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and comparison of the results obtained here with the ones 
previously ones treated in the literature shows a satisfactory 
agreement.
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1  Introduction

When dealing with a multimodal approach to geometrically 
nonlinear transverse vibrations, two choices are possible cor-
responding to two different levels of descriptions:

(1)	 One can neglect the axial displacements u and v in the 
formulation and keep only the transverse displacement 
W. This assumption, which greatly simplify the for-
mulation has been adopted and justified previously in 
many Benamar’s works on non linear plate vibrations.

(2)	 A more complete description may be tempted by tak-
ing into account W, u and v. This choice leads to a 
big system of non-linear algebraic equations due to the 
number of basic functions which must be used in the 
series expansion for W, u and v. Such a system may be 
hand to solve and is in all case time consuming (the 
nonlinear tenser bijkl involves N4 terms).

The method presented in this paper is an intermediate 
way between the two choices (1) and (2). On one hand, it 
benefits from the relative simplicity of the first method. On 
the other hand it allows easy estimation of the axial stresses 
induced by large vibration amplitudes which cannot be cal-
culated by the first method.
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In addition to the point stated above, one can mention 
the following novelties of the present work, especially in 
comparison with Reference [12]:

(1)	 The extension of the method from the case of rectangu-
lar plates to that of skew plates which may be in some 
engineering applications of a high practical importance 
and for which many changes and adaptations have to be 
made such as the application of the necessary change 
of variables from the Cartesian coordinates to the Skew 
coordinates.

(2)	 The convergence study in the skew plate case has 
shown that because of the non symmetry of the skew 
plate it is necessary to use 18 basic functions when 
dealing with the non-linear fundamental mode shape 
instead of the 9 functions usually used for rectangu-
lar plates (consequently the nonlinear rigidity ten-
sor in the present case involves now’s 184 = 104,976 
terms instead of the 94 = 6561 used in the rectangular 
case).

(3)	 To estimate the axial strains in the skew plate problem, 
it was necessary to consider oblique lines parallel to the 
plate oblique edges.

In contemporary structural design, skew plates may 
be encountered in diverse domains, such as the design of 
bridges, ship hulls, buildings floor systems, etc. The sim-
ulation of the nonlinear static and dynamic behaviour of 
skew plates at large displacement amplitudes is an inter-
esting area of work for researchers because the problem 
has no exact analytical solution, even in the linear case. 
Approximate numerical methods, such as integral equa-
tions and series methods have been used in the literature 
to study the linear mode shapes and natural frequencies 
of fully clamped skew plates. A comprehensive treatment 
of the linear problem and references corresponding to the 
above-mentioned methods has been given in the mono-
graph of Leissa [1]. for skew plates analysis, Nowinski 
[2] developed the governing equations for the nonlinear 
vibration of these plates and this was followed by several 
papers extending the study to the nonlinear vibration of 
orthotropic skew plates such as that of Alwar and Rao 
[3], who developed a non-linear analysis of orthotropic 
skew plates of constant thickness subjected to a uniform 
transverse load. Prathap and Varadan [4] studied the large 
amplitude free flexural vibrations of thin elastic aniso-
tropic skew plates. Chia [5] considered the moderately 
large deflection elastic behaviour of homogenous iso-
tropic and laminated anisotropic rectangular and skew 
plates by analytical methods. Sathyamoorthy [6] studied 
the nonlinear vibration of skew plates with attention to 
shear and rotary inertia. Nonlinear plate vibration has 
been studied by a large number of investigators. Benamar 

et al. [7] presented a theoretical formulation of the plate 
vibration problem at large displacement amplitudes. Han 
and Petyt [14] applied the hierarchical finite element 
method to study the variation of the natural frequen-
cies and mode shapes with the change in the vibration 
amplitude of isotropic rectangular plates with clamped 
boundary conditions. El Kadiri et al. [8] and El Kadiri 
and Benamar [9, 10] presented a semi-analytical method, 
based on Hamilton’s principle and spectral analysis, 
for determination of the geometrically non-linear free 
response of thin straight structures.

