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Abstract Robots are expected to cooperate with humans in
day-to-day interaction. One aspect of such cooperation is be-
having proactively. In this paper we will enable our robots,
equipped with visuo-spatial perspective-taking capabilities,
to behave proactively based on reasoning ‘where’ its human
partner might perform a particular task with different effort
levels. For this, the robot analyzes the agents’ abilities not
only from the current state but also from a set of different
states the agent might attain.

Depending on the task and the situation, the robot ex-
hibits different types of proactive behaviors, such as, reach-
ing out, suggesting a solution and providing clues by head
movement, for two different tasks performed by the human
partner: give and make accessible. These proactive behav-
iors are intended to be informative to reduce confusion of
the human partner, to communicate the robot’s ability and
intention and to guide the partner for better cooperation.

We have validated the behaviors by user studies, which
suggest that such proactive behaviors reduce the ‘confusion’
and ‘effort’ of the users. Further, the participants reported
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the robot to be more ‘supportive and aware’ compared to
the situations where the robot was non-proactive.

Such proactive behaviors could enrich multi-modal inter-
action and cooperation capabilities of the robot as well as
help in developing more complex socially expected and ac-
cepted behaviors in the human centered environment.

Keywords Proactive robot · Human-robot interaction ·
Social robot · Multi-state perspective taking

1 Introduction

As robots move towards being cooperative and social, the
challenges of incorporating the basic ingredients of such be-
haviors are becoming prominent. In this context, just being
reactive or active is not sufficient. Behaving proactively in a
human centered environment is one of the desirable charac-
teristics for the social robots [13, 47].

Proactive behavior, i.e. taking the initiative whenever
necessary to support the ongoing interaction/task, is a mean
to engage with the human, to satisfy internal social aims
such as drives, emotions, etc. [14]. Proactive behavior can be
tackled at different levels of abstraction and through various
perspectives. We are essentially interested here in one par-
ticular topic: the synthesis of proactive motions with the aim
to facilitate human-robot collaborative task achievement. In
this stream, one non-trivial aspect is to determine “where”
(an important aspect of joint task [55]) a joint action should
preferably take place and what the robot can do to “pro-
pose/communicate” the choice it has made.

We have already developed a system, which enables the
robot to perform a set of basic human-robot interactive ma-
nipulation tasks such as give, show, hide, make-accessible
an object to the human [43]. In this paper, we will focus on
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Fig. 1 The robot asks to the human “give me the toy dog . . . ” (a) by maintaining its rest position, (b) by proactively moving its hand to an
appropriate place to guide the human’s action

a complementary aspect of such interactive manipulation in
which the human will be required to perform the task or to
contribute to a joint task in order to achieve some joint goal.
We will consider two such tasks:

(i) Give: The human has to give some object to the robot
by holding it somewhere, and

(ii) Make Accessible: The human has to make some object
accessible to the robot by placing it somewhere.

As shown in Fig. 1(a), if the robot asks, “Please give me
the toy dog . . . ” and remains in the rest position, this might
create confusion for the human about how and where to give:
“Should I move and reach out to the robot to put the object
in its hand?”, “should I put it somewhere on the table for the
robot to take it?”, etc. Now assume that the robot, along with
its request to give the object, also shows proactive reach out
behavior by moving its hand to take the object, as shown in
Fig. 1(b). This might significantly guide the human about
how to perform the task and where to give. Moreover, if it
will reach out to a place, which is convenient from the hu-
man’s perspective to give the object, it will also reduce the
human’s effort.

Similarly, if the human has to make some object accessi-
ble to the robot, the robot could proactively advise the hu-
man about where to put the object so that the robot would
be able to take it. This will reduce the human’s confusion.
Again, if it takes into account the human’s effort to find a
human-adapted proactive solution, it will further reduce the
effort of the human.

Expressive behavior coupled with perspective-taking has
been shown to be important for the socio-cognitive aspect
of Human-Robot Interaction [3]. Hence, while finding a

human-adapted solution for a task, the robot takes into ac-
count the visuo-spatial perspective of the human. Moreover,
the robot performs such perspective-taking not only from
the current state of the agent, but also from a set of differ-
ent states achievable by the agent; hence the term multi-state
perspective-taking is derived.

Apart from reducing the ‘confusion’ and ‘effort’, with
such proactive behaviors the robot might also better commu-
nicate its ‘abilities’ and its ‘understanding’ about the abili-
ties of the human partner. In this paper, we will hypothesize
such proactive behaviors; present a framework to instantiate
a solution for such behaviors; and validate through user stud-
ies that proactive behaviors indeed reduce the ‘confusion’ of
the human and incorporating the human adapted aspects fur-
ther reduce the ‘effort’ of the human partner.

2 Related Work

Proactive behavior could be at various levels of abstractions
and could be exhibited in various ways ranging from simple
interaction [36], to proactive task selection [5, 35, 52, 53].
Our work has been applied to and instantiated by the do-
main of human-robot cooperative object manipulation, in
which interactive pick and place [30] and handover tasks
have been identified as an essential capability for a robot
assistant. From this, what is pertinent is where to place the
object, the robot’s gripper, in which direction to orient the
robot’s head, etc., in order to provide maximum information
and help. In [55] humans’ ability to estimate such aspects of
‘what’, ‘when’ and ‘where’ parts of others’ actions and their
importance in online action coordination have been shown.
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Hence, the robot should also be equipped with such abilities
for better coordination and cooperation even while deciding
to behave proactively.

In the context of proactive behavior, estimation and uti-
lization of ‘what’ has been addressed by various researchers.
In [52, 53], the robot estimates what the human wants and
selects a task using a probability density function. In [23],
a cost based anticipatory action selection is done by the
robot to improve joint task coordination. ‘When’ has also
been addressed in various ways. In [34], temporal Bayesian
networks are used for proactive action selection to mini-
mize wait time. In [7], a robot wheelchair takes control
when a handicapped human needs it and in [8], an activ-
ity constraints violation based scheduler is used to remind
the human. Using the information about ‘how’ for behav-
ing proactively has been shown in [16], where switching
hidden semi-Markov model is used to learn a house occu-
pant’s daily activities and to alert the caregiver in case of
abnormality. There are various other works which shows the
robot learning/understanding ‘what’ does a task ‘mean’ and
‘how’ the task is performed [9, 44, 45], at symbolic level of
abstraction, which could be used for synthesizing and show-
ing proactive behaviors. On the other hand, from the point
of view of utilizing the information about ‘where’ the hu-
man can perform the task and showing proactive behavior
accordingly, there has not been significant work in robotics.
In [58], a robot wheelchair predicts the location the user is
trying to go, by using a POMDP model, and drives him/her
there. In Human-Human interaction, the notion of proactive
eye movement have been identified [18], and further in [54],
such proactive gaze have been proposed as a dimension to
measure HRI. However, their notion of proactive gaze cor-
responds to predicting the goal of the action, and then proac-
tively shifting the gaze directly towards the goal. This notion
of proactivity is complementary to the proactive behaviors
within the scope of the paper, in the sense instead of shifting
its gaze proactively based on the human’s action, the robot
proactively finds a solution for the human action and sug-
gests it through its proactive actions. However, such proac-
tive actions might include proactive gaze as a component or
might induce the human partner’s proactive gaze.

Estimating ‘where’ the human can perform a task is help-
ful for sharing attention with others [59] and to predict spa-
tial characteristics of others’ actions [29]. These are essen-
tial for building the robot’s theory of mind [51] and con-
sequently can help to guide the human’s behavior [33, 60]
towards the robot.

