has been
used in BARTHOC [205] and Fritz [64] to localize speakers.
Shibata and colleagues applied two audio features including
ITD and IID to their pet robot. They trained a recurrent neu-
ral network to localize sound source by using audio and vi-
sual features where visual features such as the motion of hu-
mans were training references to generate error signals [18,
181]. The key is to build up a mapping function from sound
features including ITD, ILD, and spectral notches for sound
source localization in the robot’s head spherical coordinates.
In the mapping procedure, a linear regression model was
built to estimate parameters. Moreover, a Broyden update
rule was used for online estimation. For the online positions
of sound sources, they can be achieved by using a face de-
tection method.

3.3.5 Discussion

In this section, we have introduced the widely used meth-
ods for social robots’ semantic understanding tasks, in-
cluding object recognition, object tracking, object segmen-
tation, and speaker localization. The reviewed methods
are template matching, clustering, nearest neighbor, Neu-
ral Network, Boosting, Hidden Markov Model, and others.
Among these methods, the first three are simplest. However,
they only demonstrate good performance for some simple
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applications. For clustering method, it usually works to-
gether with template matching and nearest neighbor meth-
ods.

For other methods like Neural Network, Boosting, and
Hidden Markov Model, they usually require a training pro-
cess which heavily affects the final recognition results. The
advantage of these methods is that they have better gener-
alization ability. Face detection is a good example. First,
the face detector will be trained by a large number of face
and non-face samples. After training, it can detect face
from new images with a high recognition accuracy. How-
ever, how to choose suitable training parameters, design the
training set are very challenging. Generally speaking, dif-
ferent training parameters are suitable for different applica-
tions. If the designed perception system is applied in differ-
ent scenarios, the parameters of the used method need to
be reset, the system will be partially autonomous. More-
over, if there is a big variance between the training and
testing data, the performance of these methods will heavily
drop.

Besides the above introduced semantic understanding
tasks, there are some other ways that can be used to interact
with robots, such as a PDA device, a touchscreen, or just but-
tons. These interaction forms are called “explicit input” by
Zhang et al. [216] since they are directly operated by user’s
hand to help robots to accurately implement the input tasks
in a simple and intuitive interaction manner. Button was de-
signed in RoboX as a complement for other modalities [9].
Therefore, with respect to language selection, questions re-
sponding, and exhibit controlling, if robots cannot give any
correct responses, users can accomplish them through button
operations. A PDA was applied in robots GRACE [27] and
Cero [68]. By using it, users could decide where the robots
go. Furthermore, GRACE used a touchscreen to accomplish
the same tasks [28].

For semantic understanding tasks in social robots’ per-
ception, many methods can be used for different robots
even for the same application, and different combinations
between features and methods usually demonstrate differ-
ent performance. For example, Serrano et al. [217] re-
viewed Gabor-based face recognition methods and com-
parison studies have shown that different recognition ap-
proaches with the same feature lead to different recogni-
tion accuracies. Devillers et al. [171] surveyed features for
speech-based emotion recognition with different machine
learning techniques. Similarly, Whitehill et al. [218] ob-
served that the combinations of Gabor-based features and
SVM, and Haar-like features and Gentleboost demonstrate
good performance in a practical smile detection system.
Since the results of semantic understanding tasks directly
affect the efficiency and efficacy of HRI, the used semantic
understanding methods and features should be appropriately
selected in real applications.

3.4 Empirical Comparisons

3.4.1 Data Sets

To evaluate the performance of HRI in social robots, one
or more datasets are usually required. Generally speak-
ing, most existing experimental results were conducted on
several small datasets, and large-scale benchmark datasets
to evaluate the HRI performance of social robots are still
required. It is possibly due to the fact that different so-
cial robots have different semantic understanding tasks, and
the data used in different applications are generally differ-
ent. However, it is desirable to build up several benchmark
datasets for social robots research, which can be a platform
for comparing the methods used in different social robots.
Hence, several popular data sets used in social robotics are
analyzed and compared in light of our analysis of HRI per-
ception methods.

(1) Audio-Based Dataset

(A) Kismet Emotion Dataset
This dataset contains 5-emotion audio signals collected

from two females frequently interacting with Kismet by us-
ing a wireless microphone. The expressed affective states
include approval, attentional bid, prohibition, soothing, and
neutral. Each audio signal is processed to 16-bit signal chan-
nel with a frequency of 8 kHz. Finally, 726 labeled samples
are selected in the whole dataset [22].

(B) Berlin Audio Dataset
The dataset includes 7-emotion audio signals from 10

German actors (5 female and 5 male). The expressed affec-
tive states are anger, boredom, disgust, fear, joy, sadness,
and neutral. Five long utterances and five short utterances
are recorded for each speaker when presenting the emotion.
Speech samples are correctly classified by 80 % of human
labelers. There are 493 samples, in which 286 and 207 are
from the female and male respectively. Each sample has the
length of 2–8 s [219].

