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Abstract In this paper, stiffness and impedance control
concepts are used to solve position and force control for
robot-aided rehabilitation. New asymptotic stability condi-
tions are proposed using a suitable Lyapunov approach and
based on the relationship between the dynamics of the robot
and its energy. The efficiency of the proposed approach is
tested on a planar 3 DOF robot-aided rehabilitation con-
strained to a circular trajectory. The robotic device is con-
figured to be safe and stable in compliant motion in contact
with the human arm. It is also designed to be adapted eas-
ily to different subjects for performing different tasks. Force
and control parameters are tuned using a non linear opti-
mization strategy for which the stability conditions are con-
sidered as inequality constraints. Simulation results show
that the robot could guide the upper limb of subjects in circu-
lar movements under predefined model of the external force
and prove the stability and the performances of the compli-
ant motion control strategy.

Keywords Stiffness control · Impedance control ·
Lyapunov theory · Robot-aided rehabilitation

1 Introduction

Stroke is one of the leading causes of disability [1, 2]. To
perform activities of daily living, all stroked patients require
rehabilitation treatment necessitating labor and intensive
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leading efforts by the physiotherapists. Several robotic de-
vices are currently developed for upper limbs assisting [3–6]
and for lower limbs assisting [7, 8]. Research to date has
shown that interactive treatment of the impaired limbs can
serve as an objective and reliable means of monitoring pa-
tient progress by assisting them in moving the limb through
a predetermined trajectory during a given motor task [9]. It
is also revealed that repetitive task-specific, goal-directed,
robot-assisted therapy is effective in reducing motor impair-
ments in the affected arm after stroke [10]. Furthermore,
most upper-limb rehabilitation robotic systems have 2DOF
with planar motion for more therapy efficiency.

On the other hand, control system accomplishment is one
of the major difficulties in rehabilitation robot design. Dif-
ferent approaches were developed to control movement of
robot-aided therapy attached to human limbs. They can be
classified into three categories: force control [4, 11], posi-
tion control [6, 12], position and force control [13, 14]. The
main difficulties occur for the last case, specially, when in-
tending to realize predefined complex movements such as
circular motion.

Several strategies and schemes were already proposed
to solve the position and force control for robotic sys-
tems [15–22]. However, unlike industrial robots, rehabili-
tation-aided robots must be configured for stable, safe and
compliant motion in contact with humans. The impedance
control strategy proposed by Hogan [18, 19] is one of the
most appropriate approaches for such applications. This
approach is privileged for its simplicity. The objective of
this control concept is to accomplish specific mechanical
impedance at the manipulator end-effector [23]. So, the ma-
nipulator controller is designed to track a motion trajectory
and realize a desired dynamic relationship between the end-
effector position and the contact force. On the other hand,
stiffness control initially proposed by Salisbury [17] can be

mailto:olfa.boubaker@insat.rnu.tn
mailto:Haifa.mehdi@gmail.com


108 Int J Soc Robot (2012) 4:107–119

also suitable to solve such position and force control prob-
lems. In fact, Stiffness control can be regarded as a spe-
cial case of impedance control with only static model-based
compensation [24].

Stability conditions for robotic systems under impedance
or stiffness controllers had been investigated in many re-
searches. This problem had been solved using linearized
models [25–27]. Further analyses are done on the basis of
nonlinear models [28–31]. Robust stability was also pro-
posed in [32, 33]. However, in our best knowledge, the rela-
tion between the dynamics of the robot and its energy was
never already exploited in this framework.

In this paper, we present then new asymptotic stability
conditions for stiffness and impedance controllers using a
suitable Lyapunov approach based on the relationship be-
tween the dynamics of the robot and its energy. The main
contribution of this work is not only to build a specific con-
trol law providing stable compliant motion and sufficient
contact force of the robot in contact with the stroked limb
but also to supply satisfactory safety by allowing adaptabil-
ity of the robotic device to different stroked patients and sup-
porting their progress in the therapy process. In this paper,
safety is guaranteed since some of the controller parameters
can be adapted to different stroked patients and for different
states of progression in the therapy process. The remaining
controller parameters are finely tuned using a constrained
nonlinear optimization strategy using the optimization tool-
box of MatLab software.

The efficiency of the proposed approach is tested, by sim-
ulations on a planar 3 DOF robot-aided rehabilitation at-
tached to a human upper limb. The physical parameters of
the stroked arm are computed using the famous Winter sta-
tistical model.

