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Abstract The article presents a numerical finite element

study of fluid leakage in concrete. Concrete cracking is

numerically modelled in the framework of a macroscopic

probabilistic approach. Material heterogeneity and the re-

lated mechanical effects are taken into account by defining

the elementary mechanical properties according to spatially

uncorrelated random fields. Each finite element is consid-

ered as representative of a volume of heterogeneous ma-

terial, whose mechanical behaviour depends on its own

volume. The parameters of the statistical distributions

defining the elementary mechanical properties thus vary

over the computational mesh element-by-element. A weak

hydro-mechanical coupling assumption is introduced to

represent the influence of cracking on the variation of

transfer properties: it is assumed that the mechanical

cracking of a finite element induces a loss of isotropy of its

own permeability tensor. At the elementary level, an ex-

perimentally enhanced parallel plates model is used to re-

late the local crack permeability to the elementary crack

aperture. A Monte Carlo-like approach allows to statisti-

cally validate the numerical method. The self-consistency

of the proposed modelling strategy is finally explored

through the numerical simulation of the hydro-mechanical

splitting test, recently proposed by authors to evaluate the

real-time evolution of the transfer properties of a concrete

sample under loading.
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1 Introduction

Fluids (gas, water, aggressive agents, ...) may penetrate

through concrete due to its porous structure and to mi-

cro/macro cracks. Strictly related to the concrete hetero-

geneous nature, their presence is inevitable even in the

presence of small loading levels or at early-age [10, 64,

76]. This aspect is of crucial importance, because cracks

represent preferential flow paths for the transport of fluid

species, and strongly contributes to the deterioration of

structural durability [3, 40, 41] and safety [18, 27, 66].

Many numerical models aiming to model strain lo-

calisation and cracking in porous solids (e.g. concrete)

have been proposed in the literature. Mainly developed in

the framework of the finite element method (FEM), from a

conceptual point of view these formulations can be clas-

sified in relation to their modelling scale. In multiscale

models [4, 11, 12, 34, 35, 51, 62, 63], transport processes in

porous material, the localised flow through the disconti-

nuity and their mutual exchanges are explicitly modelled.

In macroscopic formulations [6, 17, 25, 26, 44, 46] these

phenomena are treated as a whole in the framework of the

Theory of Porous Media [14, 37]. Each cracked volume

element is then represented through an equivalent porous

medium, with effective hydro-mechanical (HM) properties

G. Rastiello (&) � J.-L. Tailhan � P. Rossi � S. Dal Pont
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(i.e. Biot’s coefficients, permeabilities, diffusivities, etc.)

depending on the local mechanical fields (i.e. stress, strain,

damage, crack opening, etc.).

Although multi-scale approaches allow for a more

physical description of transport process in cracked do-

mains [8], in particular when dealing with localised

cracking, macroscopic formulations have been often pre-

ferred for engineering oriented applications. This is due to

different reasons, and among others: they generally require

lower computational ressources, their numerical imple-

mentation is quite simple, well established and validated

thermodynamic frameworks are available, different physics

can be coupled into a unified formulation in a natural way.

Whatever the finalities of the coupled modelling (e.g.

prediction of fluid leakage through fluid containment

structures, durability analysis of concrete structures) the

model capabilities in predicting concrete cracking repre-

sent a key aspect.

Among the different mechanical models available in the

literature, probabilistic formulations have proven to deal to

a proper description of concrete. In these formulations,

concrete heterogeneity and the related scale effects are

taken into account by defining the material properties

through random fields [13, 30, 38, 57, 69, 70].

In particular, if the equivalence between a FE and a

volume of heterogeneous material is postulated [57], the

use of spatially uncorrelated random fields allows for a

relevant modelling of scale effects and cracking. Based on

this original idea different numerical formulations have

been developed in recent years [60, 71–73].

Drawing from these theoretical and numerical frame-

works, a three-dimensional (3D) macroscopic modelling

approach of fluid transfers in cracking concrete and con-

crete structures is presented in the paper.

