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Abstract One of the main objectives of crowd modeling

is to optimize evacuation and improve the design of

pedestrian facilities. In this work, a sensitivity analysis is

performed to study the effect of the parameters of a 2D

discrete crowd movement model on the nature of pedes-

trian’s collision and on evacuation times. After presenting

the proposed model in its full version (three degrees of

freedom for each individual), a pedestrian–pedestrian col-

lision is considered. We identified the parameters that

govern this type of collision and studied their effects on it.

Then an evacuation experiment of a facility with a bot-

tleneck exit is introduced and its configuration is used for

numerical simulations. It is shown that without introducing

a social repulsive force, the obtained flow rate values are

much higher than the experimental ones. For this reason,

we introduced the social force as defined by Helbing and

performed a parametric study to find the set of optimized

values of this force’s parameters that enables us to achieve

simulation results close to the experimental ones. Using the

values of the parameters obtained from the parametric

study, the evacuation simulations give flow rate values that

are closer to the experimental ones. The same optimized

model is then used to find the density in front and inside the

bottleneck and to reproduce the lane formation phe-

nomenon as was observed in the experiment. Finally, the

obtained results are analyzed and discussed.

Keywords Crowd modeling � Non-smooth dynamics �
Microscopic model � Evacuation � Bottleneck � Lane

formation

1 Introduction

Crowd movement modeling is currently a challenging

problem in various fields, from architecture and civil

engineering to entertainment and visual effects. Its appli-

cations are numerous: studying the flow of people in con-

fined spaces, creating realistic models of crowds for use in

movies, validating human behavior models in psychol-

ogy/sociology under different environmental conditions

like panic situations etc.. The wide variation in walking

styles, the complex behavior of each individual, and the

large number of individuals potentially interacting with

each other make difficult any rigorous formalization of

crowd phenomena. Nevertheless, in response to the com-

plexity of human behavior, numerous models have been

proposed in recent years with the goal of representing a

precise crowd behavior or situation. Two main types of

pedestrian models can be found: the macroscopic models

and the microscopic ones. For the first category, the crowd

is described with fluid-like properties, giving rise to
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macroscopic approaches. These models describe how the

density and the velocity of the pedestrian flow change over

time, using partial differential equations. This approach is

based on some analogies with fluid behavior observed at

medium and high crowd densities. While this approach

could be partially confirmed, it is does not take into con-

sideration certain particular interactions (i.e. avoidance and

deceleration maneuvers). The attention was then shifted to

modeling individual pedestrian motion. The second cate-

gory which concerns microscopic and agent-based models

is now the main focus of pedestrian research. These models

are the best suited to treat decentralized decision making,

local-global interactions, self-organization, emergence and

effects of heterogeneity in a complex system. The most

well-known types of agent-based models are the force-

based models [9, 16, 27, 38], cellular automata [3, 4, 6, 14,

23], and artificial intelligence-based models [15, 34]. The

main differences between these models lie in the repre-

sentation of the environment (discrete or continuous) and

the level of complexity and the nature of pedestrian–

pedestrian interactions (force-based, rule-based, cognitive,

etc.).

A 2D microscopic approach in which the movement of

each pedestrian is represented in time and in space was

recently proposed in [30, 32, 33]. It is therefore an agent-

based model with a continuous representation of the

environment. To control the crowd movement on the

ground, three aspects are addressed: (1) multiple simulta-

neous collisions, i.e. to detect and to handle each local

interaction, such as pedestrian–pedestrian and pedestrian-

obstacle; (2) the desire of each pedestrian to move in a

particular direction with a specific speed at each time; (3)

the possibility to add different levels of complexity for a

more realistic behavior of the pedestrians (social forces,

subgroup forces, fields of vision, heuristics, etc.). The main

contribution of the model is its ability to treat collisions

without any interpenetration between the agents or between

the agents and the obstacles by using an original approach

based on the theory of rigid body collisions in a rigorous

thermodynamics context [13]. In future work, the particles

will be rendered deformable which will allow us to study

the pressure exerted on each pedestrian at very high den-

sities. Another contribution of the model is a new approach

to model pedestrians who hold hands. Only by integrating

the rotation of the pedestrians about their vertical axis in

the 2D model [2], which is rarely done in literature [1, 26],

we were able to take into account the interactions between

rigid particles as an at-a-distance deformation velocity [7].

This is necessary to ensure the cohesion of a group of

particles and maintain the links between its members. As a

result, our model is able to represent a particular subgroup

behavior: the holding hands pedestrians. Few approaches

are able to model this behavior [29, 36] which is crucial

when parents and children are present in a crowd.

The aim of this paper is to briefly present the 2D

microscopic model developed in [2, 30, 32, 33] and to

calibrate its main parameters for a pedestrian–pedestrian

collision and the repulsive force parameters [17] for the

experiment done in [35]. Since one of the objectives behind

crowd modeling is to improve elements of pedestrian

facilities, we have chosen to study a typically problematic

area: the bottleneck. A bottleneck can include entrance

corridors, escalators, stairways, turnstiles and revolving

doors.

The paper is organized as follows. In Sect. 2, the 2D

discrete model is presented. Then, the parameters of the

model are calibrated for a pedestrian–pedestrian collision

in Sect. 3. Section 4 describes the setup of an evacuation

experiment of a corridor with a bottleneck exit. In addition,

a parametric study of our model is performed and the

numerical simulations are presented. Finally, the results are

discussed and analyzed in the last section.