The paper is organized as follows: In second section, the
mathematical problem of robotic system in contact with the
upper human arm through a force display is formulated. The
new stability conditions of the stiffness and the impedance
controllers are derived in the third and the fourth sections,
respectively. In the fifth section, the design of a robot-aided
rehabilitation is proposed, the controller parameters are op-
timized and the simulation results are performed.

2 Mathematical Formulation

Consider a robotic system with n degrees of freedom de-
scribed in the joint space by the following dynamical
model [24]:

M(θ)θ̈ + H(θ, θ̇) + G(θ) = U − J (θ)T F (1)

and the following forward kinematic models:

X = f (θ) (2a)

Ẋ = J (θ)θ̇ (2b)

where θ, θ̇ , θ̈ ∈ Rn are joint position, velocity and accelera-
tion vectors, respectively. M(θ) ∈ Rn×n is the inertia matrix,
H(θ, θ̇) ∈ Rn is the vector of centrifugal and Coriolis forces
and G(θ) ∈ Rn is the vector of gravity terms. U ∈ Rn is the
generalized joint force vector, F ∈ Rp is the vector of con-
tact generalized forces exerted by the manipulator on the en-
vironment and p is the task space dimension. J (θ) ∈ Rp×n

is the Jacobian matrix and X,Ẋ ∈ Rp are position and ve-
locity of the robotic system in the Cartesian space, respec-
tively. The problem to be solved is to design control laws
U ∈ Rn satisfying asymptotic stability of the robotic sys-
tem described by the dynamical model (1) and the kinematic
models (2) under the following assumptions:

(a) The entire vectors of force, position, velocity and accel-
eration are measured.

(b) All feedback gains, used to solve the control problem
are diagonal matrix with equal elements.

3 Stiffness Control

Stiffness control is designed to achieve a desired static be-
havior of the interaction of a robot manipulator with the en-
vironment [19]. The block diagram of the entire control sys-
tem can be described as shown in Fig. 1.

Based on Fig. 1, the control law is given by:

U = J T [Kp(Xd − X) + Kv(Ẋd − Ẋ)] + G (3)

where Kp,Kv ∈ Rp×p are position and velocity gain matri-
ces, respectively.

In stiffness control, the joint stiffness matrix is modulated
to achieve the desired relation between position and applied
force [34]:

F = Ke(Xd − X) (4)

where Ke ∈ Rp×p is the stiffness matrix of the system
robot/environment.

3.1 Relationship Between the Dynamics of the Robotic
System and Its Energy for Stiffness Control

Let � and Y(�) the errors in the joint space and in the task
space of the robotic system defined respectively by:

� = θ − θd (5)

Y(�) = X(θ) − Xd (6)

Consider the robotic system described by the constrained
dynamic model (1) for the force design (4) and the control
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Fig. 1 Stiffness control
concept [17]

law (3). Using the relations (5) and (6) we can write:

M(�)�̈ + H(�, �̇) + J T (�)KY(�)

+ J T (�)KvẎ (�) = 0 (7)

where:

K = Kp − Ke (8)

In order to evaluate the relationship between the dynamics of
the robotic system and its energy, we use Lagrange’s equa-
tion described by [35]:

d

dt

(
∂T

∂�̇

)
− ∂T

∂�
+ ∂P

∂�
+ ∂D

∂�̇
= 0 (9)

where T (�, �̇) is the kinetic energy of the robotic system
(1) defined by:

T (�, �̇) = 1

2
�̇T M(�)�̇ (10)

P(�) and D(�, �̇) are potential energy and dissipation
function respectively. Comparing (7) and (9), we obtain the
following relationship between the dynamics of the system
and the energy terms T (�, �̇),P (�) and D(�, �̇) (see Ap-
pendix A):

∂P (�)

∂�
= J T (�)KY(�) (11)

∂D(�, �̇)

∂�̇
= J T (�)KvẎ (�) (12)

H(�, �̇) =
n∑

i=1

(
d�i

dt

∂M

∂�i

)
�̇

2
(13)

3.2 New Sufficient Stability Conditions for Stiffness
Control

Let for the system (7) a Lyapunov Hamiltonian function de-
fined by [35]:

V (�, �̇) = T (�, �̇) + P(�) − P(0) (14)