Many papers have made the assumption that only the 
transverse displacement W was considered in the plate the-
ory, and the in-plane displacements u and v were neglected. 
This assumption introduces a simplification in the model 
and reduction in the computation time but, gives poor results 
concerning the membrane stresses. Haterbouch and Benamar 
[11] improved formulation for the geometrically non-linear 
free vibrations of clamped immovable circular plates by tak-
ing into account the in-plane displacement. It was found that 
the maximum membrane stress has a significant contribu-
tion (about 33%) to the maximum total stress, at vibration 
amplitudes equal to about twice the plate thickness. As a 
result, the membrane stress has to be taken into account in 
the stress analysis.

For the fully clamped rectangular plate, some papers 
has considered the transverse vibration and the average 
in-plane displacements u and v to examine the effect of 
large vibration amplitudes on the membrane and bending 
stress patterns associated to the fundamental non-linear 
mode shape.

As mentioned in Reference [12] and proved experimen-
tally [13], for a homogeneous clamped clamped beam at 
large deflections, the axial strain has the same value along 
the beam. Therefore, the in-plane membrane strains have 
been assumed to be constant along lines parallel to the 
immovable edges of a rectangular plate.

This result has been used in the present work as a simple 
engineering tool to study fully clamped skew plates under-
going large vibration amplitudes. Following the approach 
used in [12], two averaging techniques were developed, the 
u–v–W average formulation and the W-average formula-
tion respectively. In the first technique, the new expression 
for the fourth order non-linearity tensor bijkl was deter-
mined by substituting the averaged non-linear membrane 
strain in the associated energy integral. After integrating, 
the immovable in plane boundary conditions permitted 
naturally to eliminate the in plane displacements u and 
v. In the second technique, the membrane stresses were 
estimated by considering only the transverse deflection 
patterns, and the resulting averaged membrane strains, and 
the associated membrane stresses were determined by the 
averaging technique. The large amplitude free vibration 
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problem has been modeled by a set of non-linear algebraic 
equations using Hamilton’s principle and spectral analy-
sis. The solution of the mathematical problem has been 
done by an iterative method. The main advantage of this 
approach is its simplicity and the large reduction it induces 
in the computation time.

The objective of the present work was the development 
of a theory taking into account the effect of the in plane dis-
placements on the nonlinear vibrations and the membrane 
stresses of fully clamped thin elastic skew plates, by using an 
averaging method. The theoretical model using an iterative 
method and presented in Reference [7] was adapted here and 
applied to the analysis of the geometrically nonlinear free 
dynamic response of fully clamped isotropic skew plates. 
Backbone curves corresponding to the membrane stress and 
surface flexural stress are presented for various values of the 
skew angle and the plate aspect ratio in order to examine 
the effect of this parameter on the response of the plate at 
large vibration amplitudes. Comparison was made between 
the present results and those available in the literature and a 
good agreement was found.

2 � General formulations and analysis

Consider the skew plate with a skew angle θ shown in 
Fig.  1. For the large vibration amplitudes formulation 
developed here, it is assumed that the material of the plate 
is elastic, isotropic and homogeneous. The thickness of the 
plate is considered to be sufficiently small so as to avoid 
the effects of shear deformation. The skew plate has the 
following characteristics: a, b, S: length, width and area 
of the plate; x–y: plate co-ordinates in the length and the 
width directions; ξ–η, H: Skew plate co-ordinates and plate 
thickness; E, ν: Young’s modulus and Poisson’s ratio; D, 
ρ: plate bending stiffness and mass per unit volume. By 
assuming harmonic motion and expanding the transverse 
displacement in the form of finite series of functions, the 

total strain energy V of a rectangular plate is given as the 
sum of the flexural strain energy Vf and the membrane 
strain energy Vm induced by large deflections. By discre-
tization of the expressions for Vf, Vm and T, the tensors 
mij, kij and bijkl are defined. The frequency equation at large 
vibration amplitudes is then developed. Finally, the non 
dimensional formulation of the problem and details of the 
numerical solution are presented.

