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Abstract A numerical investigation on the nonlinear

static behavior of self-anchored long span cable-stayed

bridges with a fan-shaped arrangement of stays is carried

out by adopting a spatial finite element model of the bridge.

An equivalent continuous model of the bridge is also

developed in order to point out the main parameters gov-

erning the non-linear behavior of the bridge to be used in

the more general 3D discrete bridge analysis and to provide

a validation of the discrete model. The importance of an

accurate description of geometrically nonlinear effects

arising from the stays nonlinear response in coupling with

the instability effect of axial compression in girder and

pylons, is evaluated by means of original comparisons with

results obtained by using simplified assumptions. Novel

parametric studies are performed for investigating the

influence of the main geometrical and material design

parameters derived from the continuous model formulation

on the maximum load-carrying capacity of the bridge and

related collapse mechanisms. Different loading conditions,

also including live load eccentricities, and pylon shapes are

also considered and a nonlinear procedure for finding the

initial geometry and prestress distribution under dead load

is incorporated in the analysis. The results point out the

strong role of nonlinear stays response, especially when the

assumed loading condition produces cable unloading, in

coupling with the notable influence of the relative girder

stiffness on the stability bridge behavior. On the contrary,

in general pylon shape and stiffness, live load eccentricity

and torsional stiffness are less important factors in non-

linear analysis.

Keywords Geometrical nonlinearities � Nonlinear stay

behavior � Numerical finite element model � Stability �
Cable-stayed bridge

List of symbols

a Sag effect and stays deformability

parameter

A0 Anchor stay cross sectional area

As Stay cross sectional area

b Cross-section half width of the girder

Ct Girder torsional stiffness

E Young modulus

e Load eccentricity

EA Girder axial stiffness

EI In-plane girder flexural stiffness

EIp xx Out-of-plane tower bending stiffness

EIp yy In-plane tower bending stiffness

EIzz Out-of-plane girder bending stiffness

E�s Dischinger’s secant modulus of the stay

E�t Dischinger’s tangent modulus of the stay

g Dead load

Ir Tower to girder in-plane bending stiffness

ratio

K Pylon top flexural stiffness

Ku Fictitious beam axial stiffness

Kw Fictitious beam torsional stiffness

L Central span length of the bridge

l Lateral span length of the bridge

Le Element length

lo Horizontal projection of the stay length

mf Horizontal flexural couple of the

stays-girder interaction
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mt Torsional couple of the stays-girder

interaction

Ng Axial force in the girder due to the dead

load g

N0
1 ; . . .;N0

n
Pretension forces in the double curtain of

stays

p Live load

qh Horizontal component of the stays-girder

interaction

qv Vertical component of the stays-girder

interaction

S0 Horizontal component of the anchor stays

axial force

u Pylon tops horizontal displacement

�uðlÞ; �vðlÞ; �wðlÞ Prescribed displacements on left anchor

point

�uðrÞ; �vðrÞ; �wðrÞ Prescribed displacements on right anchor

point

v(z) Girder vertical displacements

w(z) Girder horizontal displacement

c Cable weight per unit volume

e Relative in-plane bending stiffness of the

girder

eA Relative axial stiffness of the girder

hx Bending rotation about the x axis in the

discrete model

hy Bending rotation about the y axis in the

discrete model

hz Bending rotation about the z axis in the

discrete model

r0 Initial stress in the stay

s Relative torsional stiffness of the girder

DN(w) Axial force increment in the girder due to

live loads

De Strain increment in the stay

Dr Stress increment in the stay

D Stays spacing

dl Lateral midspan deflection

du Incremental kinematically admissible

displacements

eh Relative out-of-plane bending stiffness of

the girder

kc Critical load

kmax Maximum load

k Load parameter

P Total potential energy functional

h(z) Girder torsional rotation

ra Allowable stress for the stays

rg Stay tension under dead load g

rg0 Anchor stay tension under dead load g

w Pylon tops torsional rotation

1 Introduction

Due to the notable progress in structural engineering,

material and construction technologies, cable-stayed

bridges have become an efficient solution for long span

crossing [1–4]. As a matter of fact in this kind of con-

struction, consisting of three main components (namely

girders, towers and inclined cable stays), the girder, sup-

ported elastically by inclined cable stays, can span a much

longer distance without intermediate supports. On the other

hand, the dead load and live load on the girder are trans-

mitted to the towers by inclined cables exhibiting high

tensile forces which in turn induce high compression forces

in towers and girder.

Long span cable-stayed bridges exhibit a remarkable

nonlinear behavior under dead and live loads. Nonlinear

effects in cable stayed bridges may arise from different

sources, including the nonlinear behavior of a single stay

exhibiting a different response in loading and in unloading

due to the cable sag effect induced by dead load, changes in

geometrical configurations due to large deflections effects

(usually large rotations but small strains) in both towers

and girder due to their slenderness, the geometrical insta-

bilizing effect of the axial compression induced in the

towers and girder by inclined stays, as well as the inter-

actions between cables, deck and pylons nonlinearities

[5–7]. Other nonlinear effects may be related to the con-

stitutive behavior of materials [8–10] or to the coupling

between torsion and bending of the girder.

Considerable attention has been devoted in the literature

to the nonlinear structural behavior problem of cable-

stayed bridges [5–17]. In order to reduce the complexity of

the highly non-linear problem, most studies available in the

literature have introduced some reasonable assumptions in

their formulations including one or more of sources of

nonlinearities.

For instance, pylons nonlinearities arising from beam-

column effect are often neglected assuming a high flexural

stiffness in pylons [12]. An in-plane analysis is typically

carried out excluding out-of-plane and torsional deforma-

tion modes and their interaction [5, 6, 9, 11, 12, 15], which

can be usually not important in absence of eccentric

loading also when a three-dimensional bridge model is

developed [7, 13]. The prebuckling behavior is often

assumed to evolve linearly with the load parameter, such

that prebuckling displacements, stresses and strains vary

linearly with the load parameter thus leading to a linear

eigenvalue problem for the critical load [7, 11, 16]. The

cable is frequently considered as a straight truss element

for the whole inclined cable stay with uniform properties

from end to end incorporating the sag effect by means of
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the equivalent modulus of elasticity corresponding to the

tangent Dischinger’s fictitious modulus under the hypoth-

esis that the change in tension in the cable during a load

increment is not large [8, 17]. Moreover, often the truss

element is assumed to have a tension-only behavior,

namely in order to take into account for stiffness reduction

in compression the tangent modulus is assumed to vanish

when shortening occurs [5, 6, 14, 16]. In addition, the

initial configuration of the bridge under dead loads has

been determined adopting several methods, ranging from

nonlinear optimization procedures to simplified techniques

for estimating initial cable forces based on equilibrium

requirements [5, 6, 9, 12, 18, 19].

Although most nonlinear analyses have focused on

geometrical nonlinear effects some analyses have involved

both geometric and material nonlinearities and analyzed

the ultimate behavior and load capacity of a cable-stayed

bridge [8–10, 17, 20].

Due to its inherently nonlinear behavior a conventional

analysis of the cable-stayed bridge, based on linear

assumptions and on the tangent value of the equivalent

elasticity modulus [15, 21], is often not applicable espe-

cially for long span bridges for which the main girder has

the tendency to become more slender and lighter [12, 13,

22]. Existing models which do not take into account

appropriately for the softening cable behavior under

unloading related to cable sag geometrical nonlinearities,

such as those based on the equivalent tangent modulus of

elasticity or those assuming that the cable resists only

tensile axial force with no stiffness against axial com-

pression (tension only truss behavior) may lead to a notable

underestimation of the maximum load carrying capacity of

the bridge for specific loading conditions. Moreover, since

axial compression in girder and pylons increases with the

length of the central span, the stability of these members

becomes an important aspect in the design of cable-stayed

bridges [7, 11]. However, the actual prebuckling behavior

of the bridge may deviate notably from the linear

assumptions depending on the specific loading condition

and a nonlinear limit point analysis should be carried out in

place of a linear stability analysis [9].

As a consequence, a more realistic nonlinear structural

analysis taking into account for a precise evaluation of

the most important geometrically nonlinear effects should

be adopted in conjunction with a nonlinear stability one.

To this aim this contribution proposes a numerical

investigation on the nonlinear static behavior of long

span cable-stayed bridges with a fan-shaped arrangement

of stays, by considering the nonlinear behavior of the

single stay in coupling with the instability effect of the

axial compression in both girder and pylons. In the sake

of simplicity material nonlinearities have not been con-

sidered here.

