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Abstract In the human environment service robots have
to be able to manipulate autonomously a large variety of
objects in a workspace restricted by collisions with obsta-
cles, self-collisions and task constraints. Planning enables
the robot system to generalize predefined or learned manip-
ulation knowledge to new environments. For dexterous ma-
nipulation tasks the manual definition of planning models
is time-consuming and error-prone. In this work, planning
models for dexterous tasks are learned based on multiple hu-
man demonstrations using a general feature space including
automatically generated contact constraints, which are auto-
matically relaxed to consider the correspondence problem.
In order to execute the learned planning model with differ-
ent objects, the contact location is transformed to given ob-
ject geometry using morphing. The initial, overspecialized
planning model is generalized using a previously described,
parallelized optimization algorithm with the goal to find a
maximal subset of task constraints, which admits a solution
to a set of test problems. Experiments on two different, dex-
terous tasks show the applicability of the learning approach
to dexterous manipulation tasks.
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1 Introduction

In recent years, bimanual, dexterous service robots with
multi-finger hands, e.g. Justin (DLR), Rosie (TUM), Adero
(FZI) or Armar (KIT), have been developed to solve com-
mon manipulation tasks autonomously in the human en-
vironment. Since the environment changes constantly and
multiple obstacles as well as self-collisions restrict the
workspace of the robot, the successful execution of pre-
defined robot trajectories isn’t possible in general. More
complex representations of low-level manipulation tasks
have emerged, which allow to adapt to small, e.g. Gaussian
Mixture Models (GMM), Dynamic Movement Primitives
(DMP), or large changes in the environment, e.g. planning
models (PM). The latter requires a sophisticated task model,
which describes all relevant constraints of the task and en-
ables the robot system to decide, if the task can be executed
in the given configuration, how to plan a robot trajectory
in a goal-directed way to achieve the goal of the task and
how to monitor the execution and react to changes in the
environment. In the context of dexterous manipulation, the
task model consists of constraints restricting the motion of
the robot’s fingers and hands, the forces applied to an ob-
ject and the object motion itself. The manual definition of
such a task model is demanding and error-prone. One of
the key ideas of Programming by Demonstration (PbD) is
to exploit the domain knowledge of a human teacher, who
is an expert in object manipulation, to choose instructional
examples for a given task and to demonstrate different solu-
tions to the robot in order to learn new manipulation tasks
automatically. The online demonstration of finger motions
including real force interaction with an object is unintuitive
and complicated. Instead, the human teacher is observed us-
ing cameras, datagloves, motion trackers or tactile sensors
while performing the task naturally with his own hands.
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The differences between the robot and the human, e.g. in
geometry, kinematics and dynamics, have to be considered
explicitly, which is known as the correspondence problem.
Consequently, a direct mapping of the human trajectories
to the robot system will fail and the automatic deduction of
manipulation goals and the underlying task model becomes
most important. Based on the learned definition of the task,
search-based AI methods, e.g. constrained motion planning,
can be used to generate robot trajectories to accomplish the
task, which offers flexibility to large changes in the environ-
ment at the cost of higher execution times. Since the goals,
preconditions and constraints of the task are learned explic-
itly, the execution can be monitored, which is fundamental
to the execution on an autonomous robot system.

In this work, we learn planning models for dexterous
manipulation tasks based on explicit demonstrations by a
human teacher. The search space defined by the task con-
straints is automatically enlarged to consider the correspon-
dence problem. The initial planning model is overspecial-
ized, i.e. it contains a large number of irrelevant task con-
straints. We use a previously described, semi-automatic opti-
mization algorithm to reduce the number of task constraints
based on information about inconsistency of constraints dur-
ing constrained motion planning and to improve general-
ization to different environments. In the planning process,
physics simulation is used to simulate non-rigid object con-
tacts and to plan object and robot motions in a goal-directed
way, e.g. to push a slider on a straight line to the goal po-
sition. We demonstrate the validity of the approach on two
dexterous manipulation tasks.

2 Related Work

In literature, PbD is applied to tasks of varying complexity,
e.g. setting a table [21] or playing pool [23]. In most ap-
proaches, a set of human demonstrations is abstracted to a
more general trajectory representation, e.g. Dynamic Move-
ment Primitives [12], which describe a motion as a set of dif-
ferential equations, or Gaussian Mixture Models [5], which
represent motions as probability density functions on the
feature space. In the examples the feature vectors are de-
fined manually, e.g. in the pool playing task, the feature vec-
tor contains the offset of the pushing hand to the bridge, the
value of the redundant joint of the pushing arm and the ori-
entation of the cue around the bridge.

