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Abstract
Kirchhoff type shells are continuum models used to study the mechanics of thin elastic bodies; these are largely based on 
the theory of surfaces. Here, we report a reformulation of Kirchhoff shells using the theory of moving frames. This refor-
mulation permits us to treat the deformation and the geometry of the shell as two separate entities. The structure equations 
which represent the familiar torsion and curvature free conditions (of the ambient space) are used to combine deformation 
and geometry in a compatible way. From such a perspective, Kirchhoff type theories have non-classical features which are 
similar to the equations of defect mechanics (theory of dislocations and disclinations). Using the proposed framework, we 
solve a boundary value problem and thus demonstrate, to an extent, the importance of moving frames.

Keywords Kirchhoff shells · Moving frame · Structure equations · Defect mechanics

1 Introduction

Kirchhoff type shell theories are known for a long time. 
They have been successfully applied to a wide range of 
problems in structural mechanics. Applications vary from 
the dynamics of cell membranes [5, 10] to stress analyses of 
an aircraft fuselage. A continuum model typically predicts 
the deformed state of a body using tools from geometry and 
thermodynamics. In classical continuum mechanics, the 
geometry of the body remains frozen; three dimensional 
elasticity is an example of one such theory. Conventionally, 
Kirchhoff type shells are considered to be within the realms 
of classical continuum mechanics. This perspective stems 
from a purely displacement based formalism of these shells. 
An alternate approach to Kirchhoff shells is to consider the 
geometry of the mid-surface and its deformation as separate 
entities. From such a viewpoint, this shell theory contains 
non-classical aspects which cannot be found in classical con-
tinuum mechanics.

Srinivasa and Reddy [16] have classified non-local con-
tinuum models into two major groups; the first involves 
displacement as the primal field. In this class of mod-
els, non-locality is brought in by considering the energy 

contribution due to higher gradients or by averaging the con-
ventional strains over a neighbourhood. Examples include 
higher gradient models and integral type non-local mod-
els of Eringen [7]. The second class of non-local models 
involves the introduction of additional variables other than 
displacement. These additional variables are in general ten-
sor fields. Micropolar [17] and micromorphic theories [8] 
are representative examples from this class. In this class of 
models, the coupling between non-locality and deformation 
is through energy considerations (first and second laws of 
thermodynamics). This energetic coupling has led to lim-
ited success with the experimental characterization of the 
constitutive functions associated with non-local strains and 
tensorial internal variables. Recently, micro-continua based 
theories have been used to analyze the structural response of 
sandwich beams [11, 12]; these approaches try to relate the 
constitutive functions for the micro-degree of freedom from 
the unit cell response of the sandwich structure.

Following Srinivasa and Reddy [16], if we take a non-
local theory as one involving higher gradients or additional 
(director like) degrees of freedom (other than displace-
ments), a Kirchhoff type shell is indeed a non-local model 
in the following sense. It has curvature which is the second 
derivative of deformation. Moreover one may also define 
director fields (tangents and normal vectors) at each point 
of the mid-surface. However, it differs from the previously 
mentioned non-local models in a distinct way due to a kin-
ematic coupling between the conventional displacement 
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variables and the director degrees of freedom. This kine-
matic coupling is facilitated by the affine connection of the 
surface. Incorporating this affine connection into a compu-
tational scheme has always been difficult. As remarked in 
Simo et al., “it is apparent that objects such as Christof-
fel symbols, the second fundamental form, and covariant 
derivatives, which are not readily accessible in a computa-
tional framework, never appear explicitly”. Computational 
methods for shells often found a way to circumvent the 
explicit use of an affine connection and hence geometry; 
Dvorkin and Bathe [6] and Simo et al. [13] are representa-
tive examples. Arbind  et al. [1, 2] recently developed higher 
order models for tubes and rods using the notion of a mov-
ing frame. In these models, the centreline of the rod/tube is 
depicted using a curve with a suitable frame attached to it. 
Tensor quantities of interest are then described with respect 
to the frame. Equations of equilibrium are finally written 
down after a cross-sectional integration resulting in a sys-
tem of ordinary differential equations for the displacement 
components of the centreline curve.