As presented in Reference [7], the flexural strain energy 
may be written in the x–y co-ordinate system as: 

For a fully clamped rectangular plate, the above expres-
sion reduces to: 

The expression for the membrane strain energy, which 
is due to the stretching of the middle surface of the plate, 
is given by: 

The kinetic energy of the plate, T, is given in Reference 
[12] by: 

where rotatory inertia is neglected.
The problem formulated using the energy methods 

assuming in-plane displacements u, v, and transversal dis-
placement W are rather difficult and computation time is 
more important.
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Fig. 1   Skew plate in x–y and ξ–η co-ordinate system
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The method is based on the statement proofed experi-
mentally in Reference [13] and used in Reference [12] that 
the membrane strains are constant along lines parallel to 
the edges of the rectangular plate. This assumption can be 
applied for the skew plate. The in-plane boundary conditions 
allowed the simplification of the in-plane displacement; con-
sequently, only transverse displacement W was used. There-
fore, it can be possible to determine the normal membrane 
strains by considering their average value. Two techniques 
are presented below using the averaged in plane strains for 
the skew plate problem.

2.1 � First technique

The main idea of the u–v–W averaged formulation is that the 
expression of the membrane strain energy (Vm)a are deter-
mined using the averaged normal non-linear membrane 
strains (�m

x
)a and (�m

y
)a at a point of coordinates (x0, y0) of 

the plate middle plane which the expression in Cartesian 
coordinate system are given as defined in Reference [12] by: 

And, 

Then, 

Being concerned here only with immovable edge condi-
tions, the first terms appearing in the above averaged mem-
brane expressions vanish 

Thus, the expression for the averaged membrane strain 
energy (Vm)a is given in Reference [12] by: 
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The skew co-ordinates are related to the rectangular co-
ordinate (ξ, η) by: ξ = x–y tan θ; η = y/cosθ. So, the strain 
energy due to bending Vf, the averaged membrane strain 
energy (Vm)a and the kinetic energy of the plate, T are given 
in the ξ–η co-ordinate system by: 

 where: 

(11)

�
Vm

�
a
=

Eh

2(1 − �2)

⎧
⎪⎨⎪⎩

1

4a

b

∫
0

⎡
⎢⎢⎣

a

∫
0

�
�W

�x

�2����y=y
0

dx

⎤
⎥⎥⎦

2

dy

+
1

4b

a

∫
0

⎡
⎢⎢⎣

b

∫
0

�
�W

�y

�2�����x=x
0

dy

⎤
⎥⎥⎦

2

dx

+
2�

4ab

b

∫
0

⎡
⎢⎢⎣

a

∫
0

�
�W

�x

�2����y=y
0

dx

⎤
⎥⎥⎦
dy

a

∫
0

⎡
⎢⎢⎣

b

∫
0

�
�W

�y

�2�����x=x
0

dy

⎤
⎥⎥⎦
dx

+
1 − �

2

a

∫
0

b

∫
0

�
�W

�x

�2
�
�W

�y

�2

dxdy

⎫
⎪⎬⎪⎭
.

(12)

Vf =
D

2 ∫
A

[
1

cos4�

(
�2w

�2
+

�2�w

��2
− 2sin�

�2w

�� ��

)2

+
2(1 − �)

cos2�

((
�2w

� ���

)2

−

(
�2w

��2
�2w

��2

))]
cos� d�d�,

(13)(Vm)a =
Eh

2(1 − �2)

[
V1m + V2m + V3m + V4m

]
,

(14)V1m =
1

4a

b

∫
0

⎡⎢⎢⎣

a

∫
0

�
�W

��

�2������=�0
d�

⎤⎥⎥⎦

2

cos�d�,

(15)

V2m =
1

4b

a

∫
0

⎡⎢⎢⎣

b

∫
0

�
−tan�

�W

��
+

1

cos�

�W

��

�2������=�0
cos�d�

⎤⎥⎥⎦

2

d�,

(16)