For household tasks, manual definition of the learning
features is also predominant, e.g. performing a chess move
[6] or pouring in [22]. Due to the large variety of objects and
object arrangements, generalization of the learned manipu-
lation knowledge to new environments is important. If the
reproduction of the learned knowledge is goal-directed [8],
a potentially higher generalization capability can be reached

since only the effects of the task will be reproduced. The
definition of the feature space has a large influence on the
generalization since it is the basis of the task description (in-
cluding goals). In probabilistic approaches, the set of learn-
ing features, e.g. the position of the left hand relative to the
object, is predefined and each feature is weighted based on
the variance in the training set [5]. If a feature refers to an
object or the environment, it has to exist in the new envi-
ronment to generalize, too, which shows the importance and
influence of the choice of the feature space In order to learn
new tasks on an autonomous service robot it is necessary to
deduce a set of relevant features automatically. Mühlig et al.
introduce the concept of a task space pool [20], which con-
tains a set of predefined features. In order to choose a set
of features, a variance-based, an attention-based and a kine-
matic selection criterion are defined. The criteria can be used
to weight features and, what is stated explicitly, to select a
subset of features. The criteria were applied to a single ex-
ample but the selection of features and the integration into
a complete learning system weren’t presented. By gazing
[4] or pointing [3] at important objects the teacher can also
clarify ambiguities. Due to the interaction with the human
teacher, a small set of features can only be considered and
semantics have to be assigned to each feature.

Mapping human actions to symbolic actions, e.g. [28],
leads to a higher generalization capability but the problem
of symbol grounding, i.e. how to generate a robot motion
based on symbols like near or aligned, exists and remains
unsolved. Kuniyoshi et al. apply classifiers for a small set
of predefined actions to a set of human demonstrations [19].
Generalization to different poses is possible due to the use
of relative coordinates but ambiguities and inconsistencies
are not handled explicitly. Repetitions [29], branches [9] or
dependencies [21] can be detected. In addition to motion ob-
servation, speech and interaction with the robot can be used
to learn more complex tasks, e.g. [24].

In [26], the dexterous task of removing a lid from a glass
jar was partially learned using bio-inspired approaches and
a predefined feature space. Heuristics for approaching and
grasping the lid were applied. The screwing motion was gen-
erated based on the observation of the human hand with a
dataglove. The correspondence problem was considered by
letting the teacher adapt the screwing motion until the map-
ping to a simulated hand was adequate. Since forces weren’t
considered in the learning process, the radius of the lid was
underestimated so it could be rotated successfully.

3 Overview

We represent manipulation knowledge as a planning model
for constrained motion planning, which is called a manip-
ulation strategy. In Fig. 1, an example of a manipulation
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Fig. 1 Planning model to grasp a bottle and place it in a fridge door,
[15]

strategy is shown. A bottle has to be grasped and placed in
a fridge door. The task constraints in the node End restrict,
how the bottle has to be placed in the fridge door. The po-
sition constraint restricts the position of the bottle relative
to the fridge door, see Fig. 2. The direction constraints re-
stricts the bottle to stay upright. The contact constraint will
be obeyed if the bottle has a contact with the fridge door. If
the learned manipulation is executed by the robot, goal con-
figurations, for which all constraints are obeyed, are gener-
ated online and automatically in a constrained motion plan-
ning process, see Fig. 3. The bottle can be placed at arbitrary
door angles in the fridge door, even if obstacles are present
in the shelf, resulting in a high flexibility of the robot.

In Sect. 4, manipulation strategies are defined, extend-
ing the definitions presented in [15] to include force, contact
and object constraints. The extended set of constraints al-
lows to restrict the motion of objects, which are not rigidly
attached to the robot. The manipulation strategy is learned
automatically based on the observation of a human teacher,
see Sect. 5, with focus on hand observation using a precise
hand model. In Sect. 6, the learning process in [14] is sum-
marized, in which an automatically generated feature space
consisting of a large number of task constraints is used. Ad-
ditionally, we consider the correspondence problem explic-
itly by relaxing learned task constraints for the human hand
and fingers. In order to generalize the learned manipulation
strategy for dexterous manipulation tasks, the generalization
algorithm in [15] was used, which is summarized in Sect. 7.

Fig. 2 Visualization of goal
position constraint restricting
the bottle position relative to the
fridge door, [15]

Fig. 3 Sampled goal
configurations consistent with
the goal position constraint in
Fig. 2

In Sect. 8, we describe the mapping of automatically gener-
ated contact frames and the RRT-based motion planner. Ex-
periments using two dexterous manipulation tasks are dis-
cussed in Sect. 9.