The goal of this article is to unravel the non-classical 
feature of Kirchhoff shells—a special class of models where 
a compatible geometry determines the deformation and vice 
verse. We reformulate the equations of Kirchhoff shell the-
ory in a way that decouples geometry from deformation, thus 
admitting a generalization to scenarios where the evolving 
geometry and deformation contain non-overlapping infor-
mation. Cartan’s method of moving frames is used for this 
purpose. The geometry of the mid-surface and deformation 
are combined in a compatible manner using the structure 
equations of Cartan. One should remember that such a 
reformulation does not bring in new physics; it only makes 
the geometry of the theory more transparent. This article 
is organized in the following sequence. The next section 
introduces differential forms and Cartan’s method of mov-
ing frames. Using these tools, the kinematics of a Kirchhoff 
type shell is then reformulated and the relationship of the 
present kinematics with defect mechanics is also elucidated. 
Section 3 discusses the equations of equilibrium pertaining 
to a stored energy functional for Kirchhoff type shells. Sec-
tion 4 deals with a simple analytical solution where empha-
sis is placed on the use of structure equations. Some closing 
remarks are offered in Sect. 5.

2  Differential forms and kinematics 
of Kirchhoff shells

In this section, we collect a few basic results on differential 
forms which are required for the development of our 
approach. Although the following discussion is elemen-
tary, the importance of differential forms for our analysis 
makes this section essential; for more details, see [4]. The 

study of differential forms began with the work of H 
Grassmann; however it was E Cartan who exploited it 
more comprehensively for the study of geometry. Given a 
smooth manifold M , at any point x ∈ M , one may define 
the tangent space to M as the set of all vectors tangent to 
curves passing though x; we denote this set by TxM . An 
alternative picture is to think of tangent vectors as direc-
tional derivations of scalar valued functions defined on M . 
These two pictures are equivalent: while the former is geo-
metric, the latter analytic. Given a coordinate system 
(x1, ...xn) in an open neighbourhood of M , it induces a 
basis on TxM ; we call it the coordinate basis and denote 
it by {�x1 , ..., �xn} . The vector space dual to TxM is denoted 
by T∗

x
M ; this vector space is also refereed to as the space 

of one-forms. For f ∶ M → ℝ , its differential d f  is under-
stood as a one-form, which acts on a tangent vector v to 
produce the directional derivative of f in the direction of 
v. If one chooses the tangent vector to be the coordinate 
basis vector, then d f (�xi ) = �xi f  , is the directional deriva-
tive of f in the xi direction. On choosing f to be the ith 
coordinate function, one establishes the relationship 
dxi(�j) = �i

j
 ; this relation also establishes the duality 

between tangent vectors and one-forms. We call 
{ d x1, ..., d xn} the coordinate basis for T∗

x
M.

A one-form may also be understood as an object that 
can be integrated along a curve to produce a real number. 
In particle mechanics, the work done by a point particle 
is the line integral of the forces acting on the particle as it 
traverses a curve. The force on the particle is identified as 
a one-form acting on the tangent vector (to the curve) to 
produce work. The degree of a differential form is defined 
as the dimension of the hyper-surface on which it must be 
integrated to produce a real number. In physics, a multi-
tude of objects can be identified as differential forms; a 
classic example of a two-form is the magnetic field. At 
each point on M , a differential form can be defined as a 
multi-linear anti-symmetric map taking values in a vector 
space. Notice that differential forms can be vector valued 
as well. Differential forms of degree greater than one can 
be constructed using the wedge product. If � and � are one-
forms, then � ∧ � is a two-form. The wedge product can be 
extended to forms of arbitrary degree. On a finite dimen-
sional manifold, the highest degree of a scalar valued dif-
ferential form that can be defined is equal to the dimension 
of the manifold. Differential forms of the highest degree 
are often called volume forms. For surfaces embedded in 
ℝ

3 , one can only define zero-, one- and two-forms.
Assigning a form of a certain degree smoothly to each 

point on M defines a section of differential forms. Sections 
of one-forms are elements from the cotangent bundle; we 
denote it by T∗M . The notion of exterior derivative ena-
bles coordinate independent differentiation for differential 
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forms. Exterior derivative is natural to differential forms in 
the sense that it does not require additional mathematical 
structure other than the smoothness of the manifold. The 
exterior derivative of a differential form � is denoted by 
d � . It takes a differential form of degree n to produce a 
form of degree n + 1 . If � and � are differential forms of 
degree m and n then,

It is also easy to verify that d d (�) = 0 for any differen-
tial form � . Differential forms which satisfy the condition 
d � = 0 are called closed. If � = d � then, we say that � is 
exact. Poincaré’s lemma establishes an important relation-
ship between closed and exact forms.