The error dynamics (7) are asymptotically stable if V (�, �̇)

satisfies the following conditions [36]:

V (0,0) = 0 if � = 0, �̇ = 0 (15)

V (�, �̇) > 0 if � �= 0, �̇ �= 0 (16)

V̇ (�, �̇) < 0 if � �= 0, �̇ �= 0 (17)

Theorem 1 If there exist diagonal matrices Kp,Kv,Ke ∈
Rp×p such that the following conditions:

Kp − Ke > 0 (18a)

Kv > 0 (18b)

are satisfied, then the robotic system described by the dy-
namical model (1) and the kinematic models (2) is asymp-
totically stable under the constrained force:

F = Ke(Xd − X) (19)

and the control law:

U = J T [Kp(Xd − X) + Kv(Ẋd − Ẋ)] + G (20)

Proof See Appendix B. �

4 Impedance Control

Impedance control is a control strategy specifying a desired
dynamic behavior for the robot. The robotic controller is
designed to track a motion trajectory and realize a desired
impedance dynamics between the end-effector position and
the contact force [18, 19]. The desired impedance is defined
by:

Zd = Fd − F

Xd − X
(21)

where, Xd and Fd are desired Cartesian position and desired
contact force, respectively. It is generally required that the
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Fig. 2 Impedance control
concept

desired impedance verifies [19]:

Zd = Kd + Bds + Mds2 (22)

Kd,Bd,Md ∈ Rp×p are desired stiffness, damping and iner-
tia matrices and s is the Laplace operator. Substituting (21)
in (22) gives:

Fd −F = Kd(Xd −X)+Bd(Ẋd − Ẋ)+Md(Ẍd − Ẍ) (23)

Ẍ ∈ Rp is Cartesian end-effector acceleration where from
(2b) we can write that Ẍ = J̇ (θ)θ̇ + J (θ)θ̈ . The block dia-
gram of the entire control system is shown in Fig. 2, where
Kp,Kv,Kf ∈ Rp×p are position, velocity and force gain
matrices, respectively. The control law is given by:

U = J T [Kp(Xd − X) + Kv(Ẋd − Ẋ)

+ Fd(Kf + I ) − Kf F ] + G (24)

4.1 Relationship Between the Dynamics of the Robotic
System and Its Energy for Impedance Control

Consider the robotic system described by the dynamic
model (1) for the force design (23) and the control law (24).
Using the relations (5) and (6) we can write:

M(�)�̈ + H(�, �̇) + J T (�)K1Y(�)

+ J T (�)K2Ẏ (�) + J T (�)K3Ÿ (�) = 0 (25)

where:

K1 = Kp + (I + Kf )Kd

K2 = Kv + (I + Kf )Bd

K3 = (I + Kf )Md

(26)

For the Lagrange equation (9) we can prove that (see Ap-
pendix C):

∂P (�)

∂�
= J T (�)K1Y(�) (27)

∂D(�, �̇)

∂�̇
= J T (�)K2Ẏ (�) + J T (�)K3Ÿ (�) (28)

H(�, �̇) =
n∑

i=1

(
d�i

dt

∂M

∂�i

)
�̇

2
(29)

4.2 New Sufficient Stability Conditions for Impedance
Control

Let for the error dynamics (25) a Lyapunov Hamiltonian
function defined by (14). The system (25) is then asymp-
totically stable if V (�, �̇) satisfies the Lyapunov conditions
(15), (16) and (17).

Theorem 2 For desired matrices Kd,Bd,Md ∈ Rp×p and
if there exist diagonal matrices Kp,Kv,Kf ∈ Rp×p such
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that the following conditions:

Kp + (I + Kf )Kd > 0

Kv + (I + Kf )Bd > 0

Md = 0

(30)

or

Kp > 0

Kv > 0

Kf = −I

(31)

are satisfied, then the robotic system described by the dy-
namical model (1) and the kinematic models (2) is asymp-
totically stable under the constrained force:

F = Fd −Kd(Xd −X)−Bd(Ẋd − Ẋ)−Md(Ẍd − Ẍ) (32)

and the control law:

U = J T [Kp(Xd − X) + Kv(Ẋd − Ẋ)

+ Kf (Fd − F) + Fd ] + G (33)

Proof See Appendix D [37]. �

5 Application

5.1 The Rehabilitation Situation

Repetitive functional training of the upper limb after stroke
is essential to regain ordinary motion. Traditionally, this is
achieved through manual one-on-one therapy which is phys-
ically exhausting for the therapist and expensive for the pa-
tients. A solution may be robotic rehabilitation or robot-
aided therapy. Using robotic aided devices, a therapist is stay
responsible for the nonphysical interaction and observation
of the patient whereas the robotic device takes out the physi-
cal interaction with the patient. Indeed, robots have the abil-
ity to provide repetitive training movement and an objective
quantitative assessment of movement [5–8].