The article is structured in three parts as follows:

1. a probabilistic mechanical model, developed in the

FEM context, is first presented. In the present formu-

lation, it is assumed that the cracking process (i.e. the

creation and propagation of a crack within the element

itself) induces some local energy dissipation. This

dissipative process is mathematically represented

through a probabilistic isotropic damage model. Ac-

cording to the aforementioned modelling assumption,

material properties (strength and fracture energy) are

defined element-by-element according to spatially

uncorrelated random fields. Their statistical parameters

are defined for each element depending on its own

elementary volume according to experimentally

validated laws;

2. the second part of the paper presents the coupled HM

cracking-transfer modelling procedure. In this simpli-

fied formulation, the sole considered source of HM

coupling is the influence of elementary cracking on the

local variation of the transfer properties of the cracked

volume. At the FE scale, this leads to consider that the

localised flow through the crack induces a loss of

isotropy in the elementary permeability tensor. The

‘‘apparent’’ elementary permeability is then computed

through the experimentally adapted parallel plates

model [50, 78];

3. in the final part of the article the self-consistency of the

proposed approach is explored. For this purpose, the

experimental HM test proposed by [50] to monitor the

real-time evolution of the water permeability of a

concrete sample under Brazilian loading is numerically

modelled. Purely mechanical experimental results are

used as reference data to calibrate the mechanical

model parameters first. Then the HM response of

cylindrical sample under mechanical and hydraulic

loading is simulated.

2 Probabilistic cracking model

2.1 Problem setting

A macroscopic formulation for modelling pure tension

(mode I) concrete cracking is presented. The probabilistic

aspects of the model are based on the following funda-

mental modelling and physical assumptions [59, 71]:

1. each FE is assumed to be representative of a volume of

heterogeneous material, whose degree of heterogeneity

ne is defined as the ratio of its volume Ve to the volume

of the coarsest aggregate Vg:

ne ¼
Ve

Vg

; ð1Þ

2. the physical mechanisms controlling the cracking

process are independent on the scale of modelling.

Consequently, it is assumed that it is possible to define

macroscopic quantities regardless of the size of the FE,

whether a representative elementary volume (REV) or

not;

3. the mechanical behaviour of each FE depends on its

own volume and is prone to random variations. This

aspect is represented by considering the elementary

mechanical properties as randomly distributed over the

computational mesh according to spatially uncorrelat-

ed random fields. Their statistical parameters thus vary

element-by-element depending on the local hetero-

geneity ratio ne;
4. crack propagation is not explicitly addressed, at least in

the sense of the Fracture Mechanics. A propagation

criterion is not introduced, but cracking is modelled
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element-by-element. The occurrence of a macro-crack

(i.e. strain localisation) then results from the coales-

cence of some randomly created elementary cracks. In

other words, at a macroscopic level, the progressive

cracking of consecutive FEs is considered as repre-

sentative of a macro-crack propagation.

According to these aspects, the presented approach is de-

noted in the following as ‘‘semi-explicit’’ instead of

macroscopic. This term is here used to specify that, a

discrete vision of cracking is preserved (the material’s

properties are discretely distributed in the mesh, the crack

is treated element-by-element) but elementary cracking is

taken into account through its local energetic effect.

2.2 Model formulation

Standard FEM procedures are used to solve quasi-static

equilibrium equations. At the FE scale, the energetic effect

associated to the elementary cracking process is repre-

sented through a simple isotropic damage law with a single

scalar parameter [36]. A probabilistic energetic

regularisation is also retained.

Without going into details of numerical implementation

of the model, its main features can be summarised as

follows:

1. a bilinear stress–strain (r; e) relationship is used to

represent elementary cracking (Fig. 1). The elementary

dissipative process (i.e. crack propagation inside the

FE itself) starts when the major principal stress rprinmax at

a given Gauss point equals the material tensile strength

ft. Dissipation is then driven by the positive part,

denoted by h�iþ, of the projection of e along the

direction nr of the major principal stress:

~e ¼ ~eðeÞ ¼ hnr � eiþ. When the total energy available

for the FE is dissipated (i.e. D ¼ 1;D being the

damage variable), it is declared cracked and its

elementary stiffness matrix is set to zero [71]. This

allows to avoid stress-locking phenomena;

2. The model is numerically implemented using a rotat-

ing crack approach [33, 61]. During the dissipative

phase (i.e. D\1), the normal nr is allowed to evolve

according to any changes in the stress state r in the

material. Only when the element is declared as

cracked, the normal to the crack plane fixed: nc ¼ nr;