The wedge product and the exterior derivative are natu-
ral operations with respect to pull-back. If M and N  are 
differentiable manifolds and � ∶ M → N  , the pull-back of 
� ∈ T∗N  is denoted by �∗(�) ∈ T∗M . If �, � ∈ T∗N  , the 
pull-back of their wedge product is given by,

Similarly, the pull-back of the exterior derivative of � is 
given by,

The above results are powerful; they can be exploited in 
finite deformation solid mechanics when formulated in terms 
of differential forms. One can forget the deformation map 
and work with differential forms as if they were defined on 
a given fixed manifold.

2.1  Moving frames

E Cartan developed the theory of moving frames to ascer-
tain when two surfaces are geometrically equivalent; this 
equivalence is with respect to the symmetry group of the 
embedding space. This question also leads to the construc-
tion of a complete set of invariants characterizing a sur-
face. This set of invariants is sufficient to determine the 
surface up to the symmetry group (rigid body motion for 
the Euclidean space). The following one dimensional case 
gives the general idea behind moving frames. Consider an 
interval I = [s1, s2] ⊂ ℝ . A1 curve p in ℝ2 is given by the 
map p ∶ I → ℝ

2 . We assume that the curve is parameter-
ized by its arc length. The Frenet frame consisting of unit 
tangent and normal vectors completely determines the geo-
metric properties of the curve p. For a regular curve in ℝ2 , 
Frenet frame always exists. Quantities like arc length and 
curvature can be directly computed using the Frenet frame. 

(1)d (� ∧ �) = d � ∧ � + � ∧ (−1)n d �.

(2)�∗(� ∧ �) = �∗(�) ∧ �∗(�).

(3)�∗ d � = d �∗(�).

Also notice that these quantities are invariant with respect to 
action on the Euclidean group (the symmetry group of ℝ2 ) 
at p. An alternative way to think about it is to pull the Frenet 
frame back to the interval I; we denote the pull-back map 
by p∗ . To compute the pull-back frame, one has to think of 
the vectors of the Frenet frame as the value of a one-form (a 
vector-valued one-form). On an interval (curve), the degree 
of the volume form is one, which makes it convenient to 
identify one-forms with scalars. Geometric quantities may 
now be expressed in terms of these one-forms. Since pull-
back commutes with exterior derivative and wedge product, 
the geometric information (scalar quantities like arc-length 
and curvature) contained in the frame is preserved. Now 
instead of working with the curve, one can work with the 
pulled back one-forms (frame); this gives an easy handle to 
manipulates the geometric information. Of course, the pulled 
back frame has to satisfy certain compatibility conditions 
for the existence of deformation, which are trivial in the 
one dimensional case (since integrability is trivial in one 
dimension). Figure 1 shows the curve p, its Frenet frame 
and the pull-back of the frame on to the interval [s1, s2] . If 
one finds an evolution rule for the one-forms associated with 
the Frenet frame, one may directly evolves the geometry. 
Moreover, if the geometry is compatible, one can also find 
a suitable deformation (up to rigid body motion), whose 
geometry is given by these one-forms. In the discussion 
above, we have largely argued based on the Frenet frame; it 
is well understood that there are curves for which the Frenet 
frame may not exist. But the Frenet frame is not the only 
available frame for a curve. Bishop [3] suggested multiple 

Fig. 1  The Frenet fame of a regular curve in 2D and the pulled back 
frame to the interval [a, b]. One should note that we are actually pull-
ing the one-forms associated with the frames

1 A curve is regular if the tangent vector does not vanish.
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ways to define frame fields for a curve. A frame as such is 
indeed not that meaningful, only the geometric information 
they encode is important.

We now discuss the method of moving frames for a sur-
face S embedded in the three dimensional Euclidean space. 
A careful introduction to this subject can be found in [4, 
9]. At any point on the surface, one can define two tangent 
vectors and a unit normal. The unit normal is unique but the 
tangent vectors are not. However, the vector space spanned 
by the tangent vectors is unique. We denote the normal vec-
tor by e3 and the tangent vectors by e1 and e2 . The crux of 
a moving frame is in encoding the geometric information 
about the surface within the (pulled-back) differential of the 
frame.