2 The 2D crowd movement model

The proposed 2D crowd movement model has already been

introduced in detail in [30, 32, 33] and more recently in [2].

In this section, we only recall it along with its adaptation to

crowd movement. The aim is to help the readers that dis-

cover this approach for the first time.

2.1 A non-smooth microscopic model based

on Frémond’s approach for collision modeling

In the following, scalars are written in normal font. Vectors

and matrices are written in bold font and are represented by

lower case and upper case respectively unless precised.

Frémond’s approach have originally been developed for

granular media. However, this article deals with pedestrian

modeling and thus the corresponding terminology will be

used (e.g. pedestrian instead of particle). Let us consider a

system of N pedestrians represented by circular disks

moving in a horizontal plane each defined by:

• a mass mi

• a moment of inertia Ii about its vertical axis

• a radius ri

• a center of gravity Gi, whose position with respect to a

reference system with axes x � y and origin O, is

described by the vector tqiðtÞ ¼ ðqx
i ðtÞ; q

y
i ðtÞ; hiðtÞÞ

2 R3

• a velocity denoted by tviðtÞ ¼ ðuiðtÞ; _hiðtÞÞ ¼
ðux

i ðtÞ; u
y
i ðtÞ; _hiðtÞÞ
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where hiðtÞ 2 ½�p; p� represents the walking direction of

the pedestrians about the ez-axis (hiðtÞ ¼ 0 when the indi-

vidual’s walking direction is parallel to the x-axis in the

positive direction and hiðtÞ[ 0 when the individual turns

counterclockwise) and _hiðtÞ ¼ dhi=dt their rotational

velocity. Contacts between agents are assumed to be

pointwise. For the sake of notation simplicity, we shall

omit the time dependence in the following, unless this

leads to ambiguities.

The description of the behavior of this collection of

discrete bodies is based on the consideration that the global

system they constitute is deformable even if each disk is

rigid. Making use of the principle of virtual work, the

equations describing the regular (smooth) as well as the

discontinuous (non-smooth collisions) evolutions of the

movement of the system can be obtained. The deformation

velocity involving the ith and jth pedestrians at the contact

point A is given by:

DijðvÞ ¼ ui þ _hiez �GiA� ðuj þ _hjez �GjAÞ ð1Þ

where tv ¼ ðtvi;
t vjÞ collects the velocities of all the agents

evolving in the studied system and � the cross product.

A different form of the deformation velocity allows to

represent a particular case of subgroup: pedestrians holding

hands. While existing methods depict the cohesion of a

subgroup with forces [29, 36], the proposed method to

describe this particular type of subgroups uses an at-a-

distance deformation velocity. Inspired by the works of

Caselli and Frémond [7], an at-a-distance interaction

between rigid particles is introduced to model the effects of

the subgroup as a continuous deformation of the system

constituted by all the linked pedestrians. The at-a-distance

deformation velocity is a scalar quantity defined by the

derivative with respect to time of the squared distance

between linked shoulders, i.e. for pedestrians i and j points

Ai and Aj are considered and illustrated in Fig. 1.

For a group of two individuals, the at-a-distance defor-

mation velocity is expressed as:

D�
ij vð Þ ¼ 2 ui þ _hiez �GiAi � uj þ _hjez �GjAj

� �� �
� AjAi

ð2Þ

where � is the dot product. The dynamics equations for the

set of all pedestrians can be written as follows:

M _v ¼ �f int þ fext ð3Þ

Mðvþ � v�Þ ¼ �pint þ pext ð4Þ

where M is the 3N � 3N inertial matrix of the set of

individuals; fext (resp. f int) is the external force vector

(resp. internal force vector) of dimension 3N applied to the

deformable system of all the pedestrians; v� and vþ are the

agent’s velocities before and after a collision. For instance,

the social repulsion force introduced by Helbing [17]

would be considered as an external force, while the force

driving an individual to a certain destination would be

introduced as an internal one.

The existence of a solution of the system given by

Eqs. (3) and (4) is proven in [8, 11, 13]. Eq. (3) describes

the smooth evolution of the multi-particles system whereas

Eq. (4) describes its non-smooth evolution during a colli-

sion. Hence, Eq. (3) applies almost everywhere, except at

the instant of collision, where it is replaced by Eq. (4).

When a contact is detected, the velocities of colliding

pedestrians become discontinuous. Therefore, Eq. (4),

where the interior and exterior percussions (pint and pext

respectively) are introduced, is used to calculate the

velocity after the shock. By definition, percussions have the

dimension of a linear momentum: a force multiplied by

time (kg m s�1). The pint percussions are unknown; they

take into account the dissipative interactions between the

colliding agents (dissipative percussions pd) and the reac-

tion forces that permit the avoidance of overlapping among

pedestrians (reactive percussions preac), and hence

pint ¼ pd þ preac. Frémond [12, 13] defined the deforma-

tion velocity Dðvþþv�

2
Þ in duality with pint according to the

work of internal forces, where DðvÞ ¼ ðDðvÞ;D�ðvÞÞ, DðvÞ
represents the vector containing all the velocities of

deformation of all the individuals in contact, and D�ðvÞ
represents the vector containing all the at-a-distance

deformation velocities of the pedestrians belonging to

groups. He then introduced a pseudopotential of dissipation

U ¼ UðDÞ, which allows us to express pint as:

pint 2 oU D
vþ þ v�

2

� �� �
ð5Þ

where the symbol o denotes the sub differential of the

functional in the sense of convex analysis, which

Fig. 1 Two holding hands pedestrians—example of linked shoulders
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generalizes the derivative for convex functions [13]. We

recall that a pseudo-potential, in the definition by Moreau,

is a non-negative convex function, which is zero for zero

dissipation.