3. Differently from smeared-cracking approaches [20, 32,

39], no additive decomposition is introduced in the

constitutive law to distinguish between elastic defor-

mation and crack contributions. A elementary crack is

supposed to exist only after the condition D ¼ 1 is

achieved [56]. The elementary crack opening ae is then

computed from the projection of the elementary

displacements along the direction of nc;

4. For sake of simplicity, crack re-closure is not explicitly

treated. The model assumes that the dissipative process

does not influence the elementary stiffness in com-

pression. So, for reclosed cracks, the elementary

stiffness matrix in compression is completely

Fig. 1 Illustration of the main

aspects of the proposed ‘‘semi-

explicit’’ probabilistic cracking

model
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recovered while the elementary tensile strength ft is set

to zero.

2.3 Statistical model parameters

The constitutive law (r; e) is completely defined by two

parameters: the tensile strength ft and the volumetric den-

sity of dissipated energy gc. An energetic regularisation

technique allows to compute gc from the surface cracking

energy Gc: gc ¼ Gc=le [7]. The quantity le denotes the

elementary characteristic length and is here computed from

elementary volume as le ¼ V1=3
e . More complex definitions

are possible, depending on the FE shape and the order of

interpolation of the displacement field. This choice can

influence the predicted crack paths, however due to the

probabilistic aspects of the model this effect is strongly

reduced.

Mechanical properties ft and Gc are defined element-by-

element according to spatially uncorrelated Weibull and

lognormal statistical laws respectively [23].

Due to the aforementioned modelling assumptions (Sect.

2.1), their statistical parameters depend on the elementary

volume through the local heterogeneity ratio ne. The only

exception is the mean value of the energy distribution,

which is assumed independent of ne. Its value is estimated

as lG ¼ Gc, where Gc is the critical strain energy release

rate as defined in the context of the linear fracture me-

chanics (LFM) by [31]. For the concrete formulation used

herein (Table 1) its value has been experimentally obtained

by [55]: Gc ¼ 1:31410� 10�4 MN=m.

Using Gc as model parameter instead of the fracture

energy Gf [29], as stated by non linear fracture mechanics

(NLFM) for quasi-brittle materials, is based on two strong

physical assumptions [56, 73]:

1. the Griffith’s theory for brittle fracture is assumed

valid at the FE level. According to this theory, Gc is

proportional to the specific fracture energy per unit

area c, which is an intrinsic material parameter (e.g. in

plane strain conditions: Gc ¼ 2c). Therefore Gc can

also be considered as such, at least in average value.

This assumption is reasonable, in light of the ex-

perimental results obtained by [55, 58];

2. due to the material heterogeneity, the dissipated energy

can undergo variations (dispersion in statistical terms)

around the average value. This dispersion is considered

as directly influenced by the size of the stressed

volume (i.e. of the finite element), as this volume may

(or may not) be concerned by the propagation of a

crack. In particular, as qualitatively illustrated in Fig.

2, it should increase as ne decreases and vice-versa.

The laws bs ¼ bsðneÞ and cs ¼ csðneÞ defining shape and

scale factors of the Weibull distribution for the tensile

strength, as well as the variance gG ¼ gGðneÞ of the

cracking energy distribution, have to be identified through

an inverse analysis approach.

This calibration phase generally requires a large number

of computations and is rather computationally expensive.

However, once the statistical laws have been obtained for a

given material, they can be directly used in other compu-

tations without any ajustements.

3 Fluid transfer in cracking concrete

To study the feasibility of the coupling between

probabilistic cracking and fluid transfers in concrete, a

simplified transfer model is considered. Concrete is treated

as a saturated and initially isotropic porous medium, and

the flow is assumed to be incompressible. Furthermore, the

sole considered source of HM coupling is the influence of

cracking on the local transfer properties.

Under these assumptions, transport problem is governed

by the sole continuity equation of the fluid phase, and can be

separately solved from the mechanical one. The numerical

solution is obtained through a standard FEM formulation [18,

37, 38], using the same computational grid adopted in me-

chanical computations. The treatment of more complex

thermo-hydraulic problems can be easily integrated using

fully coupled staggered solution procedures [38].