4 Planning Models

In the human environment, service robots have to be able to
manipulate objects in a restricted workspace with multiple
obstacles and to generalize to new objects and environments.
In order to achieve this kind of flexibility a sophisticated
planning model is required, which contains a minimal set of
task constraints to describe the goals and execution of a task.
In this work, a planning model is considered a task model
suitable for constrained motion planning.

4.1 Strategy Graph

The planning model can be visualized as a directed graph,
which is called strategy graph. In the graph, nodes describe
(sub-)goals of the task and arcs describe the transition be-
tween (sub-)goals. Each node and arc is described by a tem-
poral constraint and a conjunction of task constraints. In the
simplest case, the planning model contains only a linear se-
quence of nodes, each connected by a single arc. In the exe-
cution, a constrained motion planning process is started for
each arc in the planning model. The arc constraints describe
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the search space for motion planning, while the node con-
straints define the search space for valid goal configurations
of the robot system. A strategy graph defines formally a
temporal constraint satisfaction problem with domain con-
straints, see [13], where temporal constraints are described
by 1-dim. closed intervals.

4.2 Task Constraints

We define four different types of task constraints: position,
orientation, configuration and contact constraints.

Position and orientation constraints are written as
(a, b, F (a, b)) and restrict a (coordinate) frame a to stay
in a volume F (a, b) relative to a frame b. Let bTa describe
the pose of frame a relative to frame b. The transformation
is described by a 4 × 4 homogenous transformation matrix
using the 3 × 3 rotation matrix bRa and the 3 × 1 vector bta :

bTa =
(

bRa
bta

0 1

)

In order to test, if the constraint is obeyed, we transform
the restricted frame a with pose 0Ta into the reference frame
b with pose 0Tb. For the position constraint in the manipu-
lation strategy in Fig. 1, a is the coordinate frame in the
bottom of the bottle and b is the coordinate frame located in
the fridge door. The resulting pose bTa represents the rela-
tive transformation. By imposing a constraint on the relative
transformation, the motion of a is restricted relative to b,
e.g. the goal position of the bottle will automatically adapt to
changes in the door angle. We map the relative transforma-
tion onto a 3d-vector depending on the type of the constraint.
For position constraints, the 3d-vector is bta . For orientation
constraints, the 3d-vector is the scaled-axis representation1

bra of bRa . Finally, the constraint will hold, if and only if
the 3d-vector is included in the region F (a, b), e.g. a sim-
ple cube or a tube defined by a Gaussian Mixture Model
(GMM).

Contact constraints, which are also written as (a, b,

F (a, b)), restrict the 3d model assigned to a to stay in con-
tact with the 3d model assigned to b. The contact normal,
pointing from b to a, has to be included in F (a, b). In Fig. 1,
the contact constraint describes, that the 3d model assigned
to the bottle has to stay in contact with the 3d model as-
signed to the fridge door, i.e. the bottle has to touch the floor
in the fridge door.

A configuration constraint is written as (θ1, .., θn,

F (θ1, .., θn)), where θi represents a degree of freedom (dof)
of the robot and F (θ1, .., θn) is a n-dim. hypercube. It will
hold if and only if the n-dim. vector (θ1, .., θn)

T is included
in F (θ1, .., θn).

1By using the quaternion representation, a rotation matrix can be rep-
resented as a single rotation around a fixed axis with a fixed angle. The
scaled axis representation is the product of this axis and angle.

Fig. 4 Sensory environment front (left) and back (right): datagloves,
motion tracker and 3d visualization. Human demonstrations to lift a
spoon

Fig. 5 Tactile glove prototype (left) and visualization of force mea-
surements (right)

5 Observation

The human demonstration of dexterous manipulation tasks
takes place in a dedicated sensory environment, see Fig. 4,
to overcome the limitations of state-of-the-art vision based
sensor systems onboard a robot, which doesn’t allow robust
fingertip and contact measurements. We use four different
sensors: a stereo camera system with DragonFly II cameras,
two Fastrak motion trackers, two Cyberglove II datagloves
and a custom-built glove with tactile sensors. The sensor fre-
quency is 25 Hz.

Objects are localized based on SIFT-features using the
vision library IVT [1], which generates a 6d-pose for each
object. The forces in the fingertips of the human hand are
measured using force sensing resistors (FSR), see Fig. 5, re-
sulting in 10 real-valued force values.