The convex function U is defined as the sum of two

pseudopotentials [28]:

U ¼ Ud þ Ur ; ð6Þ

where Ud and Ur characterize respectively the dissipative

and reactive interior percussions.

The introduced system (Eqs. 4–6) leads to a constrained

minimization problem:

X ¼ arg min
Y2R3Nc

h
tYMYþ U DðYÞð Þ �t 2v� þM�1pext

� �
MY

i

ð7Þ

with Y ¼ vþþv�

2
and Nc the number of pedestrians in con-

tact. X and Y are vectors. The solution is given by X ¼
vþþv�

2
[13]. A proof of the existence and uniqueness of the

velocity vþ after the simultaneous collisions of several

rigid solids, as well as the dissipative nature of the colli-

sions, is presented in [11–13].

2.2 Choice of the pseudopotentials

The reactive percussion preac ensures the non-interpenetra-

tion between agents. It is equal to 0 if contact is not main-

tained after collision (i.e., DijðvþÞ � en
ij\0) and positive if

contact is maintained after collision (i.e., DijðvþÞ � en
ij ¼ 0).

These conditions allow us to define preac using the indicator

function Ur ¼ IR�ðDijðvþÞ � en
ijÞ such that preac 2 oUr [13].

Since X is convex and contains the origin, IX can be con-

sidered as a pseudopotential of dissipation.

By giving Ud different expressions, a large variety of

behaviors after impact can be obtained [8, 13]. In [10],

different types of collisions (collision with adhesion, per-

fectly elastic, inelastic and perfectly inelastic collisions)

were studied and analyzed. A quadratic pseudopotential

gives the same classical results obtained by using the

coefficient of restitution for the case of a single collision

between two bodies. For the case of multiple simultaneous

collisions, only the approach using a pseudopotential has

been proved to ensure the existence and the unicity of a

solution and the dissipative nature of the collision [10]. In

the following, a quadratic pseudopotential Ud is chosen :

Ud DðvÞð Þ ¼ 1

2

X
1� i� j�N

Kn
tDij vð Þ � en

ij

� �2

þKtg
tDij vð Þ � etg

ij

� �2
� 	

þ
X

1� i� j�Nsubgroup

1

2
Kv D�

ij vð Þ
� �2

ð8Þ

where etg
ij ¼ ez � en

ij and Nsubgroup is the number of pedes-

trians that belong to groups. The dissipation coefficient Kn

(in kg) for the normal component of the dissipative per-

cussion characterizes the inelastic nature of the collisions

between agents; an infinite value of Kn implies a perfectly

elastic collision. Ktg (in kg) is the dissipation coefficient for

the tangential component of the percussion while Kv (in kg

m�2) is the coefficient of viscous dissipation. The higher its

value is, the more rigid the link between the pedestrians

forming a group is. In other words, for a high value of Kv, a

free agent colliding with a group of pedestrians won’t be

able to break their bond.

In the discrete element method (DEM) instead of

pseudopotentials, forces are introduced to treat the over-

lapping problem. In this smooth approach, which is used by

Helbing [17] without considering rotation, a slight over-

lapping between pedestrians is allowed in order to intro-

duce a ‘‘body force’’ (Eq. 9) counteracting body

compression (preventing overlapping) and a ‘‘sliding fric-

tion force’’ (Eq. 10) impeding relative tangential motion:

fb;i ¼� j0gðri þ rj� k qi � qj kÞen
ij ð9Þ

fs;i ¼� j00gðri þ rj� k qi � qj kÞDu
tg
ij � e

tg
ij ð10Þ

where j0 ¼ 1:2 � 105 kg s�2, j00 ¼ 2:4 � 105 kg m�1 s�1

[17] and the function g(s) is 0 if the pedestrians are not in

contact, otherwise equal to the argument s. The tangential

velocity difference between pedestrians i and j is given by

Du
tg
ij ¼ �ðuj � uiÞ � etg

ij . The contact forces fb;j and fs;j

acting on the agent j are equal and opposite to the forces fb;i

and fs;i respectively. With the aforementioned value of j0,
the human body acts like a very stiff string that resists

penetration. At the same time, this value of j0 results in a

very high contact force capable of crushing an individual

[25]. In this approach, only perfectly elastic pedestrian–

pedestrian collisions can be obtained.

It is important to note that Kn and Ktg should not be

confounded with j0 and j00. The parameters Kn and Ktg are

dissipative coefficients that determine the nature of a col-

lision (from perfectly inelastic to perfectly elastic) in an

approach that does not allow any overlapping between the

colliding pedestrians that are represented by rigid disks.

We are currently working on rendering the agents

deformable in our model to study body compression. On

the other hand, j0 and j00 are stiffness coefficients defined

in an approach that allows overlapping between the col-

liding agents. The overlapping distance and the stiffness

coefficients are then used to generate a force to counteract

body compression leading to purely elastic collisions. That

is why Kn and Ktg on one side and j0 and j00 don’t nec-

essarily have the same values or the same order of

magnitude.
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2.3 Adaptation to crowd movement

In our 2D model a pedestrian is represented by a circular

particle having a ‘‘willingness’’, i.e. a desire to move in a

particular direction with a specific speed at each time [17,

30, 32, 33]. In this article, we are interested in the egress

scenarios under normal conditions. We don’t deal with

other scenarios like pedestrian movement in a train station

or a commercial center.