3.1 Apparent permeability of the cracked element

Darcy-like fluid flows are assumed both in cracked and

undamaged volume elements. In the absence of body forces

and assuming a steady-stated, single-phase and laminar

flow, the fluid specific mass flow rate q depends on the

local pressure gradient rp according to the linear relation

[19]:

q ¼ q v ¼ �q l�1krp ð2Þ

where v is the mean fluid velocity, q is the fluid density, l
is its cinematic viscosity and k denotes the elementary

permeability tensor.

For undamaged FEs, k coincides with the so-called in-

trinsic permeability tensor of the porous medium:

Table 1 Ordinary concrete mix design

Components kg/m3

Cement: CEM I 52.5 N PMES CP2 340

Water 184.22

Sand: Bernires 0/4 739.45

Gravels: Bernires 6.3/20 1072.14
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k ¼ k0 ¼ k0I ð3Þ

where k0 is the intrinsic permeability of the porous medium

and I denotes the second order identity tensor.

Once a FE is cracked, the macro-crack represents a

preferential pathway for the penetration of fluids. At the FE

scale, this can be taken into account [21, 39, 65] by in-

troducing the non-isotropic ‘‘apparent’’ elementary per-

meability tensor:

k ¼ k0 þ TtkcT ð4Þ

where kc is the cracking induced anisotropic contribution

to the apparent permeability (written in the local reference

system of the crack), and T is the rotation tensor. The term

‘‘apparent’’ is here used to remark that in presence of a

localised/discrete cracks the rigorous definition of ho-

mogenised quantities (e.g. permeabilities) is not possible,

as the assumption of statistical homogeneity [22, 24, 28,

43, 68] underlying the existence of a REV is not verified [8,

38].

The crack contribution kc figuring in Eq. (4) have to be

properly defined, to take into account the loss of isotropy of

the flow within a cracked area and to ensure the mesh

objectivity of the simulated response. If one assumes that

the crack does not modify the flow along the direction of nc

[21, 47], the apparent permeability tensor kc can be written

as follows:

kcðae; ncÞ ¼ kcðaeÞ
ae

le
I� nc � ncð Þ ð5Þ

where kc ¼ kcðaeÞ is the intrinsic crack permeability and le
denotes the the elementary characteristic length for the

hydraulic problem (estimated as in mechanical computa-

tions). From Eqs. (4) and (5) stems directly that when

ae ¼ 0, the crack contribution vanishes. Therefore, no ir-

reversible effects on local fluid flow due to residual cracks

can be taken into account.

3.2 Crack permeability: experimental constitutive law

The intrinsic permeability of the crack kc is conventionally

estimated according to the so-called parallel plates model

[67]. This conductivity model stems directly from the

resolution of Navier-Stokes equations [74] assuming that

the fracture walls are two smooth and parallel plates,

separated by an aperture ae [78]. Real cracks in concrete,

however, have rough walls and variable apertures. In nu-

merical modelling, some authors [62, 63] suggest to correct

the standard cubic law by introducing a phenomenological

factor a[ 1 such that:

kc ¼ kcðaeÞ ¼
a2e
12 a

ð6Þ

The factor a is typically assumed constant, with values

ranging between 10 and 1000 [1, 45, 77] depending on

concrete formulations and adopted experimental proce-

dures. However, as experimentally shown by [50], the

parameter a could not be considered as a constant as it

Fig. 2 Influence of the local

heterogeneity ne on the crack

propagation on a heterogeneous

volume element and influence

on the cracking energy

dispersion
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should decrease during the crack opening process. In par-

ticular, the following power-law relation can be used:

a ¼ aðaeÞ ¼ bace ð7Þ

where b[ 0 and c\0 are two parameters depending on

the crack geometry and, indirectly, on the concrete for-

mulation. For the ordinary concrete formulation herein

used (Table 1), the following values hold: b ¼ 5:625�
10�5 and c ¼ �1:19 (if ae is expressed in metres).

Finally, combining Eqs. (6) and (7), the following

constitutive law can be used in numerical computations:

kc ¼

a2�c
e

12b
ae\ae;t

a2e
12

otherwise

8
>><

>>:

ð8Þ

where ae;t is the the crack opening such that the parallel

plates model is recovered (a ¼ 1) (Fig. 3).