C. Orator Dataset
The dataset consists of 7-emotion audio signals from 13

actors and 14 non-actors in Germany. The expressed af-
fective states are agitation, anger, confidence, happiness,
leadership, pleasantness, and strength. There are 150 6-
second audio samples that are labeled by 20 labelers in this
dataset [220].

D. RUBI Emotion Dataset
The RUBI emotion dataset contains recordings from the

Early Childhood Education Center (ECEC) at UCSD in one
day. The recorded data are coded into three categories: cry-
ing, playing/singing, and the background. Each audio signal
is non-overlapping. There are 79 crying samples, 72 play-
ing/singing samples, and 151 background samples in this
dataset [37].
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Table 6 Performance
comparison of some high-level
semantic understanding tasks
obtained by several
representative social robots

Social Robot Semantic understanding task Accuracy Year

Reckham face recognition [33] high 2007

RUBI facial action recognition [38] middle 2006

auditory mood detection [37] middle 2008

ARMARIII face verification [42] low 2005

speaker tracking [43] middle 2005

sound event classification [44] middle 2005

head pose estimation [45] middle 2007

gestures recognition [46] low 2007

PaPero speech recognition [49] low 2006

MEXI emotion recognition [53] middle 2005

ROMAN emotion recognition [57] low 2008

BARTHOC emotion recognition [59] middle 2005

BIRON human tracking [62] high 2003

E. ARMAR III Sound Dataset
This dataset consists of audio data collected from four

kitchens by using a Sony ECM-719 stereo microphone and
a Sony MZ-NH700 High-Minidisc recorder at 44.1 kHz.
There are roughly 6000 samples included and manually la-
beled into 21 categories including boiling, bread cutter, cut-
ting vegetables, door, door bell, egg time ring, footsteps,
lighter, match, microwave beep, oven switch, oven timer,
over boiling, pan stove, pan sizzling, telephone, speech,
stove error, toaster, water, and others [44].

(2) Visual-Based Dataset

A. ARMAR III Gesture Dataset
The dataset contains 129 pointing gestures collected

from 12 subjects in an indoor environment with 8 differ-
ent pointing targets. Each subject is asked to point one of
the marked objects in the field of view of a camera that
represents a household robot. Then, the pointing gesture
is recorded and added into the dataset with the manual la-
bel [46].

B. ARMAR III Audio-Visual Dataset
The dataset includes lecture data recorded by 4 fixed

cameras and 3 T-shaped microphone arrays (4 microphones
in each array) in University of Karlsruhe. The cameras were
mounted on the room corners at a height of 2.7 m, and the
microphones were placed on the walls excluding the wall
behind the lecturer. By using the presented equipment for
data collection, a recording usually has the length of 45 min
where images were captured at a resolution of 640 × 480
pixels and a frame rate of 15 fps, and sounds were acquired
at a sample rate of 44.1 kHz and a resolution of 24 bit [43].

C. iCub Audio-Visual Dataset
The dataset contains 184 videos showing 24 different

parental couples whose infants have ages from 8 to 30
months. The cup stacking, in which parents demonstrated

how the cups were stacked; the wooden bricks, in which
tasks parents were instructed to put a block on a pole (al-
together three blocks were put); the bell, which rang after
pressing the red button; and the salt shaker, which was filled
with salt, with the parents demonstrating how to shake the
salt on a the blue tray. For the collected videos, images were
captured at the resolution of 720 × 576 pixels and a frame
rate of 25 fps, and mono sounds were acquired at a sample
rate of 44.1 kHz [16].

D. CK Facial Expression Dataset
Cohn-Kanade (CK) facial expression database is a widely

used visual dataset to evaluate different facial expression
recognition methods [221]. It consists of 100 university stu-
dents aged from 18 to 30 years. 65 % subjects are female,
15 % are African-American, and 3 % are Asian or Latino.
Subjects were instructed to perform a series of 23 facial
displays, six of which are prototypic emotions mentioned
above.

(3) Tactile-Based Dataset

Huggable tactile dataset [50] contains tactile signals re-
coded from the top and left regions of the robot’s arm sec-
tion at a baud rate of 57600. 200 data subsets were included
and divided into 16 affective touch interaction types like
tickle (softly, fingers only), tickle (hard, fingers only), pok-
ing (softly), poking (hard), scratching (one finger softly),
scratching (one finger hard), slapping (fingers only softly),
slapping (fingers and palm softly), slapping (fingers only
hard), Petting (softly), Petting (hard), patting (softly), pat-
ting (hard), rubbing, squeezing, and contact.