After an introductory analysis illustrating the general

features of the buckling and post-buckling behavior of the

cable stayed bridge together with its stability behavior by

using also a discrete example, the analysis is carried out

numerically by introducing a general nonlinear cable

stayed bridge model. Firstly a simplified continuous

model, assuming a continuous distribution of the stay

stiffness along the girder, is briefly introduced in order to

determine the main parameters governing the non-linear

behavior of the bridge in view of the subsequent para-

metric analysis based on the more general 3D discrete

bridge model. The resulting nonlinear differential prob-

lem is also numerically integrated with reference to an in-

plane analysis case and thus obtaining results able to

capture the main non-linear effects on the static response.

Therefore a nonlinear three-dimensional finite element

model of the bridge is formulated to accurately determine

the influence of nonlinear effects on the nonlinear

structural bridge behavior and on its maximum load

carrying capacity. The cable system is modeled according

to the multi element cable system approach, where each

cable is discretized using multiple truss element and large

deformations are accounted by using Green–Lagrange

strains. The bridge has been modeled by means of a 3D

assembly of non-linear beam elements and the connec-

tions between cables and girder have been obtained by

using constraint equations. Comparisons between predic-

tions obtained by using the continuous and the discrete

models are carried out in order to check the limit of

validity of the continuous formulation and to assess the

accuracy of the subsequent parametric analyses based on

continuous model results.

The significance of geometrically nonlinear effects on

the bridge structural analysis is investigated by means of

original comparisons with results obtained by using

simplified assumptions regarding nonlinear stays behav-

ior, namely the tangent modulus approximation and the

tension-only model. This aspect, scarcely analyzed in

previous studies to the authors’ knowledge, is here

investigated in a general context by including an accurate

modeling of the different sources of geometrical-non-

linearities arising from cable sag effects and instabilizing

effects of axial compression in both girder and pylons.

Novel parametric studies are performed with reference to

the 3D FE model for investigating the importance of the

main geometrical and material design parameters on the

nonlinear structural behavior of the bridge in presence of

both in-plane and out-of-plane deformation mechanisms.

Different loading conditions, also including live load

eccentricities, and pylon shapes are also considered and a

nonlinear procedure for finding the bridge initial shape is

incorporated in the analysis in order to determine prop-

erly the initial geometry and prestress distribution under
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dead load. This represents another aspect of novelty of

the paper since in previous parametric studies existing in

the literature various simplified assumptions have been

introduced including one or more sources of

nonlinearities.

2 Preliminary remarks and overview of nonlinear

bridge behavior

2.1 Nonlinear cable behavior

Cable response is one of the most relevant sources of

nonlinear behavior of cable-stayed bridges and, as a con-

sequence, it must be accurately considered in cable-stayed

bridge design in order to avoid inappropriate predictions of

the actual load carrying capacity.

As far as the assumptions regarding stay response are

concerned it must be evidenced that the for large stress

increments the secant modulus of the stress–strain rela-

tionship must be adopted instead of the tangent one, due to

the high geometrical nonlinearity related to dead load of

the stay.

The stress increment Dr in the stay may be written in

the form:

Dr ¼ E�s Deð ÞDe; ð1Þ

where E�s is the secant modulus of the stay depending

nonlinearly on the axial strain De (see Fig. 1). It is worth

noting that the axial strain is measured along the stay chord

(dashed line in Fig. 1).

Assuming a parabolic approximation of the stay

deformed configuration, the secant modulus has the fol-

lowing expression showing the nonlinear dependence on

the stress increment and the different behavior under

positive or negative strain increments (see [1]):

E�s ¼
E

1þ c2l2
0
E

12r3
0

1þb
2b2

; b ¼ 1þ Dr
r0

; ð2Þ

where E is the Young modulus, A the cable cross-

sectional area, c the cable weight per unit volume, lo the

horizontal projection of the stay length, and r0 the initial

stress in the stay. On the other hand, for small stress

increments from the initial configuration (i.e. b ? 1), the

cable equivalent modulus of elasticity can be considered

constant during load increment and the nonlinear cable

response can be approximated by means of the tangent

modulus given by the well-known Dischinger’s formula

(see [1, 15, 21]):

Dr
De
¼ E�t ¼ lim

b!1
E�s ¼

E

1þ c2l2
0
E

12r3
0

: ð3Þ

Assuming that when shortening occurs the cable

stiffness vanishes leads to the tension only approximation

of stay behavior (see for instance [5, 6, 14, 16]):

Dr
De
¼ E�t if De� 0

0 if De� 0

�
: ð4Þ

when the cable sag effect is neglected E�s can be replaced

by E.

In order to analyze the nonlinear stay response it is

convenient to obtain an asymptotic expansion of the secant

modulus Eq. (2) as a function of the axial strain:

E�s Deð Þ ¼ E�0 þ E�1Deþ E�2De2 þ O De3
� �

: ð5Þ

The remaining terms can be obtained by considering the

Taylor series expansion of Eq. (2) up to the second order as

a function of Dr:

E�s Drð Þ ¼ E�t þ
3aE

2 1þ að Þ2r0

Dr

þ 9a2E

4 1þ að Þ3r2
0

� 2aE

1þ að Þ2r2
0

 !
Dr2 þ O Dr3

� �
;

ð6Þ

and by substituting Dr as a series expansion of De up to the

second order by using Eqs. (1) and (5):

Dr ¼ E�0Deþ E�1De2 þ O De3
� �

:

By comparing the terms of the same power in Eqs. (6)

and (5) we obtain that the term of order zero E�0 can be

identified with the tangent modulus E�t , whereas the first

and second order terms E�1 and E�2 are respectively:

0 ε 0

σ0

Δσ

Δε

1

1

E  (tangent)*
t

E  (secant)*
s

σ

ε

l 0

σ As

H

σ As

Fig. 1 Axial stress–strain constitutive cable behavior
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E�1
�

E�t ¼
3aE

2ð1þ aÞ2r0

; E�2
�

E�t ¼
5a� 4ð ÞaE2

2ð1þ aÞ4r2
0

;

a ¼ c2l20E

12r3
0

: ð7Þ

It is worth noting that the parameter a accounting for the

sag effect and defining stays deformability usually assumes

values lower than unity (0.1–0.2) and consequently E�1 is

positive whereas E�2 assumes negative values.

The effects of the above assumptions on the nonlinear

cable behavior, can be analyzed qualitatively by consid-

ering a complete fan shaped and self-anchored scheme with

the girder not constrained in the horizontal direction and

the load uniformly applied on the central span. Generally

speaking assuming a linear prebuckling behavior the gir-

der’s compression produces an equilibrium bifurcation

when the load reaches the critical value. The postbuckling

behavior strictly depends on the shape of the buckling

mode and may show a decreasing behavior due to the

softening cable response in compression (see the dashed

line curve in Fig. 2).

The actual bridge behavior taking into account the

nonlinear prebuckling effects, doesn’t exhibit an equi-

librium bifurcation and is qualitatively shown by means

of a continuous line in Fig. 2, where it can be noted

that the actual bridge behavior is similar to that of a

structure with initial imperfections whose initial post-

buckling behavior is determined by that of the idealized

perfect structure. Generally speaking a snap buckling

behavior is expected with a local maximum in the static

equilibrium path at a value less than the critical load.

The magnitude of the load maximum can be signifi-

cantly below of the critical load as in imperfection

sensitive structures. This behavior is mainly attributed to

the softening behavior of the stress–strain stay relation-

ship under shortening.

As a matter of fact, when the secant modulus model is

adopted a strong snap buckling behavior is expected with

a load maximum kmax significantly below the critical load

kc and post-buckling behavior of asymmetric unstable

type being related to the higher order terms in the

expansion of E�s shown in Eq. (5). On the other hand,

when the cable behavior is modeled by means of the

tangent modulus an unconservative prediction can be

obtained since the limit load is larger than the more

accurate one based on the secant modulus formulation and

a mild snap buckling occurs as in a symmetric unstable

bifurcation. The magnitude of the critical load, depending

exclusively on the tangent modulus distribution along the

stays, changes slightly with respect to the secant modulus

formulation. For instance, the critical load should remain

unchanged provided that for each stay the stress at

bifurcation is adopted as initial stress in the tangent

modulus formula. Note that when buckling occurs at

higher load levels, as in the case of uniform loading on

the entire bridge, a value near to E can be assumed for

the tangent modulus.