In [38], we had already proposed a 2DOF end-point
robot-aided rehabilitation. However, the robotic device ne-
glects the motion of the shoulder girdle. Its end effector mo-
tion is then regrettably limited to linear trajectories.

In this paper, we propose a new design of a planar 3DOF
rehabilitation device that allows the human upper limb to be
trained with more realistic functional movements. Further-
more, to improve the function of the stroked upper limb, the
robotic device must be attached to a human upper limb and
must have joints lined with the upper limb joints in order to
control them independently (see Fig. 3).

Fig. 3 Human arm attached to the 3DOF robot-aided rehabilitation

Fig. 4 3DOF robot-aided rehabilitation prototype

Fig. 5 Mechanical design of the 3DOF robot-aided rehabilitation

The mechanical system of the robot aided rehabilitation
is composed by three parts (see Figs. 4 and 5): Three rigid
bodies articulated by joints, two brackets and a linkage sys-
tem. The brackets serve to maintain the upper limb of the
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patient over the robot device and constraint it to move in
parallel to the robot-aided rehabilitation. The linkage sys-
tem allows the therapist to adjust distances between axes
and customize the rehabilitation device for different users.
The control system of the rehabilitation device is designed
in order to authorize corrective forces and torques to the hu-
man arm. Desired positions are imposed by the rehabilita-
tion aided robot whereas desired contact forces are imposed
by the human arm.

5.2 The Human Arm

The physical parameters shown in Table 1 correspond to a
right arm, forearm and hand of a stroked patient having a
weight of 70 kg and a height of 1.73 m. They are computed
using the famous Winter statistical model [39] and referring
to [40]. The parameters mi , Li and ki design mass, length

and position of gravity center of each rigid body whereas
The inertia parameters Ii (i = 1,2,3) are computed using
the relation:

Ii = miL
2
i

12

5.3 The Robot Aided Rehabilitation Model

The robot aided rehabilitation is a planar 3DOF robot. Its
end-effector position X = [x y]T is computed using the fol-
lowing forward kinematic model:

{
x = L1 cos θ1 + L2 cos θ2 + L3 cos θ3

y = L1 sin θ1 + L2 sin θ2 + L3 sin θ3
(34)

The matrices associated to dynamic model (1) and kinematic
model (2b) are given by:

M(θ) =
⎡
⎣I1 + m1k

2
1 + m2L

2
1 + m3L

2
1 a · cos(θ1 − θ2) b · cos(θ1 − θ3)

a · cos(θ1 − θ2) I2 + m2k
2
2 + m3L

2
2 c · cos(θ2 − θ3)

b · cos(θ1 − θ3) c · cos(θ2 − θ3) I3 + m3k
2
3

⎤
⎦

H(θ, θ̇) =
⎡
⎣ 0 a · sin(θ1 − θ2) d · sin(θ1 − θ2)

−a · sin(θ1 − θ2) 0 c · sin(θ2 − θ3)

−d · sin(θ1 − θ2) −c · sin(θ2 − θ3) 0

⎤
⎦

⎡
⎢⎣

θ̇2
1

θ̇2
2

θ̇2
3

⎤
⎥⎦

G(θ) = g

⎡
⎣ (m1k1 + m2L1 + m3L1) cos θ1

(m2k2 + m3L2) cos θ2

m2k3 cos θ3

⎤
⎦

J (θ) =
[−L1 sin θ1 −L2 sin θ2 −L3 sin θ3

L1 cos θ1 L2 cos θ2 L3 cos θ3

]

where:

a = m2L1k2 + m3L1L2

b = m3L1k2

c = m3L2k3

d = m3L1k3

Furthermore, we assume that the robot-aided rehabilitation
have the same parameters as the human arm given in Table 1.