2.2  Affine connection of a surface

The Euclidean space has a natural parallelism; we say that 
two vectors are parallel if one is a scalar multiple of the 
other. On a surface, no such natural parallelism exists. 
However one can define parallel sections (vector fields) on 
a surface using the notion of parallel transport. It should be 
noted that parallel transport is an additional structure we 
place on a manifold. Many notions of parallelism may exist 
on a surface and each may lead to a corresponding notions 
of affine connection on the surface [15]. The Riemannian 
parallelism on a surface is a distinguished notion of parallel 
transport. It stems from the metric defined on the surface. 
Kirchhoff shells can be developed completely based on the 
parallel transport induced by the metric; this parallel trans-
port is also the fundamental hypothesis behind Riemann-
ian geometry. The hypothesis is that the length of a vector 
and angle between two vectors are preserved under parallel 
transport, i.e. the metric is preserved under parallel trans-
port. It should also be mentioned that classical continuum 
mechanics is founded on the same hypothesis along with the 
flatness assumption. The infinitesimal version of this parallel 
transport defines an affine connection. Without the notion of 
a connection, it is not possible to differentiate tensor fields in 
a coordinate independent manner. This fact has been largely 
overlooked in many opaque continuum models dealing with 
internal variables and higher gradients. More specifically, it 
may not make sense to differentiate the strain tensor without 
the notion of an affine connection.

Using the method of moving frames, one can arrive at the 
notion of connection on the surface S . We call this notion 
of connection the Cartan connection, which corresponds to 
assigning a matrix of connection one-form ( �j

i
 ) to each frame. 

The notion of Cartan connection predates the popularly known 
affine connection in terms of Christoffel symbols. It can be 
shown that Riemannian and Cartan connections on a surface 
are equivalent. The difference between these two notions is 

that one uses differential forms while the other depends on 
vector fields to describe the connection.

If F = {e1, e2, e3} is a frame defined on S , the connection 
matrix � is related to the differential of the frame in the fol-
lowing way,

Since the frame F  is orthonormal, we have �j

i
= −�i

j
 . The 

entries of the connection matrix are not real numbers but 
one-forms. The covariant derivative of a frame field with 
respect to another is given by,

�(ei) denotes the action of the connection one-forms on the 
vector field ei . The relationship between the surface Christof-
fel symbols and the connection one-forms is also established 
by (5). It is easy to verify that the above definition satisfies 
the following properties,

for vector fields v, w ∈ TS and f ∈ C∞(S) . These properties 
define a covariant derivative on S . If w = wiei is a vector 
field on S , then the covariant derivative of w in the direction 
of ei may be expressed as,

The last equation is just an application of the properties of 
covariant differentiation.

2.3  Surface theory via moving frames

Having introduced the notion of connection matrix in the 
last section, we introduce the metric and curvature tensors 
or the first and second fundamental forms of the surface in 
this section. The metric tensor is obtained by restricting the (3 
dimensional) Euclidean metric on to the tangent space of the 
surface. Let p ∈ S ⊂ ℝ

3 be a point on the surface. We now fix 
an origin and basis vectors for the ambient space (Euclidean 
3 dimensional space). The position vector of p is the vector 
connecting the origin and point p. We may indicate the point 
p by its position vector. Note that we use the same notation for 
an element from the set S and its position vector, even though 
these are distinct entities. If we denote the basis vectors for the 
ambient Euclidean space by Ei , i = 1, 2, 3 , then the position 
vector can be written as,

(4)d ei = ej�
j

i
.

(5)∇ei
ej = ek�

k
j
(ei),

∇ei
(v + w) = ∇ei

(v) + ∇ej
(w)

∇fei
(w) = f∇ei

(w)

∇ei
(fw) = f∇ei

(w) + ei(f )w

(6)∇ei
w = d wj(ei)ej + ekw

j�k
j
(ei).

(7)p = f 1(�1, �2)E1 + f 2(�1, �2)E2 + f 3(�1, �2)E3.
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Here, �� , � = 1, 2 are the coordinates of p in a chosen coordi-
nate system and f i are real valued functions. The important 
thing to observe here is that we can denote the same point 
p ∈ S using the position vector or by its co-ordinates. It 
should be mentioned that the same point can have multi-
ple co-ordinates depending on the coordinate chart applied 
to the surface. Even though the position vector can be 
expressed using multiple coordinate systems, the position 
vector as such is unique for a given point in S The differen-
tial of the position vector is given by,