A similar behavior occurs when the tension only truss

model is adopted but the maximum load may be notably

lower than the more accurate prediction obtained using the

secant modulus model, thus leading to a conservative

prediction of the maximum load-carrying capacity.

The above preliminary study of the bifurcation buckling

is not complete without some attention to stability con-

siderations. According to the incremental static stability

criterion, the examined equilibrium configuration C is

considered stable if the second order approximation of the

difference between the internal deformation work and the

external work of distributed dead loading kq during an

incremental deformations from C to an adjacent configu-

ration C0 is positive for all incremental kinematically

admissible (K.A.) deformations du. This criterion coincides

with the condition of a local minimum of the total potential

energy functional and restricting the attention to an in-

plane stability analysis, for the sake of simplicity, the sta-

bility functional for the bridge model shown in Fig. 3,

assumes the following expression:

L l

H
λp

δl

λ

δ

λmaxλc

λmax

λmaxλc

Linear prebuckling
E  (secant)*

s

E  (tangent)*
t

E  (Δε>0); 0 (Δε<0)t

l

λc

*

l

E  (tangent)*
t

E  (Δε>0); 0 (Δε<0)t
*

E  (secant)*
s

Fig. 2 Nonlinear bridge behavior in terms of load parameter versus

lateral midspan deflection curve
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DP ¼ P uþ duð Þ �P uð Þ

ffi 1

2

ZlþL=2

�l�L=2

EIdv002 þ EAdw02 þ N uð Þdv02
� �

dz

þ
X
LþR

1

2

ZhþH

0

EIPdv002 þ EAPdw02 þ N uð Þdv02
� �

dzP

þ 1

2

XnL

i¼1

E�t uð ÞASiH

sin a
de2

L þ
1

2

XnR

i¼1

E�t uð ÞASiH

sin a
de2

R

þ 1

2

E�t0L uð ÞA0LH

sin a0

de2
0L

þ 1

2

E�t0R uð ÞA0RH

sin a0

de2
0R [ 0 8du 6¼ 0 K:A: ð8Þ

where according to the linearized theory of elastic stability

(see [23, 24] for instance), taking into account that the

current equilibrium configuration C is close to the initial

one Co the stability functional is evaluated directly on the

initial configuration Co, namely the incremental elastic

response of bridge components (girder, pylons and stays) is

evaluated in the natural configuration and the axial stress

distribution in the girder N(u) due to dead loading in C is

determined with reference to the linear theory. It is worth

noting that the above expression of the stability functional

adopts the classical Green–Lagrange strain measure for-

mulation specialized to the case of small strains and large

rotations valid for thin bodies, and Eulero-Bernoulli beam

kinematical assumptions.

In the stability functional Eq. (8) v and w denote the

transverse and axial displacements for both girder and pylons

and the meaning of other symbols are illustrated in Fig. 3. The

first integral in Eq. (8) corresponds to the girder and contains

the stabilizing effects of girder flexural (EI) and axial stiff-

nesses (EA) and the instabilizing geometrical effect due to

axial compression N, respectively. The second term represents

the analogous term relative to the left (L) and right (R) pylons

containing both stabilizing stiffness and instabilizing geo-

metrical terms. The third and fourth terms refer to the stabi-

lizing effects of the nL and nR stays attached to the left and

right pylons, respectively. The cross section area of the i-th

stay is denoted by Asi. The last two terms in Eq. (8) are related

to the stabilizing effects of anchor stays. Moreover, the

deformation increment produced by the additional displace-

ments in both regular and anchor stays is, respectively,

deL=R ¼
dvþ dwp

H
sin2 a� dw� dvp

H
sin a cos a;

de0L=R

dwp

H
sin2 a0 	

dw� dvp

H
sin a0 cos a0;

where ± applies to the left or right pylon, respectively.

The contributions arising from the stays nonlinear response

can be obtained by considering the following second order

approximation of the stay strain energy increment:

DWstay ¼
ASiH

sin a

Zde

0

E�s Deð ÞdDe

¼ ASiH

sin a

Zde

0

E�0 þ E�1Deþ E�2De2 þ � � �
� �

dDe

¼ 1

2

ASiH

sin a
E�t de2 þ � � �

where Et
* is intended to be evaluated at the corresponding

stress level r0 in each cable acting in the examined bridge

equilibrium configuration.

It results that bridge stability is mainly a consequence of

two competing nonlinear effects the instabilizing one of

axial compression in both the girder and pylons and the

stabilizing one due to the tangent stiffness of stays attached

to the left and right pylons. The former one generally

increases with the load parameter k, the latter may increase

or decrease depending on the actual deformed configura-

tion of the bridge due to the softening cable behavior under

shortening.

This effect can be shown by considering the curve of the

tangent modulus of a cable stay versus the r0 representing

the stress in the current equilibrium configuration whose

stability is evaluated. The tangent modulus may decrease

drastically when the current stress in the cable decreases

due to shortening of the cable, especially for cables having

0S0
ss

z
y

l L l

v(z) w(z)

H

v (z), w (z)

Δ

E A
E A

αα0

λp

h EI, EA

p

z

y

p

p

p

Fig. 3 In-plane scheme of the cable stayed bridge for the stability analysis
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a large horizontal projection, approaching theoretically

zero for a vanishing stress (see [6], for instance). Specifi-

cally with reference to the nonlinear bridge behavior

envisaged in Fig. 2, the equilibrium is stable up to the

snapping load since as the load parameter increases while

in the central span the instabilizing effect of the axial

compression is balanced by the stiffening stays in the lat-

eral spans stays may show a large stress reduction pro-

duced by the lateral spans deflection and an instability

condition is rapidly reached producing a bound in the

applied load.

The characteristics of the nonlinear behavior of the

cable stayed bridge structural system illustrated in this

section, which strongly depend on the model adopted to

account for non-linear cable response, will be clarified in

the next section by considering a simple discrete model.

These results will be rigorously confirmed by means of

numerical results in the following sections.

2.2 An introductory example

The essential characteristics of the buckling and post-

buckling behavior of the cable stayed bridge structural

system can be illustrated with remarkable verisimilitude

with reference to a one degree of freedom model consisting

of two vertical rigid rods of length L, fixed in translation at

the left end and free to translate in the horizontal direction

at the right one, elastically constrained against vertical

translation by two springs whose nonlinear stiffness coef-

ficients are k1(d) and k2(d).

In presence of an horizontal load k applied as shown in

Fig. 4, the sequence of buckled states is represented by

k ¼ k1ðdÞ þ k2ðdÞ½ 
 cos a L=2ð Þ: The initial postbuckling

equilibrium path can be expressed by the following

asymptotic expansions: In the neighborhood of d = 0 the

following asymptotic expansions are valid:

k ¼ kc þ k1nþ k2n
2 þ � � � ;

kiðdÞ ¼ ki
0 þ ki

1nþ ki
2n

2 þ � � � ; i¼ 1; 2;
ð9Þ

where n = d/L. It is assumed that k1
1

�� ��[ k2
1 [ 0 and that

k0
1 = k0

2 = k0.

Considering that cos a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p
¼ 1� n2=2þ � � �

and imposing that terms of the same power must vanish

separately gives the critical load at which the bifurcated

equilibrium path intersects the fundamental path, and the

higher order coefficients of the load expansion:

kc ¼
k1

0 þ k2
0

� �
L

2
; k1 ¼

k1
1 þ k2

1

� �
L

2
; k2

¼
k1

2 þ k2
2

� �
L

2
�

k1
0 þ k2

0

� �
4L

:

If the spring response simulates the secant modulus

model (the most accurate in this framework), by comparing

Eqs. (9) and (5) with n playing the role of De, we obtain

that k1
1\0 while k2

1 [ 0 and ki
2 [ 0; i = 1,2, since De is

positive for a stay elongation. As a consequence, the first

order coefficient of the load expansion k1 as well as the

second one k2, become negative and an asymmetric

bifurcation occurs at a load level kc = k0L.

On the contrary, when the spring stiffness coefficients

are constant, namely k0
i is the only non-zero term in the

stiffness expansion, thus reproducing the constant tangent

model for the stay behavior Dr=De ¼ E�t , then a symmetric

initial bifurcation occurs with k1 = 0 and k2 \ 0 at the

same load level of the secant modulus model.