3.4.2 Comparisons of Some Published Results

In this subsection, we present some representative seman-
tic understanding results that are contained in several so-
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cial robots literature. Table 6 lists the corresponding seman-
tic understanding tasks and results published.8 It should be
noted that the results cannot be compared directly as the data
sets used in different robots are generally different. More-
over, the captured features and semantic understanding tasks
are usually different for different robots. We can see from
this table that the performance obtained is generally not very
encouraging, which shows that there are still some room for
researchers to improve in this area.

4 Summary

A social robot’s perception system is to help the robot un-
derstand well the surrounding environment. It can use vi-
sual, audio, tactile and laser reading signals to interact with
humans. In addition, external equipment such as keyboard,
mouse, and touch screen can also be used in HRI. Hav-
ing acquired these signals, how to process them to obtain
useful information is important for robots’ perception sys-
tems. In this paper, we have reviewed state-of-the-art per-
ception methods in HRI of social robots. We first presented
some representative and well-known social robots and then
reviewed existing perception methods from three aspects:
feature extraction, dimensionality reduction and semantic
understanding. For feature extraction, we presented four
widely used signals including visual-based, audio-based,
tactile-based and range sensors-based. For dimensionality
reduction, representative methods including PCA, LDA, and
LPP are reviewed. And for the semantic understanding, we
reviewed state-of-the-art techniques for several typical ap-
plications such as object recognition, object tracking, object
segmentation, and speaker localization.

Different from the pure theoretic study, social robots’
perception tasks require practicality, which indicates besides
high recognition accuracy, the requirements such as low
computational cost and autonomy are also very important.
For real-time applications, it is desirable to employ the per-
ception methods which have low computational cost, such
that the robot can quickly give a response to humans. An-
other important factor is autonomy that directly determines
whether the developed social robots can be commercially
available. This is because the consumers of the robots are
not experts in the fields, they may not be willing to learn how
to adjust the complex parameters of methods to adapt to the
working conditions. They hope that the products can auto-
matically adjust and conveniently operate. Therefore, even if
the developed social robots cannot achieve fully-autonomy,
a higher autonomy should be satisfied. To the best of our

8Please note that some other results are not included here. In this table,
only the representative social robots listed in Table 1 are selected.

knowledge, the reviewed perception methods listed in Ta-
bles 1 and 2 for social robots can work in real time and have
high autonomy.

The final objective for social robots is to make them work
in real environments. While many efforts have been made,
there are still some challenging issues to be addressed due to
the complex working environments. For feature extraction:

(1) Different features demonstrate different performance
in different applications. Therefore, how to efficiently
choose the features and how many features are needed
for feature fusion in a specified application remain un-
solved.

(2) Due to the big difference between the laboratory and
real environments, how to apply the methods developed
in labs to real-world applications is still a challenging
problem. In other words, more robust feature represen-
tation and extraction methods are still required.

(3) To improve the performance of semantic understand-
ing tasks, multimodal feature fusion is a popular choice
and has been widely used. For instance, Zhang et
al. [222] proposed local Gabor binary pattern histogram
sequence (LGBPHS) to represent face images, in which
Gabor magnitude and LBP were combined to demon-
strate better performance on the FERET face database.
However, how to effectively combine them is still an
open problem in this area.

For semantic understanding:

(1) Different semantic understanding methods demonstrate
different performance. How to properly combine a se-
mantic understanding method with the extracted fea-
tures to achieve high performance needs to be further
investigated.

(2) Similar to feature extraction, how to apply a semantic
understanding method developed in labs to the real en-
vironments is still a bottleneck.

(3) Many researchers working on the perception tasks of
social robots have achieved encouraging performance.
How to improve them to obtain less computational cost
and high autonomy needs to be further studied.

To address the above problems, we propose some poten-
tial solutions/directions in the following:

(1) For semantic understanding methods, most of them re-
quire a training phase first. We have reviewed several
commonly used social robot datasets in Sect. 3. How-
ever, most of them are collected under controlled con-
ditions such as Orator and CK datasets. There will be
a big variance between them and the one collected un-
der spontaneous situations. Undoubtedly, when the de-
veloped perception system is used in real environments,
the recognition results are heavily affected. Therefore,
to ameliorate the training procedure, training datasets
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should be acquired from real environments. After train-
ing by using these datasets, the final recognition results
may be better.

(2) Designing new enhanced methods for feature extraction
and semantic understanding is another direction. For ex-
ample, if the developed features can represent the nature
of recognized object under complex environments, it is
easy to obtain good results even if the nearest neigh-
bor method is employed. However, this is a very chal-
lenging procedure, and it is desirable to collect a large
number of real data to improve the performance of exist-
ing feature extraction and semantic understanding meth-
ods.