Here, �i are one-forms and ei the tangent vectors from the 
frame F  . We may refer to �i as deformation one-forms. Note 
that the differential of position does not have any component 
in the e3 direction. The quantity d p is understood as a vector 
valued one-form; for higher clarity the following notation 
may be used: d p = e1 ⊗ 𝜃1 + e2 ⊗ 𝜃2 . However, we will 
stick to the notation introduced in (8). Moreover it should 
be noted that d p is a 

(
1

1

)
 tensor (second order). The volume 

(area) form associated with the deformation is given by,

The first fundamental form I is a 
(
0

2

)
 tensor; it can be com-

puted as,

Note that, the dot ‘.’ in the above equation denotes the con-
traction of the vector part of d p with itself using the metric 
tensor of the ambient Euclidean space; the co-vector (one 
form) part of d p is left untouched. Using the orthonormality 
between the vectors e1 and e2 , we arrive at

The last equation defines a symmetric covariant two-ten-
sor which in turn defines the notions of length and angle 
between the tangent vectors on the surface. The second 
fundamental quantity is the curvature tensor of the surface 
denoted by II, also referred to as the second fundamental 
form. It describes how the unit normal changes as we move 
along the surface.

As in the definition of I, the dot ’.’ in the above equation is 
understood as the inner product in the ambient space. Using 
the definition of the connection matrix introduced in (4), 
we have

An immediate question that arises is about the relationship 
between the connection and deformation one-forms. The 

(8)d p = e1�
1 + e2�

2.

(9)J = �1 ∧ �2.

(10)I = d p. d p.

(11)I = 𝜃1 ⊗ 𝜃1 + 𝜃2 ⊗ 𝜃2.

(12)II = − d e3. d p; i = {1, 2}.

(13)II = 𝜔1

3
⊗ 𝜃1 + 𝜔2

3
⊗ 𝜃2.

torsion free condition of the ambient space establishes this 
condition. Using exterior derivatives, this condition can be 
elegantly written as,

If one uses a vector field perspective for connection, the 
above condition leads to the symmetry of the Christoffel 
symbols. Applying the exterior derivative to (8) leads to,

The matrix multiplication indicated in the above equation 
uses the wedge product to combine the connection and 
deformation one-forms. The existence and symmetry of the 
second fundamental form follows from the third equation in 
(15). We also want the frame to be Euclidean: the surface to 
be embedded in an ambient space with zero curvature (flat-
ness of the ambient space). This condition takes the form,

Applying the exterior derivative to (4) leads to,

The skew-symmetry of the connection matrix reduces the 
number of independent equations to just three. In contem-
porary differential geometry literature (15) and (17) are 
called Cartan’s structure equations. Together they contain 
the Gauss–Codazzi–Minardy equations often discussed in 
the theory of surfaces to establish the compatibility between 
the metric and curvature tensors.

From (15), one may note that �1

3
∧ �1 + �2

3
∧ �2 = 0 . 

Applying Cartan’s lemma to the above equation, we con-
clude that there exists a symmetric matrix relating �1

3
,�2

3
 

and �1, �2 in the following way,

where a, b and c are real valued functions. Using (18), one 
can establish the symmetry of the second fundamental form.

2.4  Relationship with defect mechanics

From the previously discussed kinematics of Kirchhoff 
shells, the following differences vis-á-vis classical con-
tinuum mechanics are observed. 

(14)dd p = 0.

(15)
⎡
⎢⎢⎣

d �1

d �2

0

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣

0 �2

1
�3

1

−�1

2
0 �3

2

−�1

3
− �2

3
0

⎤
⎥⎥⎦
∧

⎡
⎢⎢⎣

�1

�2

0

⎤
⎥⎥⎦

(16)dd ei = 0

(17)

⎡⎢⎢⎣

0 d �2

1
d �3

1

− d �1

2
0 d �3

2

− d �1

3
− d �2

3
0

⎤⎥⎥⎦
=

⎡⎢⎢⎣

0 �2

1
�3

1

−�1

2
0 �3

2

−�1

3
− �2

3
0

⎤⎥⎥⎦
∧

⎡⎢⎢⎣

0 �2

1
�3

1

−�1

2
0 �3

2

−�1

3
− �2

3
0

⎤⎥⎥⎦

(18)
[
�1

3

�2

3

]
=

[
a b

b c

] [
�1

�2

]
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1. For a Kirchhoff type shell, there exist two tensorial quan-
tities that completely describe the geometry of the shell. 
Contrast this with classical continuum mechanics where 
there is only one such quantity (the metric tensor); the 
flatness assumption2 renders the curvature tensor null.