V
3m =

2�

4ab

b

∫
0

⎡
⎢⎢⎣

a

∫
0

�
�W

��

�2������=�
0

d�

⎤
⎥⎥⎦
cos�d�

a

∫
0

⎡⎢⎢⎣

b

∫
0

�
−tan�

�W

��
+

1

cos�

�W

��

�2������=�
0

cos�d�

⎤⎥⎥⎦
d�,



61Ann. Solid Struct. Mech. (2017) 9:57–67	

1 3

On the other hand, if the rotatory inertia as well as the 
in plane inertia terms are neglected, the expression for the 
kinetic energy, T, of the skew plate reduces to: 

where D is the bending st iffness,  given by: 
D = EH3/12(1 − ν2), and W (ξ, η, t) is the transverse dis-
placement function, ρ is the mass per unit volume of the 
plate material. This assumption is valid for slander beams 
and thin plates [7]. The analysis performed in the present 
work was made using plate functions obtained as products 
of clamped–clamped beam functions in the x and y direc-
tions in the manner detailed in Reference [7] for rectangular 
plates. If the time and space functions are supposed to be 
separated and harmonic motion is assumed, the transverse 
displacement can be written as: 

where (ξ, η) is the vector co-ordinate of the current point of 
the plate midplane. After expansion of W(ξ, η) in the form 
of a finite series: 

In which the usual summation convention is used, the 
discretization of the strain energy expression, Vb, can be 
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of contribution coefficients. The discretization of the total 
strain and kinetic energies are respectively given in Refer-
ence [7] by: 
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where ξ*and η* are non-dimensional co-ordinates ξ* = ξ/a 
and η* = η/b. One then obtains: 

The dynamic behavior of the isotropic skew plate is gov-
erned by Hamilton’s principle which can be symbolically 
written as: 

This leads, after substituting Eqs. (22, 23, 24) into Eq. 29 
and integrating the time functions over a period of vibration, 
to the following set of non linear algebraic equations: 
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Following the assumption used in Reference [12] spe-
cifically the classical thin plate assumption of plane stress 
state and Hooke’s law, the expressions of the surface normal 
flexural stresses, and the averaged normal membrane stresses 
presented in Reference [12] were given by: 

2.3 � Bending stress analysis

The bending stress is considered here, which allows a quali-
tative understanding of the non-linearity effects. The maxi-
mum bending strains εξb and εηb obtained are given by: 

For the skew plate, the stresses σξb and σηb can be 
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The relationships between the dimensional and non 
dimensional stresses are: 

3 � Numerical results and discussion

In this section, the results and curves obtained by apply-
ing the two averaged techniques mentioned above to a fully 
clamped isotropic skew plate are presented and discussed 
for various values of the skew angle and aspect ratio. Mate-
rial properties considered for the isotropic skew plate are: 
Young’s modulus of elasticity E = 200 GPa, Poisson’s ratio 
ν = 0.33, and material density ρ = 7850 Kg/m3.

Non displacement and slope are considered along the 
clamped edges and product of beam functions are used as an 
appropriate mode shape. A system of non-linear vibrations 
equations of skew plate obtained using Hamilton’s principle 
and integration of the time functions over the range [0, 
2π/ω]. These equations are a set of non-linear algebraic 
equations, involving the parameters �∗

��
, �∗

��
 and �∗

����
 which 

(48)� =
EH2

2(1 − �2)b2
�∗.

(49)�m =
EH2

2(1 − �2)b4
�∗m.

have been computed numerically by a routine called PREP 
[7]. In order to obtain the numerical solution for the non-
linear problem in the neighborhood of a given mode shape, 
the contribution of the dominant function participating in 
this mode was chosen and those of the other functions were 
calculated numerically.

Non linear frequency parameters for fully clamped square 
plate and for various vibration amplitudes are presented in 
Table 1 using the u–v–W-average formulation. Compari-
son was made with the W-average formulation and previous 
results present in the literature taken from [12, 14]. Good 
agreement can be seen between those results.