Finally when the spring stiffness coefficients are con-

stant (ki
1 ¼ ki

2 ¼ 0) and vanish for shortening according to

the following expressions:k1
0 ¼ k0ð1� signðdÞÞ=2; k2

0 ¼
k0ð1þ signðdÞÞ=2;where sign denotes the signum function,

the tension only model is reproduced and a symmetric

bifurcation also occurs but at a critical level kc = k0L/2

significantly lower than the tangent modulus case.

The actual behavior of the structure can be obtained by

introducing initial imperfections and is characterized by a

snap buckling behavior in the tangent and tension only

models for imperfections of either signs, whereas in the

case of the secant model only for positive imperfections, as

illustrated in Fig. 5.

L cosα L cosα

αδ λ
k1(δ)

k2(δ)

Fig. 4 Discrete model used to illustrate the buckling and postbuck-

ling bridge behavior

λmax

λ

ξ

λ 1

1

E  (secant)*
s

E  (tangent)*
t

E  (Δε>0); 0 (Δε<0)t
*

Fig. 5 Buckling behavior of the discrete model for different stay

response models
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3 Model formulations

In this section firstly an equivalent continuous model of the

bridge is briefly introduced assuming a continuous distri-

bution of the stay stiffness along the girder. This simplified

model allows to point out the main parameters governing

the non-linear behavior of the bridge to be used in the

subsequent more general analysis adopting a 3D nonlinear

finite element discrete bridge model, corresponding to the

actual stays spacing.

3.1 Continuous bridge model

In this section a continuous model for the analysis of the

static response of cable stayed bridges is presented based

on a diffuse stays arrangement (D/L � 1). The proposed

model is able to predict the static behavior of cable stayed

bridges taking into account the nonlinear behavior of the

single stay, adopting the Dischinger’s fictitious secant

modulus for the cables to model the stays nonlinear

behavior and including the instability effect due to the axial

compression in the girder. The analyzed bridge scheme is

illustrated in the Fig. 6. The stays are fan shaped with

constant spacing D. The girder is supported by stays joining

at the tower tops. The two lateral couple of stays, called

anchor stays, assure the bridge equilibrium and are

anchored by means of two vertical supports; the girder is

not constrained in the longitudinal direction.

It is assumed that the erection method is such that the

deck’s final configuration is practically straight and free

from bending moments [12, 25]. The bridge static response

when the live load kp increasing with the parameter k is

applied, is now considered starting from the straight

equilibrium configuration of the bridge’s deck corre-

sponding to the application of the dead load g and cables

pre-stress. The cable stayed bridge deformation is defined

by the following displacement parameters:

• The function v(z) which represents the girder’s vertical

displacements;

• The girder’s horizontal displacement w(z);

• The pylon tops horizontal elastic displacement u;

• The girder’s torsional rotations h(z);

• The pylon tops torsional rotation w.

As a matter of fact, the horizontal equilibrium of the

bridge requires shear forces to be the same at the pylon top

sections and this ensures that displacements of the pylon

tops will always be equal and opposite. Similarly due to

rotational equilibrium considerations about the y-axis, the

pylon tops torsional rotations will always be equal and

opposite.

The vertical, horizontal and torsional equilibrium

equations for the girder respectively are:

EIvIV þ Ng þ DNðwÞð Þv0½ 
0�qv ¼ kp

EAwII þ qh ¼ 0

Cth
II ¼ �mt � kpe;

ð10Þ

where the prime denotes differentiation with respect to z,

EI is the girder flexural stiffness, Ng represents the axial

force in the girder due to the dead load g:

NgðzÞ ¼ gH=2 L=ð2HÞð Þ2� z=H � L=ð2HÞð Þ2
h i

; ð11Þ

DN(w) = EAw0 indicates the axial force increment in the

girder due to live loads, E, A and Ct are respectively the

Young modulus, the cross section area and the torsional

stiffness for the girder. Moreover qvis the vertical component

of the stays-girder interaction, whereas qhdenotes the hori-

zontal component of the stays-girder interaction. The two

components of the stays-girder interaction depend on ESL
*

and ESR
* , representing the Dischinger’s secant modulus for

the cables, respectively applied on the left (L) and on the

right (R) stays with respect to the y–z plane (see the right of

Fig. 6). Note that ESL
* and ESR

* depend on the additional axial

strain De in the cables produced by the additional displace-

ments v, w, u, h and w and that the initial stress of Eq. (2) here

represents the stress in the cables under the dead loads g. In

Eq. (10) mt denotes the torsional couple per unit length.

Usually the stays cross section area As of the left or right

curtains of stays is designed so as dead loads produce

constant tension in all stays and this leads to AS = gD/

(2rgsina) in which rg is defined as a function of the

allowable stress ra as rg = gra/(p ? g) by assuming that

the stress increment in the stays are proportional to the

design live loads p. For the anchor stays the cross sectional

geometric area A0 is designed in such a way that the

allowable stress ra is obtained for live loads p applied to

the central span only, leading to:

A0 ¼ gl=4rg0 1þ l=Hð Þ2
h i1=2

L=ð2lÞð Þ2�1
h i

: ð12Þ

where the initial tension rg0 in the anchor stays is equal to:

rg0 ¼ ra 1þ p

g

L=ð2lÞð Þ2

L=ð2lÞð Þ2�1

" #�1

: ð13Þ

The horizontal and torsional equilibrium equations for

the pylons, involving the effects of the stays-girder

interaction, should lead to integral equations. In order to

write the horizontal equilibrium equation for the left pylon

in a differential form, a fictitious rigid beam is considered

on which the horizontal component of the stays-girder

interaction is applied only for the left part of the bridge (see

also [25]). The towers stiffness is distributed over the

fictitious rigid beam for the entire span of the bridge.

Consequently, the horizontal left pylon equilibrium

equation assumes the following expression:
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KuuII � qh �
Ku

Lþ 2lð Þ ¼ 0; ð14Þ

where Ku and K are respectively the fictitious beam axial

stiffness and the pylon tops flexural stiffness. In particular,

in numerical simulations Ku, acting as a penalty stiffness

parameter assumes a very large value but not too large to

avoid numerical complications. Note that in Eq. (14) the

horizontal component of the stays-girder interaction qh

vanishes on the right side of the bridge (z [ 0).

Similarly for the torsional equilibrium of the left pylon a

penalty flexural stiffness parameter Kw, representing the

torsional stiffness of a fictitious rigid beam, is considered

leading to the following torsional equilibrium equation for

the left pylon:

KwwII � mf �
Kb2w
Lþ 2lð Þ ¼ 0; ð15Þ

where mf is the horizontal flexural couple acting on the left

side of the bridge (z \ 0). Solutions for the differential

Eqs. (10), (14) and (15) are obtained imposing the appro-

priate boundary conditions. With reference to the girder

vertical equilibrium the associated boundary conditions

require that the girder vertical displacement and the cur-

vature vanish at both z = -L/2 - l and z = L/2 ? l.

Analogously with reference to the girder torsional equi-

librium the associated boundary conditions require that the

girder torsional rotations vanish at both z = -L/2 - l and

z = L/2 ? l.

The two boundary conditions associated with the hori-

zontal equilibrium of the left pylon impose that at the left

edge of the fictitious rigid beam KuuI is equal to the

resultant horizontal component S0 of the anchor stays axial

forces, whereas at the right edge KuuI vanishes. The two

boundary conditions related with the torsional equilibrium

of the left pylon impose that at the left edge of the fictitious

rigid beam KwwI is equal to the torsional moment M0

associated to the horizontal components of the anchor stay

axial forces and that at the right edge KwwI vanishes. The

boundary condition related to the horizontal equilibrium of

the girder, requires that the axial force is compatible with

the resultant horizontal component of the anchor stays axial

forces.

In order to analyze the main parameters governing the

differential problem the above equations can be rewritten

in a dimensionless form. To this end the following

dimensionless quantities are introduced:

f ¼ z

H
; V ¼ v

H
; U ¼ u

H
; W ¼ w

H
; n ¼ e

b
; t ¼ b

H
;

a ¼ c2EH2

12r3
g

; e ¼
ffiffiffiffiffiffiffiffiffi
4Irg

H3g

4

s
; eA ¼

Arg

Hg
; s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ctrg

Eb2Hg

s
:

ð16Þ

The parameters e, eA and s, respectively represent a

measure of the relative bending, axial and torsional

stiffness between the girder and stays, whereas a is

related to the stay deformability accounting for the cable

sag effect. Additional details on the continuum bridge

formulation can be found in [12, 25–32]. It is worth noting

that the above formulation does not take into account for

buckling in the horizontal plane (out-of-plane buckling)

and is strictly valid for the H-type pylon shape. These

restrictions will be removed in the more general discrete

bridge model.