Our interest is to device proactive behaviors based on
‘where’ the task could be performed. Let us derive the in-
terest behind such proactive behaviors and at the same time
identify some of their key ingredients. In [25], it has been
shown that in general the participants appreciate the robot’s

initiatives of showing some movements as an engagement
attempt. The experiment was in a receptionist-visitor sce-
nario, and the type of initiative was gaze shifting, which is
different from our HRI object manipulation scenario and the
associated proactive behaviors’ types. However, the finding
that the participants rated the robot higher when it showed
some movements in its gaze than just being still, points that
proactive initiatives of the robot could better engage the hu-
man and serve the purpose of interaction opening. Further,
in [38], it has been shown that simple arm-head gesture in-
creases the expressive power of the social robots. Although,
such movements have not been directly studied in relation to
proactivity, we will hypothesize proactive behaviors, which
will incorporate arm and head movements, as an attempt to
be expressive. Moreover, a robot moving its arm to a lo-
cation could induce human goal anticipatory response as
demonstrated in children [21]. Further, regarding the object
manipulation, which is the focus of our paper in HRI con-
text, we find that gazing plays an important role in pointing-
based object-reference conversation [27]. Therefore, in our
hypothesized proactive behaviors, we incorporate to look at
the object and the place of interest.

In this paper, our focus will be the aspect of estimating
‘where’ a task could be performed by the human and then
hypothesize different proactive behaviors in terms of verbal
as well as non-verbal key communicative components (arm
motion, gaze shifting) as identified above.

3 Contributions of the Paper

Below we summarize the contribution of the paper: conceiv-
ing hypotheses related to proactive behaviors; developing
a framework to synthesize a solution for proactive actions
based on ‘where’ the robot could support the task, while
ensuring least feasible human effort; and validating the hy-
potheses through a preliminary user study.

(i) Hypothesizing proactive behaviors and expected ef-
fect in HRI: For interactive human robot joint tasks,
we hypothesize the following:

(a) Proactive Reach out to Take from the Human: We
postulate that along with informing verbally, the robot
should proactively reach out to take, in the case the hu-
man has to give something to it.

(b) Proactively Suggesting ‘Where’ to Place: We
postulate that the robot should proactively suggest (ver-
bally and by gaze shifting) about ‘where’ to place an
object, in the case the human has to make the object
accessible to the robot.

We hypothesize that such proactive behaviors will
be preferred over non-proactive behavior and will re-
duce the ‘confusion’ of the human partner.
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(ii) Framework to instantiate human-adapted proac-
tive actions for least feasible human effort: We will
present a generic framework to find a solution for dif-
ferent proactive behaviors. The framework estimates
‘where’ the human can perform the task by respecting
environmental and postural constraints and where the
robot can support the task. Our framework will provide
a human adaptive proactive solution, by taking into ac-
count human perspective and effort (Sect. 5.4).

So, we will further hypothesize that such human-
adapted proactive behavior will be preferred over non-
proactive behavior of the robot as it will also reduce the
‘effort’ of the human, and the robot should be perceived
as being more ‘aware’ about the human’s capabilities
and more ‘communicative’ about its own capabilities.

We will show through experimental results, the ca-
pability of the framework to provide a solution for dif-
ferent scenarios and for different robots with visible re-
duction in the human effort (Sect. 6.1).

(iii) User studies to validate the hypotheses: We will
present the results of a set of user studies to validate the
hypothesis that such proactive behaviors indeed reduce
the human ‘confusion’ and the human adapted aspect
further reduces the human ‘effort’ and make the robot
more ‘aware’ and ‘communicative’ (Sect. 6.2).

In the next section, we will formally explain the nature
of the proactive behavior within the scope of the paper and
give a general description about how such proactive be-
haviors are achieved. Then we will present the methodol-
ogy to instantiate such proactive behaviors in Sect. 5. Here,
we will first briefly describe the multi-state visuo-spatial
perspective-taking ability of the robot and assignment of the
effort levels. Then, in Sect. 5.4, we will present the generic
framework, which iteratively finds a feasible solution for
proactive behavior. The approach is to find a place ‘where’
the human might perform a task with least feasible effort
and among those places ‘where’ the robot could support it,
given its own constraints. In Sect. 5.5, we will illustrate the
framework to instantiate solutions for two proactive behav-
iors hypothesized above: (a) proactively reaching out to take
for the give task by the human and (b) proactively suggest-
ing ‘where’ to put for the make-accessible task by the hu-
man. In the experimental results and analysis, Sect. 6, we
will demonstrate two main aspects:

(i) Sect. 6.1 will demonstrate the capability of the frame-
work to find solution for different scenarios, and for
different types of robots. We will also demonstrate the
reduction in the human effort in the case of human
adapted proactive behavior.

(ii) Sect. 6.2 will show supporting evidence for our hy-
potheses with user studies.

Finally, we will conclude the paper with discussions on po-
tential applications and pointer to the future work.

4 Objective and Nature of the Proactive Behaviors
of Interest

We define an environment En, which consists of entities: ob-
jects and agents, and a set of attributes At related to physical
states of all the objects, and physical and mental states as
well as abilities of all the agents. The state of the environ-
ment consists of the set of tuples 〈entity,attribute, value〉.
From the planning point of view, the target state of the
environment for a task T is specified as a set of facts
FT = {f T

i }, where each fact f T
i will consist of tuple

〈entity,attribute, constraint〉. Facts could be directly ob-
servable as well as inferred. For a particular task T, the
constraint for a particular instance of 〈entity,attribute〉 pair
could be in different forms:

(i) A single value. For example, if an object O should be at
(x, y, z), for the entity O and its attribute position, this
constraint results into f T

i = 〈O,position, (x, y, z)〉.
(ii) A set of values because of some desired facts. For ex-

ample, if an object O should be on the table, this results
into f T

i = 〈O,position, {pj }〉, where {pj } is the set of
positions at the table top.

(iii) A set of values because of some forbidden facts. For ex-
ample, if the constraint is that an object O should not
be reachable by an agent Ag, this results into the fact
f T

i = 〈O,position, {pk : non_reachable(O,Ag,pk)}〉.
Hence, for a particular task T, all the constraints for

a particular instance 〈ent,at〉 of the 〈entity,attribute〉 pair
will eventually result into a space sT

ent,at , in which its value
can lie. Given FT , we say the pair 〈ent,at〉 to be properly
grounded if sT

ent,at contains only one value, i.e. if sT
ent,at is a

point in the potential space for that 〈ent,at〉 pair. Let SPT de-
notes the space corresponding to all the properly grounded
〈entity,attribute〉 pairs. Given FT , we say a 〈ent,at〉 pair to
be loosely grounded for the task T, if sT

ent,at contains multi-
ple potential values. Let SLT denotes the space correspond-
ing to all such loosely grounded 〈entity,attribute〉 pairs. In
one sense, SLT provides the agent with latitudes to perform
the task differently, but on the other hand it can also be
the source of confusion because of the burden of deciding
among multiple possibilities. And this is where, the type of
the proactive actions, which are within the scope of this pa-
per, play its role.

We assume that a proactive action is synthesized based on
an initial specification of expected facts FT about the task
T, the sequence of already planned actions AT to perform
the task, the environment state EnI before executing AT ,
the predicted state of the environment EnF , if AT would
be executed. For synthesizing proactive actions, the inten-
tion/motive behind such actions is important.

Proactive behaviors could be of various types and could
be exhibited in various ways. The focus of this paper is on
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Fig. 2 A type of proactive behavior, which results into an intermediate
physical state of the world and/or changed mental state of the human,
mainly to reduce the confusion and effort of the human for smooth
execution of the joint task

the type of proactive behavior, which makes changes in the
loosely grounded space SLT , as discussed above, by instan-
tiating and/or better specifying its parameters and communi-
cating it through the proactive action. The intentions behind
such proactive behaviors are: to guide and facilitate the hu-
man partner to better perform the task, to achieve the joint
goal by reducing the task related confusions and to reduce
the effort of the human partner. For example, see Fig. 2,
where an ellipse shows one state of the environment, and an
edge shows an action. In the absence of any proactive behav-
ior, one of the states of the expected final environment will
be EnF . In the case of proactive behavior, an intermediate
environment EnIntr is created by the robot’s proactive action
RP

A by instantiating or better specifying the expected state
of the environment. Hence, the proactive behavior leads to a
change in any of these: the physical state of the environment,
the physical state of the human, the mental state and belief of
the human. And the human adapts to it to achieve the task by
action HM

A , by modifying the parameters of his/her planned
action. This might result into a partial different final state of
the environment, En′

F . In this paper, the hypothesized proac-

tive behaviors do not eliminate the set of already planned ac-
tions, AT , as well as preserve the already properly specified
SPT space of the final environment. However, the parame-
ters of AT could be adapted. Hence, there is a common part
in the final states of the environment, represented as Ensp

F in
Fig. 2.