The membrane stress distribution associated to a fully 
clamped skew plate has been determined and plotted using 
the u–v–W-average formulation. Also the surface flexural 
stress distribution was calculated with this technique. Com-
parisons with previous results for the square plate case are 
made in order to prove the convergence of the model and 
a good agreement were found. In Fig. 2, the membrane 
stresses along the section ξ* = 0.5 of a fully clamped square 
plate for a non-dimensional maximum amplitude W∗

max
 = 2 is 

shown and the present results and the results from Reference 
[14] are depicted. It can be seen clearly that in the center of 
the plate the membrane stress values obtained previously 
and those obtained here are very close while the difference 

Table 1   Non linear frequency 
parameters for a fully clamped 
square plate and for various 
vibrations amplitudes, 
comparison between the 
results obtained here and those 
previously obtained in the 
literature

References Averaged [7] Benamar 
et al. [7]

Han and Petyt [14] with u 
and v (P0 = 5. π = 6)

Present work Error %

W
∗

(0.5, 0.5)

 0.2 1.0083 1.006 1.0072 1.007 0.02
 0.4 1.0283 1.027 1.0285 1.027 0.09
 0.6 1.061 1.060 1.0631 1.061 0.03
 0.8 1.106 1.104 1.1095 1.105 0.14
 1.0 1.1591 1.159 1.1663 1.160 0.15
 1.5 1.3423 1.335 1.3442 1.323 1.32

Fig. 2   Comparison of the 
membrane stresse �m

�
; �m

�
 along 

the section ξ* = 0.5 of a fully 
clamped skew plate for θ = 0°, 
α = 1 and W∗

max
 = 2
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seen near to the clamps may be attributed to the averaging 
assumption.

In order to verify the accuracy of the results obtained in 
the present work, comparisons have been made with some 

available results obtained in References [15, 16]. Table 2 
shows the comparison of the fundamental parameter 
ωb2

√
ρ

D
cos2θ for a fully clamped skew plate for different 

values of skew angle θ.
Tables 3 and 4 present respectively non linear frequency 

parameters for fully clamped skew plate for various vibration 
amplitudes and different skew angle for aspect ratio α = 1 
and 0.6. The non linear frequency increase with skew angle 
and aspect ratio.

Figures 2 and 3 show the membrane stresses �m
�
; �m

�
 along 

the section ξ* = 0.5 of a fully clamped skew plate for θ = 0°, 
α = 1 and W∗

max
 = 2 calculated by using the u–v–W-average 

formulation and compared with those given Reference [14] 
based on the finite element method. It can be seen that this 
technique gives a satisfactory results.

Figures 4 and 5 show the non dimensional membrane 
stresses �m

�
; �m

�
 along the section ξ* = 0.5 of a fully clamped 

skew plate for different skew angles: θ = 0°; 15°; 30° and 
45°, aspect ratio α = 1 and non dimensional maximal ampli-
tude W∗

max
 = 2 calculated by using the u–v–W-average for-

mulation. The increasing in the values of the skew angle 
induces an increasing in the values of the membrane stresses.

Figures 6 and 7 shows the surface flexural stresses �f

�
; �

f
� 

along the section ξ* = 0.5 of a fully clamped skew plate for 
θ = 0°, α = 1 and W∗

max
 = 2 calculated by using the u–v–W-av-

erage formulation and compared with Reference [14] based 

Table 2   Convergence study 
of fundamental frequency 
parameter for a fully clamped 
skew plate

Aspect ratio α References Fundamental parameter for different values of skew angle θ (°)

15 (°) 20 (°) 30 (°) 35 (°) 45 (°) 60 (°)

1 [15] 35.636 35.376 34.624 34.172 – –
1 [16] 35.625 – 34.788 – 32.795 30.323
1 Present work 35.635 35.364 34.607 34.123 32.964 30.844
0.5 [15] 24.484 24.388 24.196 24.096 – –
0.5 Present work 24.471 24.388 24.165 24.027 23.709 23.186

Table 3   Non linear frequency parameters for fully clamped skew 
plates for various values of the vibration amplitude, for an aspect 
ratio α = 1 and for different values of skew angle θ

θ° 0° 15° 30° 45°

W
∗

(0.5, 0.5)

 0.2 1.007 1.008 1.013 1.025
 0.4 1.027 1.032 1.048 1.100
 0.6 1.061 1.069 1.107 1.222
 0.8 1.105 1.119 1.182 1.380
 1.0 1.160 1.179 1.278 1.590
 1.5 1.323 1.359 1.532 2.236