The first step of the approach is to give a desired tra-

jectory to each pedestrian. Several definitions of the desired

trajectory of a pedestrian are possible: (1) the most com-

fortable trajectory, where the individual exerts the least

effort, e.g. by avoiding stairs or making the fewest changes

in direction, etc.; (2) the shortest path; or (3) the fastest one

[19]. It is possible to combine two strategies in the same

simulation or to change the preferred strategy for any

reason during the simulation. In the current model,

pedestrians use the shortest path to get to the exit. To do so,

we consider a wavefront that starts at the exit o� of a 2D

environment � where the areas occupied by obstacles are

represented by C. As the wavefront propagates in � , its

arrival times can be found for each node of the discretized

space. These arrival times form a scalar function T(x, y)

whose values can be obtained by solving the eikonal

equation [5] given by :

jj rTðx; yÞ jj¼ 1

Vðx; yÞ for ðx; yÞ 2 � ð11Þ

Tðx; yÞ ¼0 for ðx; yÞ 2 o� ð12Þ

where V(x, y) is the velocity of the wavefront. By setting

Vðx; yÞ ¼ 0 in C, the wavefront cannot penetrate this area.

In this way, areas that cannot be accessed by pedestrians can

be defined (obstacles, walls, …). By setting Vðx; yÞ ¼ 1 m/s

in �nC, the arrival times T(x, y) coincide with the Eucli-

dean distances to the exit. In this way, the shortest path from

one point to another can be calculated. By setting

0\Vðx; yÞ\1 in �nC, areas that are not frequently used by

pedestrians can be defined (areas near to obstacles and

walls, wet floor, streets…). Several numerical methods exist

to solve the eikonal equation, for example the Fast

Marching Method [22] and the Fast Iterative Method [21].

In our model we set Vðx; yÞ ¼ 1 in �nC and Vðx; yÞ ¼ 0 in

C. Then by using the Fast Marching Algorithm to solve the

eikonal equation, a geodesic map is obtained that can be

used to find ed;i, the desired direction [17] of an individual i

towards the exit using the shortest path :

ed;i ¼ � rTðx; yÞ
jj rTðx; yÞ jj ð13Þ

The desired velocity is then defined by ud;i ¼k ud;i k � ed;i

where k ud;i k represents the amplitude of the desired

velocity at which the ith pedestrian wants to move. For

normal conditions, this speed is chosen to be following a

normal distribution with an average of 1.34 m s�1 and a

standard deviation of 0.26 m s�1 [18].

The second step is to introduce the desired velocity into

the original discrete model to simulate crowd movement.

Let f int ¼ ha, where ha gives the desired direction, the

amplitude of the velocity and the walking direction of each

pedestrian. Each vector ha
i associated with pedestrian i

represents a component of the vector tha ¼
ðtha

1;
t ha

2; . . .;
t ha

NÞ of dimension 3N. It can be expressed as
tha

i ¼ ðtfa
i ; lai Þ, where fa

i (in kg m s�2) is the so-called

acceleration force [17] giving the desired direction and

amplitude of the velocity of the ith pedestrian. fa
i is defined

in [17, 30, 32, 33] by:

fa
i ¼ mi

ui� k ud;i k ed;i

si

ð14Þ

where ui (in m s�1) is the actual velocity and si (in s) is the

relaxation time, which specifies how long the pedestrian

will take to recover his desired velocity after a contact or

after a sudden change in path. For example, Helbing [17]

chose si ¼ 0:5 s in his numerical simulations. When the

value of si is less than or equal to 0.5 s, the pedestrians

walk ‘‘aggressively’’ and several contacts may occur suc-

cessively. Its influence has been studied in [33].

As for lai (in kg m2 s�2), it represents the restoring torque

in order to return the pedestrian to his desired direction

after a perturbation. It is modeled as the combination of a

linear rotational spring and of a linear rotational damper

[2], and is defined for the i-th pedestrian by:

la
i ¼ ki hi � hd;i

� �
þ ci

_hi ¼ �Ii
€hi ð15Þ

where hd;i is the angle between ed;i and the reference

direction ex ¼ ½1; 0�, Ii (in kg m2) is the moment of inertia,

ki (in kg m2 s�2 rd�1) is the torsional stiffness, ci (in kg m2

s�1 rd�1) is the rotational damping, and xi ¼
ffiffiffi
ki

Ii

q
(in rd

s�1) is the undamped resonant frequency for pedestrian i.

After a perturbation, a pedestrian returns the fastest without

oscillations to its desired direction when its rotation is

critically damped (fi ¼ ci

2
ffiffiffiffiffiffi
Ii ki

p ¼ 1). For fi [ 1, the indi-

vidual returns more slowly to its desired position. For

fi\1, it oscillates before returning to its desired direction.