We measure the 6d-pose of both human wrists using the
Fastrak motion tracker, which is calibrated to a small area
above the table. 20 degrees of freedom of the human hand,
four for each finger, are measured using a Cyberglove II.
In order to observe dexterous manipulation tasks and to
compute contacts and force directions, the Cartesian posi-
tion of the finger parts is necessary. Since a direct measure-
ment is not available, a precise 3d model of the author’s
hand was generated. First, we generated a plaster cast of
the human hand using a Creaform reproduction set. The
model was cleaned and mounted on a rotary table. We used a
high-accuracy laser scanner, Minolta VI-900, to generate 3d
points on the surface of the hand from different views. The
points were registered and the resulting mesh cleaned up us-
ing the Rapidform library. Finally, we imported the mesh
into the 3d modeling tool Blender to manually set up bones
and joints. The process is visualized in Fig. 6.
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Fig. 6 Generation of 3d human hand model for the observation of
dexterous manipulation tasks

The observation result is visualized in a 3d simulation
during teaching. Based on the 3d models, the distance be-
tween objects and the hands is calculated and contacts will
be added as additional measurements if the distance is closer
than 5 mm.

6 Learning and Correspondence Problem

In the learning process, we synthesize the initial planning
model based on the observation of the human demonstra-
tions. The approach in [14] was adapted to learn force, con-
tact and object constraints. The structure of the planning
model, i.e. the number of subgoals and their connections, is
generated based on the segmentation of the human demon-
strations similar to [10]. In the segmentation algorithm, we
generate a new subgoal if the velocities of finger joints, fin-
gertip forces and human wrists is below a threshold using a
simple hysteresis model. In order to ensure that all learning
examples have the same number of segments, we take the
subset, which has the largest number of learning examples
with the same number of segments. Since the segmentation
concept is easy to communicate only a small number is re-
jected in practice.

Similar to task space pools [20], in which a general fea-
ture space is used, we generate a large set of task con-
straints automatically for each segment, i.e. each node and

Fig. 7 Constraint volume types, [14]

arc, based on combinations of coordinate frames. The ap-
proach in [14], in which predefined coordinate frames of the
finger tips, wrists of the human hands and objects in KIT
object database [16] are used, was extended to consider au-
tomatically generated contact frames, i.e. coordinate frames
in contact points on the objects. For each contact between
two 3d models with coordinate frames a and b in the center
of mass (com), which was measured consistently in 95 % of
the segment’s points, we generate the contact frames a � b

and b�a. a �b is relative to b. The position is the point with
smallest distance on the 3d mesh assigned to a relative to
the 3d mesh assigned to b. The orientation is the same as a.
b � a in the same way.

For each segment, the set of coordinate frames consists
of the human fingertips, human wrists, predefined coordi-
nate frames of the detected objects and the automatically
generated contact frames. We create an extended set with
one additional start frame for each coordinate frame, which
represents the value of the frame at the beginning of the seg-
ment.

Finally, the initial set of task constraints contains a posi-
tion and orientation constraint (a, b, Fab) for each combina-
tion with a in the set of coordinate frames, b in the extended
set and each type of region Fab . In the experiments, Fab is a
cubic, spherical, cylindrical or cone cut, see Fig. 7. Geomet-
ric primitives offer fast learning, fast constraint evaluation
and sampling of a configuration, in which the constraint is
obeyed. We calculate the parameters of each region using
Rosenbrock optimization to determine the smallest region,
in which the values of a relative to b are included using
all points of all demonstrations assigned to the current seg-
ment. The resulting task constraint represents a volumetric
approximation of the segment of demonstrated trajectories
and serves as one of the atomic elements of the representa-
tion of the manipulation task.

6.1 Constraint Relaxation

In this work, we are interested in the effects of the hand
and finger motions on objects and not the motion itself.
The effects are encapsulated in contact constraints and po-
sition and orientation constraints restricting the motion of
coordinate frames assigned to objects relative to each other.
The hand and finger motions are encapsulated in task con-
straints, which restrict the motion of a coordinate frame
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Fig. 8 Comparison of workspace of the SAH (blue) with a part of the
workspace of the human hand (red)