Table 4   Non linear frequency 
parameters for fully clamped 
skew plate for various vibrations 
amplitudes, for an aspect ratio 
α = 0.6 and for different values 
of skew angle θ

θ° 0° 15° 30°

W
∗

(0.5, 0.5)

 0.2 1.007 1.008 1.013
 0.4 1.029 1.033 1.051
 0.6 1.065 1.074 1.115
 0.8 1.113 1.129 1.198
 1.0 1.181 1.205 1.312
 1.5 1.354 1.397 1.580

Fig. 3   Comparison of the 
membrane stress �m

�
 along 

the section ξ* = 0.5 of a fully 
clamped skew plate for θ = 0°, 
α = 1 and W∗

max
 = 2
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Fig. 4   Comparison of the 
membrane stress �m∗

�
 along 

the section ξ* = 0.5 of a fully 
clamped skew plate for θ = 0°; 
15°; 30° and 45°, α = 1 and 
W∗

max
 = 2

Fig. 5   Comparison of the 
membrane stress �m∗

�
 along 

the section ξ* = 0.5 of a fully 
clamped skew plate for θ = 0°; 
15°; 30° and 45°, α = 1 and 
W∗

max
 = 2

Fig. 6   Comparison of the 
surface flexural stress �m

�
 along 

the section ξ* = 0.5 of a fully 
clamped skew plate for θ = 0°, 
α = 1 and W∗

max
 = 2

Fig. 7   Comparison of the 
surface flexural stress �m

�
 along 

the section ξ* = 0.5 of a fully 
clamped skew plate for θ = 0°, 
α = 1 and W∗

max
 = 2
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on the finite element method. Good agreement between the 
results was achieved.

Figures 8 and 9 show the non dimensional surface flexural 
stresses �f∗

�
; �

f∗
�  along the section ξ* = 0.5 of a fully clamped 

skew plate for different skew angles : θ = 0°; 15°; 35° and 

40°, aspect ratio α = 1 and non dimensional maximal ampli-
tude W∗

max
 = 2 calculated by using the u–v–W-average for-

mulation. An increasing in the values of the surface flexural 
stresses can be noticed with increasing the value of the skew 

Fig. 8   Comparison of the 
surface flexural stress �f∗

�
 along 

the section ξ* = 0.5 of a fully 
clamped skew plate for θ = 0°; 
15°; 35° and 40°, α = 1 and 
W∗

max
 = 2

Fig. 9   Comparison of the 
surface flexural stress �f∗

�  along 
the section ξ* = 0.5 of a fully 
clamped skew plate for θ = 0°; 
15°; 35° and 40°, α = 1 and 
W∗

max
 = 2

Fig. 10   Comparison of the 
surface flexural stress �f∗

�  
along the section ξ* = 0.5 of a 
fully clamped skew plate for 
θ = 0°; 15° and 30°, α = 0.6 and 
W∗

max
 = 2
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angle θ. Beyond the value of 40°, a kind of instability is 
observed in the variation of the flexural stress distribution.

Figure 10 present the non dimensional surface flexural 
stresses �f∗

�  along the section ξ* = 0.5 of a fully clamped 
skew plate for different skew angles: θ = 0°; 15° and 30°, 
aspect ratio α = 0.6 and non dimensional maximal amplitude 
W∗

max
 = 2 calculated by using the u–v–W-average formulation. 

It can be seen that the aspect ratio has a limited influence on 
the values of the surface flexural stresses.

4 � Conclusion

An averaging method was proposed for analyzing the non-
linear vibration of fully clamped skew plate. The membrane 
stress distribution and the flexural stress distribution have 
been determined using the assumption, according to which 
the in plane membrane strains are constant over lines paral-
lel to the plate with immovable edges at large deformation 
amplitudes. Results obtained for different values of the plate 
skew angle and aspect ratio showed an increasing in the 
membrane and surface flexural stresses values with increas-
ing the skew angle between 0° and 45°. It can be seen also 
that increasing the skew angle induces a more accentuated 
hardening effect. Comparison in the rectangular plate case 
with the previous results available shows a satisfactory 
agreement.
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