The boundary value problem, governing the equilibrium

of the long-span cable stayed bridge, can be reformulated

as a non-linear system of first order ordinary differential

equations subject to boundary conditions only at two-

points. This transformation technique causes an increase of
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Fig. 6 The long-span cable stayed bridge structural scheme
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the variables number. In particular, as far as the in-plane

case is considered (namely h(z) = w = 0) the unknown

variables, defined in the dimensionless integration domain

[-r1 - r2, r1 ? r2] in which r1 is equal to L/2H and r2 is

equal to l/H, are [V, VI, VII, VIII, VIV, U, UI, W, WI]. The

reformulated boundary value problem assumes the form:

y0 nð Þ ¼ g y;nð Þ; �r1 � r2� n� r1 þ r2 ð17Þ

where y = [y1, y2, y3, y4, y5, y6, y7, y8] is a vector of the

unknown functions of the problem (collecting displace-

ment parameters and their derivatives) and g is an oppor-

tune vector function.

In Eq. (17) the prime denotes differentiation with

respect to n. Equation (17) is subjected to the two-points

linear boundary conditions:

B0y 0ð ÞþB1y 1ð Þ¼ c ð18Þ

where B0 and B1 are opportune matrices containing coef-

ficients of boundary and matching conditions and c is an

opportune known vector. The boundary value problem has

been solved by means of an iterative collocation method

implemented in MATLAB which provides a C1-continu-

ous solution by using a cubic collocation polynomial on

each subinterval of the mesh. Starting from an initial guess

for the solution and the mesh, at each iteration the method

adapts the mesh to obtain a sufficiently accurate numerical

solution. Preliminary convergence analyses carried out for

increasing values of the penalty parameter Ku, have shown

that assuming a value equal to EA 9 105 ensures that the

displacement function u practically assumes a constant

value over z with reasonably small errors related to the

approximation of the fictitious rigid beam behavior. On the

contrary, increasing further the penalty parameter leads to

numerical convergence problems in the adopted integration

scheme.

3.2 Discrete FE bridge model

In the present subsection a 3D discrete bridge model is

examined with reference to the actual stays spacing, taking

into account the geometric nonlinear effects for the cable

system under general loading conditions, in order to obtain

more accurate results and to assess the limit of validity of

the continuous model. In the discrete model all the

restrictions placed on the continuum model, such as those

regarding the continuous distribution of stays, the axial

deformability of pylons and the initial configuration under

dead loads, have been removed.

This discrete model has been studied by means a

displacement-type finite element (FE) approximation,

implemented in the commercial software COMSOL MUL-

TIPHYSICSTM [33]. In order to reduce the computational

effort in the numerical calculations, a three dimensional

finite element model has been developed by using beam

elements for the girder and the pylons and nonlinear truss

elements for the cable system. Specifically, the bridge deck

is replaced by a longitudinal spline with equivalent sec-

tional and material properties and the pylons are composed

by two columns connected at their top and at the level of

the bridge deck by two horizontal beam elements. In the

case of the A-type pylon shape the length of the beam

connecting the tops of the columns approaches zero,

whereas in H-type case both the upper and lower horizontal

beams have the same length.

Moreover, the instabilizing effects produced in both

girder and pylons by the axial compression force induced

by stays and due to the girder loading g ? kp has been

accounted by adding the following weak contributions for

the girder and pylons, respectively, to the virtual work

principle formulation:

�
Z
Le

Nhydhy dLþ
Z
Le

Nhzdhz dL

0
@

1
A;

�
Z
Le

Nhydhy dLþ
Z
Le

Nhxdhx dL

0
@

1
A

where N is the axial force, hy, hz and hx denote the bending

rotation about the y, z and x axes, and Le is the element

length (Fig. 7).

The cable system is modeled according to the multi

element cable system (MECS) approach, where each cable

is discretized using multiple truss element. The stiffness

reduction caused by sagging is accounted for by allowing

the cable to deform under applied loads. Large deforma-

tions are accounted by using Green–Lagrange strains and

the axial strain is calculated by expressing the global

strains in tangential derivatives and projecting the global

strains on the cable edge. Additional details about the

approach here adopted to model nonlinear cable behavior

can be found in [28, 33]. It is worth noting that different

approaches have been proposed in the literature to model

the nonlinear cable behavior ranging from the simple

equivalent modulus approach, according to which each

cable is replaced by one bar element characterized by an

equivalent tangent modulus [8, 17] often with a tension

only behavior [5, 6, 9, 14, 16], to more accurate techniques

based on exact analytical expressions for the elastic cate-

nary [34]. Between these two approaches, alternative

techniques have been proposed such as to divide each cable

into several truss elements to adequately model the curved

geometry of the cable or to use isoparametric elements.

Moreover, quasi-secant and refined models for cable con-

stitutive law have been proposed in [35, 36] able to

determine approximate closed-form solution of the statical
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cable-stayed bridge problem, whereas cables have been

modelled in the context of continuous formulation as one

bar elements adopting the Dischinger secant modulus to

investigate the dynamic response of cable-supported

bridges under moving loads [27] or the aeroelastic stability

problem of long-span cable-stayed bridges [37]. Additional

applications of numerical nonlinear cable modelling tech-

niques can be found in [38, 39].

In the case of the simplified cable behavior simulated by

using the tangent modulus, a single truss element is

adopted for each stay and the geometrical nonlinearities are

deactivated. The constitutive behavior is simulated by

introducing the expression shown in Eq. (3) for the truss

element constitutive modulus, with the initial stress derived

from results obtained through the initial shape analysis

formulated in the sequel.

The tension only behavior is modeled similarly except

that a nonlinear constitutive behavior according to Eq. (4)

is incorporated in the constitutive relationship of the truss

element representing the single stay. To this end the lon-

gitudinal modulus of the truss element is multiplied by a

step function depending on the axial strain increment with

respect to the initial configuration of the bridge under dead

loading, in order to exclude any stiffness contribution of

the cable under shortening. Therefore, the constitutive

behavior of the truss element is:

Dr ¼ E�t stepðDeÞDe; stepðDeÞ ¼ 1 if De� 0

0 if De\0

�
.

In order to avoid numerical convergence complications

related to the bimodular constitutive behavior of the ten-

sion only model, an appropriate regularization is adopted

for the step function. To this end the a smoothed step

function available in [33] is adopted approximating the

discontinuous step function by smoothing the transition

within the interval -10-5 \De \ 10-5. In the interval

-10-5 \ De\ 10-5 the smoothed function is defined by a

7th-degree polynomial chosen so that the derivatives up to

the 2nd order are continuous and that the functions have

small overshoots. The constraint condition between the

girder and the stays is modeled with offset rigid links to

accommodate cable anchor points, by means of the extru-

sion coupling variable methodology (see [33] for additional

details). Briefly, once the displacement field of the 3D

beam (u, v, w, hx, hy, hz) is linearly extruded from the

source domain (the stiffening girder) to the destination

ones (the lines which contain anchor points), prescribed

displacements are imposed as constraint on the destination

domains, by means of the following constraint equations:

�u lð Þ ¼ uþ hzb; �v lð Þ ¼ v; �w lð Þ ¼ wþ hxb;

�u rð Þ ¼ u� hzb; �v rð Þ ¼ v; �w rð Þ ¼ w� hxb
ð19Þ

where �u lð Þ; �v lð Þ; �w lð Þ and �u rð Þ; �v rð Þ; �w rð Þ are the prescribed

displacements on left and right anchor point, respectively.

A regular mesh is used to obtain the discrete model: each

cable stay is divided in twenty linear truss elements,

whereas 350 beam elements are used to discretize the

stiffening girder.