4 Coupling procedure

A Monte-Carlo like procedure is used to obtain a statistical

description of the HM response of the analysed system.

Under the aforementioned weak HM coupling assumption,

the mechanical and hydraulic problems are sequentially

solved (using two specialised and ad-hoc developed FE

codes) as follows:

1. a series of mechanical simulations is performed to

induce cracking and to estimate the structural me-

chanical response;

2. the local cracking informations (elementary openings

ae, cracks orientations nc) obtained in mechanical

computations are used, in hydraulic computations, to

define elementary apparent permeability tensors k;

3. the transfer properties of the cracking structure are

then statistically analysed and put into relation with

mechanical fields.

In the following sections, the feasibility of the proposed

modelling strategy is explored by simulating the HM

splitting tests by [50], for estimating the real-time evolu-

tion of the transfer properties of a concrete sample under

Brazilian loading. This study in performed in two phases:

1. purely mechanical experimental results are first used

(Sect. 5) in order to identify the statistical parameters

bs; cs and gG (defined in Sect. 2.3) for two values of the

elementary heterogeneity ratio:

ne ¼ 0:01 and ne ¼ 0:001 ; ð9Þ

2. in the second phase (Sect. 6), the calibrated parameters

are used as input data in HM computations. These

latter are performed using a FE mesh which is different

from those used in previous phase. This allows to

obtain a first validation of calibrated statistical pa-

rameters and, at the same time, an estimation of the

model capabilities in predicting fluid transfers in

cracking media.

5 Mechanical model parameters identification

Purely mechanical experimental results obtained by [50] on

samples ds = 110 mm in diameter and ts = 50 mm in

thickness are considered as reference data to perform a

preliminary inverse analysis on the statistical parameters of

Fig. 3 Experimentally adapted parallel plates model (Eq. 8)
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the mechanical model. The choice of the optimal set of

parameters is performed using a semi-automatic procedure,

based on the comparison between the experimental and

numerical global sample responses.

5.1 Numerical modelling of the Brazilian test

The mechanical response of a cylindrical sample under

Brazilian loading is numerically simulated according to the

proposed ‘‘semi-explict’’ cracking model.

Numerical computations are performed using two FE

mesh (Fig. 4). They are composed respectively of 4250 and

13,037 four-noded tetrahedral FEs with linear interpolation

in the the displacement field. For both mesh, the central

zones of the sample are discretised through structured grids

composed by FEs with quasi-constant ne values (i.e. ele-

mentary volumes).

The upper and lower steel bearing plates are represented

through two linear elastic parallelepipeds b in width. Their

presence allows to distribute external load over a finite

width bearing strip and ensure to limit damage concentra-

tions near the bearing surfaces (i.e. constrained nodes). It is

well-known that, in Brazilian tests, the b=ds ratio sensibly

influences the sample mechanical response and can induce

scale effects [53, 54]. However, the chosen width

(b = 1 cm) is small enough to neglect its influence on the

simulated response [49] and, at the same time, it is com-

pletely representative of the experimentally observed

contact areas between the bearing plates and the sample

surfaces [9, 50].

Diametrical loading is simulated by imposing vertical

displacements of the upper bearing strip. In analogy with

the experiments, a indirectly controlled loading technique

is used to avoid mechanical instabilities (snap-backs/

through phenomena) in the phase post-peak of force. The

vertical displacement increment at each loading step is then

adjusted to ensure monotonically growing mean sample

diameter variations Dds. These latter are computed as lin-

ear combination of the horizontal displacements of the four

nodes representative of the real measurement points (Fig.

8). Numerically, this is obtained through the arc-length

type algorithm [15, 48, 52] presented by [49].

In the following, in analogy with experiments, the me-

chanical response of the sample is represented through the

average diameter variation of the sample Dds and the

diametrical load F.

5.2 Parameters identification: global sample responses

Ten simulations for each set of parameters are performed.

One can show that this represent a good compromise be-

tween CPU time and accuracy of the solution. Further

increases in the number of simulations do not induce sen-

sible variations in terms of mean sample response.