In Fig. 2, the collision occurs at t ¼ 0:1 s and the time step

is Dt ¼ 0:01 s. The solid line plotted inside the agent

represents the pedestrian’s desired direction while the

dotted line represents his current walking direction. We

have chosen fi ¼ 1. The choice of ki will be discussed

later. As we have mentioned earlier, adding rotation to the

pedestrians’ movement is essential to model subgroup

behavior.
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2.4 Pedestrian–pedestrian interaction

Among the different types of pedestrian interaction, the

act of avoidance stands out as an essential component of

the coordination of collective movement. This action

constitutes a central element of the majority of pedes-

trian movement models. Experimental studies exist to

compare predictions from a model with certain observed

global characteristics, such as flow intensity, velocity

distribution or emerging collective arrangements. How-

ever, the lack of control of the observed situations in

these experiments creates a major obstacle for the pro-

cess of identifying the interaction laws and validating

the underlying assumptions. In a natural environment,

the result of an interaction on a pedestrian’s sponta-

neous behavior is difficult to quantify, given that the

observer neither controls the terms of the interaction nor

knows the pedestrian’s desired direction, attention level,

or comfort velocity.

In the classical crowd movement models, the pedestri-

ans’ behavior can be enriched by adding social forces [17,

29, 33] so as to become more realistic (repulsive force,

attractive force, group force, etc.). Among the social forces,

the sociopsychological or the social repulsion force is

essential to reproduce human behavior. It reflects an indi-

vidual’s tendency to avoid collisions with other pedestrians

and obstacles keeping a certain distance from them (Fig. 3).

This force was introduced by Helbing and was given by the

following form in [17]:

f ij ¼ �Ae ðRij�dijÞ=Bð Þ Kþ ð1 � KÞ
1 þ cos/ij

2

� �
en

ij ð16Þ

where Rij ¼ ri þ rj is the sum of the radii of pedestrians i

and j, dij is the distance between their centers, A and B are

constant parameters of the model representing the magni-

tude of the maximum sociopsychological force and its fall-

off length respectively, K with 0\K\1 is a parameter

which grows with the effect of interactions behind an

individual, and /ij is the angle between the desired direc-

tion ed;i and the vector �en
ij. The social force f ij acts on

pedestrian i. The force acting on pedestrian j reads:

f ji ¼ �f ij.

In [17], Helbing chose A ¼ 2000 kg m s�2 and

B ¼ 0:08 m. In [25], it is shown that for these values of

A and B, a pedestrian’s maximum deceleration exceed the

acceleration of gravity by almost 40 %. A value that does

not seem realistic.

0 1 2 3 4 5
−3

−2

−1

0

1

2

3

t [s]

θ 
[r

d]
 

(b)
(a)

0 1 2 3 4 5
−3

−2

−1

0

1

2

3

t [s]

θ 
[r

d]
 

(d)(c)

Fig. 2 Pedestrian–pedestrian interaction without repulsive forces: the left column shows the pedestrian’s movement after ‘‘collision’’ for fi ¼ 1

(top) and fi ¼ 0 (bottom), where hd;i ¼ 0. The right column is a plot of the pedestrian’s rotation as a function of time
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3 Calibrating the parameters that govern
a collision

3.1 Velocity after collision

In the proposed model, the main parameter controlling the

velocity after a collision between two individuals is Kn (in

kg). Let us consider a head on collision of two points of

masses m1 and m2 respectively, illustrated in Fig. 4, where

Ktg ¼ Kv ¼ 0 and rotation is not considered. The after

collision velocities uþ1 and uþ2 of the masses m1 and m2

respectively, can be found analytically by solving the fol-

lowing system (derived from Eqs. 4 and 5):

m1ðuþ1 � u�1 Þ ¼ �pint ¼ �Kn

2
ðuþ1 � uþ2 þ u�1 � u�2 Þ � preac

m2ðuþ2 � u�2 Þ ¼ pint

preac 2 oIR� uþ1 � uþ2
� � :

8><
>:

The solution of this system can be found [13]:

• If Kn � m1m2

m1þm2
then

uþ1 ¼ uþ2 ¼ m1u
�
1 þ m2u

�
2

m1 þ m2
ð17Þ

• If Kn � m1m2

m1þm2
then

uþ1 ¼ ðm1m2 þ Knm1 � Knm2Þu�1 þ 2Knm2u
�
2

m1m2 þ Knm1 þ Knm2

uþ2 ¼ ðm1m2 þ Knm2 � Knm1Þu�2 þ 2Knm1u
�
1

m1m2 þ Knm1 þ Knm2

It can be noticed in Eq. (17) that when Kn � m1m2

m1þm2
, the after

collision velocities are not dependent on Kn and when

Kn [ m1m2

m1þm2
, the agents move in opposite directions after

colliding. Finally when Kn tends towards infinity, the after

collision velocities become:

uþ1 ¼ðm1 � m2Þu�1 þ 2m2u
�
2

m1 þ m2

uþ2 ¼ðm2 � m1Þu�2 þ 2m1u
�
1

m1 þ m2

ð18Þ

and in the case of m1 ¼ m2, Eq. (18) can be simplified:

uþ1 ¼u�2
uþ2 ¼u�1

ð19Þ

In this paragraph, we compare between the analytical

and numerical solutions. The collision illustrated in Fig. 4

has been studied for two cases. In the first case, m1 ¼
m2 ¼ 62 kg and j u�1 j¼j u�2 j¼ 1 m/s while in the second

one m1 ¼ 62 kg, m2 ¼ 20 kg, j u�1 j¼ 2 m/s and

j u�2 j¼ 0:5 m/s. The plot of uþ
i as a function of log10ðKnÞ

illustrated in Fig. 5, shows the validity of the used

scheme and the influence of the normal coefficient of dis-

sipation on the after collision velocities. It can be observed

that for Kn [ 104 kg the collisions become perfectly elas-

tic. The nature of the pedestrian–pedestrian collision con-

trols the choice of Kn. In [2, 30, 32, 33], the author chose

Kn ¼ 105 kg which results in perfectly elastic collisions

when social forces are not considered. The simulations

done using this value for Kn gave satisfying results for the

case of emergency evacuation.