assigned to the hand or fingers. Although the used robot
hands are anthropomorphic, differences in geometry, kine-
matics and dynamics exist, the so called correspondence
problem. Similar to the workspace analysis in [11], we com-
pared the workspace of the Schunk Anthropomorphic Hand
(SAH) with the human hand. The human teacher demon-
strated 100 finger motions in different, dexterous manipu-
lation tasks, e.g. screwing, inhand-manipulation, pushing.
Based on this data, the minimal and maximal value for each
finger joint was determined. We transformed the resulting
hypercube into the Cartesian space using forward kinemat-
ics. The result is shown in Fig. 8. We applied Rosenbrock
optimization to determine a 3d-translation (x, y, z) and 1d-
rotation (y), which aligns the transformed hypercube with
the SAH workspace. The objective function is the sum of
four weighted distance values. For each finger, the distance
value is the average distance of the set of points in the hyper-
cube, which are not included in the SAH workspace, to the
closest point in the SAH workspace. We assigned the weight
0.5 to the thumb and 0.16 to the other fingers to reflect the
important role of the thumb. The final result was 2.3 mm for
the thumb, 7.3 mm for the point, 7.0 mm for the middle and
15.9 mm for the ring finger.

We enlarge each region R of a position constraint restrict-
ing the motion of a finger coordinate frame using the deter-
mined distances. For the human wrist, the distances were
determined experimentally. Position constraints, which re-
strict the wrist coordinate frame, are enlarged by 40 mm and
orientation constraints by 15◦.

7 Generalization

The learned planning model is overspecialized due to the
automatic generation of task constraints. In Fig. 9 a sim-
ple, overspecialized version of the manipulation strategy in
Fig. 1 is shown. The position of the bottle is not only con-
strained relatively to the fridge door but also relative to the
shelfs in the fridge by three additional constraints. If the
set of human demonstrations contains only a small range of
door angles, the learned position constraints won’t overlap

Fig. 9 Planning model to grasp a bottle and place it in a fridge door,
[15]

Fig. 10 Non overlapping
constraints (circles) for a
different door angle in the fridge
experiment, [15]

at a different door angle, see Fig. 10, and the manipulation
strategy can’t be planned successfully.

In general, a large number of human demonstrations is
necessary to achieve a sufficient generalization, e.g. in this
case with multiple door angles and multiple placement po-
sitions and orientations for each door angle.

We follow the approach in [15] to generalize learned ma-
nipulation strategies by extracting a maximal set of task con-
straints, which are relevant to the task. The robot has to
solve example problems, e.g. picked by a human teacher
or encountered during online execution. If the robot is not
able to solve the problem, an optimization process is started
to determine the planning model with a maximal subset of
task constraints, which admit a successful solution to the set
of test problems. In Fig. 11, a set of test problems for the
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Fig. 11 Test: different door
angles, [15]

fridge-task is shown. The robot has to successfully place a
grasped bottle in the fridge door at different door angles.

7.1 Robot Tests

In general, the number of human demonstrations is limited
and it can’t be assumed, that the planning model is gener-
alized sufficiently after the learning step. Since we expect a
service robot to operate autonomously in the human envi-
ronment with a large variety of objects, situations, in which
a planning model can’t be executed due to violated but irrel-
evant task constraints, might occur.

We apply the supervised generalization algorithm from
[15] to reduce the number of constraints. The algorithm
generates multiple hypotheses about which task constraints
should be included in the planning model. For each hy-
pothesis a constrained motion planning process is started to
generate statistics about inconsistencies of task constraints.
A mutation operator adapts iteratively each hypothesis and
removes task constraints based on the statistics about incon-
sistencies. The goal of the optimization algorithm is to find
a planning model consisting of a maximal subset of the task
constraints, which can be used to solve the robot test.

In the PbD system, the human teacher generates tests
by placing a set of objects in the sensory environment and
defining a mapping of the localized objects to the objects
in the manipulation strategy. The object poses are generated
automatically using stereo vision-based object localization.

In order to generalize the planning model, an evolution-
ary algorithm [7] using the evolving objects library [17]
is used to determine a maximal subset of task constraints,
which can be included in the planning model to be able to
solve the robot test. The manipulation strategy is mapped to
a binary vector, where each bit corresponds to a task con-
straint. For each state, a task constraint will be considered in
the planning process if and only if the corresponding bit is
set.

In Fig. 12(a), the state representing the planning model
in Fig. 9 is visualized. The first bit represents the position
constraint flasche_position in the node End. The last bit cor-
responds to the direction constraint on arc 2 �→ End. The

Fig. 12 5-bit state (a) and statistics about inconsistency of the con-
straints (b), here position constraints are inconsistent

Fig. 13 Example of the evolutionary algorithm applied to the example
in Fig. 9 using 2 states, [15]

remaining bits correspond to the flasche_position_shelf_*
constraints in the node End, which restrict the bottle rela-
tive to the shelves.