2. The second major difference is that, in the current setup, 
the tensorial qualifiers of geometry co-evolve with the 
shell deformation in the ambient space. There is no 
analogue of such an evolution in classical continuum 
mechanics since the metric tensor is frozen or, in gen-
eral, the geometry of the continuum body is frozen in 
time.

Even though the features as above are not found in classi-
cal continuum mechanics, it is prevalent in the mechanics 
of defects. Theories in defect mechanics are often consid-
ered within the broad umbrella of continuum mechanics, 
but beyond the scope of classical continuum theories. The 
continuum theory of dislocations [18, 19] is a good example, 
in which dislocations are modelled using the torsion ten-
sor. This amounts to the following modification of the first 
structure equation (14),

In the above equation, � is a vector containing torsion two-
forms as its entries. Similarly, if one needs to incorporate 
disclinations into the theory, the flatness assumption must 
be given up [20]. This leads to the following modification 
of the second structure equations (16),

Ωi are called the curvature two-forms. Of course, additional 
compatibility conditions exist on Ω.

2.5  Reissner type shells

In the computational literature, Reissner type shells are often 
considered advantageous over Kirchhoff type shells since 
numerical solution schemes can be formulated with relative 
ease. Moreover, the former also incorporates shear deforma-
tion. Geometrically, Reissner type shells are quite distinct 
and their geometry is more complicated. In a Reissner type 
shell, the deformation of the mid-surface and the frame 
associated with the cross section are evolved independently 
with only an energetic coupling. No compatibility condi-
tions are enforced between the differentials of the frame and 
the deformation. If we consider the cross sectional frame 
of a Reissner shell to be a valid moving frame, the lack of 

(19)dd p = �

(20)dd ei = Ωi

compatibility conditions between deformation and frame 
leads to a non-zero source term in the first structure equa-
tions. This may be interpreted as torsion of the embedding 
space. In addition, the source term in the second structure 
equation may imply that the embedding space has non-zero 
curvature. These geometric properties of a Reissner shell has 
gone unobserved since a computational mechanist is often 
interested in deformation and stress, and not particularly so 
in the geometry of the model.

3  Kinetics

Internal forces acting on the shell are given by,

In the above equation, ni and ti are vectors and si is a scalar. 
The shear force acting at any point is given by sie3 . In a 
Kirchhoff type shell, shear forces are not determined con-
stitutively but are developed to enforce certain constraints. 
The constitutive rule for ti is determined by introducing the 
surface stress tensor denoted by �ij . This stress tensor is con-
jugate to the first fundamental form. The tension tensor N 
is given by,

If we assume the existence of a stored energy functional, 
the constitutive rule for the surface stress tensor is given by,

The in-plane forces are then given by,

The bending moment tensor conjugate to the second funda-
mental form is given by,

Couples acting along the tangent vectors are denoted by,

Using the above quantities, the balance of linear momentum 
may be written as,

f is the externally applied surface force and ni are internal 
forces generated by the shell to resist the external force. The 
balance of angular momentum may be written as,

(21)ni = ti + sie3; i, j ∈ {1, 2}.

(22)Nij = �ij + IIi
k
Mkj.

(23)�ij =
�W

�Iij
.

(24)ti = NijEj; i, j ∈ {1, 2}.

(25)Mij =
�W

�IIij
.

(26)mi = MijEi; i, j ∈ {1, 2}.

(27)
1

J
(Jni);i + f = 0

2 Even though this assumption is always made in a classical contin-
uum theory, it is never explicitly stated.
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Here, mi and l are the internal and external couples. The 
derivatives in the first terms of (27) and (28) are understood 
as covariant derivatives, while the derivative in the second 
term of (28) is the usual directional derivative. This distinc-
tion is important, since mi, ni are one-forms (tangent objects) 
and p is a map between manifolds.