(3) The evaluation criteria for perception system in social
robots is slightly different from pure research. It is bet-
ter to achieve high accuracies of perception systems,
however, the perception systems serve applications of
social robots, and if the robot can give a reasonable
response during HRI, humans will not care if its per-
ception system can obtain a very high accuracy. There-
fore, in addition to improving the algorithms used in so-
cial robots’ perception system, designing a reasonable
action response of social robots to address the short-
comings of the perception systems is a possible solu-
tion.

References

1. Fong T, Nourbakhsh I, Dautenhahn K (2003) A survey of socially
interactive robots. Robot Auton Syst 42(3–4):143–166

2. Breazeal C (2002) Designing sociable robots. MIT Press, Cam-
bridge

3. Bartneck C, Forlizzi J (2004) A design-centred framework for
social human–robot interaction. In: IEEE international workshop
on robot and human interactive communication, pp 591–594

4. Hegel F, Muhl C, Wrede B, Martina H-F, Sagerer G (2009) Un-
derstanding social robots. In: International conference on ad-
vance in computer–human interactions, pp 169–174

5. Social robot, accessed 5 November, 2011 [Online]. Available
from: http://en.wikipedia.org/wiki/Social_robot

6. Breazeal C (2003) Toward sociable robots. Robot Auton Syst
42(3–4):167–175

7. Hirose M, Ogawa K (2007) Honda humanoid robots develop-
ment. Philos Trans R Soc, Math Phys Eng Sci 365:11–19

8. Fong T, Nourbakhsh I, Dautenhahn K (2003) A survey of socially
interactive robots. Robot Auton Syst 42(3–4):143–166

9. Jensen B, Tomatis N, Mayor L, Drygajlo A, Siegwart R (2005)
Robots meet humans-interaction in public spaces. IEEE Trans
Ind Electron 52(6):1530–1546

10. Jones C, Deeming A (2008) Affective human–robotic interac-
tion. In: Lecture Notes in Computer Science, vol 4868. Springer,
Berlin, pp 175–185

11. The FG-NET Aging Database, accessed 25 February, 2008 [On-
line]. Available from: http://www.fgnet.rsunit.com/

12. Fitzpatrick PM, Metta G (2002) Towards manipulation-driven vi-
sion. In: IEEE international conference on intelligent robots and
systems, vol 1, pp 43–48

13. Scassellati B (1998) Eye finding via face detection for a foveated,
active vision system. In: National conference on artificial intelli-
gence, pp 969–976

14. Tikhanoff V, Cangelosi A, Fitzpatrick P, Metta G, Natale L, Nori
F (2008) An open-source simulator for cognitive robotics re-
search: the prototype of the iCub humanoid robot simulator. In:
Performance metrics for intelligent systems (PerMIS) workshop,
pp 57–61

15. Sandini G, Metta G, Vernon D (2007) The iCub cognitive hu-
manoid robot: an open-system research platform for enactive
cognition. In: Lecture notes in computer science, vol 4850.
Springer, Berlin, pp 358–369

16. Rolf M, Hanheide M, Rohlfing KJ (2009) Attention via syn-
chrony: making use of multimodal cues in social learning. IEEE
Trans Auton Mental Dev 1(1):55–67

17. Figueira D, Lopes M, Ventura R, Ruesch J (2009) Towards a spa-
tial model for humanoid social robots. In: Lecture notes in com-
puter science. Springer, Berlin, pp 287–298

18. Hornstein J, Lopes M, Santos-Victor J, Lacerda F (2006) Sound
localization for humanoid robots—building audio-motor maps
based on the HRTF. In: International conference on intelligent
robots and systems, pp 1170–1176

19. Breazeal C (2003) Emotion and sociable humanoid robots. Int J
Hum-Comput Stud 59(1–2):119–155

20. Breazeal C, Edsinger A, Fitzpatrick P, Scassellati B (2001) Ac-
tive vision for sociable robots. IEEE Trans Syst Man Cybern,
Part A, Syst Hum 31(5):443–453

21. Aryananda L (2002) Recognizing and remembering individuals:
online and unsupervised face recognition for humanoid robot. In:
IEEE international conference on intelligent robots and systems,
vol 2, pp 1202–1207

22. Breazeal C, Aryananda L (2002) Recognition of affective
communicative intent in robot-directed speech. Auton Robots
12(1):83–104

23. Ge S, Wang C, Hang C (2008) Facial expression imitation in
human robot interaction. In: IEEE international symposium on
robot and human interactive communication, pp 213–218

24. Barciela G, Paz E, López J, Sanz R, Perez D (2008) Building
a robot head: design and control issues. In: IEEE international
symposium on robot and human interactive communication, pp
213–218

25. Breazeal C, Kidd CD, Thomaz AL, Hoffman G, Berlin M (2005)
Effects of nonverbal communication on efficiency and robustness
in human–robot teamwork. In: International conference on intel-
ligent robots and systems, pp 383–388
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