For a given state, statistics about inconsistency of con-
straints are gathered. In the planning process, projection
is used to generate goal configurations for which all con-
straints are obeyed, and to project a random configuration
to the nearest configuration on the constraint manifold. The
percentage of failed projections is calculated for each con-
straint, see Fig. 12(b).

The goal is to find a maximal subset of task constraints,
which can be included in the planning model to be able to
solve the robot test. The objective function for the optimiza-
tion process is the sum of a factor proportional to the number
of 1-bits, the number of subgoals, which could be planned
successfully, and the overall result of the planning process,
i.e. 0 or 1. States or subsets of task constraints will be rated
high if the progress in the planning process was high, a so-
lution was found and the number of constraints is high.

Based on the statistics obtained in the planning process
of a given state the state is mutated. If the planning process
failed, a constraint with bit set to 1 will be deactivated ran-
domly proportional to the percentage of failed projections.
If the planning process was successful, a random bit will
be set to 1. The algorithm will be stopped if the best state
doesn’t change in 20 iterations or the time threshold of 4 h
is reached.

In Fig. 13, an example using the planning model in Fig. 9
and 2 individuals is shown. Based on the planner statistics,
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the individuals are mutated until in the third step, a valid
solution is found. In the fourth step, a constraint is added to
the best state in order to maximize the number of constraints.
Planning fails and the constraint is removed in the fifth step.

8 Frame Mapping and Constrained Motion Planning

We execute the learned, generalized planning model on the
robot using a bidirectional RRT planner with Randomized
Gradient Descenet (RGD) based on CBiRRT [2]. The goal
is to generate a robot motion, in which all constraints are
obeyed and all (sub-)goals are reached. Goal configurations
are generated by sampling the task constraints of a given
node and using inverse kinematics to generate a configu-
ration. The resulting configuration is projected on the con-
straint manifold defined by the goal task constraints. More
information can be found in [15].

8.1 Contact Projection

Given a set of contact constraints, e.g. between two fingers
and an object, a configuration has to be found, in which all
contacts are established. Due to the additional constraints
induced by the articulated model of the robot, RGD is insuf-
ficient.

In proximity query packages, e.g. C2A [27], contacts can
be enforced for articulated bodies starting in a collision-free
configuration, e.g. closing the fingers until contact, using
Continuous Collision Detection (CCD). The work of Min
Tan using penetration depth (PD) calculations has been inte-
grated, which allows to find a configuration with minimal
distance to the start configuration, in which all collisions
were removed. Contact projection is applied after RGD.
First, the PD algorithm is applied to remove all collisions.
Second, force directions are sampled from the force con-
straints and CCD is applied to move the object or articulated
body in the direction of the force until contact. Finally, it is
checked if all task constraints are obeyed.

8.2 Mapping of Coordinate Frames

For objects in the KIT ObjectModels Database, coordinate
frames are predefined and a label was assigned, e.g. open-
ing, center of mass or bottom. If the learned manipulation
strategy has to be executed with a different object, the co-
ordinate frames are mapped to the coordinate frame of the
new object with the same label. For automatically generated
contact frames, an automatic procedure is necessary.

We map contact frames to a new object based on a sur-
face mapping of the original 3d model to the 3d model of the
new object. Based on the surface mapping, the original 3d
model can be morphed into the new 3d model. The surface

Fig. 14 Surface mapping of small spoon and large spoon of the same
set of silverware. A simple scaling is not sufficient

mapping is calculated using Blended Intrinsic Maps [18]. In
Fig. 14, the mapping of a small spoon to a large spoon of
the same set of silverware is shown, where a simple scaling
was not sufficient. The contact frame is mapped by search-
ing the face of the first 3d model, on which the origin is
placed. The position on the face is calculated using barycen-
tric coordinates. The rotation matrix to rotate the frame into
the local coordinate frame of the face is calculated. Based on
the surface mapping, the corresponding face on the new 3d
model is calculated. By using the barycentric coordinates,
the position of the mapped contact frame is calculated. The
orientation is calculated by applying the rotation matrix to
the coordinate frame of the face.

8.3 Physics Simulation

Object constraints restrict the motion of an object, which is
not rigidly attached to the robot. Object constraints play a
crucial role to learn the effects of a motion of the fingers
or robot hand, e.g. that a bottle cap will rotate if forces
are applied at certain positions on its surface. In order to
plan manipulation motions in a goal-directed way, we use
physics simulation to generate the object motion. In the cur-
rent system, physics simulation is applied to the generated,
smoothed planning result to validate all object constraints.
The planner will be restarted if an object constraint was vi-
olated. Since the learned task constraints restrict the search
space in a very efficient way, valid solutions can be found
efficiently in these simple tasks. In future, the physics simu-
lation will be integrated fully into the RRT planner.