Based on the statistical interpretation of about 4000

computations, the following parameters have been finally

chosen:

bs ¼
6:6; ne ¼ 0:01

7:0; ne ¼ 0:001

�

cs ¼
1:0; ne ¼ 0:01

1:0; ne ¼ 0:001

�

ð10Þ

lg ¼ Gc 8 ne gG ¼
7� Gc; ne ¼ 0:01

10� Gc; ne ¼ 0:001

�

ð11Þ

to obtain the tensile strength in MN and the cracking en-

ergy in MN/m. From parameters bs and cs is easy to

compute, the mean values and the variance of the strength

distribution [23]:

ls ¼ bs Cð1þ c�1
s Þ g2s ¼ b2s Cð1þ 2c�1

s Þ � l2s ð12Þ

where C is the so-called gamma function.

The ðF;DdsÞ responses corresponding to the calibrated

parameters are depicted in Fig. 5. A good agreement with

experimental results can be put in evidence both in terms of

mean values and dispersion. However, it is worth observing

that numerical simulations cannot continue after Dds
reaches the maximum value of 80 lm (i.e.\300 lm ex-

perimentally analysed). For larger Dds levels, the iterative

resolution algorithm fails to converge, due to the poor

conditioning of the stiffness matrix, resulting from the

presence of many cracked elements in the central zone of

the specimen and/or to uncontrolled oscillations in ele-

mentary opening process.

It is worth observing that the unity value assigned to the

shape factor of theWeibull law, for bothne values, corresponds
to the transition between lognormal and exponential distribu-

tions. This result is consistent with the results of the inverse

analysis performed by [71] using a probabilistic elastic-brittle

constitutive law. Furthermore, consistently with the main

modelling assumptions, the variance of the energy distribution

increases with the elementary heterogeneity ne.

5.3 Local informations: crack openings

Figure 6 represents the horizontal displacement fields and

elementary cracks distributions for three phases of a repre-

sentative test. Numerical results put in evidence that: (1) in

the pre-peak load phase, the deformation process between the

two faces of the sample remains symmetric and the stress/

strain fields are well approximated by standard elastic solu-

tions [75]; (2) once the peak of load is attained, the crack

opening process become strongly un-symmetric. Crack lo-

calisation starts on one face of the sample and rapidly pro-

pagates to the other one. The deformation field then localises

in a band of width approximately equal to the size of one

Ann. Solid Struct. Mech. (2015) 7:1–16 7
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element. As experimentally observed by [50], in this phase

the sample is split into two undamaged quasi-elastic blocks.

From a qualitative point of view the computed displacement

fields are very similar to those obtained by [50] using a digital

imaging correlation technique.

A good agreement between numerical and experimental

results can be observed also in quantitative terms. In Fig. 7

the comparison is established in terms of mean crack

opening am at mid-height of the plane faces of the sample.

For both sides of the sample, crack apertures are

Fig. 4 a Finite element mesh

used to calibrate the statistical

parameters of the mechanical

model (inverse analysis),

b imposed boundary conditions,

c definition of the loading

control variable

8 Ann. Solid Struct. Mech. (2015) 7:1–16
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numerically computed as follows. In a first step, the posi-

tion of the ‘‘crack’’ is obtained from the displacement field

corresponding to the last loading step. In a second step the

crack aperture am;fðrÞ at mid-height of the sample is com-

puted as the relative displacement of the two nodes dis-

posed on the opposite sides of the crack. As these nodes

share two FEs, a crack is considered as present (i.e.

am;fðrÞ 6¼ 0) only if both the elements are cracked. Other-

wise am;fðrÞ ¼ 0. Finally, the mean crack opening is com-

puted as am ¼ ðam;f þ am;rÞ=2.
For both mesh, once a macro-crack develops into the

sample, the relation ðam;DdsÞ is pseudo-linear as in

experiments.

6 Hydro-mechanical computations

The complete HM splitting test is modelled in this section.

The statistical parameters calibrated in Sect. 5, are used as

input data of the mechanical model. However, due to the

variable dimensions of the FEs ensuring the spatial dis-

cretisation of the sample, linear functions of ne are used to

define bs ¼ bsðneÞ; cs ¼ csðneÞ and gG ¼ gGðneÞ (Sect. 2.3).

6.1 Numerical modelling of the HM test

The real-time evolution of the transfer properties of a

cylindrical sample under loading is numerically simulated.

The FE mesh adopted in computations is depicted in Fig. 8.