3.2 Pedestrian’s rotation

In the available crowd models, pedestrians’ rotation is

seldom treated. Since it must be introduced in our model if

we want to model subgroup behavior, we will study its

effect on evacuation. By solving Eq. (15), we obtain the

rotation time-evolution of an individual about himself:

Fig. 3 Pedestrian–pedestrian

interaction, a without and

b with introducing the repulsive

force (for A ¼ 2000 N and

B ¼ 0:15 m)

Fig. 4 Two colliding pedestrians. The dotted line represents each

pedestrian’s current walking direction
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hiðtÞ ¼ _h0ðKtg;KnÞte�xi t þ hd;i ð20Þ

where _h0ðKtg;KnÞ is calculated by the model (by solving

Eq. 7) after a shock takes place and ki ¼ Ii � x2
i , the tor-

sional stiffness (Eq. (15), is introduced by the user (ki ¼ k

for the sake of simplicity). Figure 6 shows that the value of
_h0, calculated after a shock, varies with Ktg and is inde-

pendent of Kn for values greater than 2 � 103 kg. From

Eq. (20), we can easily obtain the expression of hmax:

hmax ¼
_h0ðKtgÞ
xi � e

þ hd;i ð21Þ

By varying k (in kg m2 s�2 rd�1) in the interval [0.5,18.5],

and for each value of _h0 obtained from Fig. 6 (each value of
_h0 corresponds to a value of Ktg), Eq. (21) gives the surface

illustrated in Fig. 7. Now the user can specify the desired

value of hmax by choosing from Fig. 7 a point ( _h0; k) which

corresponds to a couple (Ktg; k). The couple must be on or

below the isoline representing the chosen value of the

maximal rotation.

4 Application to pedestrian flow through
bottlenecks

In this section, we are interested in testing the performance

of our model for the case of an evacuation through a bot-

tleneck. Several experiments have been conducted in order

to measure the influence of the bottleneck width on the

pedestrian flow [24, 35, 37]. We will simulate the experi-

ment set up presented in [35]. Its configuration is shown in

Fig. 8a.

In [35], for every value of the bottleneck width b 2
½0:8 m; 1:2 m� with increments of 0.1 m, three runs are

performed with N ¼ 20; 40, and 60 pedestrians respec-

tively. The pedestrians are located in the holding area in a

way that the density of each of the three sections is q ¼ 3:3

individuals/m2 (Fig. 8). It is important to note that the

participants in this experiment were advised not to push

and to walk with a normal velocity.

To compare different tests, the authors introduced the

specific flow Js that was calculated for every run. The

specific flow Js is defined by the ratio of the flow J on the

bottleneck width b:

0 1 2 3 4
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Fig. 5 Velocity after a head on

collision of two pedestrians for

a m1 ¼ m2 ¼ 62 kg and

j u�1 j¼j u�2 j¼ 1 m/s and

b m1 ¼ 62 kg, m2 ¼ 20 kg,

j u�1 j¼ 2 m/s and

j u�2 j¼ 0:5 m/s
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Fig. 6 Variation of _h0 as a function of log10ðKtgÞ
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Js ¼
J

b
¼ Nb

Dt � b
ð22Þ

where J is defined here as a time-averaged flow equal to the

ratio between the number of pedestrians Nb passing a

certain facility and the duration Dt measured starting from

the instant where the first individual exits and ending when

the last one does.

In [35], the specific flow Js was calculated for three

different group sizes Nb and five different values of the

width b of the bottleneck as seen in Table 1. It allows to

examine the influence of the dimensions of this type of

exits on the evacuation procedure. In previous versions of

our model, by fixing certain parameters (Kn ¼ 105 kg,

Ktg ¼ 0 kg), several qualitative aspects of pedestrian

dynamics was reproduced such as, lane formation, the arch

phenomenon, oscillations at bottleneck exits, etc. In the

following section, we will examine the quantitative results

obtained using the same aforementioned parameter values.

4.1 A quantitative study

In this section, we study the quantitative results obtained

by our model using the values of Kn and Ktg used in pre-

vious studies [2, 31–33]. We first study the effect of

introducing rotation to the pedestrian’s movement. We then

introduce the repulsive forces [17].

4.1.1 Adding rotation to the pedestrians’ movement

For Kn ¼ 105 kg and Ktg ¼ 0 kg, we calculate Js for two

cases: with and without rotation. We aim to verify, when

friction between pedestrians is not considered, if their

rotations have any effect on the flow. For each case, we ran

fifty simulations, with different random initial pedestrian

positions, and Js is calculated for each one. The average

value and the standard deviation of the specific flow are

then calculated. The same procedure was repeated for the

values of the parameters ðb;NbÞ found in Table 1. The

results are illustrated in Fig. 9 along with the experimental

ones [35]. They show that the agents’ rotation introduced

into our model does not affect the flow values. The reason

behind this expected result is that we have not connected

the agent’s rotational motion to its translational one

(pedestrians move even if they are not looking in the range

of the direction of motion). As mentioned earlier, the

interest of integrating the rotational motion was to be able

to reproduce subgroup behavior. Further investigation of

the relation between the rotational and translational motion

of a pedestrian will be done in order to study the effect of

the rotational motion on the flow values.