9 Experiments

We evaluated the developed PbD framework on two manip-
ulation tasks on the bimanual robot Adero with 40 dofs: 7
for each KUKA Lightweight Arm and 13 for each Schunk
Anthropomorphic Hand. All 3d object models can be found
in the KIT ObjectModels Web Database [16].

9.1 Spoon Lifting and Grasping

The full PbD system was evaluated on this task, i.e. learn-
ing of contact constraints, generalization using robot tests,



Int J Soc Robot (2012) 4:437–448 445

Fig. 15 Lifting a spoon:
planning result for learned
manipulation strategy for lifting
a spoon using physics
simulation

Fig. 16 Lifting a spoon: learned task constraints before (left) and after
(right) generalization. Highlighted is a set of inconsistent constraints,
which was removed

Fig. 17 Lifting a spoon: frame mapping

Table 1 Lifting a spoon/Opening a bottle: planning results

Manipulation strategy Success (%) Planning time (s)

Tipping on the spoon 85 11.2

Grasping the spoon 79 3.4

Tipping and grasping 67 14.5

Opening a bottle 84 35.6

mapping of frames using Blended Intrinsic Maps, planning
using physics simulation and execution on the real Adero
robot system. In this task, the human teacher pushed on the
front part of the spoon to lift the handle and grasp it.

The initial manipulation strategy contained 140 and the
generalized manipulation strategy 55 task constraints. Cu-
bic regions were used. In Fig. 16 the set of task constraints
is visualized. The highlighted constraints restrict the motion
of the spoon, when the handle moves up. Due to the dif-
ferent geometry, both constraints were inconsistent and re-
moved. The automatically extracted goal of the task can be
described as: the contact frame on the spoon is slightly ro-
tated, a contact between the spoon and the table and a con-
tact between the spoon and the finger exists.

Table 2 Lifting a spoon: generalization results

Path Obstacles Success (%) Planning time (s)

1 no 88 4.73

2 no 84 0.855

3 no 80 3.71

4 no 87 2.26

1 yes 64 5.05

2 yes 55 1.07

3 yes 62 4.08

4 yes 63 2.42

Two contact frames with origins (110.65,10.81,7.16)

and (111.25,9.38,7.23) relative to the center of mass were
generated. In the execution environment, a large kitchen
tool was used instead of a spoon. The contact frames were
mapped using Blended Intrinsic Maps, see Fig. 17.

We planned the learned manipulation strategy 100 times
with the spoon at a fixed position on the table, see Ta-
ble 1. Since the validation is part of the learning process,
only valid trajectories are executed on the real robot system.
Valid trajectories are stored relative to the object coordinate
frame and executed using Closed Loop Inverse Kinematics
(CLIK) [25]. In order to test the generalization we executed
4 random trajectories each 100 times with random spoon
and obstacle poses, see Table 2. Objects are placed randomly
in the range (600,−300,−0.4) and (1200,300,0.4) on the
table using x, y and orientation around z, see Fig. 18. In
Fig. 19, the results for the last trajectory are shown. If the
spoon is near the robot and the handle points away from
it, it can’t be lifted due to collisions of the hand with the
base or the workspace is left. In more than 1 m distance
to the robot, the workspace is left. In a large area on the
table surface, the spoon can be lifted successfully. The re-
sults show, that the observation setup was sufficient to cap-
ture relevant contacts between the human finger and the
spoon as well as between the spoon and the table. The ini-
tial manipulation strategy could be generalized efficiently
and a (sufficient) representation of the goals and relevant
task constraints could be deduced automatically. Automat-
ically generated contact frames could be mapped success-
fully to a different object with similar geometry. Planning
with validation in physics simulation, see Fig. 15, is still
time-demanding but the learned set of task constraints re-
stricts the search space efficiently, so that in 66.9 % a trajec-
tory was generated, which reproduces the learned effect, i.e.
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that the spoon handle is lifted and reachable for grasping.
The execution on Adero is shown in Fig. 20.