It is composed of approximately 44,000 tetrahedral finite

elements with linear interpolations of nodal displacements

and pressures.

The mechanical loading is performed according the

numerical procedure presented in previous section. Con-

cerning the hydraulic boundary conditions, two constant

fluid pressure distributions pinðoutÞ are applied on two cir-

cular plane surfaces SinðoutÞ of the sample in real-time with

the mechanical load. Their diameter d ¼ 0:077m is equal

to those of the silicone joints experimentally adopted in

order to ensure the absence of leaks at the contact between

the experimental equipment and the sides of the sample.

More details are given in [50].

6.2 Representative transfer variables

The hydraulic response of the sample is represented

through the sample transmissivity Tnum.

Under the assumption of unidirectional flow between the

two plane faces of the sample, it is obtained at each cal-

culation step as:

Tnum ¼ �Qnum

l
q

Dp
ts

� ��1

ð13Þ

where Qnum is the mass flow rate (computed at the outlet/

inlet section) and Dp is the differential pressure.

The comparison of Tnum with the homologous ex-

perimentally obtained quantity call for some consid-

erations. Due to the saturated and laminar flow conditions,

the total transmissivity Tnum can be additively decomposed

as follows:

Tnum ¼ T0
num þ Tc

num ð14Þ

where T0
num is the contribution of the flow through the

porous medium and Tc
num is those corresponding to the

Fig. 5 Global (F;Dds) responses obtained through the two FE mesh using the chosen statistical parameters, with approximative identification of

the loading levels corresponding to the crack distributions and displacement fields depicted in Fig. 6
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crack flow. In all rigour, this quantity is not directly

comparable to experimental one, as in this case only the

crack contribution Tc
exp is known. The comparison is

however possible if one observes that due to the low per-

meability of the material (k0 � 10�21m2 [5]), the crack

contribution to the mass flow rate is several times greater

than those associated to the porous medium

(T0
num � 10�24m4), already for very small crack openings.

Therefore: Texp � Tc
exp.

6.3 Numerical results

The mean (F;Dds) and (Tnum;Dds) responses, computed

over ten mechanical and hydraulic simulations, are repre-

sented in Fig. 9. The crack distributions and the fluid flow

fields for three phases of a representative test are depicted

in Fig. 10.

During the test, sample transmissivity Tnum evolves ac-

cording two main phases: (1) For low Dds levels (\15 lm),

Fig. 6 Crack distributions and

horizontal displacement fields

inside the sample for three

phases of a representative

numerically simulated Brazilian

test
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approximately up to the the peak force, the sample trans-

missivity Tnum remains almost constant (Tnum ¼ T0
num). This

condition does not correspond to the absence of cracks in

the sample, as isolated elementary cracks may be present

already for moderate loading levels. However, their con-

tribution to Tnum remains negligible (Tc
num\T0

num). It is

worth observing that this behaviour should not be inter-

preted as a numerical evidence of the existence of threshold

Fig. 7 Procedure to compute crack opening displacement at mid-height of the sample am from displacement field and comparison between

numerically computed and experimentally obtained (am;Dds) relationships

Fig. 8 a Finite element mesh used in HM computations and b hydraulic boundary conditions
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crack opening beyond which the water flux is not influ-

enced by the crack [2, 77], as a a unique macro-crack (i.e.

continuous flowing path) is not yet present in the specimen

and a crack opening can not be defined; (2) Once the peak

load is attained, a macro-crack propagates through the

specimen. Due to the creation of this preferential flow path,

Tnum rapidly increases by several orders of magnitude.

Numerical results tends to overestimate the experimental

transmissivity values (Tnum [ Texp). This is partly due to

the fact that the experimentally adapted parallel plates

model (Eq. (7)) is strictly valid only in the range of ex-

perimentally explored crack apertures (20 lm\
a\ 160 lm). Therefore, the extrapolation of these results

to thinner cracks (a\ 20 lm) calls for further confirma-

tions. From the numerical point of view, a further cause for

over-estimation may be associated with the possible pres-

ence of adjacent cracked FEs. In this case, each FE con-

tributes to the Tnum in proportion to the third power of its

own crack opening.