For the give task by the human, the set of specifications
about the facts FGive includes: the object should be in the
hand of the robot, and the set of actions AGive includes
that the human will pick and carry the object and the robot
will grasp the object. For simplicity the parameters of the
task is omitted, such as the performing agent, the agent for
whom the task will be performed, the object, etc. For the
make accessible task by the human, FMake_Accessible in-
cludes the fact that the object will be on a support, and it will
be graspable, reachable and visible to the robot. Whereas,
AMake_Accessible includes that the human will pick, carry
and place on a support. Based on these sets of FT and
AT , the two complementary research challenges are, au-
tonomous synthesis of appropriate proactive action RP

A and
autonomous instantiation of the corresponding intermediate
state of the environment, EnIntr . In this paper, we assume
that RP

A for a task is already known as we have hypothesized
them in Sect. 3. And in the next section we will present the
framework to instantiate the EnIntr to communicate through
hypothesized RP

A . In our current examples, this instantiation
of the unspecified part involves reasoning about the ‘where’
aspect of the task i.e. the placement (either to hold or put) of
the object in the final environment.

5 Methodology

5.1 Multi-state Visuo-Spatial Perspective Taking

Reasoning by modeling the agent and its behavior in sim-
ulation has been shown to be effective for perspective
taking, teamwork and social behavior [31]. Visuo-spatial
perspective-taking of the human has already been shown
as an important component in Human-Robot Interaction
[2, 17]. We have enriched the robot’s ability of perspective
taking not only from the current state of the agent but also
from a set of different states the agent might attain, and
presented the concept of Mightability in [43]. Mightability
stands for “might be able to . . . ” and facilitates multi-state
visuo-spatial perspective taking. The idea is to analyze var-
ious abilities, Ab , of an agent by applying an ordered list
of virtual actions, Av = [a1, a2, . . . , an], while respecting
the environmental and postural constraints. The robot esti-
mates the abilities at 3D grid level and at object level, which
we termed as Mightability Maps (MM) and Object Oriented
Mightabilities (OOM) respectively. In the current implemen-
tation:
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Fig. 3 Taxonomy of reach actions: (a) arm-shoulder reach, (b) arm-
torso reach, (c) standing reach. (Adapted from [10, 19])

Table 1 Effort classes for visuo-spatial abilities

Effort to reach Effort level Effort to see

No_Effort_Required Minimum: 0 No_Effort_Required

Arm_Effort || Head_Effort

Arm_Torso_Effort || Head_Torso_Effort

Whole_Body_Effort || Whole_Body_Effort

Displacement_Effort ⇓ Displacement_Effort

No_Possible_Known_Effort Maximum: 5 No_Possible_Known_Effort

Ab ∈ {see, reach} (1)

ai ∈ {Turn_Head,Turn_Torso,Lean_Torso,

Make_Standing,Make_Sitting} (2)

5.2 Symbolic Categorization of Efforts

We have categorized the effort to attain a state from the cur-
rent state based on the joints involved. This is motivated
from the studies of human movement and behavioral psy-
chology [10, 19], where different types of reach actions of
the human have been identified and analyzed. This includes
reaches involving simple arm extension (arm-only reach),
shoulder extension (arm-and-shoulder reach), leaning for-
ward (arm-and-torso reach) and standing, as shown in Fig. 3.
Such categorization could be further enhanced based on the
studies of musculoskeletal kinematics and dynamics mod-
els [32, 48]. The associated effort level based on the joints
involved in applying a particular Av , are:

Esee ∈ {No_Effort,Head_Effort,Head_Torso_Effort,

Whole_Body_Effort,Displacement_Effort} (3)

Ereach ∈ {No_Effort,Arm_Effort,Arm_Torso_Effort,

Whole_Body_Effort,Displacement_Effort} (4)

Table 1 shows this categorization with the relative levels of
effort. For example, assume an agent is currently sitting. To
see a particular object if the agent will be required to apply
Av = [Make_Standing,Lean_Torso], the corresponding ef-
fort level to see the object will be Whole_Body_Effort, as it
involves additional joints, instead of just turning the head or
the torso. Whereas, Displacement_Effort corresponds to the

situations in which the agent has to move from the current
position.

5.3 Grasp and Placement Analysis

For behaving proactively, it is important for the robot to
compute where the task could be performed. To find the fea-
sibility of a task, the framework not only reasons about the
places to perform the task, but also performs rich geometric
analyses on the possibilities of grasp and placement orien-
tations of the object. This is important, because there might
exist a reachable and visible place P to perform a task, but
placing at P is either not feasible by the human or might
not allow to grasp the object by the robot. This could be
due to various factors, such as the cluttered environment,
difference in the shapes of the anthropomorphic hand and
the robot’s gripper, etc. Hence, reasoning about existence
of collision free grasps while picking or finding a position
to place an object is important. This becomes more promi-
nent with the real life objects of complex shapes. Our sys-
tem is capable of analyzing feasibility of grasps of complex
objects for robot’s gripper and for anthropomorphic hand,
given an environment [50]. This further enables the robot to
extract a set of simultaneous grasp pairs, by the human and
the robot to facilitate the tasks requiring object hand-over.
Further, an object could be placed at a position P in differ-
ent orientations, and depending upon the environment some
or none of these placements might be stable and/or allow to
grasp. Therefore, it is also important to test that from the task
perspective, at a particular position there exists any feasible
placement orientation or not.

Therefore, to incorporate these feasibility tests, the robot
computes and stores the sets of possible grasp and placement
orientations assuming a collision free environment. Further,
the robot autonomously computes the support planes based
on the vertical facets, which could be part of any object such
as a table, a box, etc. This enables the robot to find a feasi-
ble placement of an object on any other object. During plan-
ning for a task, the planner filters out the non-feasible place-
ments and grasps by simulating them in the 3D environment
(Move3D [56]) reflecting the current state of the world.

5.4 Framework to Instantiate Proactive Solution

Figure 4 shows the reasoning process for extracting a solu-
tion to behave proactively. As shown in block ‘a’ of Fig. 4,
input consists of the current environment state EnI , the task
T with its parameters: performing agent, target agent (for
whom the task would be performed), the name of the object.
In addition, the current maximum allowed effort level of the
robot, RMEL and of the human, HMEL are provided.
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Fig. 4 Proactive planner: Reasoning to find the human-adapted solution for proactive behavior, ensuring the least feasible effort of the human
partner. Block ‘i’ is detailed in Fig. 5

5.4.1 Extracting Human-Adapted Candidate Places

The planner reasons about ‘where’ the human can perform
the task. As an attempt to ensure minimum feasible effort
by the human, initially the maximum allowed effort level of
the human, HEL is set as level 0, i.e. No_Effort_Required
(see Table 1) to see and reach the places to perform the task
(block ‘b’ of Fig. 4). In block ‘c’ of Fig. 4, the planner will
find the candidate places where the human can perform the
task T with his current maximum effort level. Depending
upon the task T, for a particular agent Ag, the planner is
already provided with a set of constraints C

Ag
T to find the

set of candidate places:

C
Ag
T = {

c
Ag
i : i = 1, . . . ,m

}
(5)

where m is total number of constraints and c
Ag
i consists of

tuple:

c
Ag
i = 〈

effort_level(E), ability(Ab) = true|false
〉

(6)

where effort_level is the element of expressions (3) or (4)
depending upon the ability, which is element of expres-
sion (1). The desired values as true or false are known for
the task a priori. For example, if the task is to give an ob-
ject, the planner knows that the abilities to see and reach
the candidate places by the performing agent should be true

for the desired effort level. If the human, Ag = H , has to
give or make something accessible to the robot, for the hu-
man’s current effort level, which is set as HEL = 0, Eq. (5)
results into the set of constraints: CH

T = {cH
1 , cH

2 }, where,
cH

1 = 〈0, see = true〉 and cH
2 = 〈0, reach = true〉.