The bucking and post-bucking behaviors have been

investigated by using nonlinear analyses taking into account

large deformation but small strains with linear stress–strain

relationship and a solution strategy based on the damped

Newton method has been adopted. A suitable modeling

technique in this case, where the relationship between

applied loads and displacements is highly nonlinear, is to use

an algebraic equation that controls the applied live loads kp

so that the generalized deflection of a control point reaches

the prescribed values. In order to capture the typical snapping

behavior of the load–displacement curve, a generalized

deflection increasing monotonically with the evolution of the

loading process is adopted, so that no snap-backs are

detected when the load–displacement curve is plotted in

terms of the assumed control parameter. In the case of

loading on the central span of the bridge, an appropriate

choose to capture the snapping behavior is the lateral mid-

span deflection dl or the girder end in-plane rotation hl,

although in some cases relevant to the TO model the central

Fig. 7 The finite element

model of the bridge
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midspan deflection dc has been adopted. The ODE interface

in COMSOL MULTIPHYSICSTM is useful for entering this

coupled algebraic equation, written as follows dl kð Þ ¼ �d ið Þ
l

where �d ið Þ
l is the desired vertical displacement stepped up by

employing a parametric solver. In this way a displacement

driven loading path is simulated able to describe the snap-

ping behavior in the load–displacement curve.

The equilibrium configuration of the bridge under the

action of dead load is characterized by large deflections and

huge bending moments in both the girder and towers when

no pretension exist in inclined cables, since the bridge span

is large. To this end an initial shape analysis must be

carried out to find the geometric configuration together

with the associated pretension force distribution in cables

satisfying both equilibrium and the design requirements of

a straight initial bridge configuration.

All geometric nonlinearities are taken into consideration

in the initial shape analysis, namely geometric effects of

axial compression in both girder and towers and cable sag

nonlinearties induced by cable dead load. The correct ini-

tial shape of the cable stayed bridge, reducing the deflec-

tions and smoothing the bending moment in the girder, is

determined by adding a set of coupled equations in the

finite element model imposing that vertical displacements

at the nodes intersected by the girder and the cable vi

(control points) and horizontal displacements at the tip of

the towers u (node intersected by the towers and cables)

vanish within a given tolerance:

uðN0
1 ; . . .;N0

nÞ ¼ 0

viðN0
1 ; . . .;N0

nÞ ¼ 0 i ¼ 2; . . .; n

�
; ð20Þ

where the unknowns N0
1 ; . . .;N0

n represent the pretension

forces in the double curtain of stays and the analysis is

restricted to one half of the bridge due to symmetry.

The initial shape nonlinear optimization has been per-

formed by using the ODE interface of COMSOL which

adds global equations to the model. In order to improve

converge performance trial initial cable forces are esti-

mated by means of the balance of vertical loads related to

the initial truss like behavior in the continuous model. Both

equilibrium and shape iterations have been performed by

adopting a numerical solving procedure based on the

Newton–Raphson method.

In both the cases of the tangent and tension only models

the initial shape analysis is carried out by using geomet-

rically linear truss elements.

4 Numerical results

Here numerical results for both the continuous model and

the discrete one are presented to examine the instabilizing

effect produced by the axial force in the girder for

increasing live loads kp for different loading conditions,

geometrical configurations and pylon shapes. Two types of

loadings are considered: a uniform load distributed on the

whole bridge length and a uniform load applied on the

central span only. Moreover, both the H-type and A-type

pylon shapes are analyzed and different eccentricities with

respect to the deck axis of the live load are taken into

account.

In the case of the continuous model results are limited to

an in-plane analysis and to the case of uniform load applied

on the central span. As a matter of fact this bridge model is

useful to determine the main geometrical and mechanical

parameters governing the bridge behavior which will be

used in the more general 3D analysis using the discrete

model in order to perform a useful parametric analysis.

The following dimensionless parameters are used in the

numerical analyses related to the continuum model,

unless otherwise stated: L
2H
¼ 2:5; l

H
¼ 5=3; b

H
¼ 0:1; D

L
¼

1=105; ra

E
¼ 7200

�
2:1� 106; K

g
¼ 50;,whereas the mate-

rial properties assume the values that concern the usual

case of steel girders and towers. The value of the dead load

g is equal to 300,000 N/m, typical of a steel deck, whereas

the cable unit volume weight has been assumed equal to

c = 77.01 kN/m3.

The other parameters e, eA and a are used to define the

bridge geometrical parameters according to the following

formulas:

H ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
12ar3

g

c2E

s
; I ¼ e4H3g

4rg

; A ¼ eAHg

rg

:

Moreover, the ratio between live load p and dead load

g is adopted to determine the stays cross section as shown

in Sect. 3. A parametric analysis is carried out by adopting

the following values for the above quantities: e = 0.2 or

0.3, a = 0.10 or 0.20 and p/g = 0.5 or 1, whereas eA has

been assumed equal to 54.5.

As far as the analysis carried out with the discrete model

is concerned, the following additional parameters are

needed:

eh ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4Izzrg

b3g

4

s
; Ir ¼

Ipyy

I
;

defining respectively the relative girder to stay stiffness for

bending in the horizontal plane and the tower to girder

bending stiffness ratio for bending in the vertical plane.

The former parameter gives the bending stiffness EIzz,

whereas the latter the pylon bending stiffness EIp yy. The

towers stiffness Ip xx for out-of-plane bending has been

assumed equal to EIp yy and the ratio between the height of

the pylon from pier bottom to bridge deck H1 and H has

been assumed equal to 0.25. The axial, bending and
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torsional stiffnesses of the beams connecting the two

towers of the pylons have been assumed equal to the cor-

responding ones adopted for the towers. Moreover the

cross section area and the torsional stiffness of the towers

have been assumed equal to those of the girder. These

parameters allow to define the bridge characteristics for the

3D discrete model. Additional parametric analyses are

carried out with reference to Ir and n by adopting the fol-

lowing ranges of variation: n = 0 7 0.75, Ir = 0.5 7 70.

On the other hand the following values have been assumed

for the remaining parameters: s = 0.1, eh = 5, t = 0.1. In

the analyses carried out exclusively with the discrete model

a larger value of D/L has been chosen equal to 1/60,

whereas the comparisons between the discrete and con-

tinuum models have been made by assuming D/L = 1/105.

For instance, in the case of p/g = 1, e = 0.2, a = 0.1,

Ir = 50, D/L = 1/60, n = 0.75, s = 0.1, the above

assumptions for the dimensionless parameters leads to

L = 1,040 m, l = 346.7 m, H = 208 m, H1 = 52 m,

e = 15.6 m, D = 17.33 m, b = 20.8 m, Ao = 0.5 m2,

A = 9.63 m2, I = 3.06 m4, Izz = 1,194.5 m4, Ct =

1.57 9 1011 Nm2, Ipyy = Ipxx = 152.90 m4, rg = 3.53 9

108 N/m2, rg0 = 2.52 9 108 N/m2, E = 2.06 9 1011

N/m2.

4.1 Comparisons between the continuous and discrete

models

The case of uniform load applied on the central span is

considered to compare results obtained by using the con-

tinuum and the discrete models. In the sake of simplicity,

the analysis does not involve out-of-plane displacements

and the in-plane instabilizing effect produced by the axial

force in the girder for increasing live loads kp is investi-

gated. In accordance with the approximations introduced

by the continuum model, in the discrete model the axial

deformability of the pylons has been neglected and only

geometrical nonlinearities in the girder are modeled.

Table 1 shows the influence of bridge parameters on the

maximum load parameter kmax for both the continuous and

discrete model. The influence of stays geometric nonlin-

earities is also pointed out by computing load maximum

when the tangent modulus linear model (denoted as LM in

Table 1 in contrast with NLM used when geometrical

nonlinearities are accounted) is adopted for the stays

response with Et
* assumed equal to E (i.e. r0 ? ?). In the

case of the continuum model geometrical nonlinearities in

the stays are accounted by using the secant modulus model

[Eq. (2)], whereas in the discrete model the multiple truss

element formulation has been used. Results show the

strong influence of the girder stiffness parameter and of the

p/g ratio, the former being stabilizing and the latter

destabilizing. Moreover the increase of the stays

deformability parameter a has a detrimental effect on the

maximum load. The continuous model gives reasonably

accurate results with respect to the discrete model, with a

maximum underestimation of the load maximum of about

9 % when stays geometrical nonlinearities are accounted

and a maximum overestimation of about 5 % when the

linear tangent model is adopted. It turns out that in the

more accurate case when the stays geometrical nonlinear-

ities are considered, the continuous model is able to pro-

vide conservative predictions of the maximum load

carrying capacity. Moreover, the above comparisons show

that the simplified continuous model is able to capture the

main features of the cable stayed bridge nonlinear

response. This confirms the validity of the parametric

analysis which will be carried out in the sequel with ref-

erence to the discrete model, based on the dimensionless

parameters derived from the theoretical analysis carried out

by using the continuous model.