A good agreement between numerical and experimental

results can be put in evidence both in terms of mechanical

and hydraulic responses. The comparison among the me-

chanical responses obtained in this series of analysis and

those previously obtained using different FE mesh, pro-

vides a further confirmation of the independence of the

global simulated response with respect to the computa-

tional grid. Due to the aforementioned difficulties in

simulating Brazilian tests, a complete validation of the

proposed modelling approach can not be obtained. One can

however show that the simulated responses are completely

comparable to the experimental ones, at least in terms of

tendency, over the whole range of experimentally explored

Dds.

7 Conclusions

A numerical finite element study on fluid leakage in

cracking concrete has been presented. Concrete cracking is

modelled through a macroscopic (‘‘semi-explicit’’)

probabilistic model. Material heterogeneity is taken into

account through the use of statistical distributions of me-

chanical properties (tensile strength and cracking energy)

[57, 60, 71–73]. Cracking is treated element-by-element

without an explicit definition of a propagation criterion. In

this approach, macro-cracks results from the progressive

and random creation of elementary cracks. The main

physical assumption is that each FE represents a volume of

heterogeneous material [57, 71], whose mechanical be-

haviour is controlled by its own heterogeneity degree ne ¼
Ve=Vg (i.e. the ratio of the elementary volume Ve to a

volume representative of the heterogeneity of the material

Vg). In the present formulation, it is assumed that the

cracking process (i.e. the creation and propagation of a

crack within the element itself) induces some local energy

dissipation. This dissipative process is mathematically

represented through a probabilistic isotropic damage model

[36]. According to the aforementioned modelling as-

sumption, material properties (strength and fracture ener-

gy) are defined element-by-element according to spatially

uncorrelated random fields. Their statistical parameters are

defined for each element depending on its own elementary

volume (Ve) according to experimentally validated laws.

The cracking-transfer coupling is treated as weak. It is

assumed that the cracking of the FE, of mechanical origin,

induces a loss of isotropy of its own apparent permeability

tensor. The use of an experimentally modified parallel

plates model [50] allows to compute the crack

Fig. 9 (F;Dds) and (Tnum;Dds) responses for the whole hydro-mechanical series of computations and approximative identification of the

simulation steps corresponding to the crack distributions and fluid flow fields depicted in Fig. 10
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permeability, macroscopically taking into account the main

causes of the deviation between the idealised Pouiselle-like

flow and the flow in real cracks [78].

A probabilistic Monte-Carlo type approach allows to

statistically validate the numerical results.

The feasibility of the proposed modelling strategy is

explored by simulating the HM splitting tests developed by

[50], for mass flow rate measurements through concrete

samples under Brazilian loading. Experimental results have

been first used to identify the statistical parameters of the

mechanical model for two ne values. Then, the calibrated

parameters have been used as input data in HM computa-

tions. Numerical results provided two kinds of informa-

tions. The first-one concerns the relevance of the

mechanical model in predicting cracking. The second-one,

concerns a verification of the validity of the coupling

Fig. 10 Distribution of cracked

FEs and fluid flow field

computed for three phases of a

representative hydro-

mechanical Brazilian test
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strategy in estimating fluid leakage in cracking concrete (at

least at the sample scale). This second aspect represents a

further indirect verification of the adequacy of the me-

chanical model in a ‘‘fine’’ description of cracking. Ac-

cording to the theoretical predictions, the laminar flow

through a crack is indeed completely determined by the

geometry of the crack itself. Therefore, an accurate pre-

diction of the fluid flow rate through the cracking sample

can be interpreted as an indicator of the level of accuracy

(at least in statistical terms) of the model in predicting local

cracks informations (i.e. openings, spatial distribution of

the local apertures).

Further research are needed to validate the model at a

structural scale. Furthermore, the complexity of the transfer

model should be increased by taking into account com-

pressible flows (e.g. air), partially saturated conditions and

stronger HM couplings. These aspects are important in

modelling of cracking at a early-age [10, 64, 76], concrete

behaviour at high temperatures [16, 25, 38], hydraulic

fracturing [12, 42, 62].
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32. Jirásek M (2011) Damage and smeared crack models. In: Hof-

stetter G, Meschke G (ed) Numerical modeling of concrete

14 Ann. Solid Struct. Mech. (2015) 7:1–16

123



cracking. CISM International Centre for Mechanical Sciences,

vol 532. Springer, Vienna, pp 1–49
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