Hence, the planner extracts the set of candidate places,
P T

HEL
, which satisfies, for the agent human, Ag = H , the set

of constraints, CH
T :

P T
HEL

= {
pj : j = 1, . . . , n ∧ pj ≡ (x, y, z)

∧ (
pj satisfies ∀c ∈ CH

T

)}
(7)

For extracting P T
HEL

, based on the constrains, the plan-
ner performs relevant set operations on the corresponding
Mightability Maps (see Sect. 5.1) of the agent. However,
there might be the situations where there exists no common
reachable cell in the Mightability Maps of two agents, but
because of the object size there might exist some places to
perform the task, such as the task of handing-over. As the
object is known to the planner, to ensure not to lose such
places, before finding P T

HEL
, the Mightability Maps are ex-

panded based on the dimension of the object’s bounding
box.

Hence, block ‘d’ of Fig. 4 shows P T
HEL

, the set of places
where the human might be able to perform the task T for
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Fig. 5 Extracting a feasible solution (block ‘i’ of Fig. 4): Iterating on 3 search spaces: candidate grasps, candidate placement orientations and
candidate placement positions to satisfy various constraints of task, manipulation planning and human’s perspective to find a feasible solution

the given effort level, HEL. For effort level 0, in which the
human is not expected to even move the arm, P T

HEL
will be

NOT NULL only if the object is already in the human’s hand.
The human has to just maintain his/her posture and the robot
will be expected to take the object from his/her hand. In this
case, P T

HEL
will be a set of points corresponding to the ob-

ject’s bounding box.
In the case of NOT NULL candidate positions (as tested

in block ‘e’ of Fig. 4), in block ‘f ’ the planner extracts the
set of candidate points where the robot can support the task.
For this, from the robot perspective, Ag = R, another set of
similar constraints, CR

T , is applied on the candidate places
obtained for the human, P T

HEL
. This results into a refined set

of candidate places, P
T,REL

HEL
(block ‘g’ of Fig. 4):

P
T,REL

HEL
= {

pk : k = 1, . . . , nf ∧ pk ≡ (x, y, z)

∧ pk ∈ P T
HEL

∧ (
pk satisfies ∀c ∈ CR

T

)}
(8)

where nf is the total number of final candidate places. If

P
T,REL

HEL
is NOT NULL, as tested in block ‘h’ of Fig. 4,

the planner calls a subroutine (block ‘i’ of Fig. 4) to per-
form various tests to find a feasible solution in the candidate
space. Figure 5 gives an overview of the processing of block
‘i’, as will be explained in the next sub-section. If there ex-
ist a feasible solution, then the test in block ‘j’ will take the
control to block ‘m’, which will return the feasible solution.

Note that at any stage of planning if the planner fails to
find a candidate place or a feasible solution, and if there is
still a possibility of increasing the effort level (block ‘k’), it
increases the acceptable effort level of the human in block
‘l’ and begins the next iteration.

5.4.2 Extracting a Feasible Solution for a Particular Effort
Level

Figure 5 shows an overview of the iterative process for ex-
tracting a feasible solution (block ‘i’ of Fig. 4) by incorpo-
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rating the constraints from the perspectives of grasp, place-
ment, visibility of the object and planning. The planner takes
as input the candidate set of places obtained in block ‘g’ of
Fig. 4 and ranks them. Currently we assign weights based
on the closeness to the target-object position. This is based
on the assumption that the human needs to put less effort in
placing or holding the object if he/she has to carry the ob-
ject for a shorter distance. Another motivation behind such
weight assignment is to exhibit goal-directed behavior. In
[22], it has been suggested that to be intentional the robot
should exhibit goal-directed actions. Hence, this weight as-
signment also drives the solution to be directed towards the
object, which might also inherit the notion of pointing to the
desired object.

Assignment of such weights for candidate places for
proactive behavior and the studies and frameworks for
preferable hand-over positions such as [6, 15, 26, 57] could
mutually benefit. For the latter case the possibility of proac-
tive behavior by the human, who will be the receiver, could
be incorporated. Whereas, for the former case in which the
robot will be the receiver could take into account further
aspects related to preferable hand-over positions.

The planner further takes the initial sets of grasp config-
urations and placement orientations of the object, and filters
them based on the task and the environment to extract re-
duced candidate sets. The candidate grasps are ranked based
on the stability [49] and the placement visibility orientations
are ranked for a particular position based on the visibility %
of the object from the target agent’s perspective [41]. Then
the planner iterates on the three candidate lists to perform
a series of feasibility test as shown in Fig. 5. The planner
selects a tuple consisting of a placement position, a grasp
and a placement orientation (based on their ranking, from
highest to lowest) and uses dedicated modules for different
feasibility analyses: [41] for % visibility testing of an object
from an agent’s perspective [20], for planning collision free
path. If any of the feasibility tests fails, another candidate tu-
ple is selected. If all the feasibility tests for a particular task
are passed then that particular placement position is consid-
ered to show the proactive behavior. If the task demands,
a smooth trajectory is also generated for the execution, us-
ing [4].

5.5 Illustration of the Framework for Different Tasks

In this section, we will illustrate the presented proactive
planner to find a human-adapted feasible solution to behave
proactively. We will consider two different tasks performed
by the human partner: to give an object to the robot and to
make accessible an object to the robot.

5.5.1 For Proactively Reaching out

Figure 6 shows the initial scenario in which the human has
to give the toy dog, placed on his right, to the robot. The

Fig. 6 Initial scenario in which the human has to give the toy dog to
the robot. The robot has to plan to proactively reach out to take, instead
of standing still and waiting for the human to act

robot will plan to proactively reach out to take. For the
current example, as it is a table-top cooperative manipula-
tion scenario, to avoid more expensive motions of the robot,
its maximum allowed effort is set as Arm_Effort. This re-
stricts the robot from planning to turn or move its base, it
can only move its arm for achieving the current sub-task of
getting the object from the human. And the human maxi-
mum effort level is provided as Whole_Body_Effort. How-
ever, these could be modified online by higher-level deci-
sion making or supervisor systems, such as ours [1, 12]. As
already explained in Sect. 5.4.1, for the human, initially the
least effort level, No_Effort_Required, will be tested for ex-
tracting the candidate places to give the object. The planner
will get the candidate set of places in block ‘d’ of Fig. 4
as NULL, as the object is not already in the human’s hand.
Hence, the control reaches to the block ‘k’ and increases
the human’s reach effort level to Arm_Effort in block ‘l’
(we chose to maintain the corresponding effort level to see
as No_Effort). This means that the planner estimates the
places, which are in the current field of view of the hu-
man and where the human could give the object to some-
one, if he will only stretch out his arm. Figure 7(a) shows
the candidate places for giving the object by the human for
this level of effort, obtained in block ‘d’ of Fig. 4 in the
next iteration. Green, red and yellow points show giving
possibilities by right, left and both hands respectively. In
block ‘g’ of Fig. 4 with the maximum allowed effort level
of the robot, the planner extracts the subset of the places
where it can support the human. For our current example,
this turned out to be NULL, as there was no point reachable
by the robot with its current effort level among the points of
Fig. 7(a). Hence, the planner again reaches to the block ‘l’
of Fig. 4 to test for the next effort level of the human, by
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Fig. 7 Candidate places for
giving an object by the human
(green: by right hand, red: by
left hand, yellow: by both hands)
(a) from his current position
with Arm_Effort and (b) if the
human will put effort to move
his torso (lean forward or turn)
while being seated,
Arm_Torso_Effort.
(c) Candidate points from where
the robot can take the object for
the effort (b) of the human.
(d) Weighted candidate points
based on the nearness to the
target-object: the toy dog. The
pointer indicates ‘a’ highest
weighted feasible place obtained
by feasibility analyses of Fig. 5
(Color figure online)

setting Arm_Torso_Effort to reach and Head_Torso_Effort
to see. Figure 7(b) shows the candidate points for giving
the object by the human, who is now expected to lean for-
ward and/or turn around while being seated. In this itera-
tion, in block ‘g’ of Fig. 4 the planner finds a set of can-
didate places, from where the robot could take an object
from the human. Figure 7(c) shows these candidate places
as green point cloud. The resultant candidate places after
the weight assignment as explained in Sect. 5.4.2, have been
shown in Fig. 7(d). Blue points have the highest weight in
the sense they will be preferred over the red points hav-
ing lowest weights. The feasible solution corresponds to
the first highest weight candidate point, which passes the
rest of the grasp, placement, object visibility and trajectory
oriented feasibility tests. This feasible solution obtained in
block ‘m’ of Fig. 4, has been indicated in Fig. 7(d). At the
end, depending upon the task, the planner returns appro-
priate data for exhibiting proactive behavior. For the cur-
rent task, it returns the winner feasible place obtained in
Fig. 7(d), the corresponding levels of efforts for the hu-
man and for the robot, the trajectory to reach the place, and
the estimated end configuration of the robot, as shown in
Fig. 8.