4.2 Influence of stays response modeling

on the nonlinear bridge response

The analysis will be now devoted to investigate the influ-

ence of the different stays response approaches introduced

in Sect. 2, on the bridge nonlinear behavior by using the

more general 3D discrete model. To this end the response

of a single stay has been modeled by using the multiple

truss element nonlinear formulation, which will be denoted

as NLM, the tangent modulus linear model (denoted as LM

in the sequel) which adopts Eq. (3) with the initial stress

derived from the initial shape analysis and the tension only

approximation introduced by Eq. (4) (denoted as TO in the

sequel). The influence of the three stays response models

has been analyzed for different values of e and a and for

both the case of central loading and uniform loading on the

whole bridge length. Moreover, both A and H pylon shapes

have been considered.

Figure 8 shows for e = 0.2 and 0.3, a = 0.2 and

p/g = 1 the typical snapping for high values of k due to the

coupling between the instabilizing effect of the axial

compression in the girder and the softening behavior of

stays response in the lateral span, occurring in the case of

the central loading condition and the H pylon shape. This

behavior is represented in term of the load parameter ver-

sus central midspan deflection dc. As the load parameter

increases while in the central span the instabilizing effect

of the axial compression is balanced by the stiffening stays

in the lateral spans stays show a large stress reduction

produced by the lateral spans deflection and an instability

condition is rapidly reached producing a bound in the

applied load. The load–displacement curves are repre-

sented in term of the central midspan deflection dc in order

to better appreciate the differences between the three
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considered models, although the nonlinear analyses have

been driven always by the lateral midspan deflection. The

corresponding evolution of bridge deformed shape for the

NLM model with e = 0.2 is illustrated in Fig. 9 with ref-

erence to the three loading levels shown in Fig. 8a. The

evolution of the bridge deformation is shown by using a

color map of the displacements. In Figs. 8 the results

obtained by using the linear tangent model (LM) and the

tension only model (TO), are also shown in order to

appreciate the influence of the nonlinear cable response

modeling on the global bridge behavior.

As expected in light of the theoretical developments

given in Sect. 2, the load displacement diagrams for dif-

ferent girder stiffness parameters evidence a notable

overestimation for the LM approach whereas an underes-

timation for the TO one with respect to the actual behavior

(NLM).

The stress evolution of the lateral span central stay as

function of the load parameter is shown in Fig. 10 for the

different stays response models (NLM and LM). A large

stress reduction is shown due to upward deflections in the

lateral spans. It is worth noting that in the case of the LM

approach compression is allowed.

A parametric analysis for different values of the

parameters e, a and p/g has been carried out and the results

are summarized only in terms of the maximum load

parameter in Table 2. These results show the strong sta-

bilizing effect of the girder stiffness independently on the

adopted model and confirm the considerations made on the

basis of the load–displacement plotted of Fig. 8 about the

underestimation of the TO model and the overestimation of

the LM one. Moreover it can be noted that for the nonlinear
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Fig. 8 Plots of the load parameter k versus dc (central midspan deflection) for the central loading condition and H pylon shape: influence of the

different stay response models for e = 0.2 (a) and e = 0.3 (b)

Fig. 9 Evolution of bridge deformed shape for the NLM model

shown in Fig. 9a

Table 1 Influence of the parameters e, a and p/g on the maximum load parameter kmax in both the cases of nonlinear (NLM) and linear (LM)

approaches and for both continuous (C) and discrete (D) models

kmax

a 0.10 0.20

e NLM (C) NLM (D) LM (C) LM (D) NLM (C) NLM (D) LM (C) LM (D)

p/g = 0.5 0.2 2.39 2.58 4.11 3.96 2.18 2.37 4.11 3.90

0.3 5.30 5.57 9.69 9.50 5.35 5.39 9.69 9.42

p/g = 1 0.2 1.61 1.74 2.88 2.81 1.48 1.63 2.88 2.78

0.3 3.44 3.49 6.53 6.44 3.32 3.39 6.53 6.41
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model increasing the stay deformability parameter a leads

to a reduction of the limit load, although the effect of this

parameter appears weaker than that related to the girder

stiffness. This applies also to the linear and tension only

models for the lower value of the girder stiffness parame-

ter, whereas for the larger one an opposite effect takes

place.

In the case of the uniform loading on the whole bridge

length the nonlinear behavior is governed by the instabi-

lizing effect of axial compression, while cables provide a

stiffening effect except for a very small group of cables in

the lateral span near the maximum load. The typical snap

buckling behavior of the bridge is shown in Fig. 11 in term

of the load parameter versus central midspan deflection dc.

Contrarily to the previous loading condition, as the load

parameter increases the effect of softening in stays tangent

stiffness is negligible occurring for a very small group of

cables and for larger load level, and the stays are charac-

terized by tensile axial strains except near the load maxi-

mum. The global behavior is characterized by a local

maximum that is displayed near the end of the curve, being

activated by the softening behavior of the small group of

cables referred to above.

As a consequence the influence of the softening cable

behavior under shortening is less appreciable with respect

to the central loading case and the maximum load depends

strictly on the nonlinear prebuckling effects which leads to

larger displacements and rotations in the central span when

the tangent modulus or the tension-only models are

adopted.

The corresponding evolution of bridge deformed shape

for the NLM model with e = 0.2 is illustrated in Fig. 12

with reference to the loading level shown in Fig. 11a.

Also in the case of the uniform loading condition, the

results obtained by using the linear tangent model (LM)

and the tension only model (TO) are shown in order to

appreciate the influence of the nonlinear cable response

modeling on the global bridge behavior (see Fig. 11).

However, in this case it is possible to appreciate the con-

servative behavior of the LM and TO models with respect

to the NLM, in terms of the maximum load parameter kmax.

Moreover, Fig. 11 shows how the LM and TO models

are characterized by the same behavior, due to the fact that,

in the case of the uniform loading condition, cables are

always in tension except for a very small group of stays in

the lateral span near the maximum load.

Also in this case, a parametric analysis for different

values of the parameters e, a and p/g has been carried out

and the results, in terms of the maximum load parameter,

are shown in Table 3. These results exhibit, like in the case

of the central loading condition, the strong stabilizing

effect of the girder stiffness independently on the adopted

model and confirm the considerations, made on the basis of

the load–displacement plotted in Fig. 11, about the over-

estimation of the NL model with respect to the LM and TO

models.

It can be evidenced that for all the three models

increasing the stay deformability parameter a leads to a

reduction of the limit load, although the effect of this

parameter appears notably weaker than that of the girder

stiffness one.

In order to analyze the influence of the pylon shape on

the global non-linear behavior of long-span cable stayed

bridges, a parametric analysis for different values of the

parameters e, a and p/g has been carried out for the A pylon

shape.

Results, summarized in the Table 4 (central loading

condition) and Table 5 (uniform loading condition on the

whole bridge length) only in terms of the maximum load

parameter and for the NLM and LM models, are in

agreement with those obtained for the H pylon shape.

This aspect is also confirmed by the comparison in terms

of the typical snap buckling behavior of the bridge for the

central loading condition, shown in Fig. 13 for the H-type

and A-type pylon shape and for e = 0.2, and shows how
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Fig. 10 Plot of r (lateral span central stays stress) versus the load

parameter k for different values of e in both the cases of nonlinear

(NLM) and linear (LM) discrete model. Central loading condition and

H pylon shape

Table 2 Influence of the parameters e, a and p/g on the maximum

load parameter kmax for the nonlinear (NLM), linear (LM) and ten-

sion-only (TO) approaches in the context of the discrete FE model

a 0.10 0.20

e NLM LM TO NLM LM TO

p/g = 0.5 0.2 2.403 3.047 0.657 2.197 2.617 0.519

0.3 7.109 14.156 1.218 6.910 15.669 1.252

p/g = 1 0.2 1.678 2.248 0.395 1.563 1.962 0.353

0.3 4.476 9.918 1.370 4.380 11.534 1.537

Central loading condition and H pylon shape

Ann. Solid Struct. Mech. (2013) 5:15–34 29

123



the pylon shape scarcely influences the non-linear static

behavior of the bridge.

In general for the A pylon shape, involving larger

lengths in the cable system, the bridge deformability

increases and this causes a small reduction of the maximum

load parameter kmax with respect to the H pylon shape, that

is confirmed by the numerical results.