5.4 Trajectory Generation

The desired Cartesian position, speed and acceleration of the
robotic system are used as inputs of the control laws. So, it is
important to generate desired trajectories. The motion must
begin and end regularly such that:

θi(t0) = θi0; θ̇i (t0) = 0

θi(tf ) = θid; θ̇i (tf ) = 0
(35)

where i = 1,2,3. So, we must choose, in the first stage, ref-
erence trajectories in the join space. We choose, in this work,
three degree reference trajectories such that:

θi,d(t) = ai0 + ai1t + ai2t
2 + ai3t

3 (36)

So, the desired joint velocities are deduced as:

θ̇i,d (t) = ai1 + 2ai2t + 3ai3t
2 (37)

where:

⎡
⎢⎢⎣

ai0

ai1

ai2

ai3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1 t0 t2
0 t3

0

1 tf t2
f t3

f

0 1 2t0 3t2
0

0 1 2tf 3t2
f

⎤
⎥⎥⎥⎥⎦

−1 ⎡
⎢⎢⎣

θi0

θid

0
0

⎤
⎥⎥⎦

In the Cartesian space, we chose a circular profile. To
realize this contour, we will introduce a sinusoidal signal on
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Table 1 Human arm parameters

Bodies mi (kg) Li (m) ki (m) Ii (kg m−2)

Arm 1.960 0.321 0.140 0.016

Forearm 1.120 0.253 0.109 0.006

hand 0.420 0.187 0.095 0.001

each axis. So, the axis references correspond to a harmony
excitation in quadratic phase. Therefore, for a circle radius
R, the desired end-effector motion of the robotic system will
be defined by:

{
xd(t) = R cos(a30 + a31t + a32t

2 + a33t
3)

yd(t) = R sin(a30 + a31t + a32t
2 + a33t

3)
(38)

For simulations, the movement of the trajectory is a cir-
cular motion with a radius of 0.76 m corresponding to the
sum of arm, forearm and hand lengths aligned. We choose
a movement beginning at θi0 = [0 0 0]T and ending at
θid = [π π π]T during 1 s (t0 = 0 and tf = 1 s). These
parameters are chosen so that the human arm is in extension
and the trajectory is a half of circle.

The desired trajectory of the end-effector of the robotic
system is then deduced as:

{
xd(t) = 0.76 cos(3πt2 − 2πt3)

yd(t) = 0.76 sin(3πt2 − 2πt3)
(39)

5.5 Results and Discussions

The goal of this section is to find optimal parameters for the
control laws and force designs given by Theorems 1 and 2
for the rehabilitation situation described below. The opti-
mization problem will be solved using the constrained non-
linear optimization method proposed in [41, 42] and solved
using the fmincon function of the optimization toolbox of
MatLab software. The dynamic and forward kinematic mod-
els are considered as nonlinear constrained equalities of the
optimization problem whereas the stability conditions are
considered as constrained inequalities. The dynamic model
of the system is solved using the ODE45 solver of MatLab
software.

5.5.1 Tuning Parameters of the Stiffness Approach

To adjust the parameters of the stiffness control law (20) and
the constrained force design (19), the following nonlinear
optimization problem is solved:

minf (z) = 1

N

N∑
i=1

√
E2

i (40a)

Fig. 6 End effector trajectory under stiffness control

subject to:

M(θ)θ̈ + H(θ, θ̇) + G(θ) = U − J (θ)T F (40b)

Ẋ = J (θ)θ̇ (40c)[−1 0 1
0 −1 0

]
z <

[
0
0

]
(40d)

100 ≤ kp ≤ 700 (40e)

30 ≤ kv ≤ 400 (40f)

1 ≤ ke ≤ 20 (40g)

where z = [kp kv ke]T is the decision vector for the stiff-
ness control strategy and Ei = [Xd(i) − X(i)]T is the tra-
jectory error of the ith iteration. N is the iteration number.
kp, kv and ke are the diagonal elements of the gain matrices
Kp,Kv and Ke , respectively. Relations (40b) and (40c) rep-
resent the dynamic and the kinematic constraints of the op-
timization problem whereas the inequality constraint (40d)
is equivalent to the stability conditions (18a) and (18b). In-
equalities (40e), (40f) and (40g) define a set of lower and
upper bounds of the decision variables. To obtain simulation
results, the optimization problem was solved for the initial
decision vector z0 = [500 200 5]T .