Fig. 8 Computed configuration for the proactive reach out to take, in
the case the human has to give the toy to the robot

5.5.2 For Proactively Suggesting ‘Where’ to Place

The robot finds ‘where’ the human can put the object for
the robot to take and proactively suggests the human about
that place. As mentioned in Sect. 5.3, the robot is able to
find the horizontal surfaces based candidate points to place
something on those supports. Hence, in block ‘d’ of Fig. 4,
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Fig. 9 Task of making an object accessible by the human to the robot.
(a) Places on the support planes where the human can put something
with least effort. (b) Weighted points where the robot can support the
human by taking the object. (c) The planner found a possible place-

ment of the object on the box from where it is feasible for the robot to
take. Note that, because of the object-closeness based weight assign-
ment, this placement also reduces the human’s effort to carry the object

the planner finds the places at the top of the box as well,
where the human can put the object as shown in Fig. 9(a).
Figure 9(b) shows the weighted candidate points to perform
the task. Figure 9(c) shows the feasible estimated place-
ment of the object obtained in block ‘m’ from where the
robot could take it. Apart from the similar information for
proactive reach out task, the proactive planner also provides
the symbolic information that the placement is ‘on the box’
based on the reasoning on the inter-object spatial relations.
Incorporating other predicates such as left, right, next to, etc.
could further enrich the location description while suggest-
ing the place to put.

5.6 Remark on Convergence Time

As the first step, the main focus of this paper is to incorpo-
rate the key elements of grasp, visibility, placement, feasibil-
ity of trajectory, etc. from the perspective of both the agents:
the robot and the human. One part of our future work is to
further optimize the iterative approach presented in Fig. 5.
Therefore, we will provide an approximate idea about the
convergence time.

The candidate search space based on Mightability Maps
could be updated online [43] and the initial lists of grasp
and placement are calculated only once for each new object
and stored. Hence, the convergence time for the algorithm
mainly depends upon the number of times it has to backtrack
due to failure of any of the tests in Fig. 5 and the time taken
by the path planner, which is presently a RRT based planner
[20]. The algorithm finds a feasible solution for the typical
scenario, shown in Fig. 6, in 1.6 seconds. The convergence
times for other scenarios and tasks presented throughout the
paper varies between 1 to 4 seconds.

6 Experimental Results and Analysis

We have tested our system on two different robots: JIDO, a
home-built mobile manipulator equipped with a LWR Kuka
arm and PR2 from Willow Garage. The robots use Move3D
[56], an integrated planning and visualization platform. The
robots, through various sensors, maintain and update the 3D
world state in real time. For object identification and local-
ization, a tags based stereovision system is used. For lo-
calizing the human and tracking the whole body, data from
Kinect (Microsoft) sensor is used. The human’s gaze is sim-
plified to his/her head orientation, estimated through mark-
ers tracked by a motion capture system in real time. We are
using Kinect to track the whole body of the human but from
this we do not get precise head orientation of the human.
Therefore, we use a motion capture system to track the hu-
man head. We avoid tracking the whole body through the
motion capture system. This is because it is marker based
system and needs a precise model and frequent calibration
for each individual. We have created a fixed model of gog-
gles for the motion capture system, which can be used by
any human, to get his/her head orientation.

In all the experiments the speech of the robot was scripted
and only some of the parameters were synthesized, such as
the name of the object and the support (an object or a piece
of furniture) provided by the proactive planner. The entire
experiment runs on the real robots. However, throughout the
paper at appropriate places we have put the pictures of the
corresponding 3D environment to show some intermediate
steps of the planning.

In [24], it has been shown that simple changes in the
robot’s gaze could show robot’s attention and intentions to
the human partner. Further, in [28], it has been found that
the robot’s eye contact and hand movement with situated
dialog help in achieving joint attention with the human part-
ner. Therefore, we have also incorporated such attentional
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Fig. 10 (a) Initial scenario for giving the object grey tape marked
by red arrow. (b) The user is trying to give by standing up, Whole_
Body_Effort, in the absence of proactive reach behavior by the robot.

(c) The user is giving just by leaning forward, Arm_Torso_Effort in the
case of proactive reach by the robot (Color figure online)

Fig. 11 (a) Another scenario for the task of giving an object to the
robot. (b) In the absence of any proactive behavior, the user is standing
up and reaching to the robot (Whole_Body_Effort) to give the object.

(c) With proactive reach behavior of the robot, the user is giving the
object by only Arm_Effort

behaviors in a scripted manner, while exposing the robot to
interact with the users.

The experiments are controlled in the sense, when the
user sits comfortably only then the remote operator starts the
script. The experiment begins by the robot saying, “I need
your help . . . ”. If the human looks at the robot (detected by
the robot through visual perspective taking of the human),
it assumes that the joint attention has been established; oth-
erwise it continues to repeat the sentence. Once the joint
attention has been established, the robot looks at the desired
object then at the human while exhibiting or not exhibiting
the proactive behavior. The task and its parameters are al-
ready provided to the script.

6.1 Demonstration of the Proactive Planner

This sub-section will be confined to demonstrate two as-
pects:

(i) The planner is generic and independent of the scenario
and the robot.

(ii) The resultant solution visibly reduces the human efforts
in different situations, when analyzed through the per-
spective of the effort levels presented in Table 1. Then

in the next sub-section, Sect. 6.2, we will show and an-
alyze the results of the preliminary user studies. That
will provide supportive and encouraging evidence of the
proactive behaviors hypothesized in this paper.

6.1.1 Proactively Reaching out

Figure 10(a) shows an initial scenario in which the robot
requests the human to give the object indicated by the red
arrow. Figure 10(b) shows the final scenario, where the hu-
man is giving an object to the robot for the case when
the robot did not move its hand proactively. The human
is standing and trying to give the object, hence putting
Whole_Body_Effort (see Table 1). Whereas, in the case
when the robot was allowed to behave proactively, the proac-
tive planner successfully finds a feasible place to take the
object from the human, while ensuring minimum feasible
effort by the human. Figure 10(c) shows the case in which
the robot is proactively reaching to the feasible place to take
the object. This proactive behavior has reduced the human’s
effort for the task, as the human is just leaning forward
from the seated position to give the object. Hence, the ef-
fort is Arm_Torso_Effort instead of the Whole_Body_Effort
of Fig. 10(b). Figure 11 shows another scenario where the
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Fig. 12 Experiments with the PR2 robot for the give task by the users.
(a) The user is putting more effort (Arm_Torso_Effort) in the absence
of any proactive reach behavior by the robot. (b) The user is giving
with less effort (Arm_Effort) when the robot is reaching out proac-

tively. (c) and (d) The planner is successfully able to find a solution for
proactive reach out in different scenarios and the user is putting only
the Arm_Effort to give the object

human and the robot are sitting in a different spatial arrange-
ment. Figure 11(a) shows initial scenario and the position of
the object to be given by the human. Figure 11(b) shows the
situation of non-proactive behavior, the human is standing
and giving the object to the robot. Nevertheless, as shown
in Fig. 11(c), the proactive planner finds a suitable human
adapted reach out place, which reduced the human effort to
Arm_Effort.