3.1  Stored energy function

The stored energy density of a shell involves contribu-
tions from bending and extension denoted by WB and WE 
respectively. The energy density of the shell is thus given 
by W = WB +WE . We adopt the stored energy function pro-
posed by Koiter for bending, which is quadratic in the sec-
ond fundamental form,

h is the thickness of the shell, E and � are respectively 
Young’s modulus and Poisson’s ratio. We set the energy 
associated with extension to zero WE = 0 . Using Cayley-
Hamilton theorem, the above energy function can be rewrit-
ten as,

where, C1 and C2 = depend on material parameters, e.g. E, 
� and h. H and K are the mean and Gaussian curvatures 
respectively. These scalar invariants of the surface are given 
by,

We also ignore the second term in (30), since we do not 
expect a topological change; the second term adds only a 
constant to the energy. Finally the bending energy becomes,

4  Applications of the present theory

We now apply the Kirchhoff type shell theory based on mov-
ing frames to analytically obtain a class of deformation in thin 
shells. The objective of the present section is to demonstrate 
the use of Cartan’s structure equations and kinematically close 
the deformation and connection one-forms. We also show how 

(28)
1

J
(Jmi);i + (p,i × ni) + l = 0.

(29)WB =
Eh3

24(1 − �2)
[(1 − �)Tr(II2) + �Tr(II)2],

(30)WB =
C1

2
H2 + C2K.

(31)H =
1

2
(a + c); K = ac − b2.

(32)WB =
C1

2
H2.

usual ideas from shell theory can be translated into the present 
setup (Fig. 2).

4.1  Pure bending of a thin elastic strip

Consider a thin rectangular elastic strip with one of its edges 
fixed. We assume a Cartesian coordinate system for the ref-
erence configuration of the thin strip. At the initial configu-
ration, the longer and shorter edges are aligned along the x 
and y axes respectively. A bending moment is applied to the 
edge parallel to the fixed edge. This causes the strip bend 
in the form of a cylinder with its axis parallel to the fixed 
edge. Even though the deformation is relatively large, the 
state of strain in homogeneous with unit stretch and con-
stant curvature. If one uses the method of moving frames 
to solve this problem, one has to resolve the five one-forms 
(�1, �2,�1

3
,�2

3
,�2

1
) which should be consistent with mechan-

ical equilibrium and the two structure equations. Using a 
sequence of simple integrations along curves, one can then 
determine the frame and deformation from (4) and (8). We 
denote the frame of the reference configuration by Ei ; these 
are unit vectors along x, y and z directions. Depending on 
the coordinate system, E1 and E2 can be chosen but E3 is 
unique. Given that the strip is known to bend only in one 
direction and that it does not stretch, the deformation one-
forms remain frozen as in the reference configuration. This 
leads to,

For the determination of the deformed frame fields, one 
has to specify the connection one-forms. Again using the 
assumption of unidirectional bending, we conclude that �1

3
 is 

the only non zero unknown; all other connection one-forms 
reduce to zero. For the sake of avoiding multiple indices, we 
denote �1

3
 by � , which leads to the following expression for 

the matrix of connection one-forms,

(33)�1 = dx; �2 = dy.

(34)� =

⎡⎢⎢⎣

0 0 �

0 0 0

−� 0 0

⎤⎥⎥⎦
.

Fig. 2  A surface with its unit normal and tangent plane
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The second fundamental form may now be computed as,

Using the expression of the connection matrix in the first 
structure equation, we have,

Applying Cartan’s lemma to the above equation leads to,

for some real valued function a which may be dependent on 
both x and y. The other two relationships in the first structure 
equation become trivial for the assumed deformation and 
connection one forms. Using the above relationship in II, 
we arrive at,

Now the problem is to determine a from the second structure 
equation, mechanical equilibrium and boundary conditions. 
Using (34) in the second structure equation leads to,

The above condition means that � is a close one-form. From 
Poincaré’s lemma, we know that every closed form is exact, 
which means that there exists a real valued function � such 
that � = d � . This real valued function can be interpreted 
as the angle by which the tangent vectors rotate during the 
deformation process. Now computing the exterior derivative 
of (37), we arrive at,

From (33), we see that dd �1 = 0 ; using this result in the 
above equation leads to,

Now using the definition of the differential of a real valued 
function, we compute d a =

�a

�x
d x +

�a

�y
d y . Using it in the 

above equation, we have

Using the properties of wedge product, we arrive at,

d x ∧ d y is the volume-form associated with the deforma-
tion which can never be zero, using which we conclude that

(35)II = 𝜆 ⊗ 𝜃1.

(36)� ∧ �1 = 0.

(37)� = a�1

(38)II = a𝜃1 ⊗ 𝜃1.

d � = 0.

(39)d a ∧ �1 + a dd �1 = 0.