4.1.2 Introducing the repulsive forces: a sensitivity

analysis

Since the experiment in [35] is held in normal conditions,

introducing repulsive forces in our model is necessary to be

able to approach the experimental data. However, the

values of the parameters Ai(kg m s�2Þ and BiðmÞ (Eq. 16)

have to be adapted to the scenario under study (flow

through a bottleneck, multi-directional flows, stairs…). For

this reason, we have decided to perform a sensitivity

analysis to find the values of Ai(kg m s�2Þ and BiðmÞ of the

pedestrian–pedestrian repulsive force that will best repro-

duce the flow through a bottleneck under normal conditions

(Eq. 16). The parameters will be identical for all pedes-

trians: Ai ¼ A and Bi ¼ B. Therefore, for twenty linearly

spaced values of A and B in the intervals [10; 1000] and

[0.01; 0.2] respectively, all the runs conducted in [35] were

simulated (400 simulations for each run). An example of

the configuration of the participants (N = 60) along with the

different parameters used in the simulations are shown in

Fig. 8b and Table 2 respectively. The parameters that vary

from one simulation to another are A, B, N and b.

(a)

0 2 4 6 8 10

0

1

2

3

4

y

x

(b)

Fig. 8 Experimental setup

(a) and the configuration of 60

pedestrians reproduced by our

model (b)

Table 1 Experimental specific flow Js;exp (individuals m�1 s�1Þ [35]

b (m) Nb ¼ 20 Nb ¼ 40 Nb ¼ 60

0.8 1.86 1.77 1.61

0.9 2.06 1.91 1.86

1.0 2.19 2.08 1.9

1.1 1.78 1.93 1.93

1.2 2.31 1.81 1.97

The time interval Dt is the time measured between the passage of the

first person and the last one
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For each N
j
b, an error criterion in the least mean squares

sense has been studied:

ej A;Bð Þ ¼ 1

nb

Xnb

i¼1

JsðA;B; bi;N
j
bÞ

Js;expðbi;N
j
bÞ

� 1

 !2

ð23Þ

where nb is the number of bottleneck widths considered

(see Table 1), Js;exp the experimental value of the specific

flow found in Table 1, and Js the value of the specific flow

obtained by our model.

It should be noted that Eq. (23) represents the variance

of JsðA;B; bi;N
j
bÞ=Js;expðbi;N

j
bÞ where the mean is equal to

one. The nb corresponding errors are then added together in

a way to conserve the value of the mean, and the global

error is given by:

eT A;Bð Þ ¼ 1

ng nb

Xng

j¼1

Xnb

i

JsðA;B; bi;N
j
bÞ

Js;expðbi;N
j
bÞ

� 1

 !2

ð24Þ

where ng is the number of participants groups. The opti-

mized values ~A and ~B are obtained by minimizing eT in the

least mean squares sense:

~A; ~B
� �

¼ arg min eT A;Bð Þ ð25Þ

By plotting eT as a function of A and B, the surface illus-

trated in Fig. 10 is obtained. After interpolating and
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Fig. 9 Values of Js obtained with or without introducing the rotation for N = (a) 20, b 40, and c 60. The social force is not considered

Table 2 Parameters used in the

simulations for pedestrian flow

through a bottleneck

Parameters Symbol Value Unit

Walking speed k ud;i k N (1.34,0.26) m s�1

Radius ri 0.23 m

Mass mi 83 kg

Relaxation time si 0.5 s

Normal coefficient of dissipation Kn 105 kg

Tangential coefficient of dissipation Ktg 0 kg

Time step h 10�2 s
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smoothing the surface, using the curve fitting toolbox of

Matlab, several functions that fit the local minima repre-

sented by red circles in Fig. 10 can be found. The best fit

was achieved by the exponential function shown in Fig. 10.

We ran simulations for three points of the curve and got the

specific flow values illustrated in Fig. 11. The first point

was chosen so as to use the same value of B found in [17].

The other two were chosen to be around the latter. Fig-

ure 11 shows that the specific flow values obtained for the

three points are in good agreement with the experimental

results.

Another validation of our model comes from the density

measurements inside and in front of the bottleneck. The

results are also in good agreement with the experimental

data (Fig. 12).

4.1.3 Linear dependence of the flow on the bottleneck-

width

In [35], the relationship between the flow and the width of

a bottleneck is examined. Using the experimental findings

of [35] along with several others, it is argued that the

relationship is linear rather than stepwise, as suggested by

[20]. To verify which J–b relationship (J ¼ Js � b) would be

obtained by our model using one of the values of (A, B)

found in the previous section, i.e. A ¼ 790 N and

B ¼ 0:08 m, we calculated the flow for each b. The results

of the simulations and the experimental data [35] along

with their linear regressions are plotted in Fig. 13. The

norm of residuals of the linear regressions are presented in

Table 3. It is clear that the flow values given by our model

increase rather linearly with the bottleneck width. We can

also notice that the difference between the simulation and
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Fig. 10 The surface representing eT as a function of A and B. The

curve is given by the exponential function A ¼ 1501 � e�7:98B
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Fig. 11 Specific flow measurements obtained by our model (considering the social repulsive force) in comparison with empirical data [35] for N

= a 20, b 40, and c 60
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experimental results decrease as N increases. This can be

explained by the fact that, for small N, the time allotted to

the experiment was not enough to reach a stationary state

[35].