4.3 Influence of load eccentricity and of pylon bending

stiffness

In this section, for a given live to dead load ratio (p/g = 1),

a = 0.1 and both e = 0.2 (Fig. 14a) and 0.3 (Fig. 14b), the

influence of the tower to girder bending stiffness ratio Ir on

the maximum load parameter for loading in the central

span and for the H pylon shape is analyzed, for different

load eccentricity values ec.
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Fig. 11 Plots of the load parameter k versus dc (central midspan deflection) for the uniform loading condition and H pylon shape: influence of

the different stay response models for e = 0.2 (a) and e = 0.3 (b)

Fig. 12 Evolution of bridge deformed shape for the NLM model

shown in Fig. 12a

Table 3 Influence of the parameters e, a and p/g on the maximum

load parameter kmax for the nonlinear (NLM), linear (LM) and ten-

sion-only (TO) approaches for the discrete FE model

a 0.10 0.20

e NLM LM TO NLM LM TO

p/g = 0.5 0.2 7.848 5.305 5.305 7.731 4.320 4.314

0.3 25.315 16.376 16.376 25.244 15.439 15.439

p/g = 1 0.2 5.589 3.838 3.838 5.544 3.146 3.140

0.3 17.077 11.391 11.391 17.068 11.332 11.332

Uniform loading condition on the whole bridge length and H pylon
shape

Table 4 Influence of the parameters e, a and p/g on the maximum

load parameter kmax for the nonlinear (NLM) and linear (LM)

approaches for the discrete FE model

a 0.10 0.20

e NLM LM NLM LM

p/g = 0.5 0.2 2.393 3.021 2.188 2.599

0.3 7.065 14.005 6.865 15.464

p/g = 1 0.2 1.673 2.237 1.557 1.950

0.3 4.450 9.813 4.353 11.377

Central loading condition and A pylon shape

Table 5 Influence of the parameters e, a and p/g on the maximum

load parameter kmax for the nonlinear (NLM) and linear (LM)

approaches for the discrete FE model

a 0.10 0.20

e NLM LM NLM LM

p/g = 0.5 0.2 7.819 5.275 7.702 4.291

0.3 25.188 16.274 25.115 15.338

p/g = 1 0.2 5.570 3.817 5.525 3.126

0.3 16.994 11.322 17.020 11.180

Uniform loading condition on the whole bridge length and A pylon

shape
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In Fig. 14a the plot of the maximum load parameter kmax

versus the tower to girder bending stiffness ratio Ir is

presented for e = 0.2. When Ir increases the maximum

load parameter increases since the prebuckling configura-

tion involves smaller deflections and the associated pre-

buckling behavior can be considered as linear owing to a

negligible imperfection sensitiveness. On the other hand

the effect of load eccentricity is appreciable only for Ir \ 5,

for which increasing load eccentricity leads to a transition

from an in plane buckling to an out of plane buckling

coupling pylons and girder. This behavior is related to

different axial compressions in the two different towers of

the pylon and to the different behavior of left and right stay

systems with respect to pylon vertical axis, related to both

the torsional rotation and nonlinear cable behavior,

inducing a horizontal flexural couple acting as an imper-

fection in the activation of out of plane buckling. For Ir [ 5

the effect of eccentricity is lower than 1 %.

For e = 0.3, a similar trend (Fig. 14b) is obtained for the

load maximum parameter but with a stronger influence of

Ir, leading to an increase of 45 % up to Ir = 70, with the

effect of eccentricity appreciable for a tower stiffness ratio

Ir \ 1 leading to local pylon buckling.

The influence of the tower to girder stiffness ratio, in the

case of uniform loading condition on the whole bridge

length and for the H pylon shape is represented in Fig. 15a

and b, for e = 0.2 and 0.3 respectively. In particular, for

uniform load applied on the entire bridge deck the load

maximum level is more than three times respect to central

load. The effect of load eccentricity is larger respect to the

central loading case, whereas also in this case pylon

buckling occurs for small values of Ir.

A larger influence of the relative tower stiffness is evi-

denced for e = 0.3 leading to a maximum increase of 16 %

up to Ir = 70.

5 Conclusions

In this work a numerical investigation on the geometrically

nonlinear static behavior of self-anchored long span cable-

stayed bridges with a fan-shaped arrangement of stays is
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carried out by adopting a spatial finite element model of the

bridge. Numerical computations are devoted to investigate

the influence of three different stays response approaches

on the bridge nonlinear behavior by using the more general

3D discrete model and adopting both the H and A pylon

shapes. In particular, the mechanical response of a single

stay has been modeled by using the multiple truss element

nonlinear formulation (denoted as NLM), the tangent

modulus linear model (denoted as LM) with the initial

stress derived from the initial shape analysis and the ten-

sion only approximation (denoted as TO) according to

which cable assumes a vanishing stiffness under shorten-

ing. The above analysis of the influence of different cable

modeling techniques on nonlinear bridge behavior repre-

sents the main original contribution of the paper since this

aspect has been scarcely analyzed in previous studies

despite its significance for an accurate prediction of the

bridge maximum load carrying capacity.

An equivalent continuous model of the bridge is also

developed in order to point out the main parameters gov-

erning the non-linear behavior of the bridge to be used in

the more general 3D discrete bridge model. Consequently,

original parametric analyses are carried out to analyze the

influence of the three stays response models on the non-

linear static behavior of cable stayed bridges, for different

values of the relative bending stiffness e, the live to dead

load ratio p/g and the stay deformability parameter a, and

for both the case of central loading and uniform loading on

the whole bridge length.

Numerical results show the typical snapping behavior

for high values of the load parameter k due to the coupling

between the instabilizing effect of the axial compression in

the girder and the softening behavior of stays response in

the lateral span, occurring in the case of the central loading

condition. In particular, for this loading condition the load

displacement diagrams exhibit a notable overestimation, in

terms of the load parameter, for the LM approach whereas

an underestimation for the TO one with respect to the

actual behavior (NLM). Moreover, the numerical compu-

tations show the strong stabilizing effect of the girder

stiffness independently on the adopted model.

In the case of the uniform loading on the whole bridge

length, the nonlinear behavior is governed by the instabi-

lizing effect of axial compression, while cables provide a

stiffening effect except for a very small group of cables in

the lateral span near the maximum load. Contrarily to the

central loading condition, as the load parameter increases

the effect of softening in stays tangent stiffness is negli-

gible occurring for a very small group of cables and for

larger load level, and the stays are characterized by tensile

axial strains except near the load maximum. For this

loading condition it is possible to appreciate the conser-

vative behavior of the LM and TO models with respect to

the NLM, in terms of the maximum load parameter kmax.

Additional numerical results, obtained considering the A

pylon shape for the bridge, are in agreement with those

obtained for the H pylon shape and point out that in the

case of the A pylon shape the bridge deformability
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increases, causing a small reduction of the maximum load

parameter kmax with respect to the H pylon shape. Finally, a

parametric analysis has been carried out in terms of live

load eccentricity and pylon bending stiffness pointing out

that the live load eccentricity effects are appreciable only

for low values of the tower to girder bending stiffness ratio

Ir, when a transition from in plane buckling to an out of

plane buckling coupling pylons and girder may arise. The

effects of load eccentricity are more appreciable in the case

of the uniform loading case.

The above described parametric analyses represents

another aspect of novelty of the paper since previous

parametric studies available in the literature are charac-

terized by various simplified assumptions and include only

one or more sources of geometrically nonlinearities. For

instance pylon nonlinearities have been often neglected,

the analysis has been normally carried out excluding out-

of-plane deformations, a linear prebuckling behavior has

been frequently assumed, cable behavior has been usually

simulated by using a single straight truss element incor-

porating sag effects by using the Dischinger tangent

modulus often with a tension only behavior and the initial

bridge configuration under dead loads has been typically

determined by means of simplified techniques based on

equilibrium requirements.

The results presented in the paper point out the central

role of an accurate description of geometrically nonlinear

effects arising from the stays nonlinear response in cou-

pling with the instability effect of axial compression in

girder and pylons, for an actual prediction of the nonlinear

bridge behavior. These results evidence how the nonlinear

stays response plays a strong role, especially when the

assumed loading condition produces cable unloading, in

coupling with the notable influence of the relative girder

stiffness on the stability bridge behavior. On the other

hand, generally speaking pylon shape and stiffness, live

load eccentricity and torsional stiffness are less important

factors in non-linear analysis.
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