We have further tested our system on another robot PR2,
to illustrate the portability of the system and the ability of
the proactive planner to take into account different robots of
different kinematic structures.

Figure 12(a) shows the user giving the object without
the robot’s proactive reach behavior, whereas in Fig. 12(b)
the user is giving the object with less effort when the robot
has proactively moved its arm. Hence, the human effort has
been reduced from Arm_Torso_Effort to Arm_Effort. Fig-
ures 12(c) and (d) show two different scenarios and the plan-
ner is able to find a feasible reach out solution for the PR2
robot. Both the users are giving the object with Arm_Effort
in the case of proactive reach out by the robot.

6.1.2 Proactively Suggesting the Place to Put

In this section, we will show the results for the make-
accessible task by the human.

Figure 13 shows the initial scenario and its real time
3D representation. In the absence of any proactive sugges-
tion, the human is putting the object close to the robot on

the table to make it accessible, Fig. 14(a). This required
Arm_Torso_Effort. Whereas, in the case when the robot
proactively suggested the human-adapted feasible place-
ment, the human is putting the object on the box. Hence, the
human effort has been reduced to Arm_Effort. In Fig. 15, the
human is sitting relatively away from the table compared to
the scenario of Fig. 14. In this scenario, in the absence of
proactive suggestion from the robot, the human is standing
up and leaning forward to make the object accessible to the
robot, i.e. with Whole_Body_Effort, Fig. 15(a). However, as
shown in Fig. 15(b) with proactive suggestion to place, the
human has to just lean forward, which is Arm_Torso_Effort.
Note that in this case, the robot with its current allowed max-
imum effort level, which is set as Arm_Effort, was not able
to support the human for his Arm_Effort level, as was the
case for scenario of Fig. 14.

Hence, the presented planner is not only able to find a
feasible proactive solution for different scenarios for both
the tasks, but also it is able to qualitatively reduce the effort
of the human partner.

6.2 Validation of Hypotheses Through User Studies

We have performed a series of preliminary user studies to
validate the hypotheses and discover the effects of the proac-
tive behaviors of the robot on the users compared to the non-
proactive behaviors. In fact, the figures shown in previous
sections are from that user study. The two main aspects we
want to validate are:
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Fig. 13 (a) Initial scenario for the task of making an object accessible by the human to the robot. (b) Its real time 3D representation. The object,
to be requested by the robot, is encircled in red in (a) and (b) (Color figure online)

Fig. 14 The human is making an object accessible to the robot
for the initial scenario of Fig. 13. (a) Without proactive suggestion
about where to place, the human is putting it close to the robot with

Arm_Torso_Effort. (b) With the human adapted proactive suggestion
by the robot, the human is now putting it on the white box as suggested
by the robot. This has reduced the human’s effort to Arm_Effort

Fig. 15 Make accessible task: (a) Without proactive suggestion about
where to place, the human is putting it close to the robot on table by
standing and leaning forward with Whole_Body_Effort. (b) With the
human adapted proactive suggestion by the robot to put it on the white
box, the human is now required to put Arm_Torso_Effort only. Note

that the planner could not find a feasible solution for Arm_Effort of the
human, as was the case for Fig. 14. This is because the human was
sitting relatively away from the table and the robot was not able to sup-
port the task for Arm_Effort of the human with its maximum allowed
effort level, which was also set as Arm_Effort

(i) Whether the users are experiencing the reduction in
confusion about the task because of the hypothesized
expressive proactive behaviors or not.

(ii) As the presented framework takes into account the hu-
man partner’s visuo-spatial perspective and effort to find
a solution not only to behave proactively but also to

reduce the human effort. Therefore, we further want
to validate whether the users are experiencing the re-
duction in effort or not. Also we want to know that in
the case of such human-adapted proactive behaviors,
whether the users find the robot to be ‘aware’ and ‘sup-
portive’ to their capabilities or not.
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There were a total of 30 users divided into three groups of
10 users, two groups for the give task and one group for the
make accessible task. Each user group was a mix of different
users based on their exposure to the real robots: no exposure,
little exposure, and rich exposure. This was to compensate
any bias from the experienced and non-experienced users of
robots in general. At the beginning of the experiment, each
user was informed that the robot will interact but not about
the behaviors and the task. Further, no particular instruction
was given to the users about ‘how’ they should behave.

6.2.1 Users’ Responses for the “Give” Task

We setup different scenarios having different relative posi-
tions of the robot, the human and the objects. Broadly, the
scenarios could be divided into two categories:

(i) The human is sitting away from the robot and there is
some furniture between them, similar to Fig. 10(a).

(ii) The human is sitting relatively closer to the robot with
different relative position and there is no furniture be-
tween them, similar to Fig. 11(a). The users were ran-
domly selected to sit in one or the other scenario.

There were two user groups for the give task: group I and
group II consisting of 10 users in each group. The main dif-
ference between the two groups was that they have been ex-
posed to the robots of different appearances: JIDO and PR2.
This was to compensate any bias due to the robot’s appear-
ance or kinematic structure while validating our hypotheses.

Each user has been exposed to two different behav-
ior of the robot: NPB and PB. NPB (Non-Proactive Be-
havior): The robot just asks to the user “Please give me
the 
 object_name �” and waits in its current state. PB
(Proactive Behavior): The robot asks the same but also starts
moving its arm along the trajectory obtained through the
presented proactive planner. In the PB case, it also starts
turning its head to look at the object as an attempt to in-
corporate goal-object-directed gaze movement (head move-
ment in our case) as discussed in Sect. 4.

During the entire experiment, the decision whether PB
or NPB should be exhibited first to a particular user was
random. After being demonstrated to both behaviors, each
user was requested to fill a questionnaire with first behavior

referred as B1 and the second behavior as B2. Note that for
some of the users B1 was NPB and for some it was PB.

Below we will first analyze the common part of the ques-
tionnaire of group I and group II, to show that independent
of the appearance of the robots, the proactive reach behavior
is preferable over the non-proactive behavior. Then we will
present the analyses of the part of the questionnaire, which is
exclusive to group I and explore the nature of the confusion
and the effect on the effort. (We excluded these questions
for group II users for compactness, as they were required
to answer about two additional behaviors. Those behaviors
are related to the ‘when’ aspect of the proactivity and are
beyond the scope of this paper.)

Table 2 shows that in the case of proactive reach out be-
havior of the robot, the total number of the users having at
least one type of confusion has been significantly reduced.
This supports the hypothesis that the proactive reaching out
to take something reduces the confusion of the user.

Note that the sum total (%) of the data of these tables
and of the tables following may not be 100 as the users were
allowed to mark multiple options or none.

Table 3 shows the users’ confusions, reported by group I
users, about how to perform the task. It shows the data for
two different cases: (i) NPB-PB: When the non-proactive
behavior (NPB) has been shown first followed by the proac-
tive behavior (PB). (ii) PB-NPB: When PB has been exhib-
ited first followed by the NPB. The percentage (%) is calcu-
lated based on the total number of the users belonging to a
particular case (i) or (ii). Note that for the case (ii) in which
PB has been demonstrated first, users have been found to
be biased towards expecting similar behavior for the next
demonstration, which was going to be NPB. Last column of
Table 3 reflects this as more users are expecting the robot
to show some activity when PB has been exhibited first. In

Table 2 Type of users’ confusions for the give task

Type of confusion Where
to give

When
to give

Overall % of users having
at least one confusion

In Non-proactive
behavior

55 % 50 % 85 %

In Proactive reach
behavior

10 % 15 % 25 %

Table 3 Users’ responses about the confusion on ‘how’ to perform the give task in the NPB of the robot

Confusions in NPB were: should the user . . .

. . . go and give
it to the robot?

. . . stand up and
give it to the robot?

. . . put it somewhere
for the robot to take?

. . . hold it somewhere
and wait for the robot
to move and take?

. . . wait for the
robot to show
some activity?