Best decision vector and the corresponding objective
function are reported in Table 2. Figure 6 shows the profile
of the desired and actual trajectories. As can be seen, de-
sired Cartesian trajectory is followed. Figures 7 and 8 shows
contact forces and control laws, respectively.

5.5.2 Tuning Parameters of the Impedance Approach

To adjust the parameters of the impedance control law (33)
and the constrained force design (32), the nonlinear opti-
mization problem is solved for the objective function (40a)
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Fig. 7 Contact force response under stiffness control

Fig. 8 Control laws under stiffness control

and the decision vector z = [kp kv kf ]T under the dynamic
and the kinematic constraints (40b) and (40c), the inequality
constraints:
[−1 0 −kd

0 −1 −bd

]
z <

[
kd

bd

]
(41a)

100 ≤ kp ≤ 700 (41b)

30 ≤ kv ≤ 400 (41c)

1 ≤ kf ≤ 50 (41d)

and the equality constrains:

kd = 20, bd = 5, md = 0 (41e)

where kp, kv, kf , kd, bd and md are the diagonal elements of
the gain matrices Kp,Kv,Kf ,Kd,Bd and Md , respectively.

Fig. 9 End effector trajectory under impedance control

Table 2 Optimization strategy results

Control strategy Decision vector Objective Optimization

function time (s)

Stiffness control z = [550 350 9.3]T 0.03 620.3

Impedance control z = [650 235.3 25]T 0.017 831.9

In the last optimization problem, inequality (41a) with the
equality constrains (41e) are equivalent to the stability con-
ditions (30) for chosen impedance dynamics (22). Inequali-
ties (41b), (41c) and (41d) define the set of lower and upper
bounds of the decision variables.

To obtain simulation results, the optimization problem
was solved for the initial decision vector z0 = [500 200 5]T
and the desired contact force Fd = [6 0]T . Best decision vec-
tor and the corresponding objective function are reported
in Table 2. Simulations are performed such that the end-
effector of the robot track the circular desired position tra-
jectory (39) and such that the end-effector contact force con-
verge to the desired force Fd after one second. Figure 9
shows the movement of the end-effector who attempts to
draw a half circle in horizontal plane. The path was more
nearly circular. So, we can confirm that the desired trajec-
tory was followed completely by the robotic device. On the
other side, it can be seen in Fig. 10 that the error between
the actual and desired forces becomes smaller with the pro-
gression of simulation time. Moreover, control laws shown
in Fig. 11 are characterized by acceptable energetic profiles.

Based on results given in Table 2, it is clear that
impedance control schema gives best objective function than
stiffness control strategy. It guarantees then best system per-
formances. Nevertheless it requires longer optimization time
to tune control and force parameters.
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Fig. 10 Contact force response under impedance control

Fig. 11 Control laws under impedance control

5.5.3 Safety

It is clear that safety is firstly provided through hardware
level. The therapist can adjust distances between axes and
customize the rehabilitation device for different patients us-
ing the linkage system of the robotic device. Safety is also
supplied through control software level. The robot is stopped
when the stability conditions are not satisfied. The control
system of the rehabilitation device is also designed in or-
der to authorize corrective forces and torques to the human
arm and to adapt controller laws on participant performances
through suitable choice of stiffness parameter for the stiff-
ness control approach and, stiffness, damping and inertia pa-
rameters for the impedance control approach.

5.5.4 Discussions

It is obvious that most famous upper limb rehabilitation
devices are planar 2DOF arms while the shoulder joint
is usually neglected [43–45]. To be trained with more re-
alistic functional movements, current researches investi-
gate in 3DOF robot-aided rehabilitation [46]. However,
more interesting recent works focused on making devices
portable so that they can be used during activities of daily
living [47]. Such devices are more sophisticated, many
degrees-of-freedom and support more complicated training
movements. Furthermore, they can operate in the three di-
mensional space. However, it seems that is still even un-
clear whether robotic control approaches have the potential
to produce better benefits and what control algorithms are
most appropriate for which rehabilitation tasks [48]. That’s
why there is a great need, in the future, on control strate-
gies that specify how the robot-aided therapy must inter-
act with stroked patients. Performance-based, progressive
robot-assisted therapy is also one of the most important
prospects to be investigated [49, 50].