4.2 Lane formation inside the bottleneck

In [24, 35, 37], pedestrians formed lanes inside the bot-

tleneck. The number of lanes depends on the bottleneck

width. In order to verify if our model can reproduce the

same phenomenon, we ran fifty simulations for each bot-

tleneck width b and for N ¼ 60.

For each run, we saved the probability of finding a

pedestrian at position x inside the bottleneck (see Fig. 8).

The probability is given by Xi=ð
Pm

j¼1 XjÞ where Xi repre-

sents the number of times pedestrians were detected in an

interval centered at position x of magnitude 0.01 m andPm
j¼1 Xj represents the total number of detections made

inside the bottleneck. The probabilities were plotted in

Fig. 14. Lane formation is illustrated by the double peak

0 5 10 15 20 25 30
0

2

4

6

8

10

t[s]
ρ
[p
er
so

n
s/
m

2
]

Experiment [25] 
Model

(a)

0 5 10 15 20 25 30
0

1

2

3

4

5

t[s]

ρ
[p
er
so

n
s/
m

2
]

Experiment [25]
Model

(b)

Fig. 12 Density measurements

for 60 pedestrians obtained by

the experiment [35] and by our

model (A ¼ 790 N,

B ¼ 0:08 m): a density in front

of the entrance of the bottleneck

and b density inside the

bottleneck
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Fig. 13 Flow values obtained

by the 2D discrete model

(A ¼ 790 N, B ¼ 0:08 m)

compared to the experimental

data [35] for N = a 20, b 40, and

c 60
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structure in the probability distribution of the positions for

b� 0:9 m. Starting with one lane for b ¼ 0:8 m and ending

with two lanes for b ¼ 1:2 m, it is clear that the lanes

continue to separate with the width of the bottleneck.

4.3 Discussion

In this section, we discuss and analyze results obtained by

the 2D model for the simulation of the movement of

pedestrians through a bottleneck. The discussed results

concern the specific flow and the lane formation. We show

that they agree with the findings of several bottleneck

experiments.

Concerning the specific flow Js, two criteria are to be

examined: the value of Js for each bottleneck width and its

variation. Without introducing the social force, the specific

flow values obtained by our model were very far from the

experimental ones found in [35]. The main reason behind

Table 3 Norms of residuals of the linear regressions plotted in

Fig. 13

Experimental Model

Nb ¼ 20 0.436 0.192

Nb ¼ 40 0.237 0.104

Nb ¼ 60 0.098 0.136
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Fig. 14 The probability of

finding a pedestrian at position x

for 50 runs with N ¼ 60,

A ¼ 790 N, B ¼ 0:08 m, and b

= a 0.8, b 0.9, c 1, d 1.1, and

e 1.2
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this expected result is the different pedestrian behavior in

the two studies. While in [35] the participants are asked not

to push and to move normally, pedestrians were clearly

more aggressive in our model (Fig. 15). This behavior

might increase the flow for some bottleneck widths and

decrease it for others (clogging phenomenon). For this

reason, we repeated the study after introducing the social

force. The obtained results approach the experimental ones

better than the case without the repulsive forces. However,

the sudden drop of the specific flow value for b ¼ 1:1 m

and N ¼ 20 (Fig. 13), that was not explained in [35], was

not reproduced for all the simulations we ran. This could be

explained by the fact that, for small N, the time allotted to

the experiment was not enough to reach a stationary state.

This means that the value of Js found in [35] might not be

representative of the specific flow value for b ¼ 1:1 m and

N ¼ 20. The difference between the characteristics of the

pedestrians in each study might have also contributed to the

small gap between the results obtained by our model and

the empirical ones. As for the variation of the flow

(J ¼ b � Js), we have found that it increases rather linearly

with the bottleneck width.

The second result obtained by the 2D model was the

lane formation inside the bottleneck. This phenomenon was

found in all the experiments done on the bottleneck with a

difference in the number of lanes formed. The simulation

results conform with what was obtained experimentally in

[35] except for the shift of the lanes towards one half of the

bottleneck and the asymmetry of the lane formation (see

Fig. 14). This outcome can be explained by the slight shift

of the initial pedestrian configuration as seen in Fig. 8b.

5 Conclusions and perspectives

A parametric study of a 2D discrete model based on Fré-

mond’s approach for collisions modeling has been done to

examine the effect of model parameters on pedestrian–

pedestrian collisions and evacuation times. Starting with

collisions, it has been found that the smaller the value of Kn

is the more inelastic shocks are. As for k and Ktg, they have

to be chosen as a couple that limits the value of the

pedestrian’s maximal rotation. The case of a unidirectional

pedestrian stream through a bottleneck was studied. We

first showed that the rotation we added to the pedestrians’

movement in order to model subgroups had no effect on

evacuation times and flow values. Then, using the 2D

discrete model, we did a parametric study and found a

series of values of the social repulsive force parameters

(A and B) that allowed us to obtain simulation results

(specific flow, flow rate, density inside and outside the

bottleneck) close to the experimental ones found in [35]. It

was also shown that our model is capable of reproducing

the lane formation phenomenon inside bottleneck that was

observed in several experiments [24, 35, 37].

In this paper, a simple parametric study was done by

varying only a few parameters of our model. For future

work, we will implement an experimental design tech-

nique. First, a study will be performed to determine which

parameters could be correlated. Then by varying all the

parameters, we will find the optimal parameter set that

enables us to obtain simulation results that approach the

experimental ones for a particular scenario.
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