9.2 Bottle Opening

In the second experiment, a bottle had to be opened by us-
ing two fingertips only. The human teacher kept the wrist at
the same position and used only the thumb and index fin-
ger for the rotation. A human demonstration is shown in
Fig. 21. In the sensory environment, the motion of the cap
couldn’t be observed. We added a position constraint to the
node and arc of the resulting planning model, which restricts
the cap to stay in the same position, and an orientation con-
straint to restrict, that the cap is rotated at least 30◦. Forces
couldn’t be observed consistently with the FSR sensors,

Fig. 18 Lifting a spoon: random object poses

Fig. 19 Lifting a spoon: generalization results

if the finger was moved during contact, which results in non-
representative force constraints. Consistent force measure-
ments were added manually. In the physics simulation, we
replaced the bottle and cap with a simplified model to pre-
dict the motion of the cap when forces are applied through
the fingertips, see Fig. 22.

The finger motion can only be executed in a small
section of the workspace of the fingers. Due to the re-
laxation of constraints for the wrist and fingers a lot of
backtracking occurred in the motion planner until a wrist
pose could be found, in which the rotation motion could
be planned successfully. In Fig. 22, the planning result is
visualized. The average of 100 planning attempts of the
complete sequence was 35.6 s, see Table 1. We tested the
generalization to environments, where the bottle is held in
front of the robot with 100 random poses in the
range (750,−500,700,−0.4,−0.4,0) to (1250,0,900,

0.4,0.4,0) with position x, y, z and Roll-Pitch-Yaw angles,
see Table 3. In Fig. 23, the execution of the task to open a
bottle on Adero is shown.

10 Conclusion

The results indicate that dexterous manipulation tasks can
be mapped automatically in a goal-directed way from hu-
man demonstrations the robot system, if models of the ob-

Fig. 21 Human demonstration of bottle opening task in sensory envi-
ronment and simulation environment

Fig. 22 Planning result for opening a bottle using physics simulation

Fig. 20 Lifting a spoon: execution on Adero using online object detection to localize the spoon handle
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Fig. 23 Opening a bottle: execution of planning result for opening a bottle on Adero

Table 3 Opening a bottle: generalization results

Path Success (%) Planning time (s)

1 68.2 1.50

2 64.3 2.02

3 53.6 1.43

4 68.3 1.62

5 61.4 1.53

jects and robots are available and suitable for physics sim-
ulation. Task constraints are learned based on the observa-
tion of objects, forces, human hands and fingers. Force and
contact measurements have to be accurate and consistent
since the planner reproduces the contacts using special pro-
jection techniques, which don’t support constraints covering
inconsistent contact or force measurements. In general, con-
straints restricting hand, finger and object motion can be re-
laxed to consider the noise in the sensor setup but might lead
to violation of task constraints, e.g. placing a bottle above a
cup to pour in. A relaxation is possible if the demonstrations
don’t cover the border of the (real) constraint manifold, e.g.
the human teacher tries to place the bottle opening above the
cup center and not near the rim.

For dexterous tasks planning times with physics simula-
tion are too high for online execution but offline generated
planning results can be executed directly or used to speed up
the execution by specializing the learned constraints, which
was not in the scope of this paper. In previous work plan-
ning results on tasks like moving a chess knight, pour-in or
closing a bottle with a firm grasp have proven to be in the
range from 1 to 8 seconds, which is appropriate for online
execution.

11 Summary

In this work, strategy graphs, i.e. planning models for dex-
terous manipulation tasks, are learned based on multiple
human demonstrations. The initial, learned planning model
contains a large number of automatically generated task con-
straints including novel contact constraints for objects and
fingers, which implicitly define the feature space for learn-
ing. We considered the correspondence problem explicitly

by relaxing constraints for the fingers and human hands.
Since the effects of the manipulation task, e.g. the object
motion, are also learned, a qualitatively equivalent motion
with the robot hands and fingers is planned automatically,
which produces the same effect.

Due to the small number of human demonstrations the
generalization capabilities of the initial planning model are
limited. We generalized the learned manipulation strategy
by using the parallelized generalization algorithm in [15],
which generates a maximal subset of task constraints, which
admits a successful solution to a set of test problems. In or-
der to generalize to novel objects, we mapped automatically
generated contact coordinate frames using Blended Intrin-
sic Maps, which define a surface mapping between two 3d
models. The PbD system was evaluated on a real robot using
two dexterous manipulation tasks.

12 Outlook

Generalization of learned task constraints to novel objects
is demanding. In this work, we used objects with simple 3d
geometry, e.g. spoons of different sizes, which allow an ef-
ficient mapping of object surfaces. In general, we can’t as-
sume, that a single mapping algorithm will produce the de-
sired result for complex objects. Different algorithms will
be implemented to generate multiple hypotheses about the
correct mapped coordinate frame. We intend to solve the re-
sulting ambiguity by extending the generalization algorithm
in [15].
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