6 Conclusion

To improve the human arm function of stroked patients us-
ing robotic devices, a control strategy is proposed in this
paper for monitoring robot-aided rehabilitation. The robotic
device is controlled using an energy-based stiffness and
impedance controllers for which new sufficient stability con-
ditions are suggested. Some selecting controller parameters
by the therapist can ensure adaptability and safety for pa-
tients at different stages of the therapy process whereas the
remaining tuning parameters of the control strategies are ad-
justed using a constrained non linear optimization approach
for which the stability conditions are considered as inequal-
ity constraints. A 3DOF planar robot-aided rehabilitation is
used as a case study. The robotic device mimics the motion
of the shoulder, elbow and wrist joints of user arm and it
is configured for compliant motion in contact with a human
upper limb. It was proven, by simulation results that desired
trajectories are followed by the robotic device attached to
the human arm. The functional training of a stroked upper
limb could be then covered in motion and force.

To reduce the optimization time of the tuning of the con-
troller parameters, we are currently analyzing, by simulation
results, several biological-inspired optimization techniques
known for their global convergence and good performances.

Future work will be addressed to the implementation and
testing of control structures on a real application of a robot-
aided rehabilitation. Different levels of disability interacting
with the robot will be experimented. We will verify the ef-
fectiveness of the adjustment of control parameters to en-
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sure a high level of capabilities such as adaptability to dif-
ferent patient disabilities, maximum level of safety in the in-
teraction and flexibility to implement different motor tasks
(passive mode, active-assisted mode and active-constrained
mode). Hence, some specific actuators and an appropriate
sensing system will be carefully designed and implemented
to allow the robotic system to follow desired force and posi-
tion safely and exactly. Finally, a Human-Machine Interface
is also planned to help therapists and motivate patients dur-
ing the treatment progress via the control strategy.

Appendix A: Relationship Between the Dynamics of the
Robot and Its Energy (Stiffness Control
Case)

Tacking on account that the inertia matrix M(�) is symmet-
ric, we can write that:

∂T

∂�̇
= M(�)�̇ (A.1)

d

dt

(
∂T

∂�̇

)
= M(�)�̈ +

n∑
i=1

(
d�i

dt

∂M(�)

∂�i

)
�̇ (A.2)

∂T

∂�
= 1

2

n∑
i=1

ei�̇
T

(
∂M(�)

∂�i

)
�̇ (A.3)

where n is the number of freedom of the robot and ei ∈ Rn

is a unit vector. Using the relations (A.2) and (A.3) we have:

d

dt

(
∂T

∂�̇

)
− ∂T

∂�
= M(�)�̈ + 1

2

n∑
i=1

(
d�i

dt

∂M(�)

∂�i

)
�̇

(A.4)

Comparing (7) to (9) and using (A.4), the relation (13) is
deduced. Since dD

d�̇
is equivalent to the term J T (�)KvẎ (�)

in the dynamic equation (7) so, the term dP
d�

of Lagrange’s
equation corresponds to the term J T (�)KY(�).

Appendix B: Proof Theorem 1

Based on the Lyapunov function defined by the relation (14)
and since T (0,0) = 0 and then V (0,0) = 0 so the first Lya-
punov condition (15) is verified. To verify the second Lya-
punov condition (16) and since the kinetic energy T (�, �̇)

is positive definite, it is sufficient to verify the positive defi-
niteness of the following potential function:

Vp(�) = P(�) − P(0) (B.1)

Vp(�) is positive definite if it is a convex function [35].
From (B.1) we have Vp(0) = 0. Based on (11) we can write:

[
∂Vp(�)

∂�

]
=

[
∂P (�)

∂�

]
= J T (�)KY(�) (B.2)

we have then[
∂Vp(�)

∂�

]
�=0

= J T (0)KY(0) = 0 (B.3)

In addition, let:

W = ∂

∂�T

(
∂Vp (�)

∂�

)
= ∂

∂�T

(
∂P (�)

∂�

)
(B.4)

Substituting (B.2) in (B.4) we have:

W = ∂

∂�T

(
J T (�)KY(�)

)
= wij + J T (�)KJ(�) (B.5)

where

wij =
(

∂Ji

∂�i

)T

KY(�)

At the equilibrium point we have:

[W ]�=0 = J T (0)KJ (0) (B.6)

Thus function W is then positive definite at the equilibrium
point if K = Kp − Ke is positive definite. Hence the second
Lyapunov condition (16) is satisfied if the condition (18a) is
satisfied.