(40)d a ∧ �1 = 0.

(41)
(
�a

�x
d x +

�a

�y
d y

)
∧ d x = 0.

(42)
�a

�y
d y ∧ d x = 0.

(43)
�a

�y
= 0.

The above conclusion implies that a cannot vary along the y 
coordinate, i.e. a is a function only of the x coordinate. We 
now proceed to use mechanical equilibrium to arrive at the 
functional form of a. The mean curvature associated with 
the deformation can be computed as,

The bending moment tensor for II given in (35) leads to,

which yields m1 = C1a�
1 and m2 = 0 . The moment equilib-

rium equations and the definition of the covariant derivative 
then lead to,

From the above equation, we conclude that,

Combining (47) and (43), we conclude that a is a constant 
within the domain. By applying the boundary condition that 
m1(e1) = m at the free end, we have,

In the above equation, m is the moment applied at the free 
end. If we assume� = 0 , we have C1 =

Eh3

12
 . The relationship 

between the moment applied at the free-end and a may thus 
be written as m =

12a

Eh3
 . Having computed the one-form � , we 

now proceed to compute the frame and position vector of the 
deformed configuration. These quantities are computed by 
integrating (4) and (8) along prescribed curves in the refer-
ence configuration. Let Γ(s) , s ∈ [s1, s2] ⊂ ℝ be a curve in 
the reference configuration. The tangent vector to this curve 
is denoted by v. The frame of the deformed configuration 
may be computed using the following integral,

To completely resolve the above integral, one must provide 
a condition on the frame at Γ(s1) , which is known from the 
fixed end of the cantilever strip. The frame at the fixed end 
is assumed to be {ex, ey, ez} for all deformations. Similarly, 
to compute the position vector of a material point in the 
deformed configuration, we use the following integral,

(44)H =
a

2
.

(45)M = C1a(𝜃
1 ⊗ 𝜃1)

(46)d a(E1)�
1 = 0 ⟹

�a

�x
�1 = 0.

(47)
�a

�x
= 0.

(48)a =
m

C1

.

(49)

ei(Γ(s)) = ∫
s

s1

d ei(v)

= ∫
s

s1

ej�
j

i
(v) d s.
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In the above equation, ei ’s are the values of the frame fields 
computed from the previous equation. If p(Γ(s1)) is known, 
then the above integral can be used to compute the position 
vector of any material point in the deformed configuration. 
(49) and (50) may be considered as the solution of a certain 
ordinary differential equation with initial conditions for the 
frame and position vector known from the fixed end of the 
cantilever strip. Now considering Γ to be straight lines along 
the x direction, the frame fields are computed as,

Use of the above equation for the frame fields in (50) leads 
to the following expression for the position vector of the 
deformed configuration,

In the last equation, p0 corresponds to points on the fixed 
boundary of the elastic strip which is of the form (0, y, 0) 
with y ∈ (0,w) ; w is the width of the strip. A plot of the 
deformed configuration for different values of a is given 
in Fig. 3. Using numerical simulations, Simo et al. [14], 
reported that a thin strip of length L bends to a full circle 
for a moment per unit width of m =

24�

ELh3
 . Our current solu-

tion also predicts a circle for the same end moment per unit 
width.

5  Conclusion

The structure equations for a surface were known for a long 
time; however, these equations were never used to solve 
boundary value problems to determine the deformation of 
thin shells. This article demonstrates the use of structure 
equations in solving simple boundary value problems. The 
key principle behind the entire discussion is to treat defor-
mation and geometry of the surface as two separate enti-
ties given by a family of one-forms. Structure equations are 
then used to establish the compatibility between these one-
forms. From such a perspective, we find that a Kirchhoff 
type shell has a non-classical aspect which, untraceable in 
classical continuum models, shares the salient features of 
defect mechanics. It is also found that topological defects 
like dislocations and disclinations may be brought into the 

(50)

p(Γ(s)) − p(s1) = ∫
s

s1

d p(v)

= ∫
s

s1

e1�
1(v) + e2�

2(v) d s.

e1 = cos(ax)ex − sin(ax)ez;

e2 = ey;

e3 = sin(ax)ex + cos(ax)ez.

(51)p = p0 +
1

a
(sin(ax)ex + (1 − cos(ax))ez).

formulation (2D and 3D) by adding appropriate source terms 
to the structure equations—an aspect we wish to deal with 
in a future study.
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