When first NPB has been shown 28 % 42 % 42 % 42 % 42 %

When first PB has been shown 33 % 0 % 33 % 0 % 66 %
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Fig. 16 Task of giving an object to the robot. (a) In the absence of any proactive behavior the user is holding the object and waiting for the robot
to take. (b) With proactive reach behavior from the robot, the user is also putting some effort to give the object to the robot

Table 4 Users’ experience on change in effort for the give task

Change in the human’s effort in the
behavior shown second, B2, compared
to the behavior shown first, B1.

Reducing
human’s effort

Demanding
more effort

When B1 was NPB and B2 was PB 71 % 0 %

When B1 was PB and B2 was NPB 0 % 66 %

% users reported PB reduces human effort compared to NPB = 70 %

such cases user responses were, “I thought that the experi-
ment has failed, since the robot didn’t move”, “I was waiting
for the robot to take it from me.”

Table 4 shows group I users’ responses about the change
in their effort. It shows that 71 % users of the NPB-PB case
explicitly mentioned that the second behavior, i.e. the PB has
reduced their effort to give the object compared to the first
behavior, i.e. the NPB. Further, 66 % users of the PB-NPB
case explicitly mentioned that the second behavior, i.e. the
NPB has demanded more effort to give the object compared
to the first behavior, i.e. the PB. On combining both, a major-
ity of the users, 70 % of the total users of group I, reported
that the proactive reach out behavior of the robot reduces
their efforts compared to non-proactive behavior. Hence, it
supports our hypothesis that the human adapted reach out
will also make the users to feel a reduction in their efforts
in the joint tasks. It also validates that the presented frame-
work is indeed able to find a solution while maintaining least
feasible effort of the human partner.

Table 5 (combines group I and group II responses) shows
that a majority of the users reported the robots to be more
‘aware’ and ‘supportive’ to them and to the task in the cases
it behaved proactively. Table 5 also shows that 80 % of users
of group I explicitly mentioned that proactive reach behav-
ior guides them about where to perform the task. Hence, val-
idating the perspective taking capability of the robot.

Table 5 Users’ experience about awareness, supportiveness and the
guiding nature of PB for the give task

Compared to the NPB, the % users explicitly indicated that in the PB
the robot was . . .

. . . more aware about the user’s abilities and possible
confusions

70 %

. . . more supportive and helping to the task and to the
user

85 %

Total % of users explicitly reported that proactive
reach guided them about where to perform the task

80 %

6.2.2 Discussion on a Few Observations for the “Give”
Task

Apart from the direct responses from the users, we observed
following situations, which point towards the need of further
exploration:

(i) Without any proactive reaching behavior, the user in
Fig. 16(a) is holding the object and waiting for the robot
to take. Whereas, as shown in Fig. 16(b), in the pres-
ence of proactive reaching behavior of the robot, the hu-
man is also putting some effort to lean and give the ob-
ject to the robot. This seems to be validating the studies
of human-behavioral psychology that goal anticipation
during action observation is influenced by synonymous
action capabilities [21].

(ii) For the cases where non-proactive behaviors have been
shown first, few users have been found to spend some
time ‘searching’ for the object to give, if the table top
environment was somewhat cluttered. This might be
suggesting to incorporate the component of pointing, by
adapting a goal-directed approach to fetch the user’s at-
tention to the object of interest. In our experiments, this
has been partially achieved by assigning higher weights
to the places closer to the object. This seems to be sup-
porting the findings in [40] and [11] that the directing-
to gesture helps in drawing user’s focus of attention to-
wards the object.



Int J Soc Robot (2013) 5:215–236 231

Table 6 Nature of the users’ confusions for the make-accessible task

The user was confused about:

Meaning of the task: How to perform
(give in hand, put somewhere)

Where to make
accessible

Overall % of users having
at least one confusion

In non-proactive behavior 30 % 60 % 80 %

In proactive suggesting behavior 10 % 30 % 30 %

Table 7 Users’ suspicions about the robot’s capabilities for the make accessible task

The users were suspicious about the robot’s capabilities . . .

From where the robot
will be able to take

At which places the
robot will be able to see

Overall % of users having at
least one suspicion

In non-proactive behavior 70 % 20 % 70 %

In proactive suggesting behavior 20 % 10 % 30 %

Further user studies are required to properly validate and
establish these observations as facts.

6.2.3 Users’ Responses for the “Make Accessible” Task

The robot requests the human partner to make an object ac-
cessible. We have deliberately built the scenario in which
the least feasible effort for making an object accessible to
the robot is to put it on the top of a white box.

There were 10 users forming the group III. For this task,
instead of exposing the two behaviors randomly to a user,
we decided to first show the non-proactive behavior (NPB)
followed by the proactive behavior (PB). This is because if
the user will be first exposed to the PB, he/she might be
biased towards putting the object at the same place in the
case of NPB also, as the scenario would be the same.

For the non-proactive behavior (NPB), the robot looks at
the human and utters the scripted sentence:

“Hey, I need your help. Can you please make the

 object_name � accessible to me.”

For the proactive behavior, (PB), the robot says:
“Hey can you make the 
 object_name � accessible to

me, you can put it on the 
 support_name �”.
As an attempt to incorporate the goal-directed gaze

movement (head movement in this case) of the robot, it
looks at the object while uttering the first part and then it
starts turning its head towards the place where it would sug-
gest the human to put the object.

As shown in Table 6, about 80 % of users have reported
confusion about how and where to make the object accessi-
ble in the case of NPB. This has been significantly reduced
to 30 % in the case of PB.

Table 7 shows the percentage of users who were sus-
picious about the robot’s ability about from ‘where’ it
could take or see the object. Note that in the case of
proactive behavior, as the robot was explicitly suggesting,

Table 8 Users’ responses about the robot’s awareness through the PB
for the make accessible task

% of users explicitly mention that in PB compared to NPB

The robot seems to be more aware about user’s
capabilities and possible confusion

70 %

The robot has better communicated its capabilities 80 %

Table 9 Users’ responses about their relative efforts in the make ac-
cessible task

Users’ efforts in PB compared to NPB

Human effort
reducing

Mutual effort
balancing

Demanding more
human effort

Can’t say%

60 % 20 % 10 % 10 %

“. . . you could put it on the white box”, hence restricting the
search space for the user to perform the task, such suspicions
have reduced significantly.

These findings seem to be also supporting the result of
[40], which shows that the use of location description in-
creases accuracy in finding the target. In the current experi-
ment, the location description was not for localizing the ob-
ject, but instead for the place to put the object; hence guiding
the user for efficient task realization.

As shown in Table 8, a majority of the users found the
proactive suggestion by the robot more compelling. Table 9
shows that 60 % of the users found that the human adapted
proactive behavior reduced their efforts.

6.2.4 Discussion on a Few Observations for the “Make
Accessible” Task

(i) One interesting observation was related to the human’s
interpretation about how to perform the task of making
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Fig. 17 Task of making an object (pointed by the red arrow) accessible to the robot. In the absence of proactive behavior, the user took away the
white box as an attempt to clear the obstruction for the robot to take the object (Color figure online)

Fig. 18 Task of making an object accessible to the robot. In the ab-
sence of proactive behavior, the user is holding the object and waiting
for the robot to take

an object accessible. As shown in Fig. 17(a), in the case
of non-proactive behavior, the user took the white box
away for making the object (pointed by the red arrow)
accessible to the robot. Although he overestimated the
reach of the robot, his justification was, “. . . I thought if
I would move the obstructing box away, the robot would
be able to take the object . . . ” Fig. 18 shows another
scenario in which the user is holding the object close to
the robot and waiting for it to take. Such observations
indicate the need of a situation based proactively sug-
gestion also on the ‘how’ aspects of the task.

(ii) Figure 19 shows the user is confused about ‘which’ ob-
ject the robot has requested. Such confusion has been re-
ported by at least 3 users because of various factors such
as background noise, difficulty to ground the object
by name, being a novice to the computer-synthesized
sound, etc. Moreover, such confusion has been reported
in both the cases: non-proactive and proactive. In this
particular case the user is trying to reach towards the
objects on his left side based on predicting the robot’s
attention, Fig. 19(b), but looking at the robot to get some
additional information, Fig. 19(c).