Using the expression (14) we have:

dV (�, �̇)

dt
= dT (�)

dt
+ dP (�)

dt
(B.7)

From (10) we can write:

dT (�, �̇)

dt
= �̇T M�̈ + �̇T dM

dt

�̇

2
= �̇T M�̈ + H(�, �̇)

(B.8)

Since

dP (�)

dt
= �̇T ∂P

∂�
(B.9)

Substituting (11) in (B.9) we obtain:

dP (�)

dt
= �̇T J T (�)KY(�) (B.10)

Substituting (B.8) and (B.10) in (B.7) we obtain:

dV (�, �̇)

dt
= �̇T M(�)�̈ + �̇T H(�, �̇)
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+ �̇T J T (�)KY(�) (B.11)

From (7) we can write:

M(�)�̈ + H(�, �̇) + J T (�)KY(�)

= −J T (�, �̇)KvẎ (�) (B.12)

Substituting (B.12) in (B.11) gives:

dV (�, �̇)

dt
= −�̇T J T (�)KvẎ (�, �̇) (B.13)

Using relations (2), (5) and (6) we obtain:

dV (�, �̇)

dt
= −Ẏ T (�)KvẎ (�) (B.14)

The third Lyapunov condition (17) is then satisfied Kv is
positive definite.

Appendix C: Relationship Between the Dynamics of the
Robot and Its Energy (Impedance
Control Case)

Following the same steps as Appendix A by using the error
dynamic model of the robotic system described by (25) in-
stead of the model (7) used in the Appendix A, we can found
that:

H(�, �̇) = 1

2

n∑
i=1

(
d�i

dt

∂M(�)

∂�i

)
�̇ (C.1)

Since dD(�)

d�̇
is equivalent to J T (�)K2Ẏ (�) + J T (�)K3 ·

Ÿ (�) term for the Lagrange model (9), so the term dP (�)
d�

is
the same as the term J T (�)K1Y(�).

Appendix D: Proof Theorem 2

Using Appendix B, the first Lyapunov condition (15) is con-
firmed. The second Lyapunov condition (16) will be verified
if we prove that Vp(�) is positive definite since the kinetic
energy T (�, �̇) is positive definite and Vp(0) = 0.

From (B.2) and (27) we can write:

[
∂Vp(�)

∂�

]
=

[
∂P (�)

∂�

]
= J T (�)K1Y(�) (D.1)

then
[
∂Vp(�)

∂�

]
�=0

= J T (0)K1Y(0) = 0 (D.2)

Let consider the function W given by (B.4). Substituting
(27) in (B.4) we have:

W = ∂

∂�T
(J T (�)K1Y(�)) = wij + J T (�)K1J (�) (D.3)

where

wij =
(

∂Ji

∂�i

)T

K1Y(�)

At the equilibrium point we have:

[W ]�=0 = J T (0)K1J (0) (D.4)

Based on (D.4), the function W is positive definite at the
equilibrium point if K1 is positive definite. Hence the sec-
ond Lyapunov condition (16) is satisfied if K1 is positive
definite. To prove the third Lyapunov condition (17), let sub-
stitute (27) in (B.9). This is gives:

dP (�)

dt
= �̇T J T (�)K1Y(�) (D.5)

Substituting (B.8) and (D.5) in (B.7) we obtain:

dV (�, �̇)

dt
= �̇T M(�)�̈ + �̇T H(�, �̇)

+ �̇T J T (�)K1Y(�) (D.6)

From (25) we can write:

M(�)�̈ + H(�, �̇) + J T (�)K1Y(�)

= −(J T (�)K2Ẏ (�) + J T (�)K3Ÿ (�)) (D.7)

Substituting (D.7) in (D.6) gives:

dV (�, �̇)

dt
= −�̇T (J T (�)K2Ẏ (�) + J T (�)K3Ÿ (�))

(D.8)

Using relations (2), (5) and (6) gives:

dV (�, �̇)

dt
= −Ẏ T (�)(K2Ẏ (�) + K3Ÿ (�)) (D.9)

The third Lyapunov condition (17) is then verified if K2 is
positive definite and K3 is null. K3 is null if: I + Kf = 0 or
Md = 0.
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