This suggests that whenever required the element of
pointing should be also included in the robot’s behaviors.
Another component suggested by Fig. 19(c) is to have a
feedback mechanism from the robot. Not only does the robot
require feedback from the human but also the robot should
provide feedback to the human in a natural human-robot
interaction scenario. Works on such complementary issues
of grounding references through interaction, such as ours

Fig. 19 Task of making an object (marked as red arrow) accessible
to the robot. In the absence of further feedback from the robot, the
human is confused about which object to make accessible, as he failed
to ground the object referred by the robot (Color figure online)

[37, 46], could be adapted for this purpose of proactive be-
havior with feedback.

6.2.5 Overall Inter-task Observations

In this section, we will combine the results of both the tasks
to draw some global conclusions. Table 10 (by combining
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Table 10 Overall reduction in the users’ confusion because of the
robot’s proactive behavior

For give task by the human 70 %

For make accessible task by the human 62 %

Overall by combining both the tasks 66 %

Table 11 Overall reduction in users’ effort because of the robot’s
proactive behavior

For give task by the human 70 %

For make accessible task by the human 60 %

Overall by combining both the tasks 65 %

Table 12 Overall responses about supportiveness and communicative-
ness of the proactive behavior

Total % of users explicitly reported that the robot has better
communicated its capabilities and was more supportive to the
task and to the user in the proactive behaviors

85 %

Table 2 and Table 6) shows an overall 66 % reduction in con-
fusion in the case of proactive behavior. Table 11 shows that
a majority of the users, 65 %, experienced that the human
adapted proactive behavior reduced their efforts. Table 12
shows that a majority of the users, 85 %, reported that the
proactive behavior has better communicated the robot’s ca-
pabilities and was more supportive to the task and to them.

7 Discussion and Potential Applications

The main reason the presented system has been preferred is,
the robot not only requests to give or make accessible but
also proactively provides a human-adapted solution to the
user through different means. The same framework could be
used in the case where instead of the robot, the human will
announce the task that he/she is about to give or make an
object accessible to the robot. In that case, the robot could
proactively find a solution and communicate it with similar
behaviors, such as: “OK I will take . . . ” and reaches out to
take or “OK put it on the box, I can take it from there . . . ”.

There could be a range of real-world day-to-day interac-
tion situations in which the robot could not reach an object
at all, or need to put significant effort and/or time to get the
object by itself. In such situations, the robot could request
for the help of the human partner. In that case, the presented
system could be used to improve the sociability and accep-
tance of the robot, allowing the robot to do more than just
asking for the help, to cooperate proactively. One such ex-
ample scenario could be a domestic robot cleaning the din-
ner table. To perform the task efficiently (e.g. to minimize
the time), a high-level planner such as [1] could plan some

cooperative actions. Such as, the robot could ask the human
to give or make accessible a far-reaching object, so that the
robot will not be required to take a tour around the table.
However, to be polite and supportive, the robot could proac-
tively stretch out its hand while asking for the human’s help.
Another example could be to support an elderly person or
someone who is having back or neck problem or reduced
mobility. The presented framework could take into account
such constraints by appropriately restricting the maximum
allowed effort level of the human partner, e.g. restricting it
to Arm_Torso_Effort and then could find a solution to be-
have in a proactive manner. Suppose the robot has served a
glass of water to take the medicines and now the person is
about to finish taking the medicines. Whether it is to take
the glass back from the human or to suggest a place to put it
so that later on the robot could take it, the presented system
could be used to reduce the person’s effort and confusion.
Similarly if a robot teammate is fixing a frame in an assem-
bly unit therefore cannot move away, it can ask for a tool
from the human partner, while showing proactive reach out
behavior with its maximum feasible effort level in that situ-
ation.

Moreover, it is not necessary that the robot will always
be expected to reduce the effort of the human partner. The
presented framework can be adapted to find the solutions,
which could balance mutual-effort or could even reduce the
robot’s effort. This could be achieved by regulating the effort
levels of both the agents in the iterations of the presented
framework.

In [42], it has been shown that the robot could express
and communicate its intention of type “I want to do this but
I can’t . . . ” to the human by repeating the simple actions
corresponding to the failing task. The same framework could
be used to find a solution for such communicative actions.
For example, the robot could communicate its intention that
it wants to take an object but could not reach by trying to
reach out in a human-adapted manner.

The presented framework, which enables to estimate
‘where’ the human can perform the tasks with different lev-
els of effort, could also be used to estimate the places to pro-
vide a solution for other proactive behaviors in basic human-
robot interactive tasks. We are in the process of hypothesiz-
ing and realizing such proactive object manipulation behav-
iors:

(a) Proactively put an object closer to the human, for ex-
ample, putting the sugar container closer to the human
preparing the coffee, to reduce his effort.

(b) Proactively put away the object, which the human could
hit obliviously during performing some task.

(c) Proactively take an object away to make space for the
human to put another object, to facilitate achieving a
task.
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Fig. 20 The robot’s estimation about the places where the human with
Arm_Torso_Effort might be able to hide something from it

(d) Proactively take and show some object, which the hu-
man might be looking for, etc.

The presented framework could be also adapted to be-
have proactively by estimating where the human could ex-
hibit a competitive behavior. Figure 20 shows the candidate
places where the human with Arm_Torso_Effort could hide
some object from the robot. In the context of multi-agent
object hide-and-seek like games, the robot could use such
information to proactively communicate or hint its partner
about the potential places to hide or seek some object. In
fact, various types of higher level proactive behaviors could
be realized by exploiting the fact, ‘where’ an agent could
perform a task, either to cooperate or to compete, with a
particular effort level.

8 Conclusion and Future Work

The contribution of this paper is two-fold: Hypothesizing
and validating proactive behaviors for two basic human-
robot interactive manipulation tasks and a generalized plan-
ner, which could find a solution for such tasks while respect-
ing environmental, postural and effort oriented constraints.
The focus is to utilize the ‘where’ information based on
multi-state visuo-spatial perspective taking. Our research is
inspired by studies of human behavioral psychology, which
suggests that estimation of ‘where’ is an important aspect
for co-ordination.

We have shown through users’ responses that our hy-
potheses hold and the users find the robot to be more ‘aware’
and ‘supportive’. Further, through experimental results and
the users’ responses we have shown that the presented
proactive planner is not only finding the solution for basic
tasks for different robots in different scenarios, but also suc-
cessfully achieving its goal of reducing the human’s ‘effort’

and ‘confusion’. In the presented framework, our robots ob-
serve the human, analyze situation-dependent capabilities,
perform various task-dependent feasibility tests for motion
planning and find feasible solutions for different proactive
behaviors. Assignments of various weights in finding the
feasible solution or in various decision-making processes
are parameters to the system and could be adapted/refined
even online based on user activity, response and feedback.

As the robot could perform the presented multi-state per-
spective taking for multiple humans/agents, an interesting
future work is to synthesize and instantiate proactive behav-
iors by taking into account more than two agents’ coopera-
tion for a task. Another interesting work in progress is to use
the information learnt/understood by the robot about what
does the task ‘mean’ and ‘how’ a task could be performed
[9, 44, 45]. This will help to explicitly provide proactive
suggestions about ‘how’ to perform a task as well as to au-
tonomously synthesize a proactive behavior/action. It would
be also interesting to analyze the effect: would the user feel
too constrained by the robot or would it better help the user
to perform the cooperative task? What should be the optimal
level of abstraction of such suggestions?

The hypothesized proactive behaviors in this paper are
some of the essential building blocks of basic actions for
complex socio-cognitive behavior including expectation
[39] and intention. We have performed a preliminary level of
user studies and found the results encouraging and support-
ing our intuition and hypotheses. We feel the need of fur-
ther user studies from the perspective of long-term human-
robot interaction in the context of high-level tasks. Regard-
ing this, proactive gaze has been suggested as an important
aspect to be incorporated in developing methods to measure
HRI through motor resonance [54]. This could be adapted
to develop the measure of proactivity in HRI, based on how
much the proactive action of the robot induces proactive
gaze of the human partner, indicating the predictiveness in
the proactive behavior. This will also help in identifying the
necessary enhancements at different levels of planning and
execution of such proactive behaviors.
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